JP2012209036A - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP2012209036A
JP2012209036A JP2011072053A JP2011072053A JP2012209036A JP 2012209036 A JP2012209036 A JP 2012209036A JP 2011072053 A JP2011072053 A JP 2011072053A JP 2011072053 A JP2011072053 A JP 2011072053A JP 2012209036 A JP2012209036 A JP 2012209036A
Authority
JP
Japan
Prior art keywords
light
film
phosphor film
source device
secondary light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011072053A
Other languages
Japanese (ja)
Inventor
Ken Kobayashi
建 小林
Tatsuya Mukoyama
達弥 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2011072053A priority Critical patent/JP2012209036A/en
Priority to PCT/JP2012/058060 priority patent/WO2012133485A1/en
Priority to TW101111086A priority patent/TW201241544A/en
Publication of JP2012209036A publication Critical patent/JP2012209036A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Abstract

PROBLEM TO BE SOLVED: To provide a light source device capable of outputting a luminous flux in high efficiency by enlarging the amount of luminous flux per unit area of a light-emitting section.SOLUTION: The light source device is provided with a first solid light-emitting element 2 to emit primary light; a first phosphor film 3 which absorbs the primary light and emits secondary light; a prism 1 which has an incident face 11 arranged along the first phosphor film 3 through the air, an inclined face 12 which faces inclined to the incident face 11, two perpendicular faces which are opposed to each other mutually in parallel perpendicular to the incident face 11 and the inclined face 12, an emitting face 13 which continues from the incident face 11, the inclined face 12, and the two perpendicular faces on the side where the interval between the incident face 11 and the inclined face 12 is widened, and has an area smaller than that of the first phosphor film, and an included angle face 14 which is opposed to the emitting face 13 in parallel; and a first secondary light reflecting film 4 which is arranged between the first solid light-emitting element 2 and the first phosphor film 3 and transmits the primary light and reflects the secondary light.

Description

本発明は、投射表示装置(プロジェクタ)等の光源として使用される光源装置に関する。   The present invention relates to a light source device used as a light source for a projection display device (projector) or the like.

従来、プロジェクタ用の光源としては、超高圧水銀灯、キセノンランプ及びハロゲンランプ等の放電ランプが多く使われている。このような放電ランプに替わり、低消費電力、瞬時点灯、長寿命、高色純度及び水銀フリー等のような理由から半導体光源が提案されている。半導体光源のなかでも発光ダイオード(LED)は、近年急速に広がり、家庭用電球を従来の白熱灯からLEDへと住み替えが進められている。一方でプロジェクタ用の光源としては、一部の低輝度プロジェクタ用の光源としての採用に留まっている状況である。その理由として、LEDは面発光光源であるため、高輝度化には投入電力と面積の双方を大きくすることが必要である。言い換えれば単位面積当たりの光束量では、プロジェクタ用の光源として従来の放電ランプに替わる十分な明るさを得られていないのが実情である。   Conventionally, as a light source for a projector, a discharge lamp such as an ultra-high pressure mercury lamp, a xenon lamp, or a halogen lamp has been often used. Instead of such a discharge lamp, a semiconductor light source has been proposed for reasons such as low power consumption, instantaneous lighting, long life, high color purity and mercury-free. Among semiconductor light sources, light emitting diodes (LEDs) have spread rapidly in recent years, and household light bulbs are being replaced from conventional incandescent lamps to LEDs. On the other hand, as a light source for projectors, it has been used only as a light source for some low-intensity projectors. The reason is that since the LED is a surface emitting light source, it is necessary to increase both the input power and the area in order to increase the luminance. In other words, with the amount of light flux per unit area, the actual situation is that sufficient brightness to replace a conventional discharge lamp as a light source for a projector cannot be obtained.

そこで、不足しているLEDの光学利用効率の高効率化が提案されている(例えば、特許文献1参照。)。特許文献1では、LEDから発光した光線を楔形状のプリズムで反射させ、LEDの面積より小さい面積の射出面から出力する。これにより、光源の単位面積当たりの光束量を増加させることなく、且つ光源からの光線放射角度を小さくすることなく、発光面積と光線放射角度との関数であるエテンデューを改善し、高輝度で照明することができる。   In view of this, it has been proposed to increase the efficiency of optical utilization of the LEDs that are lacking (see, for example, Patent Document 1). In Patent Document 1, a light beam emitted from an LED is reflected by a wedge-shaped prism and output from an emission surface having an area smaller than the area of the LED. This improves the etendue as a function of the light emitting area and the light radiation angle without increasing the amount of light flux per unit area of the light source and reducing the light radiation angle from the light source, and illuminates with high brightness can do.

特開2008−26853号公報JP 2008-26853 A

しかしながら、特許文献1の系においては、LED自身の実質反射率は70%程度に留まり、更に正反射成分だけでなく散乱成分も多い。このため、LEDで発光した光束を自身も含めた系内で多重反射を繰り返して系外へ高効率で出力することは困難であった。   However, in the system of Patent Document 1, the actual reflectance of the LED itself remains at about 70%, and there are many scattering components as well as regular reflection components. For this reason, it has been difficult to output the luminous flux emitted from the LED with high efficiency outside the system by repeatedly performing multiple reflection within the system including itself.

上記問題点を鑑み、本発明の目的は、発光部の単位面積当たりの光束量を大きくし、光束を高効率で出力することができる光源装置を提供することである。   In view of the above problems, an object of the present invention is to provide a light source device that can increase the amount of light flux per unit area of a light emitting unit and output the light flux with high efficiency.

本発明の一態様によれば、一次光を発光する第1の固体発光素子(2、2a,31a)と、一次光を吸収し二次光を発光する第1の蛍光体膜(3,3a)と、第1の蛍光体膜(3,3a)に沿って空気を介して配置された入射面(11)と、入射面(11)と傾斜して対向する傾斜面(12)と、入射面(11)及び傾斜面(12)に垂直で互いに平行に対向する2つの垂直面(15,16)と、入射面(11)及び傾斜面(12)の間隔が広がる側で、入射面(11)、傾斜面(12)及び2つの垂直面(15,16)と連続し、第1の蛍光体膜(3,3a)の面積よりも小さい面積を有する射出面(13)と、射出面(13)と平行に対向する挟角面(14)とを有するプリズム(1)と、第1の固体発光素子(2,2a,31a)と第1の蛍光体膜(3,3a)との間に配置され、一次光を透過し且つ二次光を反射する第1の二次光反射膜(4,4a)とを備える光源装置が提供される。   According to one aspect of the present invention, the first solid-state light emitting element (2, 2a, 31a) that emits primary light and the first phosphor film (3, 3a) that absorbs primary light and emits secondary light. ), An incident surface (11) arranged via air along the first phosphor film (3, 3a), an inclined surface (12) inclined to face the incident surface (11), and incident On the side where the distance between the two vertical surfaces (15, 16) perpendicular to the surface (11) and the inclined surface (12) and parallel to each other and the incident surface (11) and the inclined surface (12) increases, the incident surface ( 11) an emission surface (13) which is continuous with the inclined surface (12) and the two vertical surfaces (15, 16) and has an area smaller than the area of the first phosphor film (3, 3a); A prism (1) having an included angle surface (14) facing in parallel with (13), a first solid state light emitting device (2, 2a, 31a) and a first Provided with a first secondary light reflecting film (4, 4a) that is disposed between the fluorescent film (3, 3a) and transmits the primary light and reflects the secondary light. .

本発明の一態様において、挟角面(14)から射出面(13)へ向かう方向において、入射面(11)の長さが、第1の蛍光体膜(3)の長さ(D1)よりも長く、第1の蛍光体膜(3)が入射面(11)の挟角面(14)側の一部と対向するように配置されており、入射面(11)の射出面(13)側の第1の蛍光体膜(3)と対向していない部分と空気を介して対向するように配置された金属膜ミラー(7)を更に備えていても良い。   In one aspect of the present invention, the length of the incident surface (11) is greater than the length (D1) of the first phosphor film (3) in the direction from the included angle surface (14) to the exit surface (13). The first phosphor film (3) is arranged so as to face a part of the incident surface (11) on the narrow-angle surface (14) side, and the exit surface (13) of the incident surface (11). You may further provide the metal film mirror (7) arrange | positioned so that the part which is not facing the 1st fluorescent substance film (3) of the side may be opposed via air.

本発明の一態様において、挟角面(14)から射出面(13)へ向かう方向において、入射面(11)の長さ及び第1の二次光反射膜(4)の長さ(D1+D2)が、第1の蛍光体膜(3)の長さ(D1)よりも長く、第1の蛍光体膜(3)が入射面(11)の挟角面(14)側の一部と対向するように配置されていても良い。   In one aspect of the present invention, the length of the incident surface (11) and the length of the first secondary light reflecting film (4) (D1 + D2) in the direction from the included angle surface (14) to the exit surface (13) Is longer than the length (D1) of the first phosphor film (3), and the first phosphor film (3) faces a part of the incident surface (11) on the narrow angle surface (14) side. It may be arranged as follows.

本発明の一態様において、傾斜面(12)に沿って空気を介して配置され、一次光を透過し且つ二次光を反射する第2の二次光反射膜(5)を更に備えていても良い。又は、傾斜面(12)に沿って空気を介して配置され、一次光及び二次光を反射する金属膜ミラーを更に備えていても良い。   In one aspect of the present invention, the apparatus further includes a second secondary light reflecting film (5) disposed along the inclined surface (12) through the air and transmitting the primary light and reflecting the secondary light. Also good. Or you may further provide the metal film mirror which is arrange | positioned through air along an inclined surface (12) and reflects primary light and secondary light.

本発明の一態様において、傾斜面(12)に沿って空気を介して配置され、一次光を吸収し二次光を発光する第2の蛍光体膜(3b)と、第2の蛍光体膜(3b)を照明するための一次光を発光する第2の固体発光素子(4b)と、第2の蛍光体膜(3b)と第2の固体発光素子(4b)との間に配置され、一次光を透過し且つ二次光を反射する第2の二次光反射膜(4b)とを更に備えていても良い。   In one aspect of the present invention, a second phosphor film (3b) that is disposed via air along the inclined surface (12) and absorbs primary light and emits secondary light, and a second phosphor film (3b) is disposed between the second solid-state light emitting element (4b) that emits primary light for illuminating the second phosphor film (3b) and the second solid-state light emitting element (4b). You may further provide the 2nd secondary light reflection film (4b) which permeate | transmits primary light and reflects secondary light.

本発明の一態様において、第1の固体発光素子(2)と第1の蛍光体膜(3)の間を囲むように配置され、一次光及び二次光を反射する内壁面を有するライトパイプ(8)を更に備えていても良い。   1 aspect of this invention WHEREIN: It is arrange | positioned so that between 1st solid light emitting element (2) and 1st fluorescent substance films (3) may be enclosed, and the light pipe which has an inner wall surface which reflects primary light and secondary light (8) may be further provided.

本発明の一態様において、ライトパイプ(8)が、第1の固体発光素子(2)側から第1の蛍光体膜(3)側に向かって広がるようにテーパ形状を有していても良い。   In one embodiment of the present invention, the light pipe (8) may have a tapered shape so as to spread from the first solid state light emitting device (2) side toward the first phosphor film (3) side. .

本発明の一態様において、射出面(13)に配置され、一次光を反射し且つ二次光を透過する一次光反射膜(6)を更に備えていても良い。   1 aspect of this invention WHEREIN: You may further provide the primary light reflection film (6) which is arrange | positioned at the output surface (13) and reflects primary light and permeate | transmits secondary light.

本発明の一態様において、第1の固体発光素子(31b)が単一波長を有する一次光を発光し、第1の二次光反射膜(4a)の分光特性が狭帯域であっても良い。   In one embodiment of the present invention, the first solid-state light emitting element (31b) may emit primary light having a single wavelength, and the spectral characteristics of the first secondary light reflecting film (4a) may be a narrow band. .

本発明によれば、発光部の単位面積当たりの光束量を大きくし、光束を高効率で出力することができる光源装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light source device which can enlarge the light beam amount per unit area of a light emission part, and can output a light beam with high efficiency can be provided.

本発明の第1の実施の形態に係る光源装置の一例を示す断面図である。It is sectional drawing which shows an example of the light source device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るプリズムの一例を示す斜視図である。It is a perspective view which shows an example of the prism which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る照明方法を説明するための概略図である。It is the schematic for demonstrating the illumination method which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る照明方法を説明するための他の概略図である。It is another schematic diagram for explaining the illumination method according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る照明方法を説明するための更に他の概略図である。It is another schematic diagram for demonstrating the illumination method which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る照明方法を説明するための更に他の概略図である。It is another schematic diagram for demonstrating the illumination method which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態及び比較例に係る発光部面積と明るさの関係のシミュレーション結果を表すグラフである。It is a graph showing the simulation result of the relationship between the light emission part area and brightness which concerns on the 1st Embodiment of this invention and a comparative example. 本発明の第1の実施の形態に係る一次光及び二次光の分光分布を表すグラフである。It is a graph showing the spectral distribution of the primary light and the secondary light which concern on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る一次光反射膜と二次光反射膜の分光特性を表すグラフである。It is a graph showing the spectral characteristics of the primary light reflection film and secondary light reflection film which concern on the 1st Embodiment of this invention. 本発明の第1の実施の形態の変形例に係る光源装置の一例を示す断面図である。It is sectional drawing which shows an example of the light source device which concerns on the modification of the 1st Embodiment of this invention. 本発明の第1の実施の形態の変形例に係る照明方法を説明するための概略図である。It is the schematic for demonstrating the illumination method which concerns on the modification of the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る光源装置の一例を示す断面図である。It is sectional drawing which shows an example of the light source device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る光源装置の一例を示す断面図である。It is sectional drawing which shows an example of the light source device which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る照明方法を説明するための概略図である。It is the schematic for demonstrating the illumination method which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る二次光反射膜の角度特性を表すグラフである。It is a graph showing the angle characteristic of the secondary light reflection film which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る照明方法を説明するための他の概略図である。It is another schematic diagram for demonstrating the illumination method which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態の第1の変形例に係る光源装置の一例を示す断面図である。It is sectional drawing which shows an example of the light source device which concerns on the 1st modification of the 3rd Embodiment of this invention. 本発明の第3の実施の形態の第2の変形例に係る光源装置の一例を示す断面図である。It is sectional drawing which shows an example of the light source device which concerns on the 2nd modification of the 3rd Embodiment of this invention. 本発明の第3の実施の形態の第2の変形例に係る一次光及び二次光の分光分布を表すグラフである。It is a graph showing the spectral distribution of the primary light and the secondary light which concern on the 2nd modification of the 3rd Embodiment of this invention. 本発明の第3の実施の形態の第2の変形例に係る二次光反射膜の角度特性を表すグラフである。It is a graph showing the angle characteristic of the secondary light reflection film which concerns on the 2nd modification of the 3rd Embodiment of this invention. 本発明のその他の実施の形態に係る筐体の一例を示す斜視図である。It is a perspective view which shows an example of the housing | casing which concerns on other embodiment of this invention.

次に、図面を参照して、本発明の第1〜第3の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Next, first to third embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

また、以下に示す第1〜第3の実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。   The first to third embodiments shown below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the component parts. The material, shape, structure, arrangement, etc. are not specified below. The technical idea of the present invention can be variously modified within the scope of the claims.

(第1の実施の形態)
本発明の第1の実施の形態に係る光源装置は、図1に示すように、一次光(一次光源光)を発光する固体発光素子2と、一次光を吸収し二次光(二次光源光)を発光する蛍光体膜3と、蛍光体膜3と空気を介して配置された楔形状のプリズム1と、固体発光素子2と蛍光体膜3との間に配置され、固体発光素子2により発光される一次光を透過し且つ蛍光体膜3により発光される二次光を反射する第1の二次光反射膜4とを備える。
(First embodiment)
As shown in FIG. 1, the light source device according to the first embodiment of the present invention includes a solid-state light emitting element 2 that emits primary light (primary light source light), and absorbs primary light to secondary light (secondary light source). A phosphor film 3 that emits light), a wedge-shaped prism 1 that is disposed via the phosphor film 3 and air, a solid light-emitting element 2, and the phosphor film 3. A first secondary light reflection film 4 that transmits the primary light emitted by the fluorescent film 3 and reflects the secondary light emitted by the phosphor film 3.

プリズム1の材料としては、屈折率が1よりも大きい硝子や樹脂が使用可能である。プリズム1の各面は表面粗さの小さい研磨面である。プリズム1は、研磨加工や切削加工のほか金型成型等により作製可能である。   As a material of the prism 1, glass or resin having a refractive index larger than 1 can be used. Each surface of the prism 1 is a polished surface with a small surface roughness. The prism 1 can be manufactured by molding, in addition to polishing and cutting.

プリズム1は、図1及び図2に示すように、蛍光体膜3に沿って空気を介して配置された面(以下、「入射面」という。)11と、入射面11と傾斜して対向する面(以下、「傾斜面」という。)12と、入射面11及び傾斜面12に垂直で互いに平行に対向する2つの面(以下、「垂直面」という。)15,16と、入射面11及び傾斜面12の間隔が広がる側で、入射面11、傾斜面12及び2つの垂直面15,16と連続し、蛍光体膜3の面積よりも小さい面積を有する面(以下、「射出面」という。)13と、射出面13と平行に対向する面(以下、「挟角面」という。)14を有する。   As shown in FIGS. 1 and 2, the prism 1 faces a surface (hereinafter referred to as “incident surface”) 11 disposed along the phosphor film 3 via air and is inclined to the incident surface 11. A surface 12 (hereinafter referred to as an “inclined surface”), two surfaces (hereinafter referred to as “vertical surfaces”) 15 and 16 that are perpendicular to the incident surface 11 and the inclined surface 12 and are opposed to each other in parallel, and an incident surface. 11 and the inclined surface 12 on the side where the distance is widened, a surface that is continuous with the incident surface 11, the inclined surface 12, and the two vertical surfaces 15 and 16 and has an area smaller than the area of the phosphor film 3 (hereinafter referred to as “emission surface” ) 13 and a surface 14 (hereinafter, referred to as “an angled surface”) that faces the exit surface 13 in parallel.

図1に示した固体発光素子2としては、LEDや半導体レーザー等の種々の発光素子が使用可能である。固体発光素子2の裏面側には反射膜が形成され、発光層から発光された1次光は直接又は反射膜で反射して表面側へ射出される。固体発光素子2は、例えば上面視2mm×6mm程度の矩形を有する。本発明の第1の実施の形態においては、固体発光素子2として青色LEDを使用する。固体発光素子2は、1次光を反射する反射面を有する支持部材21により支持されている。   As the solid-state light-emitting element 2 shown in FIG. 1, various light-emitting elements such as LEDs and semiconductor lasers can be used. A reflective film is formed on the back surface side of the solid state light emitting device 2, and primary light emitted from the light emitting layer is reflected directly or by the reflective film and emitted to the front surface side. The solid light emitting element 2 has a rectangular shape of, for example, about 2 mm × 6 mm when viewed from above. In the first embodiment of the present invention, a blue LED is used as the solid state light emitting device 2. The solid state light emitting device 2 is supported by a support member 21 having a reflective surface that reflects primary light.

蛍光体膜3は、入射面11の挟角面14側の一部と対向するように、硝子等の基板23上に塗布により形成されている。蛍光体膜3の上面視における形状は固体発光素子2と略同じであり、蛍光体膜3の面積は固体発光素子2の面積と同等である。蛍光体膜3の材料としては、硫化物系、酸化物系又は窒化物系等の種々の蛍光体が採用可能である。蛍光体膜3は、二次光源として振る舞い、固体発光素子2により発光された一次光を励起光として吸収し、一次光とは異なる波長の二次光を発光する。蛍光体膜3は、例えば一次光が青色光の場合、緑色又は赤色等の紫外〜可視光を発光する。挟角面14から射出面13へ向かい入射面11に平行な方向において、基板23の長さ(D1+D2)は、蛍光体膜3の長さD1よりも長く、更に入射面11の長さは基板23の長さ(D1+D2)よりも長い。 第1の二次光反射膜4は、基板23の蛍光体膜3が配置されている面と対向する面に、蛍光体膜3と略同じ面積を有するように配置されている。第1の二次光反射膜4としては、例えば屈折率の異なる酸化ケイ素(SiO)と酸化チタン(TiO)からなる薄膜を交互に積層させたダイクロイック膜等が使用可能である。第1の二次光反射膜4は、基板23上に蒸着法等により形成可能である。 The phosphor film 3 is formed by coating on a substrate 23 such as glass so as to face a part of the incident surface 11 on the narrow angle surface 14 side. The shape of the phosphor film 3 in a top view is substantially the same as that of the solid light emitting element 2, and the area of the phosphor film 3 is equal to the area of the solid light emitting element 2. As the material of the phosphor film 3, various phosphors such as sulfide, oxide or nitride can be employed. The phosphor film 3 behaves as a secondary light source, absorbs primary light emitted by the solid state light emitting device 2 as excitation light, and emits secondary light having a wavelength different from that of the primary light. For example, when the primary light is blue light, the phosphor film 3 emits ultraviolet to visible light such as green or red. In the direction parallel to the incident surface 11 from the sandwiched surface 14 to the exit surface 13, the length (D1 + D2) of the substrate 23 is longer than the length D1 of the phosphor film 3, and the length of the incident surface 11 is the substrate. It is longer than the length of 23 (D1 + D2). The first secondary light reflecting film 4 is disposed on the surface of the substrate 23 opposite to the surface on which the phosphor film 3 is disposed so as to have substantially the same area as the phosphor film 3. As the first secondary light reflecting film 4, for example, a dichroic film in which thin films made of silicon oxide (SiO 2 ) and titanium oxide (TiO 2 ) having different refractive indexes are alternately stacked can be used. The first secondary light reflecting film 4 can be formed on the substrate 23 by vapor deposition or the like.

更に、基板23上の第1の二次光反射膜4が配置されていない部分には、可視光を全て高反射率(例えば98%以上)で反射する銀ミラー等の金属膜ミラー7が配置されている。金属膜ミラー7は、入射面11の射出面13側の蛍光体膜3と対向していない部分と空気を介して対向するように配置されている。   Further, a metal film mirror 7 such as a silver mirror that reflects all visible light with high reflectivity (for example, 98% or more) is disposed in a portion where the first secondary light reflection film 4 on the substrate 23 is not disposed. Has been. The metal film mirror 7 is disposed so as to face a portion of the incident surface 11 that is not opposed to the phosphor film 3 on the exit surface 13 side via air.

更に、傾斜面12に沿って空気を介して第2の二次光反射膜5が配置されている。第2の二次光反射膜5は、硝子等の基板24上に配置されている。挟角面14から射出面13へ向かう傾斜面12に平行な方向において、第2の二次光反射膜5及び基板24の長さD3は、基板23の長さ(D1+D2)と略同じである。第2の二次光反射膜5は、一次光を透過し且つ二次光を反射する。第2の二次光反射膜5としては、例えば屈折率の異なる酸化ケイ素(SiO)と酸化チタン(TiO)からなる薄膜を交互に積層させたダイクロイック膜等が使用可能である。第2の二次光反射膜5は、基板24上に蒸着法等により形成可能である。 Furthermore, the second secondary light reflecting film 5 is disposed along the inclined surface 12 via air. The second secondary light reflecting film 5 is disposed on a substrate 24 such as glass. The length D3 of the second secondary light reflecting film 5 and the substrate 24 is substantially the same as the length (D1 + D2) of the substrate 23 in the direction parallel to the inclined surface 12 from the sandwiched surface 14 to the exit surface 13. . The second secondary light reflecting film 5 transmits the primary light and reflects the secondary light. As the second secondary light reflecting film 5, for example, a dichroic film in which thin films made of silicon oxide (SiO 2 ) and titanium oxide (TiO 2 ) having different refractive indexes are alternately stacked can be used. The second secondary light reflecting film 5 can be formed on the substrate 24 by vapor deposition or the like.

更に、射出面13上に一次光反射膜6が配置されている。一次光反射膜6は、一次光を反射し且つ二次光を透過する。一次光反射膜6としては、例えば屈折率の異なる酸化ケイ素(SiO)と酸化チタン(TiO)からなる薄膜を交互に積層させたダイクロイック膜等が使用可能である。一次光反射膜6は、射出面13上に蒸着法等により形成可能である。 Further, the primary light reflecting film 6 is disposed on the emission surface 13. The primary light reflecting film 6 reflects the primary light and transmits the secondary light. As the primary light reflecting film 6, for example, a dichroic film in which thin films made of silicon oxide (SiO 2 ) and titanium oxide (TiO 2 ) having different refractive indexes are alternately stacked can be used. The primary light reflection film 6 can be formed on the emission surface 13 by vapor deposition or the like.

更に、固体発光素子2と蛍光体膜3の間を囲むように四角柱の筒(ライトパイプ)8が配置されている。ライトパイプ8は、一次光及び二次光を反射するミラーで形成された内壁面を有する。ライトパイプ8の外側には、ライトパイプ8を取り囲むようにカバー部材22が配置されている。   Further, a quadrangular cylinder (light pipe) 8 is disposed so as to surround the solid light emitting element 2 and the phosphor film 3. The light pipe 8 has an inner wall surface formed of a mirror that reflects primary light and secondary light. A cover member 22 is disposed outside the light pipe 8 so as to surround the light pipe 8.

次に、本発明の第1の実施の形態に係る光源装置を用いた照明方法(光線出力の原理)を、図3〜図6を用いて説明する。なお、図3〜図6において一次光を点線矢印で示し、二次光を実線矢印で示す。   Next, an illumination method using the light source device according to the first embodiment of the present invention (principle of light output) will be described with reference to FIGS. 3 to 6, the primary light is indicated by a dotted arrow, and the secondary light is indicated by a solid arrow.

図3に示すように、固体発光素子2より発光した一次光(青色光)は、ライトパイプ8を通って第1の二次光反射膜4及び基板23を透過し、蛍光体膜3を照明する。図3及び図4に示すように、蛍光体膜3は、一次光を励起光として吸収し、二次光(緑色光)を発光する。その際、蛍光体膜3中の各蛍光体粒子のそれぞれが個々に一次光を吸収し、二次光を全方位(360度)に発光する。そのため一次光のうち約半分の光はプリズム1側に発光する。一方、残りの光はその逆側に発光するが、第1の二次光反射膜4で反射し、全ての二次光がプリズム1側に向かう。また、一次光のうちの一部が蛍光体膜3で吸収されずに蛍光体膜3を透過する。   As shown in FIG. 3, the primary light (blue light) emitted from the solid state light emitting device 2 passes through the first secondary light reflecting film 4 and the substrate 23 through the light pipe 8 and illuminates the phosphor film 3. To do. As shown in FIGS. 3 and 4, the phosphor film 3 absorbs primary light as excitation light and emits secondary light (green light). At that time, each phosphor particle in the phosphor film 3 individually absorbs the primary light and emits the secondary light in all directions (360 degrees). Therefore, about half of the primary light is emitted to the prism 1 side. On the other hand, the remaining light is emitted to the opposite side, but is reflected by the first secondary light reflecting film 4 and all the secondary light is directed to the prism 1 side. Further, a part of the primary light is transmitted through the phosphor film 3 without being absorbed by the phosphor film 3.

図5に示すように、蛍光体膜3で発光した二次光と、蛍光体膜3を透過した一部の一次光は、空気を介してプリズム1の入射面11に入射し、プリズム1内で多重反射する。プリズム1の各面は鏡面研磨されているため、屈折率の高いプリズム1から低い系外へは、スネルの法則を満たす角度以上の光線は、全て臨界角を超えてプリズム1内で内部反射を起こす。したがって、2つの垂直面15,16及び挟角面14では、蛍光体膜3から入射する全ての一次光及び二次光が内部反射する。   As shown in FIG. 5, the secondary light emitted from the phosphor film 3 and a part of the primary light transmitted through the phosphor film 3 enter the incident surface 11 of the prism 1 through the air, Multiple reflection at. Since each surface of the prism 1 is mirror-polished, from the prism 1 having a high refractive index to the outside of the low system, all light rays exceeding the angle satisfying Snell's law are internally reflected within the prism 1 exceeding the critical angle Wake up. Accordingly, all the primary light and secondary light incident from the phosphor film 3 are internally reflected on the two vertical surfaces 15 and 16 and the included angle surface 14.

一方、入射面11及び傾斜面12では、プリズム1内に入射した際一部の光線が臨界角を越えないため、プリズム1系外に射出する。射出した光線は、第1の二次光反射膜4、第2の二次光反射膜5及び金属膜ミラー7で反射して再びプリズム1に戻される。プリズム1は、射出面13側に広がるように楔形状を有するため、臨界角を超えていない光線も、多重反射を繰り返すことで臨界角を超え、内部反射するようになる。蛍光体膜3から出力した光線が臨界角を超えて多重反射を繰り返すように、図1に示した蛍光体膜3の長さD1に対し、プリズム1の入射面11、射出面12及び2つの垂直面15,16を長くし、且つ金属膜ミラー7の長さD2及び第2の二次光反射膜5の長さD3を適宜長くしている。このようにして、プリズム1内で多重反射を繰り返すことで射出面13から高効率で光線を系外に射出する。   On the other hand, at the incident surface 11 and the inclined surface 12, some rays do not exceed the critical angle when entering the prism 1, so that they exit the prism 1 system. The emitted light beam is reflected by the first secondary light reflection film 4, the second secondary light reflection film 5, and the metal film mirror 7 and returned to the prism 1 again. Since the prism 1 has a wedge shape so as to spread toward the exit surface 13 side, light rays that do not exceed the critical angle exceed the critical angle by being subjected to multiple reflection and are internally reflected. The incident surface 11, the exit surface 12, and the two of the prism 1 with respect to the length D 1 of the phosphor film 3 shown in FIG. The vertical surfaces 15 and 16 are lengthened, and the length D2 of the metal film mirror 7 and the length D3 of the second secondary light reflecting film 5 are appropriately lengthened. In this way, light is emitted out of the system with high efficiency from the exit surface 13 by repeating multiple reflections in the prism 1.

また、図6に示すように、二次光が入射面11からプリズム外に射出され、第1の二次光反射膜4に入射する際、硝子と空気の屈折率差の方が硝子と蛍光体膜3の屈折率差に比べ大きいため、第1の二次光反射膜4に入射する二次光の入射角は小さくなる。そのため、二次光反射膜4は二次光を高い確率で反射することができる。   In addition, as shown in FIG. 6, when the secondary light is emitted from the incident surface 11 to the outside of the prism and is incident on the first secondary light reflecting film 4, the difference in refractive index between glass and air is the glass and fluorescence. Since the difference in refractive index of the body film 3 is large, the incident angle of the secondary light incident on the first secondary light reflecting film 4 is small. Therefore, the secondary light reflecting film 4 can reflect the secondary light with high probability.

以上説明したように、本発明の第1の実施の形態に係る光源装置によれば、二次光を発光する蛍光体膜3の面積が、二次光を射出する射出面13の面積より大きいため、エテンデューを改善し、高輝度で照明することができる。そして、固体発光素子2からの一次光で蛍光体膜3が二次光を発光し、二次光を第1の二次光反射膜4で反射させることにより、入射面11及び傾斜面12同士で二次光がそれぞれ多重反射を繰り返し、射出面13から効率的に二次光を出力させることができる。よって、単位面積当たりの光束量を大きくすることができ、光束を高効率で出力することができることが可能となる。   As described above, according to the light source device according to the first embodiment of the present invention, the area of the phosphor film 3 that emits the secondary light is larger than the area of the emission surface 13 that emits the secondary light. Therefore, etendue can be improved and illumination can be performed with high brightness. Then, the phosphor film 3 emits secondary light with the primary light from the solid state light emitting device 2, and the secondary light is reflected by the first secondary light reflecting film 4, whereby the incident surface 11 and the inclined surfaces 12 are aligned with each other. Thus, the secondary light repeats multiple reflections, and the secondary light can be efficiently output from the exit surface 13. Therefore, the amount of light flux per unit area can be increased, and the light flux can be output with high efficiency.

図7に蛍光体膜3の面積と明るさの関係についてのシミュレーション結果を示す。蛍光体膜3の面積、並びにプリズム1の入射面11及び傾斜面12のなす楔の角度によって詳細は異なるが、比較例としてのLEDから発光した光をそのままプリズムへ入射し、多重反射を繰り返して射出させる構成に対して、本発明の第1の実施の形態に係る光源装置では2倍近く明るくなる可能性がある。特に、蛍光体膜3の面積を大きくすることでその効果があり、従来LEDを大きくしても効果はないとされていた限界を超えることから、高輝度化が期待できる。   FIG. 7 shows a simulation result of the relationship between the area of the phosphor film 3 and the brightness. Although the details differ depending on the area of the phosphor film 3 and the angle of the wedge formed by the incident surface 11 and the inclined surface 12 of the prism 1, light emitted from the LED as a comparative example is incident on the prism as it is, and multiple reflection is repeated. The light source device according to the first embodiment of the present invention may be nearly twice as bright as the emitted configuration. In particular, increasing the area of the phosphor film 3 has the effect, and since it exceeds the limit that would not have been achieved even if the LED was increased in size, higher brightness can be expected.

更に、本発明の第1の実施の形態に係る光源装置によれば、第2の二次光反射膜5を配置することにより、傾斜面12から射出した二次光をプリズム1内に戻すことができる。   Furthermore, according to the light source device according to the first embodiment of the present invention, the secondary light reflected from the inclined surface 12 is returned into the prism 1 by arranging the second secondary light reflecting film 5. Can do.

ところで、一次光及び二次光は、図8に示すような分光特性を持っている。蛍光体膜3からプリズム1に入射する光線には、上述したように二次光のほかに一部一次光が混入している。これは、蛍光体膜3の発光効率に関わるもので、蛍光体膜3で吸収されずにそのまま透過してくる成分である。この成分が射出光に混ざっていると、所望のスペクトルが得られず純色を悪くする。図9に示すように、第1の二次光反射膜4、第2の二次光反射膜5及び一次光反射膜6は、それぞれの帯域で98%以上の高反射である。したがって、第2の二次光反射膜5を配置することにより、臨界角を超えない光線の青色光成分を、第2の二次光反射膜5を透過して系外に排出することができる。   Incidentally, the primary light and the secondary light have spectral characteristics as shown in FIG. As described above, in addition to the secondary light, the primary light is partially mixed in the light beam incident on the prism 1 from the phosphor film 3. This relates to the luminous efficiency of the phosphor film 3 and is a component that is transmitted as it is without being absorbed by the phosphor film 3. If this component is mixed in the emitted light, a desired spectrum cannot be obtained and the pure color is deteriorated. As shown in FIG. 9, the first secondary light reflection film 4, the second secondary light reflection film 5, and the primary light reflection film 6 have high reflection of 98% or more in each band. Therefore, by arranging the second secondary light reflecting film 5, the blue light component of the light rays not exceeding the critical angle can be transmitted outside the system through the second secondary light reflecting film 5. .

更に、本発明の第1の実施の形態に係る光源装置によれば、射出面13に一次光反射膜6を配置することで、蛍光体膜3で吸収されることなく透過した一次光を射出面13から出力させることなくプリズム1内に戻すことができる。この一次光が蛍光体膜3を再び励起させ発光させることで、二次光を更に増幅し、単位面積当たりの光束量を大きくすることができる。   Furthermore, according to the light source device according to the first embodiment of the present invention, the primary light reflecting film 6 is arranged on the emission surface 13 so that the primary light transmitted without being absorbed by the phosphor film 3 is emitted. It can be returned to the prism 1 without being output from the surface 13. The primary light excites the phosphor film 3 again to emit light, so that the secondary light can be further amplified and the amount of light flux per unit area can be increased.

更に、固体発光素子2の表面に配置される電極、及び電極に電力供給するためのワイヤボンディングのループといった物理的な要因から、固体発光素子2とプリズム1とは離間して配置されている。本発明の第1の実施の形態に係る光源装置によれば、ライトパイプ8を有することで、固体発光素子2とプリズム1との隙間からの光束の漏れを防止することができる。   Furthermore, the solid light emitting element 2 and the prism 1 are spaced apart from each other due to physical factors such as an electrode disposed on the surface of the solid light emitting element 2 and a wire bonding loop for supplying power to the electrode. According to the light source device according to the first embodiment of the present invention, it is possible to prevent leakage of light flux from the gap between the solid light emitting element 2 and the prism 1 by having the light pipe 8.

<変形例>
本発明の第1の実施の形態の変形例として、図10に示すように、第1の二次光反射膜4が基板23と蛍光体膜3の間に配置されていても良い。更に、第1の二次光反射膜4は、基板23全面を覆っていても良い。第1の二次光反射膜4の長さ(D1+D2)は、蛍光体膜3の長さD1よりも長い。
<Modification>
As a modification of the first embodiment of the present invention, as shown in FIG. 10, the first secondary light reflection film 4 may be disposed between the substrate 23 and the phosphor film 3. Further, the first secondary light reflecting film 4 may cover the entire surface of the substrate 23. The length (D1 + D2) of the first secondary light reflecting film 4 is longer than the length D1 of the phosphor film 3.

本発明の第1の実施の形態の変形例では、図11に示すように、蛍光体膜3が基板23側に発光した二次光は直下の第1の二次光反射膜4で反射され、全ての二次光がプリズム1側へ向かう。また、プリズム1内から入射面11を介して射出した二次光は第1の二次光反射膜4により反射されてプリズム1内に戻される。   In the modification of the first embodiment of the present invention, as shown in FIG. 11, the secondary light emitted from the phosphor film 3 toward the substrate 23 is reflected by the first secondary light reflecting film 4 immediately below. , All secondary light travels toward the prism 1 side. The secondary light emitted from the prism 1 through the incident surface 11 is reflected by the first secondary light reflecting film 4 and returned to the prism 1.

(第2の実施の形態)
本発明の第1の実施の形態では、固体発光素子2及び蛍光体膜3の1組の光源を有する場合を説明したが、本発明の第2の実施の形態では、2組の光源を有する場合を説明する。
(Second Embodiment)
In the first embodiment of the present invention, the case of having one set of light sources of the solid state light emitting element 2 and the phosphor film 3 has been described. However, in the second embodiment of the present invention, two sets of light sources are provided. Explain the case.

本発明の第2の実施の形態に係る光源装置は、図12に示すように、プリズム1の入射面11側に、入射面11に沿って空気を介して配置され、一次光を吸収し二次光を発光する第1の蛍光体膜3aと、第1の蛍光体膜3aを照明するための一次光を発光する第1の固体発光素子2aと、第1の蛍光体膜3aと第1の固体発光素子2aとの間に配置され、一次光を透過し且つ二次光を反射する第1の二次光反射膜4aを備える。   As shown in FIG. 12, the light source device according to the second embodiment of the present invention is disposed on the incident surface 11 side of the prism 1 along the incident surface 11 via air, and absorbs primary light. A first phosphor film 3a emitting secondary light, a first solid-state light emitting element 2a emitting primary light for illuminating the first phosphor film 3a, the first phosphor film 3a and the first phosphor film 3a. The first secondary light reflecting film 4a is disposed between the first and second solid state light emitting devices 2a and transmits primary light and reflects secondary light.

第1の固体発光素子2aは支持部材21aにより支持されている。第1の固体発光素子2a及び第1の蛍光体膜3aの間には、ライトパイプ8a及びカバー部材22aが配置されている。   The first solid state light emitting device 2a is supported by a support member 21a. A light pipe 8a and a cover member 22a are disposed between the first solid state light emitting device 2a and the first phosphor film 3a.

第1の蛍光体膜3a及び第1の二次光反射膜4aは基板23aに配置されている。基板23aの第1の蛍光体膜3aが配置されていない部分には、可視光を全て高反射率(例えば98%以上)で反射する銀ミラー等の金属膜ミラー7aが配置されている。   The first phosphor film 3a and the first secondary light reflecting film 4a are disposed on the substrate 23a. A metal film mirror 7a such as a silver mirror that reflects all visible light with high reflectivity (for example, 98% or more) is disposed in a portion of the substrate 23a where the first phosphor film 3a is not disposed.

更に、本発明の第2の実施の形態に係る光源装置は、プリズム1の傾斜面12側に、傾斜面12に沿って空気を介して配置され、一次光を吸収し二次光を発光する第2の蛍光体膜3bと、第2の蛍光体膜3bを照明するための一次光を発光する第2の固体発光素子2bと、第2の蛍光体膜3bと第2の固体発光素子2bとの間に配置され、一次光を透過し且つ二次光を反射する第2の二次光反射膜4bを備える。   Furthermore, the light source device according to the second embodiment of the present invention is disposed on the inclined surface 12 side of the prism 1 via air along the inclined surface 12, and absorbs primary light and emits secondary light. Second phosphor film 3b, second solid-state light emitting element 2b that emits primary light for illuminating second phosphor film 3b, second phosphor film 3b, and second solid-state light emitting element 2b And a second secondary light reflecting film 4b that transmits the primary light and reflects the secondary light.

第2の固体発光素子2bは支持部材21bにより支持されている。第2の固体発光素子2b及び第2の蛍光体膜3bの間には、ライトパイプ8b及びカバー部材22bが配置されている。   The second solid state light emitting device 2b is supported by a support member 21b. A light pipe 8b and a cover member 22b are disposed between the second solid state light emitting device 2b and the second phosphor film 3b.

第2の蛍光体膜3b及び第2の二次光反射膜4bは基板23bに配置されている。基板23bの第2の蛍光体膜3bが配置されていない部分には、可視光を全て高反射率(例えば98%以上)で反射する銀ミラー等の金属膜ミラー7bが配置されている。   The second phosphor film 3b and the second secondary light reflecting film 4b are disposed on the substrate 23b. A metal film mirror 7b such as a silver mirror that reflects all visible light with high reflectivity (for example, 98% or more) is disposed in a portion of the substrate 23b where the second phosphor film 3b is not disposed.

他の構成は、本発明の第1の実施の形態と実質的に同様であるので、重複した説明を省略する。   Other configurations are substantially the same as those of the first embodiment of the present invention, and a duplicate description is omitted.

次に、本発明の第2の実施の形態に係る光源装置を用いた照明方法の一例を、図12を用いて説明する。   Next, an example of an illumination method using the light source device according to the second embodiment of the present invention will be described with reference to FIG.

第1の固体発光素子2aが発光した一次光は、ライトパイプ8aを介して第1の二次光反射膜4a、基板23aを透過し、第1の蛍光体膜3aを照明する。第1の蛍光体膜3aが一次光を吸収して二次光を発光する。一方、第2の固体発光素子2bが発光した一次光は、ライトパイプ8bを介して第2の二次光反射膜4b、基板23bを透過し、第2の蛍光体膜3bを照明する。第2の蛍光体膜3bが、一次光を吸収して二次光を発光する。   The primary light emitted from the first solid state light emitting device 2a passes through the first secondary light reflecting film 4a and the substrate 23a through the light pipe 8a, and illuminates the first phosphor film 3a. The first phosphor film 3a absorbs the primary light and emits secondary light. On the other hand, the primary light emitted from the second solid state light emitting element 2b passes through the second secondary light reflecting film 4b and the substrate 23b through the light pipe 8b, and illuminates the second phosphor film 3b. The second phosphor film 3b absorbs the primary light and emits secondary light.

第1の蛍光体膜3a及び第2の蛍光体膜3bのそれぞれからの二次光は、第1の二次光反射膜4a及び第2の二次光反射膜4bで反射した二次光及び一次光の残光成分と共に空気を介してプリズム1に入射し、プリズム1内及びプリズム1近傍の第1の二次光反射膜4a、第2の二次光反射膜4b、金属膜ミラー7a,7bで多重反射を繰り返し、射出面13から出力する。   The secondary light from each of the first phosphor film 3a and the second phosphor film 3b is the secondary light reflected by the first secondary light reflection film 4a and the second secondary light reflection film 4b, and Along with the afterglow component of the primary light, it enters the prism 1 through the air, and the first secondary light reflecting film 4a, the second secondary light reflecting film 4b, the metal film mirror 7a, in the prism 1 and in the vicinity of the prism 1, Multiple reflection is repeated at 7 b and output from the exit surface 13.

このとき、第1の蛍光体膜3a及び第2の蛍光体膜3bで発光した一部の二次光は、相対する面の第1の蛍光体膜3a及び第2の蛍光体膜3bにそれぞれ入射する。第1の蛍光体膜3a及び第2の蛍光体膜3bは、一次光に対しては吸収特性を示すが、二次光に対しては吸収特性を持たないため、二次光は第1の蛍光体膜3a及び第2の蛍光体膜3bをそれぞれ透過又は一部散乱し、第1の二次光反射膜4a及び第2の二次光反射膜4bにより反射し、再び第1の蛍光体膜3a及び第2の蛍光体膜3bを透過してプリズム1に再入射する。一方、一次光の残留成分の一部も同様に相対する面の第1の蛍光体膜3a及び第2の蛍光体膜3bに入射するが、第1の蛍光体膜3a及び第2の蛍光体膜3bが吸収して二次光の発光に寄与する。   At this time, some secondary lights emitted from the first phosphor film 3a and the second phosphor film 3b are respectively transmitted to the first phosphor film 3a and the second phosphor film 3b on the opposite surfaces. Incident. The first phosphor film 3a and the second phosphor film 3b exhibit an absorption characteristic with respect to the primary light, but do not have an absorption characteristic with respect to the secondary light. The phosphor film 3a and the second phosphor film 3b are respectively transmitted or partially scattered, reflected by the first secondary light reflecting film 4a and the second secondary light reflecting film 4b, and again the first phosphor. The light passes through the film 3 a and the second phosphor film 3 b and reenters the prism 1. On the other hand, a part of the residual component of the primary light is similarly incident on the first phosphor film 3a and the second phosphor film 3b on the opposite surfaces, but the first phosphor film 3a and the second phosphor. The film 3b absorbs and contributes to the emission of secondary light.

また、一部の一次光は、射出面13において一次光反射膜6で反射し再び系内に戻される。一次光に関しては完全に閉ざされた系を呈しているので、再び多重反射を繰り返し、第1の蛍光体膜3a及び第2の蛍光体膜3bに再度入射し吸収され発光に寄与する。第1の蛍光体膜3a及び第2の蛍光体膜3bを再度透過した一次光は、第1の二次光反射膜4a及び第2の二次光反射膜4bと基板23a,23bを透過して、ライトパイプ8a,8bを介して第1の固体発光素子2a及び第2の固体発光素子2bに戻る。この光線は、第1の固体発光素子2a及び第2の固体発光素子2b自身で反射し、再度第1の蛍光体膜3a及び第2の蛍光体膜3bを照明する。このように残留成分も含めて、全ての一次光が第1の蛍光体膜3a及び第2の蛍光体膜3bで吸収され二次光の発光に寄与する。   Further, a part of the primary light is reflected by the primary light reflecting film 6 on the exit surface 13 and returned to the system again. Since the primary light has a completely closed system, multiple reflection is repeated again, and the light is incident again on the first phosphor film 3a and the second phosphor film 3b and contributes to light emission. The primary light transmitted again through the first phosphor film 3a and the second phosphor film 3b is transmitted through the first secondary light reflection film 4a and the second secondary light reflection film 4b and the substrates 23a and 23b. Then, the light returns to the first solid state light emitting device 2a and the second solid state light emitting device 2b via the light pipes 8a and 8b. This light beam is reflected by the first solid-state light-emitting element 2a and the second solid-state light-emitting element 2b itself, and illuminates the first phosphor film 3a and the second phosphor film 3b again. As described above, all the primary light including the residual component is absorbed by the first phosphor film 3a and the second phosphor film 3b and contributes to the emission of the secondary light.

以上説明したように、本発明の第2の実施の形態に係る光源装置によれば、複数の光源を合成するような系においても、単位面積当たりの光束量が大きく、且つ高効率で照明可能となる。   As described above, according to the light source device according to the second embodiment of the present invention, even in a system in which a plurality of light sources are combined, the amount of light flux per unit area is large and illumination can be performed with high efficiency. It becomes.

(第3の実施の形態)
本発明の第3の実施の形態に係る光源装置は、図13に示すように、ライトパイプ8が固体発光素子2側から蛍光体膜3側へ向かって広がるようにテーパ形状を有する点が、本発明の第1の実施の形態と異なる。蛍光体膜3及び第1の二次光反射膜4の面積は、固体発光素子2の面積よりも大きい。他の構成は、本発明の第1の実施の形態と実質的に同様であるので、重複した説明を省略する。
(Third embodiment)
As shown in FIG. 13, the light source device according to the third embodiment of the present invention has a tapered shape so that the light pipe 8 spreads from the solid light emitting element 2 side toward the phosphor film 3 side. Different from the first embodiment of the present invention. The areas of the phosphor film 3 and the first secondary light reflection film 4 are larger than the area of the solid state light emitting device 2. Other configurations are substantially the same as those of the first embodiment of the present invention, and a duplicate description is omitted.

次に、本発明の実施の形態に係る光源装置を用いた照明方法の一例を、図14及び図15を用いて説明する。   Next, an example of an illumination method using the light source device according to the embodiment of the present invention will be described with reference to FIGS.

図14に示すように、固体発光素子2より発光した一次光は、固体発光素子2の表面の法線方向に対し角度θ0を有しており、ライトパイプ8内で多重反射しながら射出面13へ向かう。この時、ライトパイプ8内の反射面が傾斜しているため、一次光が反射するたびに、蛍光体膜3へ向かう角度θ0,θ1,θ2が小さくなる。したがって、ライトパイプ8から射出する一次光はいずれも略平行光となる。ライトパイプ8を射出した1次光は基板23を透過し、第1の二次光反射膜4を透過し蛍光体膜3を照明する。   As shown in FIG. 14, the primary light emitted from the solid state light emitting device 2 has an angle θ0 with respect to the normal direction of the surface of the solid state light emitting device 2, and the light exit surface 13 while being reflected multiple times within the light pipe 8. Head to. At this time, since the reflecting surface in the light pipe 8 is inclined, the angles θ0, θ1, and θ2 toward the phosphor film 3 are reduced every time the primary light is reflected. Accordingly, any primary light emitted from the light pipe 8 becomes substantially parallel light. The primary light emitted from the light pipe 8 passes through the substrate 23, passes through the first secondary light reflecting film 4, and illuminates the phosphor film 3.

ここで、図15に示すように、第1の二次光反射膜4を構成するダイクロイックミラーの角度特性において、入射する光線の角度が大きくなると、分光反射特性が短波長側にシフトする。そのため一次光であっても光線角度が大きい成分を透過できず、一次光で十分に蛍光体膜3を照明できない現象が発生し、所望の高輝度化が得られない場合がある。これに対して、本発明の第3の実施の形態によれば、ライトパイプ8がテーパ形状を有することにより、一次光を略平行光とすることができるので、第1の二次光反射膜4の角度特性で反射されることなく高効率で蛍光体膜3を照明することができる。   Here, as shown in FIG. 15, in the angle characteristics of the dichroic mirror constituting the first secondary light reflecting film 4, when the angle of the incident light beam increases, the spectral reflection characteristics shift to the short wavelength side. Therefore, even if it is primary light, a component having a large light beam angle cannot be transmitted, and a phenomenon in which the phosphor film 3 cannot be sufficiently illuminated with primary light may occur, and a desired high brightness may not be obtained. On the other hand, according to the third embodiment of the present invention, since the light pipe 8 has a tapered shape, the primary light can be made substantially parallel light. The phosphor film 3 can be illuminated with high efficiency without being reflected by the angle characteristic of 4.

そして、照明された蛍光体膜3は、1次光を吸収し二次光(緑色光)を発光する。その際、蛍光体膜3内部の各蛍光体粒子それぞれが個々に青色光を吸収し、緑色光を全方位(360度)に発光する。そのため一次光の約半分の光はプリズム1側に発光するが、残りの光はその逆の基板23側に発光する。今度はかなり角度のついた光線が第1の二次光反射膜4に入射するが、第1の二次光反射膜4の角度特性により、二次光の反射帯域は広がるため、略全ての光を反射し、プリズム1側に向けることができる。そして、図16に示すように、蛍光体膜3により発光された二次光がプリズム1、第1の二次光反射膜4、第2のニ次反射膜5及び金属膜ミラー7により多重反射を繰り返し、射出面13から射出される。このとき、ライトパイプ8がテーパ形状を有することにより、ライトパイプ8の径が一定の場合と比して、ライトパイプ8に再入射した光線をプリズム1に戻しやすくなる。   The illuminated phosphor film 3 absorbs primary light and emits secondary light (green light). At that time, each phosphor particle inside the phosphor film 3 individually absorbs blue light and emits green light in all directions (360 degrees). Therefore, about half of the primary light is emitted to the prism 1 side, while the remaining light is emitted to the opposite substrate 23 side. This time, a light beam with a considerable angle is incident on the first secondary light reflection film 4, but the reflection band of the secondary light is widened by the angle characteristics of the first secondary light reflection film 4, so that almost all Light can be reflected and directed to the prism 1 side. Then, as shown in FIG. 16, the secondary light emitted from the phosphor film 3 is subjected to multiple reflection by the prism 1, the first secondary light reflecting film 4, the second secondary reflecting film 5, and the metal film mirror 7. Is repeated and ejected from the exit surface 13. At this time, since the light pipe 8 has a tapered shape, it becomes easier to return the light beam incident on the light pipe 8 to the prism 1 as compared with the case where the diameter of the light pipe 8 is constant.

以上説明したように、本発明の第3の実施の形態に係る光源装置によれば、テーパ形状のライトパイプ8を備えることにより、高効率で蛍光体膜3を照明でき、蛍光体膜3発光の高輝度化により、射出される光束の単位面積当たりの光束量を大きくすることができる。 更に、プリズム1内で多重反射し、再び蛍光体膜3に戻ってくる一次光が所定の入射角以上で入射する場合には、第1の二次光反射膜4を透過することなく、再び蛍光体膜3へ戻すことができる。よって、一次光を高効率で蛍光体膜3を照明することができる。   As described above, according to the light source device according to the third embodiment of the present invention, by providing the tapered light pipe 8, the phosphor film 3 can be illuminated with high efficiency, and the phosphor film 3 emits light. By increasing the brightness, it is possible to increase the amount of light flux per unit area of the emitted light flux. Further, when the primary light that has been multiple-reflected in the prism 1 and returned to the phosphor film 3 is incident at a predetermined incident angle or more, the light is again transmitted without passing through the first secondary light reflecting film 4. It can be returned to the phosphor film 3. Therefore, the phosphor film 3 can be illuminated with primary light with high efficiency.

<第1の変形例>
本発明の第3の実施の形態の第1の変形例として、図17に示すように、2組の光源を有し、ライトパイプ8a,8bのそれぞれが、第1の固体発光素子2a及び第2の固体発光素子2bから第1の蛍光体膜3a及び第2の蛍光体膜3bに向かってテーパ形状を有していても良い。他の構成は、図12に示した本発明の第2の実施の形態に係る光源装置と実質的に同様であるので、重複した説明を省略する。
<First Modification>
As a first modified example of the third embodiment of the present invention, as shown in FIG. 17, two sets of light sources are provided, and each of the light pipes 8a and 8b includes the first solid-state light emitting element 2a and the first The second solid-state light emitting element 2b may have a tapered shape toward the first phosphor film 3a and the second phosphor film 3b. Other configurations are substantially the same as those of the light source device according to the second embodiment of the present invention shown in FIG.

<第2の変形例>
本発明の第3の実施の形態の第2の変形例として、図18に示すように、LEDの代わりに、単一波長を出力するレーザー31a,31bを使用しても良い。レーザー31a,31bは、系外に配置されている。図18にはレーザー31a,31bのそれぞれが複数個使いのレーザーアレイを示すが、レーザー31a,31bのそれぞれは1個でも良く、個数は特に限定されない。レーザー31a,31bは、図19に示すような単一波長の青色レーザーを発光する。レーザー31a,31bから出力される光線は放射状に発光し、コリメートレンズ32a,32bで平行光にされる。その後、複数の平行光は共通の集光レンズ33a,33bによりライトパイプ8a,8bの端面に入射する。ライトパイプ8a,8b内を多重反射した光線は、略平行光として第1の蛍光体膜3a及び第2の蛍光体膜3bをそれぞれ照明する。他の構成は、図17に示した構成と実質的に同様であるので、重複した説明を省略する。
<Second Modification>
As a second modification of the third embodiment of the present invention, as shown in FIG. 18, lasers 31a and 31b that output a single wavelength may be used instead of LEDs. The lasers 31a and 31b are arranged outside the system. Although FIG. 18 shows a laser array in which a plurality of lasers 31a and 31b are used, the number of lasers 31a and 31b may be one and the number is not particularly limited. The lasers 31a and 31b emit a blue laser having a single wavelength as shown in FIG. Light rays output from the lasers 31a and 31b are emitted radially, and are collimated by collimating lenses 32a and 32b. Thereafter, the plurality of parallel lights are incident on the end faces of the light pipes 8a and 8b through the common condenser lenses 33a and 33b. The light rays that are multiply reflected in the light pipes 8a and 8b illuminate the first phosphor film 3a and the second phosphor film 3b as substantially parallel light, respectively. The other configuration is substantially the same as the configuration shown in FIG.

図19に示す青色レーザーのように単一波長を出力する場合、第1の二次光反射膜4a及び第2の二次光反射膜4bとして、図20に示すように、蛍光体膜3を照明する略平行光は透過し、プリズム1内多重反射で戻ってくるような戻り光を反射するような帯域の狭い反射膜を使用することで、一次光を系内に閉じ込めて、全ての一次光を蛍光体膜3での発光に寄与させることが可能となる。   When a single wavelength is output as in the blue laser shown in FIG. 19, as shown in FIG. 20, the phosphor film 3 is used as the first secondary light reflecting film 4a and the second secondary light reflecting film 4b. By using a reflective film with a narrow band that transmits the substantially parallel light that illuminates and reflects the return light that returns by multiple reflection within the prism 1, the primary light is confined in the system, and all the primary light is reflected. Light can be contributed to light emission in the phosphor film 3.

(その他の実施の形態)
上記のように、本発明は第1〜第3の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described according to the first to third embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、図1に示した第2の二次光反射膜5の代わりに、可視光を全て高反射率(例えば98%以上)で反射する銀ミラー等の金属膜ミラーを備えていても良い。金属膜ミラーを配置することにより、蛍光体膜3で吸収されることなく透過した一次光をプリズム1内に戻し、蛍光体膜3を再び励起させ発光させることで、二次光を更に増幅し、単位面積当たりの光束量を大きくすることができる。   For example, instead of the second secondary light reflecting film 5 shown in FIG. 1, a metal film mirror such as a silver mirror that reflects all visible light with high reflectivity (for example, 98% or more) may be provided. By arranging the metal film mirror, the primary light transmitted without being absorbed by the phosphor film 3 is returned into the prism 1, and the phosphor film 3 is excited again to emit light, thereby further amplifying the secondary light. The amount of light flux per unit area can be increased.

また、本発明の第1〜第3の実施の形態において、楔形状のプリズム1について説明したが、プリズム1の代わりに、図21に示すような空気が充填された楔形状の筺体1xを使用しても良い。この場合、筐体1xの内壁面には一次光及び二次光を反射する金属膜ミラー又は二次光を反射する二次光反射膜を形成する。更に、蛍光体膜3からの二次光を入射するための開口部17と、二次光を射出させるための開口部17の面積より大きい開口部18を設ければ良い。   Further, in the first to third embodiments of the present invention, the wedge-shaped prism 1 has been described. Instead of the prism 1, a wedge-shaped housing 1x filled with air as shown in FIG. You may do it. In this case, a metal film mirror that reflects primary light and secondary light or a secondary light reflecting film that reflects secondary light is formed on the inner wall surface of the housing 1x. Furthermore, it is only necessary to provide an opening 17 for entering the secondary light from the phosphor film 3 and an opening 18 larger than the area of the opening 17 for emitting the secondary light.

また、本発明の第1〜第3の実施の形態に係るプリズム1は、射出面13に比較して、入射面11及び傾斜面12が著しく大きな構成でも良い。また、プリズム1の射出面13に比較して、蛍光体膜3の面積が著しく大きな構成でも良い。また、プリズム1の挟角面14がなく、入射面11及び傾斜面12が連続している楔形状の場合にも適用可能である。また、垂直面15,16は、入射面11及び傾斜面12に垂直で且つ互いに平行であることが好ましいが、厳密に垂直及び平行でなくても良い。更に、射出面13及び挟角面14は、互いに平行であることが好ましいが、厳密に平行でなくても良い。   In addition, the prism 1 according to the first to third embodiments of the present invention may have a configuration in which the incident surface 11 and the inclined surface 12 are significantly larger than the exit surface 13. Further, the phosphor film 3 may have a significantly larger area than the exit surface 13 of the prism 1. The present invention is also applicable to a wedge shape in which the prism 1 has no included angle surface 14 and the incident surface 11 and the inclined surface 12 are continuous. The vertical surfaces 15 and 16 are preferably perpendicular to the incident surface 11 and the inclined surface 12 and parallel to each other, but may not be strictly vertical and parallel. Furthermore, the exit surface 13 and the included angle surface 14 are preferably parallel to each other, but may not be strictly parallel.

また、本発明の第1〜第3の実施の形態において、一次光として青色、二次光として緑色を発光させる場合を説明したが、一次光の青色光で励起して二次光として図8に示すような波長帯域の赤色光を発光することも可能である。さらに、波長の短い(エネルギーの大きい)紫外線光を励起光として、可視光域の所望のスペクトルを発光しても良い。その場合、二次光反射膜4,5,4a,4bとして、それぞれの帯域のスペクトルを反射及び透過する膜を適宜選択可能である。   In the first to third embodiments of the present invention, the case where blue light is emitted as the primary light and green light is emitted as the secondary light has been described. However, the secondary light is excited by the blue light of the primary light as shown in FIG. It is also possible to emit red light having a wavelength band as shown in FIG. Furthermore, a desired spectrum in the visible light region may be emitted using ultraviolet light having a short wavelength (high energy) as excitation light. In that case, as the secondary light reflecting films 4, 5, 4a, and 4b, films that reflect and transmit the spectrum of each band can be appropriately selected.

また、本発明の第1〜第3の実施の形態に係る光源装置は、光源装置から射出された二次光を変調する空間光変調素子と、変調された二次光の像を結像させ、スクリーン等に表示させる結像光学系を有する画像表示装置にも適用可能である。   In addition, the light source device according to the first to third embodiments of the present invention forms a spatial light modulation element that modulates the secondary light emitted from the light source device and an image of the modulated secondary light. The present invention is also applicable to an image display apparatus having an imaging optical system that displays on a screen or the like.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

1…プリズム
1x…筐体
2,2a,2b…固体発光素子
3,3a,3b…蛍光体膜
4,4a,4b,5…二次光反射膜
6…一次光反射膜
7,7a,7b…金属膜ミラー
8,8a,8b…ライトパイプ
11…入射面
12…傾斜面
13…射出面
14…挟角面
15,16…垂直面
17,18…開口部
21,21a,21b…支持部材
22,22a,22b…カバー部材
23,23a,23b,24…基板
31a,31b…レーザー
32a,32b…コリメートレンズ
33a,33b…集光レンズ
DESCRIPTION OF SYMBOLS 1 ... Prism 1x ... Case 2, 2a, 2b ... Solid light emitting element 3, 3a, 3b ... Phosphor film 4, 4a, 4b, 5 ... Secondary light reflecting film 6 ... Primary light reflecting film 7, 7a, 7b ... Metal film mirror 8, 8a, 8b ... Light pipe 11 ... Incident surface 12 ... Inclined surface 13 ... Ejection surface 14 ... Nangling surface 15, 16 ... Vertical surface 17, 18 ... Opening 21, 21, 21a, 21b ... Support member 22, 22a, 22b ... Cover member 23, 23a, 23b, 24 ... Substrate 31a, 31b ... Laser 32a, 32b ... Collimating lens 33a, 33b ... Condensing lens

Claims (10)

一次光を発光する第1の固体発光素子と、
前記一次光を吸収し二次光を発光する第1の蛍光体膜と、
前記第1の蛍光体膜に沿って空気を介して配置された入射面と、前記入射面と傾斜して対向する傾斜面と、前記入射面及び前記傾斜面に垂直で互いに平行に対向する2つの垂直面と、前記入射面及び前記傾斜面の間隔が広がる側で、前記入射面、前記傾斜面及び前記2つの垂直面と連続し、前記第1の蛍光体膜の面積よりも小さい面積を有する射出面と、前記射出面と平行に対向する挟角面とを有するプリズムと、
前記第1の固体発光素子と前記第1の蛍光体膜との間に配置され、前記一次光を透過し且つ前記二次光を反射する第1の二次光反射膜
とを備えることを特徴とする光源装置。
A first solid state light emitting device emitting primary light;
A first phosphor film that absorbs the primary light and emits secondary light;
An incident surface disposed via air along the first phosphor film, an inclined surface that is inclined and opposed to the incident surface, and 2 that are perpendicular to the incident surface and the inclined surface and are parallel to each other. Two vertical surfaces, and a side where the interval between the incident surface and the inclined surface is widened, and is continuous with the incident surface, the inclined surface, and the two vertical surfaces, and has an area smaller than the area of the first phosphor film. A prism having an exit surface and a narrow angle surface facing in parallel with the exit surface;
A first secondary light reflecting film disposed between the first solid-state light emitting element and the first phosphor film and transmitting the primary light and reflecting the secondary light. A light source device.
前記挟角面から前記射出面へ向かう方向において、前記入射面の長さが、前記第1の蛍光体膜の長さよりも長く、
前記第1の蛍光体膜が前記入射面の前記挟角面側の一部と対向するように配置されており、
前記入射面の前記射出面側の前記第1の蛍光体膜と対向していない部分と空気を介して対向するように配置された金属膜ミラーを更に備えることを特徴とする請求項1に記載の光源装置。
In the direction from the sandwiched surface to the exit surface, the length of the entrance surface is longer than the length of the first phosphor film,
The first phosphor film is disposed so as to face a part of the incident surface on the narrow surface side;
The metal film mirror further arranged so that it may oppose via the air with the part which is not facing the said 1st fluorescent substance film of the said output surface side of the said incident surface. Light source device.
前記挟角面から前記射出面へ向かう方向において、前記入射面及び前記第1の二次光反射膜のそれぞれの長さが、前記第1の蛍光体膜の長さよりも長く、
前記第1の蛍光体膜が前記入射面の前記挟角面側の一部と対向するように配置されていることを特徴とする請求項1に記載の光源装置。
In the direction from the sandwiched surface to the exit surface, the lengths of the entrance surface and the first secondary light reflection film are longer than the length of the first phosphor film,
The light source device according to claim 1, wherein the first phosphor film is disposed so as to face a part of the incident surface on the narrow-angle surface side.
前記傾斜面に沿って空気を介して配置され、前記一次光を透過し且つ前記二次光を反射する第2の二次光反射膜を更に備えることを特徴とする請求項1〜3のいずれか1項に記載の光源装置。   4. The apparatus according to claim 1, further comprising a second secondary light reflecting film that is disposed along the inclined surface through the air and transmits the primary light and reflects the secondary light. The light source device according to claim 1. 前記傾斜面に沿って空気を介して配置され、前記一次光及び前記二次光を反射する金属膜ミラーを更に備えることを特徴とする請求項1〜3のいずれか1項に記載の光源装置。   4. The light source device according to claim 1, further comprising a metal film mirror that is disposed along the inclined surface via air and reflects the primary light and the secondary light. 5. . 前記傾斜面に沿って空気を介して配置され、前記一次光を吸収し二次光を発光する第2の蛍光体膜と、
前記第2の蛍光体膜を照明するための前記一次光を発光する第2の固体発光素子と、
前記第2の蛍光体膜と前記第2の固体発光素子との間に配置され、前記一次光を透過し且つ前記二次光を反射する第2の二次光反射膜
とを更に備えることを特徴とする請求項1〜3のいずれか1項に記載の光源装置。
A second phosphor film disposed along the inclined surface via air, absorbing the primary light and emitting secondary light;
A second solid-state light emitting element that emits the primary light for illuminating the second phosphor film;
A second secondary light reflecting film that is disposed between the second phosphor film and the second solid state light emitting element and transmits the primary light and reflects the secondary light. The light source device according to claim 1, wherein the light source device is a light source device.
前記第1の固体発光素子と前記第1の蛍光体膜の間を囲むように配置され、前記一次光及び前記二次光を反射する内壁面を有するライトパイプを更に備えることを特徴とする請求項1〜6のいずれか1項に記載の光源装置。   The light pipe having an inner wall surface that is disposed so as to surround between the first solid state light emitting device and the first phosphor film and reflects the primary light and the secondary light. Item 7. The light source device according to any one of Items 1 to 6. 前記ライトパイプが、前記第1の固体発光素子側から前記第1の蛍光体膜側に向かって広がるようにテーパ形状を有することを特徴とする請求項7に記載の光源装置。   The light source device according to claim 7, wherein the light pipe has a tapered shape so as to spread from the first solid state light emitting element side toward the first phosphor film side. 前記射出面に配置され、前記一次光を反射し且つ前記二次光を透過する一次光反射膜を更に備えることを特徴とする請求項1〜8のいずれか1項に記載の光源装置。   The light source device according to claim 1, further comprising a primary light reflecting film that is disposed on the emission surface and reflects the primary light and transmits the secondary light. 前記第1の固体発光素子が単一波長を有する前記一次光を発光し、
前記第1の二次光反射膜の分光特性が狭帯域であることを特徴とする請求項1〜9のいずれか1項に記載の光源装置。
The first solid state light emitting device emits the primary light having a single wavelength;
The light source device according to claim 1, wherein spectral characteristics of the first secondary light reflection film are in a narrow band.
JP2011072053A 2011-03-29 2011-03-29 Light source device Pending JP2012209036A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011072053A JP2012209036A (en) 2011-03-29 2011-03-29 Light source device
PCT/JP2012/058060 WO2012133485A1 (en) 2011-03-29 2012-03-28 Light source device
TW101111086A TW201241544A (en) 2011-03-29 2012-03-29 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011072053A JP2012209036A (en) 2011-03-29 2011-03-29 Light source device

Publications (1)

Publication Number Publication Date
JP2012209036A true JP2012209036A (en) 2012-10-25

Family

ID=46931194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011072053A Pending JP2012209036A (en) 2011-03-29 2011-03-29 Light source device

Country Status (3)

Country Link
JP (1) JP2012209036A (en)
TW (1) TW201241544A (en)
WO (1) WO2012133485A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089235A (en) * 2012-10-29 2014-05-15 Ushio Inc Light source device and projector
WO2014156550A1 (en) * 2013-03-28 2014-10-02 ウシオ電機株式会社 Fluorescent light source device
CN104570563A (en) * 2015-01-06 2015-04-29 深圳雅图数字视频技术有限公司 Projector, projector shell and buckle structure thereof
US10423055B2 (en) 2015-02-20 2019-09-24 Ricoh Company, Ltd. Illumination device and image projection apparatus
CN112540498A (en) * 2019-09-20 2021-03-23 精工爱普生株式会社 Wavelength conversion element, light source device, and projector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106569380B (en) * 2015-10-08 2019-04-16 台达电子工业股份有限公司 Light feeding mechanism and optical projection system
CN106814528B (en) * 2015-11-27 2018-10-02 中强光电股份有限公司 Projection arrangement and its lighting system
CN105487331B (en) * 2016-01-14 2017-12-08 张建平 A kind of light source assembly for optical projection system
CN107062001B (en) * 2016-12-22 2023-04-07 毅丰显示科技(深圳)有限公司 Light emitting diode array light source
CN115976868A (en) 2018-05-28 2023-04-18 皮尔森生物工程技术(北京)有限公司 Efficient methods and compositions for recovering products from organic acid pretreatment of plant material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231344A (en) * 1999-02-10 2000-08-22 Toshiba Corp Illuminator for projection type display device
JP2006171207A (en) * 2004-12-14 2006-06-29 Casio Comput Co Ltd Light source unit and projector device
JP2008009075A (en) * 2006-06-28 2008-01-17 Sony Corp Light pipe, liquid crystal display
JP2009521786A (en) * 2005-12-23 2009-06-04 スリーエム イノベイティブ プロパティズ カンパニー LED-based multicolor polarized illumination light source
JP2009150938A (en) * 2007-12-18 2009-07-09 Casio Comput Co Ltd Light source device and projector
JP2009175691A (en) * 2007-12-26 2009-08-06 Victor Co Of Japan Ltd Light source device, lighting device and image display device
JP2011521547A (en) * 2008-05-06 2011-07-21 クゥアルコム・インコーポレイテッド AGC for slicer based low power demodulator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100103697A (en) * 2008-01-17 2010-09-27 웨이비엔, 인코포레이티드 Light multiplexer and recycler, and micro-projector incorporating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231344A (en) * 1999-02-10 2000-08-22 Toshiba Corp Illuminator for projection type display device
JP2006171207A (en) * 2004-12-14 2006-06-29 Casio Comput Co Ltd Light source unit and projector device
JP2009521786A (en) * 2005-12-23 2009-06-04 スリーエム イノベイティブ プロパティズ カンパニー LED-based multicolor polarized illumination light source
JP2008009075A (en) * 2006-06-28 2008-01-17 Sony Corp Light pipe, liquid crystal display
JP2009150938A (en) * 2007-12-18 2009-07-09 Casio Comput Co Ltd Light source device and projector
JP2009175691A (en) * 2007-12-26 2009-08-06 Victor Co Of Japan Ltd Light source device, lighting device and image display device
JP2011521547A (en) * 2008-05-06 2011-07-21 クゥアルコム・インコーポレイテッド AGC for slicer based low power demodulator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089235A (en) * 2012-10-29 2014-05-15 Ushio Inc Light source device and projector
WO2014156550A1 (en) * 2013-03-28 2014-10-02 ウシオ電機株式会社 Fluorescent light source device
JP2014192127A (en) * 2013-03-28 2014-10-06 Ushio Inc Fluorescent light source device
CN104570563A (en) * 2015-01-06 2015-04-29 深圳雅图数字视频技术有限公司 Projector, projector shell and buckle structure thereof
CN104570563B (en) * 2015-01-06 2016-08-24 深圳雅图数字视频技术有限公司 Scialyscope, projector housing and buckle structure thereof
US10423055B2 (en) 2015-02-20 2019-09-24 Ricoh Company, Ltd. Illumination device and image projection apparatus
CN112540498A (en) * 2019-09-20 2021-03-23 精工爱普生株式会社 Wavelength conversion element, light source device, and projector
CN112540498B (en) * 2019-09-20 2022-08-23 精工爱普生株式会社 Wavelength conversion element, light source device, and projector

Also Published As

Publication number Publication date
TW201241544A (en) 2012-10-16
WO2012133485A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
WO2012133485A1 (en) Light source device
US11035528B2 (en) Light emitting device with diffuser and light reflector and projection system having the same
KR101995543B1 (en) Light Source System and Projection Device
JP5671666B2 (en) Solid light source device and projection display device
US20180080627A1 (en) Light sources system and projection device using the same
JP4757974B2 (en) Light source for projection display
CN107515511B (en) Light source system and projection equipment
JP5605047B2 (en) Light source device and projection display device using the same
US20130107226A1 (en) Projection system comprising a solid state light source and a luminsecent material
JP6323020B2 (en) Light source device and projector
US20140022512A1 (en) Phosphor-based lamps for projection display
US20130194551A1 (en) Illumination device, projecting device and lighting device
US10324247B2 (en) Optical device for producing high brightness light
TWM552112U (en) Light source device and projection system
CN108693690B (en) Light source device and projector
JP2012141411A (en) Light source device
JP2013102078A (en) Light source device and luminaire
JP6926589B2 (en) Light source device and projector
JP2011118187A (en) Light deflection element, light source apparatus and display apparatus
JP2019528482A (en) Laser LED hybrid light source for projection display
US11175573B2 (en) Light source device and projector
JP2011138627A (en) Light source device
JP2015194605A (en) Illumination device and projector
CN106950785B (en) Light source device and lighting device
JP6835059B2 (en) Light source device and projector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111