JP2012209034A - Light source module and liquid crystal display having this - Google Patents

Light source module and liquid crystal display having this Download PDF

Info

Publication number
JP2012209034A
JP2012209034A JP2011071989A JP2011071989A JP2012209034A JP 2012209034 A JP2012209034 A JP 2012209034A JP 2011071989 A JP2011071989 A JP 2011071989A JP 2011071989 A JP2011071989 A JP 2011071989A JP 2012209034 A JP2012209034 A JP 2012209034A
Authority
JP
Japan
Prior art keywords
light
guide plate
light guide
light source
source module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011071989A
Other languages
Japanese (ja)
Inventor
Sayuri Wakamura
紗友里 若村
Eiji Kurimoto
英治 栗本
Keiji Sakai
啓至 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011071989A priority Critical patent/JP2012209034A/en
Priority to PCT/JP2012/053025 priority patent/WO2012132568A1/en
Publication of JP2012209034A publication Critical patent/JP2012209034A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Abstract

PROBLEM TO BE SOLVED: To provide a light source module in which expansion of light in a straight advancing direction (longitudinal direction) and in a perpendicular direction (short-length direction) is suppressed.SOLUTION: The light source module is provided with a light guide plate 20, an LED 12 from which light is entered at least from one end face in longitudinal direction of the light guide plate 20, and a light diffusion structure group 20b which is located at the lower face 20c on the opposite side to the light emitting surface 20d of the light guide plate 20 and takes out light guided inside the light guide plate 20. Then, the light source module has a plurality of curved structure parts 20a which are constituted of curved surfaces having a ridgeline in longitudinal direction on the light-emitting surface 20d of the light guide plate 20.

Description

本発明は、光源モジュール、およびそれを備えた電子機器に関し、より具体的には、例えば液晶表示装置において、薄型化を図るために、光源からの光を導光板によって面状に出射させるサイドエッジ(サイドライトともいう)型導光板を備えたバックライトに用いられる光源モジュール、およびそれを備えた電子機器に関する。   The present invention relates to a light source module and an electronic apparatus including the same, and more specifically, for example, in a liquid crystal display device, a side edge that emits light from a light source in a planar shape by a light guide plate in order to reduce the thickness. The present invention relates to a light source module used for a backlight including a type light guide plate (also referred to as a side light), and an electronic apparatus including the light source module.

近年、液晶表示装置においては、薄型化を図るために、光源からの光を導光板によって面状に出射させるサイドエッジ型導光板を備えたバックライトが多用されている。   In recent years, in order to reduce the thickness of a liquid crystal display device, a backlight including a side edge type light guide plate that emits light from a light source in a planar shape by the light guide plate is frequently used.

このようなサイドエッジ型導光板として、例えば特許文献1に開示された面状照明装置がある。図7は、特許文献1の面状照明装置を示す図である。図7に示されるように、特許文献1の面状照明装置100では、導光板101の主面にプリズム状の構造体が形成されている。そして、上記主面と直交する端面111近傍にLED光源102が複数設けられている。ここで、複数のLED光源102の1つの光源102aのみを選択的点灯手段により点灯した場合、導光板101の端面111から入射した光は、導光板101の主面に設けられたプリズム状の構造体の作用により、図7の上下方向には殆ど広がることなく、図7の左方向に伝播し、帯状の照明領域103が形成される。   As such a side edge type light guide plate, for example, there is a planar illumination device disclosed in Patent Document 1. FIG. 7 is a diagram showing the planar illumination device of Patent Document 1. As shown in FIG. As shown in FIG. 7, in the planar illumination device 100 of Patent Document 1, a prismatic structure is formed on the main surface of the light guide plate 101. A plurality of LED light sources 102 are provided in the vicinity of the end surface 111 orthogonal to the main surface. Here, when only one light source 102 a of the plurality of LED light sources 102 is turned on by the selective lighting means, the light incident from the end surface 111 of the light guide plate 101 is a prism-like structure provided on the main surface of the light guide plate 101. Due to the action of the body, the light propagates in the left direction in FIG. 7 while hardly spreading in the vertical direction in FIG. 7, and a strip-shaped illumination region 103 is formed.

図8は、特許文献1の面状照明装置におけるプリズム状構造体110の構成を示す断面図である。図8に示されるように、導光板101の断面内において、プリズム面の一方の面に対して、平坦面との角度θで入射した光は、全反射されて対向するプリズム面に入射、全反射する。そして、断面角度φで平坦面に入射する。このとき、φ=θである。特許文献1の面状照明装置では、面状照明を得るため、平坦面にドット状の白色反射面等を形成し均一に照明している。   FIG. 8 is a cross-sectional view showing the configuration of the prismatic structure 110 in the planar illumination device of Patent Document 1. As shown in FIG. As shown in FIG. 8, in the cross section of the light guide plate 101, light incident at an angle θ with respect to one surface of the prism surface with respect to the flat surface is totally reflected and incident on the opposing prism surface. reflect. And it injects into a flat surface with cross-sectional angle (phi). At this time, φ = θ. In the planar illumination device of Patent Document 1, in order to obtain planar illumination, a dot-like white reflecting surface or the like is formed on a flat surface and illuminated uniformly.

また、例えば特許文献2には、導光板における出射面と反対の面にV溝が形成された構成が開示されている。   Further, for example, Patent Document 2 discloses a configuration in which a V-groove is formed on the surface opposite to the exit surface of the light guide plate.

特開2009−283383号公報(2009年12月 3日公開)JP 2009-283383 A (released on December 3, 2009) 特開2009−31445号公報 (2009年 2月12日公開)JP 2009-31445 A (published February 12, 2009)

しかしながら、特許文献1の面状照明装置には、以下の問題がある。   However, the planar illumination device of Patent Document 1 has the following problems.

すなわち、特許文献1の面状照明装置におけるプリズム状構造体110は、角度θが特定の角度である光に対しては、導光板内に光を閉じ込める閉じ込め効果が極めて高い。しかし、浅い角度(平坦面との角度θが小さい)で入射した光Cに対しては、閉じ込め効果を奏さない。浅い角度で入射した光Cは、直進方向(導光板の長手方向)および垂直方向(導光板の短手方向)への広がりが大きい。このため、図8に示されるように、光Cは、照明領域103から外れたプリズム面の真下方向に反射する成分が多くなる。そして、プリズム面の真下方向に反射する成分が平坦面で散乱しプリズム状構造体110から出射する。その結果、浅い角度(平坦面との角度θが小さい)で入射した光Cは、照明領域103からずれた位置から出射するおそれがある。   That is, the prismatic structure 110 in the planar illumination device of Patent Document 1 has an extremely high confinement effect for confining light in the light guide plate for light having an angle θ of a specific angle. However, the confinement effect is not exerted on the light C incident at a shallow angle (the angle θ with the flat surface is small). The light C incident at a shallow angle has a large spread in the straight direction (longitudinal direction of the light guide plate) and the vertical direction (short direction of the light guide plate). For this reason, as shown in FIG. 8, the component of light C that is reflected in the direction directly below the prism surface outside the illumination region 103 increases. Then, the component reflected in the direction directly below the prism surface is scattered on the flat surface and emitted from the prismatic structure 110. As a result, the light C incident at a shallow angle (the angle θ with the flat surface is small) may be emitted from a position shifted from the illumination region 103.

このように、従来の構成の導光板では、浅い角度で入射する光に対しては、本来光を出射すべき照射領域103から外れた領域から出射する。その結果、照明領域103は、光の直進方向(長手方向)と垂直な方向(短手方向)に拡がるという問題がある。   As described above, in the light guide plate having the conventional configuration, light incident at a shallow angle is emitted from an area outside the irradiation area 103 where light should be emitted. As a result, there is a problem that the illumination area 103 extends in a direction (short direction) perpendicular to the straight light traveling direction (longitudinal direction).

本発明は、上記従来の問題点に鑑みてなされたものであって、その目的は、光の直進方向(長手方向)と垂直な方向(短手方向)への拡がりを抑えることができる光源モジュール、およびそれを備えた電子機器を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object thereof is a light source module capable of suppressing the spread of light in a direction (longitudinal direction) perpendicular to a straight traveling direction (longitudinal direction). And providing an electronic apparatus including the same.

本発明の光源モジュールは、上記の課題を解決するために、導光板と、上記導光板における長手方向の少なくとも一方の端面から光をそれぞれ入射させる複数の光源と、上記導光板における光の出射面と反対の面に、上記導光板の内部にて導光される光を取り出すための光拡散性を有する複数の光路変換部とを備えた光源モジュールであって、上記導光板における光の出射面に長手方向に稜線を有する曲面で構成された曲面構造部を複数有することを特徴としている。   In order to solve the above-described problems, the light source module of the present invention includes a light guide plate, a plurality of light sources that allow light to enter from at least one end face in the longitudinal direction of the light guide plate, and a light emission surface of the light guide plate. A light source module including a plurality of light path conversion units having light diffusibility for extracting light guided inside the light guide plate on a surface opposite to the light guide plate, the light emission surface of the light guide plate It has a plurality of curved surface structure parts composed of curved surfaces having ridge lines in the longitudinal direction.

上記の構成によれば、上記導光板における光の出射面に長手方向に稜線を有する曲面で構成された曲面構造部を複数有する。すなわち、複数の曲面構造部は、長手方向に沿って形成されている。一方、導光板の出射面と反対の面に、上記導光板の内部にて導光される光を取り出すための光拡散性を有する複数の光路変換部が形成されている。光路変換部においては導光体中を導光する光線の角度成分を変換し、長手方向と短手方向の全反射条件を崩す光線を導光体から出射することが可能になる。曲面構造部は、その面形状が(短手方向)に対し連続的に変化した曲面を有する。それゆえ、光路変換部にて光路が変換された光は、長手方向について全反射条件が崩れている光は短手方向の様々な角度成分の光線に対して効率的に光を取り出すことが可能である。また、長手方向で全反射条件が崩れていない場合は導光体からの出射はなく、短手方向については光線の拡がりを抑えることが可能である。   According to said structure, it has multiple curved surface structure parts comprised by the curved surface which has a ridgeline in a longitudinal direction in the light emission surface in the said light-guide plate. That is, the plurality of curved surface structure portions are formed along the longitudinal direction. On the other hand, on the surface opposite to the light exit surface of the light guide plate, a plurality of light path conversion portions having light diffusibility for taking out light guided inside the light guide plate is formed. In the optical path conversion unit, it is possible to convert the angle component of the light beam guided in the light guide and to emit the light beam that breaks the total reflection condition in the longitudinal direction and the short direction from the light guide. The curved surface structure portion has a curved surface whose surface shape is continuously changed with respect to the short side direction. Therefore, light whose optical path has been converted by the optical path converter can be extracted efficiently from light with various angular components in the short direction when the total reflection condition is broken in the longitudinal direction. It is. Further, when the total reflection condition is not broken in the longitudinal direction, there is no emission from the light guide, and it is possible to suppress the spread of light in the short direction.

本発明の光源モジュールにおいて、上記光路変換部の間隔は、上記稜線の間隔よりも大きくなっていることが好ましい。   In the light source module of the present invention, it is preferable that the interval between the optical path conversion portions is larger than the interval between the ridge lines.

上記の構成によれば、上記光路変換部の間隔は、上記稜線の間隔よりも大きくなっているため、光路変換部の形成が容易になり、光路変換部の曲面構造体に対する位置精度の緩和の効果がある。   According to said structure, since the space | interval of the said optical path conversion part is larger than the space | interval of the said ridgeline, formation of an optical path conversion part becomes easy, and the positional accuracy of the optical path conversion part with respect to the curved surface structure is eased. effective.

本発明の光源モジュールにおいて、上記光路変換部はスクリーン印刷により光拡散部材を含有するインクで形成されていることが好ましい。   In the light source module of the present invention, it is preferable that the optical path changing portion is formed of ink containing a light diffusing member by screen printing.

上記の構成によれば、光線の長手方向成分の指向性を緩和でき、短手方向成分に対しては光の拡がりを抑える効果を向上させることができる。   According to said structure, the directivity of the longitudinal direction component of a light ray can be eased, and the effect which suppresses the spreading of light can be improved with respect to a short direction component.

本発明の電子機器は、上記の課題を解決するために、上述の光源モジュールを備えたことを特徴としている。   In order to solve the above problems, an electronic apparatus according to the present invention includes the above-described light source module.

上記の構成によれば、光の直進方向(長手方向)と垂直な方向への拡がりを抑えることができる電子機器を実現することができる。   According to said structure, the electronic device which can suppress the spreading to the perpendicular | vertical direction (longitudinal direction) of light to a perpendicular | vertical direction is realizable.

本発明において、上記曲面構造部は高さH、曲面構造同士の間隔がPで構成されており、前記曲面構造は0.2<H/P<0.5の関係を満たすように形成されることが好ましい。   In the present invention, the curved surface structure portion has a height H and the interval between the curved surface structures is P, and the curved surface structure is formed to satisfy a relationship of 0.2 <H / P <0.5. It is preferable.

上記構成によれば、上記曲面構造部は、その接線の傾きが連続的に変化している。それゆえ、出射面に様々な角度で入射する光の取り出し効果と短手方向への光の拡がり抑制効果の点で有効に作用する。また、上記範囲でH/Pを設定することにより、曲面構造部の量産時の作製効率の向上と、形状のずれに対する特性の変動を抑えることが可能である効果を奏する。   According to the above configuration, the curved surface structure portion has the tangent slope continuously changing. Therefore, it works effectively in terms of the effect of extracting light incident on the exit surface at various angles and the effect of suppressing the spread of light in the short direction. In addition, by setting H / P within the above range, there are effects that it is possible to improve the production efficiency during mass production of the curved surface structure and to suppress fluctuations in characteristics with respect to shape deviation.

本発明の光源モジュールにおいて、上記複数の光源を選択的に点灯する光源制御部を備えたことが好ましい。   The light source module of the present invention preferably includes a light source control unit that selectively turns on the plurality of light sources.

上記の構成によれば、上記複数の光源を選択的に点灯する光源制御部を備えている。それゆえ、例えば電子機器として液晶表示装置に適用すると、光源制御部が映像信号における1フレーム内の垂直走査に同期して映像信号に応じた領域が照明されるように、選択的に光源を一定時間点灯するとき、導光板の特定の部分のみを適切に点滅照明して動画特性を向上させることができる。   According to said structure, the light source control part which selectively lights up the said several light source is provided. Therefore, for example, when applied to a liquid crystal display device as an electronic device, the light source control unit selectively fixes the light source so that an area corresponding to the video signal is illuminated in synchronization with vertical scanning within one frame in the video signal. When the light is turned on for a long time, only a specific part of the light guide plate can be appropriately blinked to improve the moving image characteristics.

本発明の光源モジュールは、以上のように、上記導光板における光の出射面に長手方向に稜線を有する曲面で構成された曲面構造部を複数有する特徴である。また、本発明の電子機器は、以上のように、上記記載の光源モジュールを備えた構成である。   As described above, the light source module of the present invention is characterized in that it has a plurality of curved surface structure parts constituted by curved surfaces having ridge lines in the longitudinal direction on the light emission surface of the light guide plate. Moreover, the electronic device of this invention is the structure provided with the said light source module as mentioned above.

それゆえ、光の直進方向(長手方向)と垂直な方向(短手方向)への拡がりを抑えることができ、かつ、取出効率を損なわないという効果を奏する。   Therefore, it is possible to suppress the spread of light in the direction (longitudinal direction) perpendicular to the straight traveling direction (longitudinal direction) and to obtain the effect of not impairing the extraction efficiency.

本発明の光源モジュールの概略構成を示し、(a)は上面図であり、(b)は側面図である。The schematic structure of the light source module of this invention is shown, (a) is a top view, (b) is a side view. 上記光源モジュールを備えた液晶表示装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the liquid crystal display device provided with the said light source module. 上記光源モジュールを備えた液晶表示装置における一部の構成を示す断面図である。It is sectional drawing which shows a part of structure in a liquid crystal display device provided with the said light source module. 光拡散材(散乱体)の拡散イメージを示し、左側はx−z面での散乱特性を示す模式図であり、右側は、y−z面での散乱特性を示す模式図である。The diffusion image of a light diffusing material (scattering body) is shown, the left side is a schematic diagram showing scattering characteristics on the xz plane, and the right side is a schematic diagram showing scattering characteristics on the yz plane. 導光板における半円筒形状の曲面構造体の有無と、出射面での照度分布との関係を示し、(a)は、導光板に曲面構造体がある場合における出射面上の二次元的な照度分布を示し、(b)は、導光板に曲面構造体がない場合における出射面上の二次元的な照度分布を示し、(c)は、(a)および(b)の構成について、導光板の中央部におけるY方向の照度分布を示したグラフである。The relationship between the presence or absence of a semi-cylindrical curved surface structure on the light guide plate and the illuminance distribution on the exit surface is shown. (A) is a two-dimensional illumination on the exit surface when the light guide plate has a curved structure. (B) shows a two-dimensional illuminance distribution on the exit surface when the light guide plate has no curved structure, and (c) shows the light guide plate for the configurations of (a) and (b). It is the graph which showed the illumination intensity distribution of the Y direction in the center part. 導光板内部を導光する光の経路と、曲面構造体の有無との関係を示す断面図であり、(a)は、導光板の出射面に曲面構造体が形成された場合(実施例)を示し、(b)は、導光板の出射面に頂角90°のプリズムが形成された場合(従来例1)を示し、(c)は、導光板の出射面に頂角5°のプリズムが形成された場合(従来例2)を示し、(d)は(a)形状を凹シリンダ形状とした場合を示す。It is sectional drawing which shows the relationship between the path | route of the light which guides the inside of a light-guide plate, and the presence or absence of a curved-surface structure, (a) is a case where a curved-surface structure is formed in the output surface of a light-guide plate (Example). (B) shows a case in which a prism with an apex angle of 90 ° is formed on the exit surface of the light guide plate (conventional example 1), and (c) shows a prism with an apex angle of 5 ° on the exit surface of the light guide plate. Is shown (conventional example 2), and (d) shows a case where the shape of (a) is a concave cylinder. 導光板におけるX方向の側面形状を示す側面図であり、(a)は、曲面構造体の高さが小さい場合を示し、(b)は、曲面構造体の高さが大きい場合を示す。It is a side view which shows the side shape of the X direction in a light-guide plate, (a) shows the case where the height of a curved-surface structure is small, (b) shows the case where the height of a curved-surface structure is large. 図7(a)のように構成Aである曲面構造体20aの高さHが小さい場合と、図7(b)のように構成Bである曲面構造体20aの高さHが小さい場合の、それぞれ導光板の中央部におけるY方向の照度分布を示す図である。When the height H of the curved surface structure 20a as the configuration A is small as shown in FIG. 7A and when the height H of the curved structure 20a as the configuration B as shown in FIG. 7B is small. It is a figure which shows the illumination intensity distribution of the Y direction in the center part of a light-guide plate, respectively. バックライトブリンキングを説明する図である。It is a figure explaining backlight blinking. 本発明において、光の導光方向に対して全反射条件を崩していない場合の曲面構造体による光線の閉じ込め効果を示す図である。In this invention, it is a figure which shows the confinement effect of the light ray by the curved-surface structure in case the total reflection conditions are not destroyed with respect to the light guide direction. 上記光源モジュールにおける導光板の他の変形例を示す平面図である。It is a top view which shows the other modification of the light-guide plate in the said light source module. 上記光源モジュールにおける導光板での局所点灯を示す平面図である。It is a top view which shows local lighting with the light-guide plate in the said light source module.

本発明の一実施形態について図1〜図11に基づいて説明すれば、以下のとおりである。図2は、本実施の形態の光源モジュールを備えた液晶表示装置(電子機器)の分解斜視図である。   One embodiment of the present invention will be described below with reference to FIGS. FIG. 2 is an exploded perspective view of a liquid crystal display device (electronic device) including the light source module of the present embodiment.

本実施の形態の光源モジュール10を備えた電子機器としての例えば液晶表示装置1は、図2に示すように、下から順に、シャーシ2、光源モジュール10、液晶パネル3、ベゼル4にて構成されており、光源モジュール10は、反射板としての反射シート11、光源としてのLED(Light Emitting Diode:発光ダイオード)12及びLED基板13、リフレクタ14、導光板20、拡散板15、並びに光学シート群16から構成されている。尚、拡散板15、光学シート群16は、用途によっては省略することも可能である。   For example, a liquid crystal display device 1 as an electronic apparatus including the light source module 10 according to the present embodiment includes a chassis 2, a light source module 10, a liquid crystal panel 3, and a bezel 4 in order from the bottom as shown in FIG. The light source module 10 includes a reflection sheet 11 as a reflection plate, an LED (Light Emitting Diode) 12 and a LED substrate 13 as a light source, a reflector 14, a light guide plate 20, a diffusion plate 15, and an optical sheet group 16. It is composed of The diffusion plate 15 and the optical sheet group 16 can be omitted depending on the application.

図3は、光源モジュール10を備えた液晶表示装置1における一部の構成を示す断面図である。上記LED12及びLED基板13、並びにリフレクタ14は、図3に示すように、導光板20の端部に設けられ、これによって、LED12からの光を導光板20における一方の端面21aに入射し、導光板20の出射面20dから拡散板15及び光学シート群16を通して、液晶パネル3に光を照射するようになっている。したがって、本実施の形態の光源モジュール10は、サイドエッジ(サイドライトともいう)方式を採用している。なお、導光板20からは出射面20d以外からの面からも光は一部出射するが、導光板20の出射面20d、LED12が配置される面以外の面には反射シート11が配置され、再度導光板20に入射するようになっているため、ほとんどの光は出射面20dから出射される。   FIG. 3 is a cross-sectional view illustrating a partial configuration of the liquid crystal display device 1 including the light source module 10. As shown in FIG. 3, the LED 12, the LED substrate 13, and the reflector 14 are provided at the end portion of the light guide plate 20, so that light from the LED 12 is incident on one end surface 21 a of the light guide plate 20 and guided. The liquid crystal panel 3 is irradiated with light from the exit surface 20 d of the light plate 20 through the diffusion plate 15 and the optical sheet group 16. Therefore, the light source module 10 of the present embodiment employs a side edge (also referred to as side light) method. The light guide plate 20 also partially emits light from surfaces other than the exit surface 20d, but the reflective sheet 11 is disposed on a surface other than the exit surface 20d of the light guide plate 20 and the surface on which the LEDs 12 are disposed. Since the light enters the light guide plate 20 again, most of the light is emitted from the emission surface 20d.

なお、ここでは、導光板20の長手方向をX方向とし、導光板20の法線方向をZ方向とし、X方向およびZ方向に対し垂直な方向をY方向とする。Y方向は、導光板20の長手方向(X方向)に対して、短手方向と記載する場合もある。   Here, the longitudinal direction of the light guide plate 20 is the X direction, the normal direction of the light guide plate 20 is the Z direction, and the direction perpendicular to the X direction and the Z direction is the Y direction. The Y direction may be described as a short direction with respect to the longitudinal direction (X direction) of the light guide plate 20.

図1は、本実施の形態における光源モジュール10の概略構成を示し、図1(a)は上面図であり、図1(b)は側面図である。図1(a)および(b)に示されるように、導光板20の長手方向の両端からそれぞれ光を入射させるLED12として、LEDL1〜L5、LEDR1〜R5が配置されている。LEDL1〜L5はそれぞれ、LEDR1〜R5と長手方向において対向するように配置されている。   FIG. 1 shows a schematic configuration of a light source module 10 according to the present embodiment, FIG. 1 (a) is a top view, and FIG. 1 (b) is a side view. As shown in FIGS. 1A and 1B, LEDs L <b> 1 to L <b> 5 and LEDs R <b> 1 to R <b> 5 are arranged as LEDs 12 that allow light to enter from both ends in the longitudinal direction of the light guide plate 20. The LEDs L1 to L5 are disposed so as to face the LEDs R1 to R5 in the longitudinal direction, respectively.

なお、図1(a)および(b)に示されていないが、光源モジュール10は、LEDL1〜L5およびLEDR1〜R5を選択点灯する光源制御部を備えている。この光源制御部は、LEDL1〜L5およびLEDR1〜R5の全光源を点灯するように制御することもできる。   Although not shown in FIGS. 1A and 1B, the light source module 10 includes a light source control unit that selectively lights the LEDs L1 to L5 and LEDs R1 to R5. This light source control part can also be controlled to turn on all the light sources of LEDs L1 to L5 and LEDs R1 to R5.

また、導光板20の出射面(上面)20dには、曲面で構成された曲面構造体20aが形成されている。この曲面構造体20aは、導光板20の長手方向(X方向)に沿って筋状のパターンとして形成されている。すなわち、導光板20は、光の出射面20dに、長手方向に稜線を有する曲面で構成された曲面構造部を複数有する。この曲面構造体20aは、導光板20の出射面20d自体に形成された構造体(導光板20自体に形成された構造体)であって、導光板20に導光板20とは別の部材として曲面構造部材が設けられたものではない。   In addition, a curved surface structure 20 a formed of a curved surface is formed on the exit surface (upper surface) 20 d of the light guide plate 20. The curved surface structure 20 a is formed as a streak pattern along the longitudinal direction (X direction) of the light guide plate 20. In other words, the light guide plate 20 has a plurality of curved surface structure parts formed of curved surfaces having ridge lines in the longitudinal direction on the light emission surface 20d. The curved structure 20a is a structure formed on the light exit surface 20d itself of the light guide plate 20 (a structure formed on the light guide plate 20 itself), and the light guide plate 20 is a member different from the light guide plate 20. A curved structure member is not provided.

なお、本実施形態では、導光板20に形成された曲面構造体20aは、高さH、曲面構造部同士の間隔がPで形成されており、前記曲面構造は0.2<H/P<0.5を満たす構造で形成されている。   In the present embodiment, the curved surface structure 20a formed on the light guide plate 20 is formed with a height H and a distance between the curved surface structure portions P, and the curved surface structure is 0.2 <H / P <. It is formed with a structure satisfying 0.5.

一方、図1(b)に示されるように、導光板20における曲面構造体20aと反対側の下面20cには、光路変換部として、光拡散構造群20bが形成されている。   On the other hand, as shown in FIG. 1B, a light diffusing structure group 20b is formed on the lower surface 20c of the light guide plate 20 opposite to the curved structure 20a as an optical path changing unit.

光拡散構造群20bは、導光板20にて導光される光を取り出すレンズ群である。すなわち、光拡散構造群20bは、導光板20の内部にて導光される光の光路を変換させ、出射面20d側に取り出す。光拡散構造群20bは、導光板20の出射面20dから出射される光が均一になるように形成されている。光拡散構造群20bを構成する光拡散構造は、同一の間隔で配置されている。光拡散構造の間隔は、曲面構造体20aの間隔Pよりも大きくなっており、具体的には2.0mmである。   The light diffusion structure group 20 b is a lens group that extracts light guided by the light guide plate 20. That is, the light diffusion structure group 20b converts the optical path of the light guided inside the light guide plate 20 and extracts it to the emission surface 20d side. The light diffusion structure group 20b is formed so that the light emitted from the emission surface 20d of the light guide plate 20 is uniform. The light diffusion structures constituting the light diffusion structure group 20b are arranged at the same interval. The interval between the light diffusing structures is larger than the interval P between the curved surface structures 20a, and is specifically 2.0 mm.

本実施の形態においては、光路変換部は、光拡散構造群20bであったが、この構成に限定されず、導光板20の内部にて導光される光の光路を変換させるものであればよい。例えば、光路変換部は、導光板20の内部にて導光される光を下面20cにマイクロレンズを形成し、光線の反射角度を変えるものであっても良い。また、散乱体の形状は点状に限定されず、線状の白色パターン、または、プリズム等から形成することもできる。白色パターンの散乱体は、例えば、スクリーン印刷等によって形成することができ、プリズム等の形状は押し出し成形、射出成形、プレス加工等により形成することができる。   In the present embodiment, the optical path conversion unit is the light diffusion structure group 20b, but is not limited to this configuration, as long as it converts the optical path of the light guided inside the light guide plate 20. Good. For example, the optical path conversion unit may change the light reflection angle by forming a microlens on the lower surface 20 c of the light guided inside the light guide plate 20. Further, the shape of the scatterer is not limited to a point shape, and may be formed from a linear white pattern, a prism, or the like. The scatterer of the white pattern can be formed by, for example, screen printing, and the shape of the prism or the like can be formed by extrusion molding, injection molding, pressing, or the like.

ここで、本実施例における光拡散構造体について言及する。ここでの光拡散構造体とは導光板に対して、光拡散性を有する散乱樹脂をインクに含有して印刷により形成されるものであり、本実施例に示す光拡散構造体においてはスクリーン印刷により導光板に形成する。スクリーン印刷により形成を行うことで、容易に導光板に均一なパターン印刷が可能ある。本実施例においては光拡散構造体の単体の径は約0.2〜1.5mmの範囲で制御を行い、間隔は2mmとしている。   Here, reference is made to the light diffusion structure in the present embodiment. Here, the light diffusing structure is formed by printing with a light-diffusing diffusing resin contained in ink on the light guide plate. In the light diffusing structure shown in this embodiment, screen printing is performed. To form a light guide plate. By forming by screen printing, a uniform pattern can be easily printed on the light guide plate. In this embodiment, the diameter of a single light diffusing structure is controlled in the range of about 0.2 to 1.5 mm, and the interval is set to 2 mm.

図4は、拡散材(散乱体)の拡散イメージを示し、左側はx−z面での散乱特性を示す模式図であり、右側は、y−z面での散乱特性を示す模式図である。   FIG. 4 shows a diffusion image of a diffusing material (scatterer), the left side is a schematic diagram showing scattering characteristics on the xz plane, and the right side is a schematic diagram showing scattering characteristics on the yz plane. .

光路変換部としての光拡散構造体20b1は、散乱体を含有しているために、散乱反射および透過により光路変換がなされる。よって、図4に示されるように、光拡散構造体20b1により光路変換された光は、拡散材による光線の乱反射による光路変換のため、変換後の光線はマイクロレンズに比較すると広い範囲の角度に散乱される確率が高くなる。   Since the light diffusion structure 20b1 as the optical path changing unit contains a scatterer, the optical path is changed by scattering reflection and transmission. Therefore, as shown in FIG. 4, the light whose path has been changed by the light diffusing structure 20b1 is changed in the path of light by irregular reflection of the light beam by the diffusing material. The probability of being scattered increases.

図9に長手方向に対して全反射条件を崩していない、光拡散構造体で散乱された光の光路図を示す。光拡散構造群20bで散乱された光は光拡散構造体に含有される散乱体により広い角度に散乱反射される。散乱反射された光線は曲面構造部20aに向かうが、曲面構造部20aにおいては浅い角度の光線は曲面構造体の接線に対して垂直に近い角度になるために曲面構造体により反射される光線は散乱された位置に戻る確率が高くなるため光閉じ込め効果が高い。   FIG. 9 shows an optical path diagram of the light scattered by the light diffusion structure without breaking the total reflection condition in the longitudinal direction. The light scattered by the light diffusing structure group 20b is scattered and reflected at a wide angle by the scatterers contained in the light diffusing structure. The scattered and reflected light rays are directed to the curved surface structure portion 20a. However, in the curved surface structure portion 20a, the light rays having a shallow angle are close to perpendicular to the tangent to the curved surface structure body. Since the probability of returning to the scattered position is increased, the light confinement effect is high.

図5は、導光板20における曲面構造体20aの有無と、出射面での照度分布との関係を示すグラフである。図5(a)は、導光板20に曲面構造体20aがある場合における出射面20d(XY平面)上の二次元的な照度分布を示し、図5(b)は、導光板20に曲面構造体20aがない場合における出射面20d(XY平面)上の二次元的な照度分布を示し、図5(c)は、図5(a)および図5(b)の構成について、導光板の中央部におけるY方向の照度分布を示す。なお、図5(a)〜(c)においては、図1(a)および(b)におけるLEDL3およびLEDR3を選択的に点灯している。   FIG. 5 is a graph showing the relationship between the presence or absence of the curved structure 20a in the light guide plate 20 and the illuminance distribution on the exit surface. 5A shows a two-dimensional illuminance distribution on the exit surface 20d (XY plane) when the light guide plate 20 has the curved structure 20a, and FIG. FIG. 5C shows a two-dimensional illuminance distribution on the exit surface 20d (XY plane) in the absence of the body 20a, and FIG. 5C shows the center of the light guide plate with respect to the configurations of FIGS. 5A and 5B. The illumination distribution of the Y direction in a part is shown. 5A to 5C, the LEDs L3 and LEDR3 in FIGS. 1A and 1B are selectively lit.

図5(a)および(c)に示されるように、導光板20の出射面20dに曲面構造体20aが形成されている場合、LEDL3およびLEDR3からの出射光は、曲面構造体20aの効果により、短手方向(Y方向)に拡がることなく、導光板20内を導光していることが分かる。そして、導光板20内部を導光している光は、光拡散構造群20bにより出射面20d側に取り出されている。すなわち、LEDL3およびLEDR3を選択的に点灯することで、導光板20の出射面20dにおける特定の照射領域(LEDL3およびLEDR3に対応した領域)から光が出射している。   As shown in FIGS. 5A and 5C, when the curved surface structure 20a is formed on the exit surface 20d of the light guide plate 20, the light emitted from the LEDs L3 and LEDR3 is caused by the effect of the curved surface structure 20a. It can be seen that the light guide plate 20 is guided without spreading in the short direction (Y direction). And the light which has guided the inside of the light-guide plate 20 is taken out to the output surface 20d side by the light-diffusion structure group 20b. That is, light is emitted from a specific irradiation region (region corresponding to LEDL3 and LEDR3) on the emission surface 20d of the light guide plate 20 by selectively lighting the LEDs L3 and LEDR3.

一方、図5(b)および(c)に示されるように、導光板20の出射面20dに曲面構造体20aが形成されていない場合、LEDL3およびLEDR3からの出射光は、短手方向(Y方向)に拡がってしまい、導光板20の出射面20d全面から光が出射していることが分かる。すなわち、LEDL3およびLEDR3を選択的に点灯しても、出射面20dの特定の領域から光が出射しない。   On the other hand, as shown in FIGS. 5B and 5C, when the curved surface structure 20a is not formed on the light exit surface 20d of the light guide plate 20, the light emitted from the LEDs L3 and LEDR3 is transmitted in the short direction (Y It can be seen that light is emitted from the entire emission surface 20 d of the light guide plate 20. That is, even if the LEDs L3 and LEDR3 are selectively turned on, light is not emitted from a specific region of the emission surface 20d.

このように本実施の形態の光源モジュールによれば、LEDL1〜L5およびLEDR1〜R5のうち点灯するLEDを選択することで、導光板20の出射面20dにおける、選択したLEDに対応した領域から精度良く光を出射する(取り出す)ことが可能になる。すなわち、点灯するLEDを選択することで、導光板20の出射面20dでの光の照射領域を制御することができる。   As described above, according to the light source module of the present embodiment, by selecting the LED to be lit among the LEDs L1 to L5 and the LEDs R1 to R5, accuracy can be obtained from the region corresponding to the selected LED on the exit surface 20d of the light guide plate 20. Light can be emitted (extracted) well. That is, by selecting the LED to be lit, the light irradiation area on the light exit surface 20d of the light guide plate 20 can be controlled.

ところで、液晶表示装置1においては、CRT(Cathode-Ray Tube:陰極線管)表示装置と比較して、動画のボヤケという問題点がある。すなわち、CRT表示装置においては、あるフレームにおける画素の発光期間と、次のフレームにおけるこの画素の発光期間との間に、この画素が発光しない非発光期間があるため、残像感が少ない。これに対して、液晶表示装置1の表示方式はこのような非発光期間がない「ホールド型」であるため、残像感が生じ、この残像感が使用者に動画のボヤケとして認識される。   By the way, the liquid crystal display device 1 has a problem of blurring of moving images as compared with a CRT (Cathode-Ray Tube) display device. That is, in the CRT display device, since there is a non-light emission period in which this pixel does not emit light between the light emission period of the pixel in a certain frame and the light emission period of this pixel in the next frame, there is little afterimage feeling. On the other hand, since the display method of the liquid crystal display device 1 is a “hold type” that does not have such a non-light emitting period, an afterimage feeling is generated, and this afterimage feeling is recognized by the user as blurring of a moving image.

そこで、バックライト型の液晶表示装置1においては、バックライトである光源モジュール10を分割し、液晶パネル3に映像信号を印加するタイミングに同期して順次消灯することにより、画像表示と画像表示との間に黒表示を挿入する技術であるバックライトブリンキングが提案されている。これにより、疑似インパルス型の表示を実現し、残像感を抑え、消費電力を低減することができる。   Therefore, in the backlight type liquid crystal display device 1, the light source module 10 that is a backlight is divided and sequentially turned off in synchronization with the timing of applying the video signal to the liquid crystal panel 3. Backlight blinking, which is a technique for inserting a black display between them, has been proposed. Thereby, pseudo-impulse type display can be realized, the afterimage feeling can be suppressed, and the power consumption can be reduced.

図8を用いてバックライトブリンキングについて説明する。光源モジュール10を備えた液晶表示装置1は、映像信号における1フレーム内の垂直走査に同期して、映像信号に応じた領域が照明されるように、光源制御部によって選択的にLEDを一定時間点灯することができる。それゆえ、導光板20の特定の部分のみを適切に点滅照明して動画特性を向上させることができる。   The backlight blinking will be described with reference to FIG. In the liquid crystal display device 1 including the light source module 10, the LED is selectively turned on for a predetermined time by the light source control unit so that an area corresponding to the video signal is illuminated in synchronization with vertical scanning within one frame of the video signal. Can be lit. Therefore, only a specific portion of the light guide plate 20 can be appropriately blinked to improve moving image characteristics.

具体的には図8に示すように画面を22a、22b、22c、22d、22eの5フレームに分割した場合において、各フレームに対応して長手両端に配置するLED12についてもL1〜L5、R1〜R5と5ブロックとし、例えば図8に示すようにフレーム22cを選択的に点灯させる場合は光源制御部23を通してLEDL3とLEDR3を点灯させる。これにより、液晶表示装置1において映像信号の1フレーム内の垂直走査に同期して、各フレームを選択点灯させることで動画特性を向上させることができる。   Specifically, as shown in FIG. 8, when the screen is divided into five frames 22a, 22b, 22c, 22d, and 22e, the LEDs 12 that are arranged at both longitudinal ends corresponding to each frame are also L1-L5, R1- For example, when the frame 22c is selectively turned on as shown in FIG. 8, the LEDs L3 and LEDR3 are turned on through the light source controller 23. Thereby, in the liquid crystal display device 1, the moving image characteristics can be improved by selectively lighting each frame in synchronization with the vertical scanning within one frame of the video signal.

次に、曲面構造体20aにおける半円筒形状の効果について、図6(a)〜(d)を参照して説明する。図6は、導光板内部を導光する光の短手方向の経路を示す断面図であり図6(a)は、導光板20の出射面に高さHと間隔Pの比率H/Pが0.4となる曲面構造体20aが形成された場合(実施例)を示し、図6(b)は、導光板20の出射面に頂角90°のプリズムが形成された場合(従来例1)を示し、図6(c)は、導光板20の出射面に頂角5°のプリズムが形成された場合(従来例2)を示し、図6(d)は図7(a)の凹形状となっている。   Next, the effect of the semi-cylindrical shape in the curved structure 20a will be described with reference to FIGS. FIG. 6 is a cross-sectional view showing a short direction path of light guided inside the light guide plate. FIG. 6A shows a ratio H / P between the height H and the spacing P on the exit surface of the light guide plate 20. FIG. 6B shows a case where a curved surface structure 20a having a value of 0.4 is formed (Example), and FIG. 6B shows a case where a prism with an apex angle of 90 ° is formed on the exit surface of the light guide plate 20 (Conventional Example 1). 6 (c) shows a case where a prism with an apex angle of 5 ° is formed on the exit surface of the light guide plate 20 (conventional example 2), and FIG. 6 (d) shows the concave portion of FIG. 7 (a). It has a shape.

導光板内部を様々な角度で導光する光を、効率的に出射面で出射させるためには、光が出射面で全反射するか否かが重要である。導光板は、出射面に入射してくる光に対し全反射する光が多ければ多いほど、出射面からの光の出射効率が低下する。一方、出射面に入射してくる光に対し全反射する光が少なければ、出射面からの光の出射効率が増加する。すなわち、導光板内部の光を効率的に出射面で出射させるためには、出射面に様々な角度で入射する光に対し全反射する条件を崩すことが重要になる。本来は、導光板内の光について、X方向(長手方向)およびY方向(短手方向)の2成分の全反射条件を考慮する必要があるが、図6(a)〜(d)においては、Y方向成分だけを考慮し、X方向の成分については全反射条件が崩された角度であるとしている。   In order to efficiently emit light guided through the light guide plate at various angles on the exit surface, it is important whether or not the light is totally reflected on the exit surface. In the light guide plate, the more light is totally reflected with respect to the light incident on the exit surface, the lower the light output efficiency from the exit surface. On the other hand, if the amount of light totally reflected with respect to the light incident on the emission surface is small, the light emission efficiency from the emission surface increases. That is, in order to efficiently emit the light inside the light guide plate on the exit surface, it is important to break the conditions for total reflection with respect to light incident on the exit surface at various angles. Originally, it is necessary to consider the two-component total reflection condition in the X direction (longitudinal direction) and the Y direction (short direction) for the light in the light guide plate, but in FIGS. Considering only the Y direction component, the X direction component is an angle at which the total reflection condition is broken.

図6(a)の曲面構造体20aは、その面形状が(短手方向に対し)連続的に変化しているので、出射面に様々な角度で入射する光の取り出しに有効に作用している。それゆえ、図5(a)に示されるように、短手方向に対し垂直に立ち上がった垂直光Aから浅い角度で導光する光Cまで、様々な入射角度に対して効率的に光を取り出し、出射面から光を出射させることができる。また、浅い角度で導光する光Cは、水平に近い面に入射すると全反射しやすい(全反射条件を崩しにくい)。しかし、図6(a)の曲面構造体20aの形状においては、水平に近い面は半円筒の上部に形成されており、光Cが照射されにくい部分に位置している。それゆえ、浅い角度で導光する光Cは、短手方向に対し傾斜した面に照射されるため、全反射条件が崩れやすい。   Since the surface shape of the curved structure 20a in FIG. 6A continuously changes (relative to the short direction), it effectively acts to extract light incident on the exit surface at various angles. Yes. Therefore, as shown in FIG. 5A, the light is efficiently extracted for various incident angles from the vertical light A rising perpendicular to the short direction to the light C guided at a shallow angle. The light can be emitted from the emission surface. In addition, the light C guided at a shallow angle is likely to be totally reflected when it is incident on a surface near horizontal (it is difficult to break the total reflection condition). However, in the shape of the curved surface structure 20a in FIG. 6A, a surface that is nearly horizontal is formed in the upper part of the semi-cylinder, and is located in a portion where the light C is not easily irradiated. Therefore, the light C guided at a shallow angle is irradiated onto a surface inclined with respect to the short-side direction, so that the total reflection condition is easily broken.

一方、導光板20の出射面に頂角90°のプリズムが形成された場合、図6(b)に示されるように垂直光Aは、全反射条件を崩さず戻り光となってしまう。また、浅い角度で導光する光Cについては、全反射条件が崩れ一旦出射面から出射する。しかし、再度隣のプリズムに入射してしまい導光板内に戻ってしまう。また、導光板20の出射面に頂角5°のプリズムが形成された場合、図6(c)に示されるように、垂直方向の光Aおよび浅い角度で導光する光Cはともに、全反射条件が崩れ出射面から出射される。しかし、これらの光が隣のプリズムに再入射する確率が増加する。よって、図5(b)および(c)のように導光板20の出射面にプリズムが形成された場合、導光板内に光を閉じ込めるため、導光板から光を出射させる効率が低下してしまう。   On the other hand, when a prism having an apex angle of 90 ° is formed on the exit surface of the light guide plate 20, the vertical light A becomes return light without breaking the total reflection condition as shown in FIG. 6B. Further, the light C guided at a shallow angle is once emitted from the emission surface because the total reflection condition is broken. However, it enters the adjacent prism again and returns to the light guide plate. Further, when a prism having an apex angle of 5 ° is formed on the exit surface of the light guide plate 20, as shown in FIG. 6C, all of the light A in the vertical direction and the light C guided at a shallow angle are all. The reflection condition is broken and the light is emitted from the emission surface. However, the probability that these lights will re-enter the adjacent prism increases. Therefore, when a prism is formed on the exit surface of the light guide plate 20 as shown in FIGS. 5B and 5C, light is confined in the light guide plate, so that the efficiency of emitting light from the light guide plate is reduced. .

また、本実施の形態の光源モジュール10においては、光路変換部としてのマイクロレンズ群20aが、導光板20の内部にて導光される光の光路を変換させ、出射面20d側に取り出す。マイクロレンズ群20aは、図6(a)に示される垂直方向の光Aを効率的に誘起するため、曲面構造体20aによる効果がさらに向上する。一方、図6(b)および(c)のように導光板20の出射面にプリズムが形成された場合、逆効果になり、効率的に導光板から光を出射させることができない。図6(d)においては垂直光が全て全反射により戻り光となることは無く図6(b)、図6(c)のプリズム構造と比較して効率的に出射させることが可能である。   Moreover, in the light source module 10 of this Embodiment, the micro lens group 20a as an optical path conversion part converts the optical path of the light guide | induced inside the light-guide plate 20, and takes out to the output surface 20d side. Since the microlens group 20a efficiently induces the light A in the vertical direction shown in FIG. 6A, the effect of the curved structure 20a is further improved. On the other hand, when a prism is formed on the exit surface of the light guide plate 20 as shown in FIGS. 6B and 6C, the reverse effect is obtained, and light cannot be efficiently emitted from the light guide plate. In FIG. 6 (d), all vertical light does not become return light due to total reflection, and can be emitted more efficiently than the prism structures of FIGS. 6 (b) and 6 (c).

また、導光板の厚さが同じである場合、図6(a)の曲面構造体の形状は、プリズム形状よりも断面積を確保しやすい。それゆえ、導光板20の出射面に曲面構造体20aが形成された構成では、LEDからの光の入射面での光結合効率が高く、光漏れが起きにくい。   Further, when the thickness of the light guide plate is the same, the shape of the curved structure in FIG. 6A is easier to ensure the cross-sectional area than the prism shape. Therefore, in the configuration in which the curved structure 20a is formed on the exit surface of the light guide plate 20, the light coupling efficiency at the light incident surface from the LED is high, and light leakage hardly occurs.

また、本実施の形態の光源モジュール10をバックライト等の面状照明として用いた場合、導光板20真上に各種光学シートが配置されることが一般的である。それゆえ、導光板20の出射面がプリズムのような鋭利な形状であると、こすれ等により光学シートが傷つくおそれがある。これに対し、導光板20の出射面に曲面構造体20aが形成されている場合、こすれ等により光学シートが傷つくおそれがない。   Moreover, when the light source module 10 of this Embodiment is used as planar illumination, such as a backlight, it is common that various optical sheets are arrange | positioned just above the light-guide plate 20. FIG. Therefore, if the exit surface of the light guide plate 20 has a sharp shape like a prism, the optical sheet may be damaged by rubbing or the like. On the other hand, when the curved structure 20a is formed on the exit surface of the light guide plate 20, there is no possibility that the optical sheet is damaged by rubbing or the like.

次に、曲面構造体20aの形状について、さらに詳細に説明する。これまで、曲面構造体20aの形状が凸シリンダ形状である場合について説明したが、曲面構造体20aの形状は、長手方向(X方向)に垂直な断面形状が円弧を含んでいればよく、断面形状の一部が直線であってもよい。このような形状は、導光板20をプレス加工することにより形成することができる。   Next, the shape of the curved structure 20a will be described in more detail. So far, the case where the shape of the curved structure 20a is a convex cylinder shape has been described. However, the shape of the curved structure 20a only needs to include a circular arc in a cross-sectional shape perpendicular to the longitudinal direction (X direction). A part of the shape may be a straight line. Such a shape can be formed by pressing the light guide plate 20.

次に、曲面構造体20aの高さHと、導光板20の光入射面での光結合効率との関係について説明する。図7は、導光板20におけるX方向の側面形状を示す側面図であり、図7(a)は、曲面構造体20aの高さHが小さい場合を示し、図7(b)は、曲面構造体20aの高さHが大きい場合を示す。なお、図7(a)および図7(b)においては、曲面構造体20aの間隔P、および導光板20の厚さTは同一としている。   Next, the relationship between the height H of the curved structure 20a and the optical coupling efficiency at the light incident surface of the light guide plate 20 will be described. FIG. 7 is a side view showing a side shape of the light guide plate 20 in the X direction. FIG. 7A shows a case where the height H of the curved structure 20a is small, and FIG. 7B shows a curved structure. The case where the height H of the body 20a is large is shown. 7A and 7B, the interval P between the curved surface structures 20a and the thickness T of the light guide plate 20 are the same.

本実施の形態においては、LEDからの光は、導光板20の長手方向の側面に入射することになる。図7(b)に示されるように、光の入射面形状(導光板20におけるX方向の側面形状)において曲面構造体20aの高さHが大きい場合、入射面積が小さくなるため、隙間(図7(b)では斜線部)から光が漏れてしまい、光結合効率が低下する。一方、図7(a)に示されるように、光の入射面形状(導光板20におけるX方向の側面形状)において曲面構造体20aの高さHが小さい場合、入射面積が大きくなり、隙間からの光漏れを低減でき光結合効率を向上させることができる。   In the present embodiment, light from the LED is incident on the side surface of the light guide plate 20 in the longitudinal direction. As shown in FIG. 7B, when the height H of the curved structure 20a is large in the light incident surface shape (side surface shape in the X direction of the light guide plate 20), the incident area becomes small, so that the gap (FIG. In FIG. 7B, light leaks from the shaded area, and the optical coupling efficiency is lowered. On the other hand, as shown in FIG. 7A, when the height H of the curved structure 20a is small in the light incident surface shape (side surface shape in the X direction of the light guide plate 20), the incident area becomes large and the gap Light leakage can be reduced, and the optical coupling efficiency can be improved.

よって、光入射面における光結合効率および光漏れは、曲面構造体20aの高さHが大きければ大きいほど低下する。近似的には、曲面構造体20aの高さHが2倍になると、光漏れ量が2倍になり、光結合効率のロスも2倍になる。   Therefore, the optical coupling efficiency and light leakage at the light incident surface decrease as the height H of the curved structure 20a increases. Approximately, when the height H of the curved structure 20a is doubled, the amount of light leakage is doubled and the loss of optical coupling efficiency is also doubled.

光入射面における光結合効率および光漏れを考慮すると、曲面構造体20aの高さHは、導光板20の厚さTの5%以下であることが好ましい。具体的な寸法としては、例えば、導光板20の厚さTが4.2mmであり、面構造体20aの高さHが0.16mmである。ただし、曲面構造体20aについて、間隔Pを一定とし、高さHを小さくすると、導光板20内に光を閉じ込める閉じ込め効果が低減する。   Considering the optical coupling efficiency and light leakage at the light incident surface, the height H of the curved structure 20 a is preferably 5% or less of the thickness T of the light guide plate 20. As specific dimensions, for example, the thickness T of the light guide plate 20 is 4.2 mm, and the height H of the surface structure 20a is 0.16 mm. However, the confinement effect of confining light in the light guide plate 20 is reduced when the interval P is made constant and the height H is reduced in the curved structure 20a.

また、曲面構造体の形状は変えずに間隔Pを細かくしていくことで光直進性を維持したまま、導光板の断面積を確保することが可能である。例えば、構成Aとして間隔P=0.4mm高さH=0.16mm、厚みT=4.2mmの形状を有する断面に対して、構成Bとして間隔P=0.2mm、高さH=0.08mm、厚みT=4.2mmと半円筒形状を相似的に1/2にすることで、光直進性に関してはなんら変化することなく、構成Aに対して光漏れ量を半減し、光結合ロスも半減することが可能である。また、ピッチPを細かくすることで、長手方向に伸びている曲面構造を視認しにくくする効果もある。   Further, by reducing the interval P without changing the shape of the curved structure, it is possible to secure the cross-sectional area of the light guide plate while maintaining the straight light traveling property. For example, as a configuration A, a cross-section having a shape with a spacing P = 0.4 mm, a height H = 0.16 mm, and a thickness T = 4.2 mm, as a configuration B, a spacing P = 0.2 mm and a height H = 0. By halving the semi-cylindrical shape with a thickness of 08 mm and a thickness of T = 4.2 mm, the amount of light leakage is reduced by half with respect to the configuration A without any change in light straightness, and the optical coupling loss. Can also be halved. Further, by making the pitch P fine, there is also an effect of making it difficult to visually recognize the curved surface structure extending in the longitudinal direction.

図7(c)は、図7(a)のように構成Aである曲面構造体20aの高さHが小さい場合と、図7(b)のように構成Bである曲面構造体20aの高さHが小さい場合の、それぞれ導光板の中央部におけるY方向の照度分布を示す。図7(c)に示されるように、構成Aの形状と構成Bの形状との間で、光直進性に関してはなんら変化することがないことがわかる。それゆえ構成Aに対して間隔Pを小さくし構成Bとすることで、光漏れ量を半減し、光結合ロスも半減することが可能である。また、間隔Pを細かくすることで長手方向に伸びている曲面構造を視認しにくくする効果もある。   FIG. 7C shows the case where the height H of the curved structure 20a having the configuration A is small as shown in FIG. 7A and the height of the curved structure 20a having the configuration B as shown in FIG. 7B. The illuminance distribution in the Y direction at the center of the light guide plate when the height H is small is shown. As shown in FIG. 7C, it can be seen that there is no change in the light straightness between the shape of the configuration A and the shape of the configuration B. Therefore, by reducing the interval P with respect to the configuration A to the configuration B, it is possible to halve the amount of light leakage and halve the optical coupling loss. Further, by making the interval P fine, there is also an effect of making it difficult to visually recognize the curved surface structure extending in the longitudinal direction.

また、上述の説明では、1枚の導光板20を備えた構成について説明したが、本実施の形態の光源モジュール10は、この構成に限定されない。   In the above description, the configuration including one light guide plate 20 has been described. However, the light source module 10 of the present embodiment is not limited to this configuration.

図11に示されるバックライトブリンキングを行うために、図10に示すように導光板20を複数の導光体21にて分割して構成し、これら複数の導光体21を、長手方向に対して並列にそれぞれ隙間22を有して配設した構成であってもよい。この場合、LED12は、各導光体21における長手方向の一方の端面21aから光をそれぞれ入射させるようになっている。尚、必ずしも一方の端面21aに限らず、長手方向の他方の端面から入射させてもよく、さらに、一方の端面21a及び他方の端面の両方から光を入射させてもよい。すなわち、本発明では、少なくとも一方の端面21aから光を入射させれば足りる。   In order to perform the backlight blinking shown in FIG. 11, the light guide plate 20 is divided into a plurality of light guides 21 as shown in FIG. 10, and these light guides 21 are arranged in the longitudinal direction. Alternatively, a configuration in which the gaps 22 are provided in parallel may be employed. In this case, the LED 12 allows light to enter from one end face 21 a in the longitudinal direction of each light guide 21. In addition, it is not necessarily limited to one end surface 21a, but may be incident from the other end surface in the longitudinal direction, and light may be incident from both one end surface 21a and the other end surface. That is, in the present invention, it is sufficient that light is incident from at least one end face 21a.

なお、図示はされないが、バックライトブリンキングを行うために複数の光源であるLED102を選択的に点灯する光源制御部を備えている。それゆえ、所定のタイミングに応じて図11に示すようにLED102aだけ等局所的に点灯することが可能となる。   Although not shown, a light source control unit that selectively turns on the LEDs 102 as a plurality of light sources is provided for performing backlight blinking. Therefore, as shown in FIG. 11, only the LED 102a can be turned on locally according to a predetermined timing.

本発明を例えば電子機器として液晶表示装置に適用すると、本発明が導光板の短手方向への広がりを抑える効果が高いことから、光源制御部が映像信号における1フレーム内の垂直走査に同期して映像信号に応じた領域が照明されるように、選択的に光源を一定時間点灯するとき、導光板の特定の部分のみを適切に点滅照明して動画特性を向上させることができる。   When the present invention is applied to a liquid crystal display device as an electronic device, for example, the light source control unit is synchronized with vertical scanning within one frame in the video signal because the present invention is highly effective in suppressing the light guide plate from spreading in the short direction. Thus, when the light source is selectively turned on for a certain period of time so that the area corresponding to the video signal is illuminated, only a specific part of the light guide plate can be appropriately blinked to improve moving image characteristics.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

本発明は、光源からの光を導光板によって面状に出射させるサイドエッジ(サイドライトともいう)型導光板を備えた光源モジュール、およびそれを備えた電子機器に関するものであり、例えば、バックライト等の光源モジュール及び液晶表示装置等の電子機器に適用可能である。   The present invention relates to a light source module including a side edge (also referred to as sidelight) type light guide plate that emits light from a light source in a planar shape by a light guide plate, and an electronic device including the same, for example, a backlight. It can be applied to electronic devices such as light source modules and liquid crystal display devices.

1 液晶表示装置(電子機器)
10 光源モジュール
12 LED(光源)
20 導光板
20a 曲面構造部
20b 光拡散構造群
20c 下面
20d 出射面
21a 端面
22a〜22e スキャンフレーム
23 光源制御部
1 Liquid crystal display device (electronic equipment)
10 Light source module 12 LED (light source)
20 Light guide plate 20a Curved surface structure portion 20b Light diffusion structure group 20c Lower surface 20d Output surface 21a End surfaces 22a to 22e Scan frame 23 Light source control unit

本発明は、光源モジュール、およびそれを備えた電子機器に関し、より具体的には、例えば液晶表示装置において、薄型化を図るために、光源からの光を導光板によって面状に出射させるサイドエッジ(サイドライトともいう)型導光板を備えたバックライトに用いられる光源モジュール、およびそれを備えた電子機器に関する。   The present invention relates to a light source module and an electronic apparatus including the same, and more specifically, for example, in a liquid crystal display device, a side edge that emits light from a light source in a planar shape by a light guide plate in order to reduce the thickness. The present invention relates to a light source module used for a backlight including a type light guide plate (also referred to as a side light), and an electronic apparatus including the light source module.

近年、液晶表示装置においては、薄型化を図るために、光源からの光を導光板によって面状に出射させるサイドエッジ型導光板を備えたバックライトが多用されている。   In recent years, in order to reduce the thickness of a liquid crystal display device, a backlight including a side edge type light guide plate that emits light from a light source in a planar shape by the light guide plate is frequently used.

このようなサイドエッジ型導光板として、例えば特許文献1に開示された面状照明装置がある。図11は、特許文献1の面状照明装置を示す図である。図11に示されるように、特許文献1の面状照明装置100では、導光板101の主面にプリズム状の構造体が形成されている。そして、上記主面と直交する端面111近傍にLED光源102が複数設けられている。ここで、複数のLED光源102の1つの光源102aのみを選択的点灯手段により点灯した場合、導光板101の端面111から入射した光は、導光板101の主面に設けられたプリズム状の構造体の作用により、図11の上下方向には殆ど広がることなく、図11の左方向に伝播し、帯状の照明領域103が形成される。 As such a side edge type light guide plate, for example, there is a planar illumination device disclosed in Patent Document 1. FIG. 11 is a diagram showing the planar illumination device of Patent Document 1. As shown in FIG. As shown in FIG. 11 , in the planar illumination device 100 of Patent Document 1, a prismatic structure is formed on the main surface of the light guide plate 101. A plurality of LED light sources 102 are provided in the vicinity of the end surface 111 orthogonal to the main surface. Here, when only one light source 102 a of the plurality of LED light sources 102 is turned on by the selective lighting means, the light incident from the end surface 111 of the light guide plate 101 is a prism-like structure provided on the main surface of the light guide plate 101. by the action of the body, with little spread in the vertical direction in FIG. 11, and propagates in the left direction in FIG. 11, strip-like illumination area 103 is formed.

導光板101の断面内において、プリズム面の一方の面に対して、平坦面との角度θで入射した光は、全反射されて対向するプリズム面に入射、全反射する。そして、断面角度φで平坦面に入射する。このとき、φ=θである。特許文献1の面状照明装置では、面状照明を得るため、平坦面にドット状の白色反射面等を形成し均一に照明している。   In the cross section of the light guide plate 101, light incident on one surface of the prism surface at an angle θ with the flat surface is totally reflected and incident on the opposing prism surface and totally reflected. And it injects into a flat surface with cross-sectional angle (phi). At this time, φ = θ. In the planar illumination device of Patent Document 1, in order to obtain planar illumination, a dot-like white reflecting surface or the like is formed on a flat surface and illuminated uniformly.

また、例えば特許文献2には、導光板における出射面と反対の面にV溝が形成された構成が開示されている。   Further, for example, Patent Document 2 discloses a configuration in which a V-groove is formed on the surface opposite to the exit surface of the light guide plate.

特開2009−283383号公報(2009年12月 3日公開)JP 2009-283383 A (released on December 3, 2009) 特開2009−31445号公報 (2009年 2月12日公開)JP 2009-31445 A (published February 12, 2009)

しかしながら、特許文献1の面状照明装置には、以下の問題がある。   However, the planar illumination device of Patent Document 1 has the following problems.

すなわち、特許文献1の面状照明装置におけるプリズム状構造体110は、角度θが特定の角度である光に対しては、導光板内に光を閉じ込める閉じ込め効果が極めて高い。しかし、浅い角度(平坦面との角度θが小さい)で入射した光Cに対しては、閉じ込め効果を奏さない。浅い角度で入射した光Cは、直進方向(導光板の長手方向)および垂直方向(導光板の短手方向)への広がりが大きい。このため、光Cは、照明領域103から外れたプリズム面の真下方向に反射する成分が多くなる。そして、プリズム面の真下方向に反射する成分が平坦面で散乱しプリズム状構造体110から出射する。その結果、浅い角度(平坦面との角度θが小さい)で入射した光Cは、照明領域103からずれた位置から出射するおそれがある。   That is, the prismatic structure 110 in the planar illumination device of Patent Document 1 has an extremely high confinement effect for confining light in the light guide plate for light having an angle θ of a specific angle. However, the confinement effect is not exerted on the light C incident at a shallow angle (the angle θ with the flat surface is small). The light C incident at a shallow angle has a large spread in the straight direction (longitudinal direction of the light guide plate) and the vertical direction (short direction of the light guide plate). For this reason, the component which reflects light C in the direction right under the prism surface which remove | deviated from the illumination area | region 103 increases. Then, the component reflected in the direction directly below the prism surface is scattered on the flat surface and emitted from the prismatic structure 110. As a result, the light C incident at a shallow angle (the angle θ with the flat surface is small) may be emitted from a position shifted from the illumination region 103.

このように、従来の構成の導光板では、浅い角度で入射する光に対しては、本来光を出射すべき照射領域103から外れた領域から出射する。その結果、照明領域103は、光の直進方向(長手方向)と垂直な方向(短手方向)に拡がるという問題がある。   As described above, in the light guide plate having the conventional configuration, light incident at a shallow angle is emitted from an area outside the irradiation area 103 where light should be emitted. As a result, there is a problem that the illumination area 103 extends in a direction (short direction) perpendicular to the straight light traveling direction (longitudinal direction).

本発明は、上記従来の問題点に鑑みてなされたものであって、その目的は、光の直進方向(長手方向)と垂直な方向(短手方向)への拡がりを抑えることができる光源モジュール、およびそれを備えた電子機器を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object thereof is a light source module capable of suppressing the spread of light in a direction (longitudinal direction) perpendicular to a straight traveling direction (longitudinal direction). And providing an electronic apparatus including the same.

本発明の光源モジュールは、上記の課題を解決するために、導光板と、上記導光板における長手方向の少なくとも一方の端面から光をそれぞれ入射させる複数の光源と、上記導光板における光の出射面と反対の面に、上記導光板の内部にて導光される光を取り出すための光拡散性を有する複数の光路変換部とを備えた光源モジュールであって、上記導光板における光の出射面に長手方向に稜線を有する曲面で構成された曲面構造部を複数有することを特徴としている。   In order to solve the above-described problems, the light source module of the present invention includes a light guide plate, a plurality of light sources that allow light to enter from at least one end face in the longitudinal direction of the light guide plate, and a light emission surface of the light guide plate. A light source module including a plurality of light path conversion units having light diffusibility for extracting light guided inside the light guide plate on a surface opposite to the light guide plate, the light emission surface of the light guide plate It has a plurality of curved surface structure parts composed of curved surfaces having ridge lines in the longitudinal direction.

上記の構成によれば、上記導光板における光の出射面に長手方向に稜線を有する曲面で構成された曲面構造部を複数有する。すなわち、複数の曲面構造部は、長手方向に沿って形成されている。一方、導光板の出射面と反対の面に、上記導光板の内部にて導光される光を取り出すための光拡散性を有する複数の光路変換部が形成されている。光路変換部においては導光体中を導光する光線の角度成分を変換し、長手方向と短手方向の全反射条件を崩す光線を導光体から出射することが可能になる。曲面構造部は、その面形状が(短手方向)に対し連続的に変化した曲面を有する。それゆえ、光路変換部にて光路が変換された光は、長手方向について全反射条件が崩れている光は短手方向の様々な角度成分の光線に対して効率的に光を取り出すことが可能である。また、長手方向で全反射条件が崩れていない場合は導光体からの出射はなく、短手方向については光線の拡がりを抑えることが可能である。   According to said structure, it has multiple curved surface structure parts comprised by the curved surface which has a ridgeline in a longitudinal direction in the light emission surface in the said light-guide plate. That is, the plurality of curved surface structure portions are formed along the longitudinal direction. On the other hand, on the surface opposite to the light exit surface of the light guide plate, a plurality of light path conversion portions having light diffusibility for taking out light guided inside the light guide plate is formed. In the optical path conversion unit, it is possible to convert the angle component of the light beam guided in the light guide and to emit the light beam that breaks the total reflection condition in the longitudinal direction and the short direction from the light guide. The curved surface structure portion has a curved surface whose surface shape is continuously changed with respect to the short side direction. Therefore, light whose optical path has been converted by the optical path converter can be extracted efficiently from light with various angular components in the short direction when the total reflection condition is broken in the longitudinal direction. It is. Further, when the total reflection condition is not broken in the longitudinal direction, there is no emission from the light guide, and it is possible to suppress the spread of light in the short direction.

本発明の光源モジュールにおいて、上記光路変換部の間隔は、上記稜線の間隔よりも大きくなっていることが好ましい。   In the light source module of the present invention, it is preferable that the interval between the optical path conversion portions is larger than the interval between the ridge lines.

上記の構成によれば、上記光路変換部の間隔は、上記稜線の間隔よりも大きくなっているため、光路変換部の形成が容易になり、光路変換部の曲面構造体に対する位置精度の緩和の効果がある。   According to said structure, since the space | interval of the said optical path conversion part is larger than the space | interval of the said ridgeline, formation of an optical path conversion part becomes easy, and the positional accuracy of the optical path conversion part with respect to the curved surface structure is eased. effective.

本発明の光源モジュールにおいて、上記光路変換部はスクリーン印刷により光拡散部材を含有するインクで形成されていることが好ましい。   In the light source module of the present invention, it is preferable that the optical path changing portion is formed of ink containing a light diffusing member by screen printing.

上記の構成によれば、光線の長手方向成分の指向性を緩和でき、短手方向成分に対しては光の拡がりを抑える効果を向上させることができる。   According to said structure, the directivity of the longitudinal direction component of a light ray can be eased, and the effect which suppresses the spreading of light can be improved with respect to a short direction component.

本発明の電子機器は、上記の課題を解決するために、上述の光源モジュールを備えたことを特徴としている。   In order to solve the above problems, an electronic apparatus according to the present invention includes the above-described light source module.

上記の構成によれば、光の直進方向(長手方向)と垂直な方向への拡がりを抑えることができる電子機器を実現することができる。   According to said structure, the electronic device which can suppress the spreading to the perpendicular | vertical direction (longitudinal direction) of light to a perpendicular | vertical direction is realizable.

本発明において、上記曲面構造部は高さH、曲面構造同士の間隔がPで構成されており、前記曲面構造は0.2<H/P<0.5の関係を満たすように形成されることが好ましい。   In the present invention, the curved surface structure portion has a height H and the interval between the curved surface structures is P, and the curved surface structure is formed to satisfy a relationship of 0.2 <H / P <0.5. It is preferable.

上記構成によれば、上記曲面構造部は、その接線の傾きが連続的に変化している。それゆえ、出射面に様々な角度で入射する光の取り出し効果と短手方向への光の拡がり抑制効果の点で有効に作用する。また、上記範囲でH/Pを設定することにより、曲面構造部の量産時の作製効率の向上と、形状のずれに対する特性の変動を抑えることが可能である効果を奏する。   According to the above configuration, the curved surface structure portion has the tangent slope continuously changing. Therefore, it works effectively in terms of the effect of extracting light incident on the exit surface at various angles and the effect of suppressing the spread of light in the short direction. In addition, by setting H / P within the above range, there are effects that it is possible to improve the production efficiency during mass production of the curved surface structure and to suppress fluctuations in characteristics with respect to shape deviation.

本発明の光源モジュールにおいて、上記複数の光源を選択的に点灯する光源制御部を備えたことが好ましい。   The light source module of the present invention preferably includes a light source control unit that selectively turns on the plurality of light sources.

上記の構成によれば、上記複数の光源を選択的に点灯する光源制御部を備えている。それゆえ、例えば電子機器として液晶表示装置に適用すると、光源制御部が映像信号における1フレーム内の垂直走査に同期して映像信号に応じた領域が照明されるように、選択的に光源を一定時間点灯するとき、導光板の特定の部分のみを適切に点滅照明して動画特性を向上させることができる。   According to said structure, the light source control part which selectively lights up the said several light source is provided. Therefore, for example, when applied to a liquid crystal display device as an electronic device, the light source control unit selectively fixes the light source so that an area corresponding to the video signal is illuminated in synchronization with vertical scanning within one frame in the video signal. When the light is turned on for a long time, only a specific part of the light guide plate can be appropriately blinked to improve the moving image characteristics.

本発明の光源モジュールは、以上のように、上記導光板における光の出射面に長手方向に稜線を有する曲面で構成された曲面構造部を複数有する特徴である。また、本発明の電子機器は、以上のように、上記記載の光源モジュールを備えた構成である。   As described above, the light source module of the present invention is characterized in that it has a plurality of curved surface structure parts constituted by curved surfaces having ridge lines in the longitudinal direction on the light emission surface of the light guide plate. Moreover, the electronic device of this invention is the structure provided with the said light source module as mentioned above.

それゆえ、光の直進方向(長手方向)と垂直な方向(短手方向)への拡がりを抑えることができ、かつ、取出効率を損なわないという効果を奏する。   Therefore, it is possible to suppress the spread of light in the direction (longitudinal direction) perpendicular to the straight traveling direction (longitudinal direction) and to obtain the effect of not impairing the extraction efficiency.

本発明の光源モジュールの概略構成を示し、(a)は上面図であり、(b)は側面図である。The schematic structure of the light source module of this invention is shown, (a) is a top view, (b) is a side view. 上記光源モジュールを備えた液晶表示装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the liquid crystal display device provided with the said light source module. 上記光源モジュールを備えた液晶表示装置における一部の構成を示す断面図である。It is sectional drawing which shows a part of structure in a liquid crystal display device provided with the said light source module. 光拡散材(散乱体)の拡散イメージを示し、左側はx−z面での散乱特性を示す模式図であり、右側は、y−z面での散乱特性を示す模式図である。The diffusion image of a light diffusing material (scattering body) is shown, the left side is a schematic diagram showing scattering characteristics on the xz plane, and the right side is a schematic diagram showing scattering characteristics on the yz plane. 導光板における半円筒形状の曲面構造体の有無と、出射面での照度分布との関係を示し、(a)は、導光板に曲面構造体がある場合における出射面上の二次元的な照度分布を示し、(b)は、導光板に曲面構造体がない場合における出射面上の二次元的な照度分布を示し、(c)は、(a)および(b)の構成について、導光板の中央部におけるY方向の照度分布を示したグラフである。The relationship between the presence or absence of a semi-cylindrical curved surface structure on the light guide plate and the illuminance distribution on the exit surface is shown. (A) is a two-dimensional illumination on the exit surface when the light guide plate has a curved structure. (B) shows a two-dimensional illuminance distribution on the exit surface when the light guide plate has no curved structure, and (c) shows the light guide plate for the configurations of (a) and (b). It is the graph which showed the illumination intensity distribution of the Y direction in the center part. 導光板内部を導光する光の経路と、曲面構造体の有無との関係を示す断面図であり、(a)は、導光板の出射面に曲面構造体が形成された場合(実施例)を示し、(b)は、導光板の出射面に頂角90°のプリズムが形成された場合(従来例1)を示し、(c)は、導光板の出射面に頂角5°のプリズムが形成された場合(従来例2)を示し、(d)は(a)形状を凹シリンダ形状とした場合を示す。It is sectional drawing which shows the relationship between the path | route of the light which guides the inside of a light-guide plate, and the presence or absence of a curved-surface structure, (a) is a case where a curved-surface structure is formed in the output surface of a light-guide plate (Example). (B) shows a case in which a prism with an apex angle of 90 ° is formed on the exit surface of the light guide plate (conventional example 1), and (c) shows a prism with an apex angle of 5 ° on the exit surface of the light guide plate. Is shown (conventional example 2), and (d) shows a case where the shape of (a) is a concave cylinder. 導光板におけるX方向の側面形状を示す側面図であり、(a)は、曲面構造体の高さが小さい場合を示し、(b)は、曲面構造体の高さが大きい場合を示す。It is a side view which shows the side shape of the X direction in a light-guide plate, (a) shows the case where the height of a curved-surface structure is small, (b) shows the case where the height of a curved-surface structure is large. 図7(a)のように構成Aである曲面構造体20aの高さHが小さい場合と、図7(b)のように構成Bである曲面構造体20aの高さHが小さい場合の、それぞれ導光板の中央部におけるY方向の照度分布を示す図である。When the height H of the curved surface structure 20a as the configuration A is small as shown in FIG. 7A and when the height H of the curved structure 20a as the configuration B as shown in FIG. 7B is small. It is a figure which shows the illumination intensity distribution of the Y direction in the center part of a light-guide plate, respectively. バックライトブリンキングを説明する図である。It is a figure explaining backlight blinking. 本発明において、光の導光方向に対して全反射条件を崩していない場合の曲面構造体による光線の閉じ込め効果を示す図である。In this invention, it is a figure which shows the confinement effect of the light ray by the curved-surface structure in case the total reflection conditions are not destroyed with respect to the light guide direction. 上記光源モジュールにおける導光板の他の変形例を示す平面図である。It is a top view which shows the other modification of the light-guide plate in the said light source module. 特許文献1の面状照明装置を示す図である。It is a figure which shows the planar illuminating device of patent document 1.

本発明の一実施形態について図1〜図11に基づいて説明すれば、以下のとおりである。図2は、本実施の形態の光源モジュールを備えた液晶表示装置(電子機器)の分解斜視図である。   One embodiment of the present invention will be described below with reference to FIGS. FIG. 2 is an exploded perspective view of a liquid crystal display device (electronic device) including the light source module of the present embodiment.

本実施の形態の光源モジュール10を備えた電子機器としての例えば液晶表示装置1は、図2に示すように、下から順に、シャーシ2、光源モジュール10、液晶パネル3、ベゼル4にて構成されており、光源モジュール10は、反射板としての反射シート11、光源としてのLED(Light Emitting Diode:発光ダイオード)12及びLED基板13、リフレクタ14、導光板20、拡散板15、並びに光学シート群16から構成されている。尚、拡散板15、光学シート群16は、用途によっては省略することも可能である。   For example, a liquid crystal display device 1 as an electronic apparatus including the light source module 10 according to the present embodiment includes a chassis 2, a light source module 10, a liquid crystal panel 3, and a bezel 4 in order from the bottom as shown in FIG. The light source module 10 includes a reflection sheet 11 as a reflection plate, an LED (Light Emitting Diode) 12 and a LED substrate 13 as a light source, a reflector 14, a light guide plate 20, a diffusion plate 15, and an optical sheet group 16. It is composed of The diffusion plate 15 and the optical sheet group 16 can be omitted depending on the application.

図3は、光源モジュール10を備えた液晶表示装置1における一部の構成を示す断面図である。上記LED12及びLED基板13、並びにリフレクタ14は、図3に示すように、導光板20の端部に設けられ、これによって、LED12からの光を導光板20における一方の端面21aに入射し、導光板20の出射面20dから拡散板15及び光学シート群16を通して、液晶パネル3に光を照射するようになっている。したがって、本実施の形態の光源モジュール10は、サイドエッジ(サイドライトともいう)方式を採用している。なお、導光板20からは出射面20d以外からの面からも光は一部出射するが、導光板20の出射面20d、LED12が配置される面以外の面には反射シート11が配置され、再度導光板20に入射するようになっているため、ほとんどの光は出射面20dから出射される。   FIG. 3 is a cross-sectional view illustrating a partial configuration of the liquid crystal display device 1 including the light source module 10. As shown in FIG. 3, the LED 12, the LED substrate 13, and the reflector 14 are provided at the end portion of the light guide plate 20, so that light from the LED 12 is incident on one end surface 21 a of the light guide plate 20 and guided. The liquid crystal panel 3 is irradiated with light from the exit surface 20 d of the light plate 20 through the diffusion plate 15 and the optical sheet group 16. Therefore, the light source module 10 of the present embodiment employs a side edge (also referred to as side light) method. The light guide plate 20 also partially emits light from surfaces other than the exit surface 20d, but the reflective sheet 11 is disposed on a surface other than the exit surface 20d of the light guide plate 20 and the surface on which the LEDs 12 are disposed. Since the light enters the light guide plate 20 again, most of the light is emitted from the emission surface 20d.

なお、ここでは、導光板20の長手方向をX方向とし、導光板20の法線方向をZ方向とし、X方向およびZ方向に対し垂直な方向をY方向とする。Y方向は、導光板20の長手方向(X方向)に対して、短手方向と記載する場合もある。   Here, the longitudinal direction of the light guide plate 20 is the X direction, the normal direction of the light guide plate 20 is the Z direction, and the direction perpendicular to the X direction and the Z direction is the Y direction. The Y direction may be described as a short direction with respect to the longitudinal direction (X direction) of the light guide plate 20.

図1は、本実施の形態における光源モジュール10の概略構成を示し、図1(a)は上面図であり、図1(b)は側面図である。図1(a)および(b)に示されるように、導光板20の長手方向の両端からそれぞれ光を入射させるLED12として、LEDL1〜L5、LEDR1〜R5が配置されている。LEDL1〜L5はそれぞれ、LEDR1〜R5と長手方向において対向するように配置されている。   FIG. 1 shows a schematic configuration of a light source module 10 according to the present embodiment, FIG. 1 (a) is a top view, and FIG. 1 (b) is a side view. As shown in FIGS. 1A and 1B, LEDs L <b> 1 to L <b> 5 and LEDs R <b> 1 to R <b> 5 are arranged as LEDs 12 that allow light to enter from both ends in the longitudinal direction of the light guide plate 20. The LEDs L1 to L5 are disposed so as to face the LEDs R1 to R5 in the longitudinal direction, respectively.

なお、図1(a)および(b)に示されていないが、光源モジュール10は、LEDL1〜L5およびLEDR1〜R5を選択点灯する光源制御部を備えている。この光源制御部は、LEDL1〜L5およびLEDR1〜R5の全光源を点灯するように制御することもできる。   Although not shown in FIGS. 1A and 1B, the light source module 10 includes a light source control unit that selectively lights the LEDs L1 to L5 and LEDs R1 to R5. This light source control part can also be controlled to turn on all the light sources of LEDs L1 to L5 and LEDs R1 to R5.

また、導光板20の出射面(上面)20dには、曲面で構成された曲面構造体20aが形成されている。この曲面構造体20aは、導光板20の長手方向(X方向)に沿って筋状のパターンとして形成されている。すなわち、導光板20は、光の出射面20dに、長手方向に稜線20eを有する曲面で構成された曲面構造部を複数有する。この曲面構造体20aは、導光板20の出射面20d自体に形成された構造体(導光板20自体に形成された構造体)であって、導光板20に導光板20とは別の部材として曲面構造部材が設けられたものではない。 In addition, a curved surface structure 20 a formed of a curved surface is formed on the exit surface (upper surface) 20 d of the light guide plate 20. The curved surface structure 20 a is formed as a streak pattern along the longitudinal direction (X direction) of the light guide plate 20. In other words, the light guide plate 20 has a plurality of curved surface structure parts formed of curved surfaces having ridge lines 20e in the longitudinal direction on the light emission surface 20d. The curved structure 20a is a structure formed on the light exit surface 20d itself of the light guide plate 20 (a structure formed on the light guide plate 20 itself), and the light guide plate 20 is a member different from the light guide plate 20. A curved structure member is not provided.

なお、本実施形態では、導光板20に形成された曲面構造体20aは、高さH、曲面構造部同士の間隔がPで形成されており、前記曲面構造は0.2<H/P<0.5を満たす構造で形成されている。   In the present embodiment, the curved surface structure 20a formed on the light guide plate 20 is formed with a height H and a distance between the curved surface structure portions P, and the curved surface structure is 0.2 <H / P <. It is formed with a structure satisfying 0.5.

一方、図1(b)に示されるように、導光板20における曲面構造体20aと反対側の下面20cには、光路変換部として、光拡散構造群20bが形成されている。   On the other hand, as shown in FIG. 1B, a light diffusing structure group 20b is formed on the lower surface 20c of the light guide plate 20 opposite to the curved structure 20a as an optical path changing unit.

光拡散構造群20bは、導光板20にて導光される光を取り出すレンズ群である。すなわち、光拡散構造群20bは、導光板20の内部にて導光される光の光路を変換させ、出射面20d側に取り出す。光拡散構造群20bは、導光板20の出射面20dから出射される光が均一になるように形成されている。光拡散構造群20bを構成する光拡散構造は、同一の間隔で配置されている。光拡散構造の間隔は、曲面構造体20aの間隔Pよりも大きくなっており、具体的には2.0mmである。   The light diffusion structure group 20 b is a lens group that extracts light guided by the light guide plate 20. That is, the light diffusion structure group 20b converts the optical path of the light guided inside the light guide plate 20 and extracts it to the emission surface 20d side. The light diffusion structure group 20b is formed so that the light emitted from the emission surface 20d of the light guide plate 20 is uniform. The light diffusion structures constituting the light diffusion structure group 20b are arranged at the same interval. The interval between the light diffusing structures is larger than the interval P between the curved surface structures 20a, and is specifically 2.0 mm.

本実施の形態においては、光路変換部は、光拡散構造群20bであったが、この構成に限定されず、導光板20の内部にて導光される光の光路を変換させるものであればよい。例えば、光路変換部は、導光板20の内部にて導光される光を下面20cにマイクロレンズを形成し、光線の反射角度を変えるものであっても良い。また、散乱体の形状は点状に限定されず、線状の白色パターン、または、プリズム等から形成することもできる。白色パターンの散乱体は、例えば、スクリーン印刷等によって形成することができ、プリズム等の形状は押し出し成形、射出成形、プレス加工等により形成することができる。   In the present embodiment, the optical path conversion unit is the light diffusion structure group 20b, but is not limited to this configuration, as long as it converts the optical path of the light guided inside the light guide plate 20. Good. For example, the optical path conversion unit may change the light reflection angle by forming a microlens on the lower surface 20 c of the light guided inside the light guide plate 20. Further, the shape of the scatterer is not limited to a point shape, and may be formed from a linear white pattern, a prism, or the like. The scatterer of the white pattern can be formed by, for example, screen printing, and the shape of the prism or the like can be formed by extrusion molding, injection molding, pressing, or the like.

ここで、本実施例における光拡散構造体について言及する。ここでの光拡散構造体とは導光板に対して、光拡散性を有する散乱樹脂をインクに含有して印刷により形成されるものであり、本実施例に示す光拡散構造体においてはスクリーン印刷により導光板に形成する。スクリーン印刷により形成を行うことで、容易に導光板に均一なパターン印刷が可能ある。本実施例においては光拡散構造体の単体の径は約0.2〜1.5mmの範囲で制御を行い、間隔は2mmとしている。   Here, reference is made to the light diffusion structure in the present embodiment. Here, the light diffusing structure is formed by printing with a light-diffusing diffusing resin contained in ink on the light guide plate. In the light diffusing structure shown in this embodiment, screen printing is performed. To form a light guide plate. By forming by screen printing, a uniform pattern can be easily printed on the light guide plate. In this embodiment, the diameter of a single light diffusing structure is controlled in the range of about 0.2 to 1.5 mm, and the interval is set to 2 mm.

図4は、拡散材(散乱体)の拡散イメージを示し、左側はx−z面での散乱特性を示す模式図であり、右側は、y−z面での散乱特性を示す模式図である。   FIG. 4 shows a diffusion image of a diffusing material (scatterer), the left side is a schematic diagram showing scattering characteristics on the xz plane, and the right side is a schematic diagram showing scattering characteristics on the yz plane. .

光路変換部としての光拡散構造体20b1は、散乱体を含有しているために、散乱反射および透過により光路変換がなされる。よって、図4に示されるように、光拡散構造体20b1により光路変換された光は、拡散材による光線の乱反射による光路変換のため、変換後の光線はマイクロレンズに比較すると広い範囲の角度に散乱される確率が高くなる。   Since the light diffusion structure 20b1 as the optical path changing unit contains a scatterer, the optical path is changed by scattering reflection and transmission. Therefore, as shown in FIG. 4, the light whose path has been changed by the light diffusing structure 20b1 is changed in the path of light by irregular reflection of the light beam by the diffusing material. The probability of being scattered increases.

図9に長手方向に対して全反射条件を崩していない、光拡散構造体で散乱された光の光路図を示す。光拡散構造群20bで散乱された光は光拡散構造体に含有される散乱体により広い角度に散乱反射される。散乱反射された光線は曲面構造部20aに向かうが、曲面構造部20aにおいては浅い角度の光線は曲面構造体の接線に対して垂直に近い角度になるために曲面構造体により反射される光線は散乱された位置に戻る確率が高くなるため光閉じ込め効果が高い。   FIG. 9 shows an optical path diagram of the light scattered by the light diffusion structure without breaking the total reflection condition in the longitudinal direction. The light scattered by the light diffusing structure group 20b is scattered and reflected at a wide angle by the scatterers contained in the light diffusing structure. The scattered and reflected light rays are directed to the curved surface structure portion 20a. However, in the curved surface structure portion 20a, the light rays having a shallow angle are close to perpendicular to the tangent to the curved surface structure body. Since the probability of returning to the scattered position is increased, the light confinement effect is high.

図5は、導光板20における曲面構造体20aの有無と、出射面での照度分布との関係を示すグラフである。図5(a)は、導光板20に曲面構造体20aがある場合における出射面20d(XY平面)上の二次元的な照度分布を示し、図5(b)は、導光板20に曲面構造体20aがない場合における出射面20d(XY平面)上の二次元的な照度分布を示し、図5(c)は、図5(a)および図5(b)の構成について、導光板の中央部におけるY方向の照度分布を示す。なお、図5(a)〜(c)においては、図1(a)および(b)におけるLEDL3およびLEDR3を選択的に点灯している。   FIG. 5 is a graph showing the relationship between the presence or absence of the curved structure 20a in the light guide plate 20 and the illuminance distribution on the exit surface. 5A shows a two-dimensional illuminance distribution on the exit surface 20d (XY plane) when the light guide plate 20 has the curved structure 20a, and FIG. FIG. 5C shows a two-dimensional illuminance distribution on the exit surface 20d (XY plane) in the absence of the body 20a, and FIG. 5C shows the center of the light guide plate with respect to the configurations of FIGS. 5A and 5B. The illumination distribution of the Y direction in a part is shown. 5A to 5C, the LEDs L3 and LEDR3 in FIGS. 1A and 1B are selectively lit.

図5(a)および(c)に示されるように、導光板20の出射面20dに曲面構造体20aが形成されている場合、LEDL3およびLEDR3からの出射光は、曲面構造体20aの効果により、短手方向(Y方向)に拡がることなく、導光板20内を導光していることが分かる。そして、導光板20内部を導光している光は、光拡散構造群20bにより出射面20d側に取り出されている。すなわち、LEDL3およびLEDR3を選択的に点灯することで、導光板20の出射面20dにおける特定の照射領域(LEDL3およびLEDR3に対応した領域)から光が出射している。   As shown in FIGS. 5A and 5C, when the curved surface structure 20a is formed on the exit surface 20d of the light guide plate 20, the light emitted from the LEDs L3 and LEDR3 is caused by the effect of the curved surface structure 20a. It can be seen that the light guide plate 20 is guided without spreading in the short direction (Y direction). And the light which has guided the inside of the light-guide plate 20 is taken out to the output surface 20d side by the light-diffusion structure group 20b. That is, light is emitted from a specific irradiation region (region corresponding to LEDL3 and LEDR3) on the emission surface 20d of the light guide plate 20 by selectively lighting the LEDs L3 and LEDR3.

一方、図5(b)および(c)に示されるように、導光板20の出射面20dに曲面構造体20aが形成されていない場合、LEDL3およびLEDR3からの出射光は、短手方向(Y方向)に拡がってしまい、導光板20の出射面20d全面から光が出射していることが分かる。すなわち、LEDL3およびLEDR3を選択的に点灯しても、出射面20dの特定の領域から光が出射しない。   On the other hand, as shown in FIGS. 5B and 5C, when the curved surface structure 20a is not formed on the light exit surface 20d of the light guide plate 20, the light emitted from the LEDs L3 and LEDR3 is transmitted in the short direction (Y It can be seen that light is emitted from the entire emission surface 20 d of the light guide plate 20. That is, even if the LEDs L3 and LEDR3 are selectively turned on, light is not emitted from a specific region of the emission surface 20d.

このように本実施の形態の光源モジュールによれば、LEDL1〜L5およびLEDR1〜R5のうち点灯するLEDを選択することで、導光板20の出射面20dにおける、選択したLEDに対応した領域から精度良く光を出射する(取り出す)ことが可能になる。すなわち、点灯するLEDを選択することで、導光板20の出射面20dでの光の照射領域を制御することができる。   As described above, according to the light source module of the present embodiment, by selecting the LED to be lit among the LEDs L1 to L5 and the LEDs R1 to R5, accuracy can be obtained from the region corresponding to the selected LED on the exit surface 20d of the light guide plate 20. Light can be emitted (extracted) well. That is, by selecting the LED to be lit, the light irradiation area on the light exit surface 20d of the light guide plate 20 can be controlled.

ところで、液晶表示装置1においては、CRT(Cathode-Ray Tube:陰極線管)表示装置と比較して、動画のボヤケという問題点がある。すなわち、CRT表示装置においては、あるフレームにおける画素の発光期間と、次のフレームにおけるこの画素の発光期間との間に、この画素が発光しない非発光期間があるため、残像感が少ない。これに対して、液晶表示装置1の表示方式はこのような非発光期間がない「ホールド型」であるため、残像感が生じ、この残像感が使用者に動画のボヤケとして認識される。   By the way, the liquid crystal display device 1 has a problem of blurring of moving images as compared with a CRT (Cathode-Ray Tube) display device. That is, in the CRT display device, since there is a non-light emission period in which this pixel does not emit light between the light emission period of the pixel in a certain frame and the light emission period of this pixel in the next frame, there is little afterimage feeling. On the other hand, since the display method of the liquid crystal display device 1 is a “hold type” that does not have such a non-light emitting period, an afterimage feeling is generated, and this afterimage feeling is recognized by the user as blurring of a moving image.

そこで、バックライト型の液晶表示装置1においては、バックライトである光源モジュール10を分割し、液晶パネル3に映像信号を印加するタイミングに同期して順次消灯することにより、画像表示と画像表示との間に黒表示を挿入する技術であるバックライトブリンキングが提案されている。これにより、疑似インパルス型の表示を実現し、残像感を抑え、消費電力を低減することができる。   Therefore, in the backlight type liquid crystal display device 1, the light source module 10 that is a backlight is divided and sequentially turned off in synchronization with the timing of applying the video signal to the liquid crystal panel 3. Backlight blinking, which is a technique for inserting a black display between them, has been proposed. Thereby, pseudo-impulse type display can be realized, the afterimage feeling can be suppressed, and the power consumption can be reduced.

図8を用いてバックライトブリンキングについて説明する。光源モジュール10を備えた液晶表示装置1は、映像信号における1フレーム内の垂直走査に同期して、映像信号に応じた領域が照明されるように、光源制御部によって選択的にLEDを一定時間点灯することができる。それゆえ、導光板20の特定の部分のみを適切に点滅照明して動画特性を向上させることができる。   The backlight blinking will be described with reference to FIG. In the liquid crystal display device 1 including the light source module 10, the LED is selectively turned on for a predetermined time by the light source control unit so that an area corresponding to the video signal is illuminated in synchronization with vertical scanning within one frame of the video signal. Can be lit. Therefore, only a specific portion of the light guide plate 20 can be appropriately blinked to improve moving image characteristics.

具体的には図8に示すように画面を22a、22b、22c、22d、22eの5フレームに分割した場合において、各フレームに対応して長手両端に配置するLED12についてもL1〜L5、R1〜R5と5ブロックとし、例えば図8に示すようにフレーム22cを選択的に点灯させる場合は光源制御部23を通してLEDL3とLEDR3を点灯させる。これにより、液晶表示装置1において映像信号の1フレーム内の垂直走査に同期して、各フレームを選択点灯させることで動画特性を向上させることができる。   Specifically, as shown in FIG. 8, when the screen is divided into five frames 22a, 22b, 22c, 22d, and 22e, the LEDs 12 that are arranged at both longitudinal ends corresponding to each frame are also L1-L5, R1- For example, when the frame 22c is selectively turned on as shown in FIG. 8, the LEDs L3 and LEDR3 are turned on through the light source controller 23. Thereby, in the liquid crystal display device 1, the moving image characteristics can be improved by selectively lighting each frame in synchronization with the vertical scanning within one frame of the video signal.

次に、曲面構造体20aにおける半円筒形状の効果について、図6(a)〜(d)を参照して説明する。図6は、導光板内部を導光する光の短手方向の経路を示す断面図であり図6(a)は、導光板20の出射面に高さHと間隔Pの比率H/Pが0.4となる曲面構造体20aが形成された場合(実施例)を示し、図6(b)は、導光板20の出射面に頂角90°のプリズムが形成された場合(従来例1)を示し、図6(c)は、導光板20の出射面に頂角5°のプリズムが形成された場合(従来例2)を示し、図6(d)は図(a)の凹形状となっている。 Next, the effect of the semi-cylindrical shape in the curved structure 20a will be described with reference to FIGS. FIG. 6 is a cross-sectional view showing a short direction path of light guided inside the light guide plate. FIG. 6A shows a ratio H / P between the height H and the spacing P on the exit surface of the light guide plate 20. FIG. 6B shows a case where a curved surface structure 20a having a value of 0.4 is formed (Example), and FIG. 6B shows a case where a prism with an apex angle of 90 ° is formed on the exit surface of the light guide plate 20 (Conventional Example 1). 6 (c) shows a case where a prism having an apex angle of 5 ° is formed on the exit surface of the light guide plate 20 (conventional example 2), and FIG. 6 (d) shows the concave portion of FIG. 6 (a). It has a shape.

導光板内部を様々な角度で導光する光を、効率的に出射面で出射させるためには、光が出射面で全反射するか否かが重要である。導光板は、出射面に入射してくる光に対し全反射する光が多ければ多いほど、出射面からの光の出射効率が低下する。一方、出射面に入射してくる光に対し全反射する光が少なければ、出射面からの光の出射効率が増加する。すなわち、導光板内部の光を効率的に出射面で出射させるためには、出射面に様々な角度で入射する光に対し全反射する条件を崩すことが重要になる。本来は、導光板内の光について、X方向(長手方向)およびY方向(短手方向)の2成分の全反射条件を考慮する必要があるが、図6(a)〜(d)においては、Y方向成分だけを考慮し、X方向の成分については全反射条件が崩された角度であるとしている。   In order to efficiently emit light guided through the light guide plate at various angles on the exit surface, it is important whether or not the light is totally reflected on the exit surface. In the light guide plate, the more light is totally reflected with respect to the light incident on the exit surface, the lower the light output efficiency from the exit surface. On the other hand, if the amount of light totally reflected with respect to the light incident on the emission surface is small, the light emission efficiency from the emission surface increases. That is, in order to efficiently emit the light inside the light guide plate on the exit surface, it is important to break the conditions for total reflection with respect to light incident on the exit surface at various angles. Originally, it is necessary to consider the two-component total reflection condition in the X direction (longitudinal direction) and the Y direction (short direction) for the light in the light guide plate, but in FIGS. Considering only the Y direction component, the X direction component is an angle at which the total reflection condition is broken.

図6(a)の曲面構造体20aは、その面形状が(短手方向に対し)連続的に変化しているので、出射面に様々な角度で入射する光の取り出しに有効に作用している。それゆえ、図(a)に示されるように、短手方向に対し垂直に立ち上がった垂直光Aから浅い角度で導光する光Cまで、様々な入射角度に対して効率的に光を取り出し、出射面から光を出射させることができる。また、浅い角度で導光する光Cは、水平に近い面に入射すると全反射しやすい(全反射条件を崩しにくい)。しかし、図6(a)の曲面構造体20aの形状においては、水平に近い面は半円筒の上部に形成されており、光Cが照射されにくい部分に位置している。それゆえ、浅い角度で導光する光Cは、短手方向に対し傾斜した面に照射されるため、全反射条件が崩れやすい。 Since the surface shape of the curved structure 20a in FIG. 6A continuously changes (relative to the short direction), it effectively acts to extract light incident on the exit surface at various angles. Yes. Therefore, as shown in FIG. 6 (a), the vertical light A that rises perpendicularly to the lateral direction to the light C to the light guide at a shallow angle, effectively taking out the light for various angles of incidence The light can be emitted from the emission surface. In addition, the light C guided at a shallow angle is likely to be totally reflected when it is incident on a surface near horizontal (it is difficult to break the total reflection condition). However, in the shape of the curved surface structure 20a in FIG. 6A, a surface that is nearly horizontal is formed in the upper part of the semi-cylinder, and is located in a portion where the light C is not easily irradiated. Therefore, the light C guided at a shallow angle is irradiated onto a surface inclined with respect to the short-side direction, so that the total reflection condition is easily broken.

一方、導光板20の出射面に頂角90°のプリズムが形成された場合、図6(b)に示されるように垂直光Aは、全反射条件を崩さず戻り光となってしまう。また、浅い角度で導光する光Cについては、全反射条件が崩れ一旦出射面から出射する。しかし、再度隣のプリズムに入射してしまい導光板内に戻ってしまう。また、導光板20の出射面に頂角5°のプリズムが形成された場合、図6(c)に示されるように、垂直方向の光Aおよび浅い角度で導光する光Cはともに、全反射条件が崩れ出射面から出射される。しかし、これらの光が隣のプリズムに再入射する確率が増加する。よって、図(b)および(c)のように導光板20の出射面にプリズムが形成された場合、導光板内に光を閉じ込めるため、導光板から光を出射させる効率が低下してしまう。 On the other hand, when a prism having an apex angle of 90 ° is formed on the exit surface of the light guide plate 20, the vertical light A becomes return light without breaking the total reflection condition as shown in FIG. 6B. Further, the light C guided at a shallow angle is once emitted from the emission surface because the total reflection condition is broken. However, it enters the adjacent prism again and returns to the light guide plate. Further, when a prism having an apex angle of 5 ° is formed on the exit surface of the light guide plate 20, as shown in FIG. 6C, all of the light A in the vertical direction and the light C guided at a shallow angle are all. The reflection condition is broken and the light is emitted from the emission surface. However, the probability that these lights will re-enter the adjacent prism increases. Therefore, if the prism is formed on the exit surface of the light guide plate 20 as shown in FIG. 6 (b) and (c), to confine the light in the light guide plate, the efficiency of emitting light from the light guide plate is reduced .

また、本実施の形態の光源モジュール10においては、光路変換部としての曲面構造体(マイクロレンズ群20aが、導光板20の内部にて導光される光の光路を変換させ、出射面20d側に取り出す。曲面構造体群20aは、図6(a)に示される垂直方向の光Aを効率的に誘起するため、曲面構造体20aによる効果がさらに向上する。一方、図6(b)および(c)のように導光板20の出射面にプリズムが形成された場合、逆効果になり、効率的に導光板から光を出射させることができない。図6(d)においては垂直光が全て全反射により戻り光となることは無く図6(b)、図6(c)のプリズム構造と比較して効率的に出射させることが可能である。 Further, in the light source module 10 of the present embodiment, the curved surface structure ( microlens group ) 20a as the optical path conversion unit converts the optical path of the light guided inside the light guide plate 20, and the emission surface 20d. Take out to the side. Since the curved structure group 20a efficiently induces the light A in the vertical direction shown in FIG. 6A, the effect of the curved structure 20a is further improved. On the other hand, when a prism is formed on the exit surface of the light guide plate 20 as shown in FIGS. 6B and 6C, the reverse effect is obtained, and light cannot be efficiently emitted from the light guide plate. In FIG. 6 (d), all vertical light does not become return light due to total reflection, and can be emitted more efficiently than the prism structures of FIGS. 6 (b) and 6 (c).

また、導光板の厚さが同じである場合、図6(a)の曲面構造体の形状は、プリズム形状よりも断面積を確保しやすい。それゆえ、導光板20の出射面に曲面構造体20aが形成された構成では、LEDからの光の入射面での光結合効率が高く、光漏れが起きにくい。   Further, when the thickness of the light guide plate is the same, the shape of the curved structure in FIG. 6A is easier to ensure the cross-sectional area than the prism shape. Therefore, in the configuration in which the curved structure 20a is formed on the exit surface of the light guide plate 20, the light coupling efficiency at the light incident surface from the LED is high, and light leakage hardly occurs.

また、本実施の形態の光源モジュール10をバックライト等の面状照明として用いた場合、導光板20真上に各種光学シートが配置されることが一般的である。それゆえ、導光板20の出射面がプリズムのような鋭利な形状であると、こすれ等により光学シートが傷つくおそれがある。これに対し、導光板20の出射面に曲面構造体20aが形成されている場合、こすれ等により光学シートが傷つくおそれがない。   Moreover, when the light source module 10 of this Embodiment is used as planar illumination, such as a backlight, it is common that various optical sheets are arrange | positioned just above the light-guide plate 20. FIG. Therefore, if the exit surface of the light guide plate 20 has a sharp shape like a prism, the optical sheet may be damaged by rubbing or the like. On the other hand, when the curved structure 20a is formed on the exit surface of the light guide plate 20, there is no possibility that the optical sheet is damaged by rubbing or the like.

次に、曲面構造体20aの形状について、さらに詳細に説明する。これまで、曲面構造体20aの形状が凸シリンダ形状である場合について説明したが、曲面構造体20aの形状は、長手方向(X方向)に垂直な断面形状が円弧を含んでいればよく、断面形状の一部が直線であってもよい。このような形状は、導光板20をプレス加工することにより形成することができる。   Next, the shape of the curved structure 20a will be described in more detail. So far, the case where the shape of the curved structure 20a is a convex cylinder shape has been described. However, the shape of the curved structure 20a only needs to include a circular arc in a cross-sectional shape perpendicular to the longitudinal direction (X direction). A part of the shape may be a straight line. Such a shape can be formed by pressing the light guide plate 20.

次に、曲面構造体20aの高さHと、導光板20の光入射面での光結合効率との関係について説明する。図7は、導光板20におけるX方向の側面形状を示す側面図であり、図7(a)は、曲面構造体20aの高さHが小さい場合を示し、図7(b)は、曲面構造体20aの高さHが大きい場合を示す。なお、図7(a)および図7(b)においては、曲面構造体20aの間隔P、および導光板20の厚さTは同一としている。   Next, the relationship between the height H of the curved structure 20a and the optical coupling efficiency at the light incident surface of the light guide plate 20 will be described. FIG. 7 is a side view showing a side shape of the light guide plate 20 in the X direction. FIG. 7A shows a case where the height H of the curved structure 20a is small, and FIG. 7B shows a curved structure. The case where the height H of the body 20a is large is shown. 7A and 7B, the interval P between the curved surface structures 20a and the thickness T of the light guide plate 20 are the same.

本実施の形態においては、LEDからの光は、導光板20の長手方向の側面に入射することになる。図7(b)に示されるように、光の入射面形状(導光板20におけるX方向の側面形状)において曲面構造体20aの高さHが大きい場合、入射面積が小さくなるため、隙間(図7(b)では斜線部)から光が漏れてしまい、光結合効率が低下する。一方、図7(a)に示されるように、光の入射面形状(導光板20におけるX方向の側面形状)において曲面構造体20aの高さHが小さい場合、入射面積が大きくなり、隙間からの光漏れを低減でき光結合効率を向上させることができる。   In the present embodiment, light from the LED is incident on the side surface of the light guide plate 20 in the longitudinal direction. As shown in FIG. 7B, when the height H of the curved structure 20a is large in the light incident surface shape (side surface shape in the X direction of the light guide plate 20), the incident area becomes small, so that the gap (FIG. In FIG. 7B, light leaks from the shaded area, and the optical coupling efficiency is lowered. On the other hand, as shown in FIG. 7A, when the height H of the curved structure 20a is small in the light incident surface shape (side surface shape in the X direction of the light guide plate 20), the incident area becomes large and the gap Light leakage can be reduced, and the optical coupling efficiency can be improved.

よって、光入射面における光結合効率および光漏れは、曲面構造体20aの高さHが大きければ大きいほど低下する。近似的には、曲面構造体20aの高さHが2倍になると、光漏れ量が2倍になり、光結合効率のロスも2倍になる。   Therefore, the optical coupling efficiency and light leakage at the light incident surface decrease as the height H of the curved structure 20a increases. Approximately, when the height H of the curved structure 20a is doubled, the amount of light leakage is doubled and the loss of optical coupling efficiency is also doubled.

光入射面における光結合効率および光漏れを考慮すると、曲面構造体20aの高さHは、導光板20の厚さTの5%以下であることが好ましい。具体的な寸法としては、例えば、導光板20の厚さTが4.2mmであり、面構造体20aの高さHが0.16mmである。ただし、曲面構造体20aについて、間隔Pを一定とし、高さHを小さくすると、導光板20内に光を閉じ込める閉じ込め効果が低減する。   Considering the optical coupling efficiency and light leakage at the light incident surface, the height H of the curved structure 20 a is preferably 5% or less of the thickness T of the light guide plate 20. As specific dimensions, for example, the thickness T of the light guide plate 20 is 4.2 mm, and the height H of the surface structure 20a is 0.16 mm. However, the confinement effect of confining light in the light guide plate 20 is reduced when the interval P is made constant and the height H is reduced in the curved structure 20a.

また、曲面構造体の形状は変えずに間隔Pを細かくしていくことで光直進性を維持したまま、導光板の断面積を確保することが可能である。例えば、構成Aとして間隔P=0.4mm高さH=0.16mm、厚みT=4.2mmの形状を有する断面に対して、構成Bとして間隔P=0.2mm、高さH=0.08mm、厚みT=4.2mmと半円筒形状を相似的に1/2にすることで、光直進性に関してはなんら変化することなく、構成Aに対して光漏れ量を半減し、光結合ロスも半減することが可能である。また、ピッチPを細かくすることで、長手方向に伸びている曲面構造を視認しにくくする効果もある。   Further, by reducing the interval P without changing the shape of the curved structure, it is possible to secure the cross-sectional area of the light guide plate while maintaining the straight light traveling property. For example, as a configuration A, a cross-section having a shape with a spacing P = 0.4 mm, a height H = 0.16 mm, and a thickness T = 4.2 mm, as a configuration B, a spacing P = 0.2 mm and a height H = 0. By halving the semi-cylindrical shape with a thickness of 08 mm and a thickness of T = 4.2 mm, the amount of light leakage is reduced by half with respect to the configuration A without any change in light straightness, and the optical coupling loss. Can also be halved. Further, by making the pitch P fine, there is also an effect of making it difficult to visually recognize the curved surface structure extending in the longitudinal direction.

図7(c)は、図7(a)のように構成Aである曲面構造体20aの高さHが小さい場合と、図7(b)のように構成Bである曲面構造体20aの高さHが小さい場合の、それぞれ導光板の中央部におけるY方向の照度分布を示す。図7(c)に示されるように、構成Aの形状と構成Bの形状との間で、光直進性に関してはなんら変化することがないことがわかる。それゆえ構成Aに対して間隔Pを小さくし構成Bとすることで、光漏れ量を半減し、光結合ロスも半減することが可能である。また、間隔Pを細かくすることで長手方向に伸びている曲面構造を視認しにくくする効果もある。   FIG. 7C shows the case where the height H of the curved structure 20a having the configuration A is small as shown in FIG. 7A and the height of the curved structure 20a having the configuration B as shown in FIG. 7B. The illuminance distribution in the Y direction at the center of the light guide plate when the height H is small is shown. As shown in FIG. 7C, it can be seen that there is no change in the light straightness between the shape of the configuration A and the shape of the configuration B. Therefore, by reducing the interval P with respect to the configuration A to the configuration B, it is possible to halve the amount of light leakage and halve the optical coupling loss. Further, by making the interval P fine, there is also an effect of making it difficult to visually recognize the curved surface structure extending in the longitudinal direction.

また、上述の説明では、1枚の導光板20を備えた構成について説明したが、本実施の形態の光源モジュール10は、この構成に限定されない。   In the above description, the configuration including one light guide plate 20 has been described. However, the light source module 10 of the present embodiment is not limited to this configuration.

図11に示されるバックライトブリンキングを行うために、図10に示すように導光板20を複数の導光体21にて分割して構成し、これら複数の導光体21を、長手方向に対して並列にそれぞれ隙間22を有して配設した構成であってもよい。この場合、LED12は、各導光体21における長手方向の一方の端面21aから光をそれぞれ入射させるようになっている。尚、必ずしも一方の端面21aに限らず、長手方向の他方の端面から入射させてもよく、さらに、一方の端面21a及び他方の端面の両方から光を入射させてもよい。すなわち、本発明では、少なくとも一方の端面21aから光を入射させれば足りる。   In order to perform the backlight blinking shown in FIG. 11, the light guide plate 20 is divided into a plurality of light guides 21 as shown in FIG. 10, and these light guides 21 are arranged in the longitudinal direction. Alternatively, a configuration in which the gaps 22 are provided in parallel may be employed. In this case, the LED 12 allows light to enter from one end face 21 a in the longitudinal direction of each light guide 21. In addition, it is not necessarily limited to one end surface 21a, but may be incident from the other end surface in the longitudinal direction, and light may be incident from both one end surface 21a and the other end surface. That is, in the present invention, it is sufficient that light is incident from at least one end face 21a.

なお、図8に示すように、本実施形態の液晶表示装置1は、バックライトブリンキングを行うために複数の光源であるLEDLEDL1〜L5およびLEDR1〜R5を選択的に点灯する光源制御部を備えている。それゆえ、所定のタイミングに応じて図に示すようにLEDL3、LEDR3だけ等局所的に点灯することが可能となる。 As shown in FIG. 8, the liquid crystal display device 1 of the present embodiment includes a light source control unit that selectively turns on the LEDs LEDL1 to L5 and LEDs R1 to R5 that are a plurality of light sources in order to perform backlight blinking. ing. Therefore, as shown in FIG. 8 , only the LEDs L3 and LEDR3 can be turned on locally according to a predetermined timing.

本発明を例えば電子機器として液晶表示装置に適用すると、本発明が導光板の短手方向への広がりを抑える効果が高いことから、光源制御部が映像信号における1フレーム内の垂直走査に同期して映像信号に応じた領域が照明されるように、選択的に光源を一定時間点灯するとき、導光板の特定の部分のみを適切に点滅照明して動画特性を向上させることができる。   When the present invention is applied to a liquid crystal display device as an electronic device, for example, the light source control unit is synchronized with vertical scanning within one frame in the video signal because the present invention is highly effective in suppressing the light guide plate from spreading in the short direction. Thus, when the light source is selectively turned on for a certain period of time so that the area corresponding to the video signal is illuminated, only a specific part of the light guide plate can be appropriately blinked to improve moving image characteristics.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

本発明は、光源からの光を導光板によって面状に出射させるサイドエッジ(サイドライトともいう)型導光板を備えた光源モジュール、およびそれを備えた電子機器に関するものであり、例えば、バックライト等の光源モジュール及び液晶表示装置等の電子機器に適用可能である。   The present invention relates to a light source module including a side edge (also referred to as sidelight) type light guide plate that emits light from a light source in a planar shape by a light guide plate, and an electronic device including the same, for example, a backlight. It can be applied to electronic devices such as light source modules and liquid crystal display devices.

1 液晶表示装置(電子機器)
10 光源モジュール
12 LED(光源)
20 導光板
20a 曲面構造部
20b 光拡散構造群
20c 下面
20d 出射面
21a 端面
22a〜22e スキャンフレーム
23 光源制御部
1 Liquid crystal display device (electronic equipment)
10 Light source module 12 LED (light source)
20 Light guide plate 20a Curved surface structure portion 20b Light diffusion structure group 20c Lower surface 20d Output surface 21a End surfaces 22a to 22e Scan frame 23 Light source control unit

Claims (6)

導光板と、
上記導光板における長手方向の少なくとも一方の端面から光をそれぞれ入射させる複数の光源と、
上記導光板における光の出射面と反対の面に、上記導光板の内部にて導光される光を取り出すための複数の光拡散構造を有する光路変換部とを備えた光源モジュールであって、
上記導光板における光の出射面に長手方向に稜線を有する曲面で構成された曲面構造部を複数有することを特徴とする光源モジュール。
A light guide plate;
A plurality of light sources that respectively enter light from at least one end face in the longitudinal direction of the light guide plate;
A light source module comprising a light path conversion unit having a plurality of light diffusion structures for extracting light guided inside the light guide plate on a surface opposite to the light exit surface of the light guide plate,
A light source module, comprising: a plurality of curved surface structure parts each having a curved surface having a ridge line in a longitudinal direction on a light emission surface of the light guide plate.
上記光路変換部の間隔は、上記稜線の間隔よりも大きくなっていることを特徴とする請求項1に記載の光源モジュール。   The light source module according to claim 1, wherein an interval between the optical path conversion units is larger than an interval between the ridge lines. 上記曲面構造部は、高さH、曲面構造部同士の間隔がPとすると、前記曲面構造は、0.2<H/P<0.5の関係を満たすように形成される請求項1または2に記載の光源モジュール。   The curved surface structure is formed so as to satisfy a relationship of 0.2 <H / P <0.5, where the height of the curved surface structure is H and the interval between the curved surface structures is P. The light source module according to 2. 上記複数の光源を局所点灯する光源制御部を備えたことを特徴とする請求項1〜3の何れか1項に記載の光源モジュール。   The light source module according to claim 1, further comprising a light source control unit that locally lights the plurality of light sources. 上記光路変換部は、スクリーン印刷による光拡散構造であることを特徴とする請求項1〜4の何れか1項に記載の光源モジュール。   The light source module according to any one of claims 1 to 4, wherein the optical path conversion unit has a light diffusing structure by screen printing. 請求項1〜5の何れか1項に記載の光源モジュールを備えたことを特徴とする電子機器。   An electronic apparatus comprising the light source module according to claim 1.
JP2011071989A 2011-03-29 2011-03-29 Light source module and liquid crystal display having this Pending JP2012209034A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011071989A JP2012209034A (en) 2011-03-29 2011-03-29 Light source module and liquid crystal display having this
PCT/JP2012/053025 WO2012132568A1 (en) 2011-03-29 2012-02-09 Light source module and electronic device provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071989A JP2012209034A (en) 2011-03-29 2011-03-29 Light source module and liquid crystal display having this

Publications (1)

Publication Number Publication Date
JP2012209034A true JP2012209034A (en) 2012-10-25

Family

ID=46930333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071989A Pending JP2012209034A (en) 2011-03-29 2011-03-29 Light source module and liquid crystal display having this

Country Status (2)

Country Link
JP (1) JP2012209034A (en)
WO (1) WO2012132568A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016387A (en) * 2011-07-05 2013-01-24 Sumitomo Chemical Co Ltd Light guide plate
CN113609726A (en) * 2021-07-26 2021-11-05 Tcl华星光电技术有限公司 Calculation method of light leakage intensity
US11929042B2 (en) 2021-09-28 2024-03-12 Nichia Corporation Image display method and image display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032766A (en) * 2012-12-12 2013-04-10 京东方科技集团股份有限公司 Backlight module and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021863A (en) * 1999-07-13 2001-01-26 Hitachi Ltd Picture display device
JP2009276662A (en) * 2008-05-16 2009-11-26 Sony Corp Liquid crystal display device and control method of liquid crystal display device
JP2010008599A (en) * 2008-06-25 2010-01-14 Sony Corp Liquid crystal display and control method of liquid crystal display
JP2010123413A (en) * 2008-11-20 2010-06-03 Asahi Kasei Chemicals Corp Light guide plate
JP2010177130A (en) * 2009-01-30 2010-08-12 Keiwa Inc Light guide sheet, and backlight unit using the same
JP2011003418A (en) * 2009-06-19 2011-01-06 Sharp Corp Light source module and electronic device having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021863A (en) * 1999-07-13 2001-01-26 Hitachi Ltd Picture display device
JP2009276662A (en) * 2008-05-16 2009-11-26 Sony Corp Liquid crystal display device and control method of liquid crystal display device
JP2010008599A (en) * 2008-06-25 2010-01-14 Sony Corp Liquid crystal display and control method of liquid crystal display
JP2010123413A (en) * 2008-11-20 2010-06-03 Asahi Kasei Chemicals Corp Light guide plate
JP2010177130A (en) * 2009-01-30 2010-08-12 Keiwa Inc Light guide sheet, and backlight unit using the same
JP2011003418A (en) * 2009-06-19 2011-01-06 Sharp Corp Light source module and electronic device having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016387A (en) * 2011-07-05 2013-01-24 Sumitomo Chemical Co Ltd Light guide plate
CN113609726A (en) * 2021-07-26 2021-11-05 Tcl华星光电技术有限公司 Calculation method of light leakage intensity
CN113609726B (en) * 2021-07-26 2024-01-30 Tcl华星光电技术有限公司 Calculation method of light leakage intensity
US11929042B2 (en) 2021-09-28 2024-03-12 Nichia Corporation Image display method and image display device

Also Published As

Publication number Publication date
WO2012132568A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
KR100818278B1 (en) Illuminating device for liquid crystal display
JP5099999B2 (en) Backlight unit and liquid crystal display device using the same
JP4185721B2 (en) Illumination device and liquid crystal display device
US7972052B2 (en) Backlight unit
JP2008015288A (en) Liquid crystal display
JP2008171719A (en) Planar lighting device
JP2006302710A (en) Surface light source device
KR20080031573A (en) Line light source using point light source
JP4607225B2 (en) Light source module, liquid crystal display device and lighting device
JP5068865B2 (en) Light source module and electronic device including the same
JP2013045733A (en) Lighting unit and display device using the same
WO2012132568A1 (en) Light source module and electronic device provided with same
JP2005285702A (en) Translucent member and lighting system using it
WO2013061866A1 (en) Illumination device, and display device provided therewith
US8807819B2 (en) Illumination unit and display apparatus using the same
JP2006134661A (en) Planar light source and liquid crystal display device using this
WO2012133118A1 (en) Lighting device and display device
JP5203462B2 (en) Light source module and electronic device including the same
TW200815790A (en) Light guide plate and backlight module using the same
JP2005285704A (en) Translucent member and lighting system using it
JP5229041B2 (en) Illumination device and liquid crystal display device
JP2007220447A (en) Sidelight type backlight apparatus
JP5184445B2 (en) Light source module and electronic device including the same
JP5427194B2 (en) Surface illumination device and video display device
JP2012054042A (en) Light source module and electronic equipment equipped with the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121225