JP2012208075A - Measuring method of contact angle on solid surface and system therefor - Google Patents

Measuring method of contact angle on solid surface and system therefor Download PDF

Info

Publication number
JP2012208075A
JP2012208075A JP2011075461A JP2011075461A JP2012208075A JP 2012208075 A JP2012208075 A JP 2012208075A JP 2011075461 A JP2011075461 A JP 2011075461A JP 2011075461 A JP2011075461 A JP 2011075461A JP 2012208075 A JP2012208075 A JP 2012208075A
Authority
JP
Japan
Prior art keywords
droplet
contact angle
contact
measured
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011075461A
Other languages
Japanese (ja)
Other versions
JP5891482B2 (en
Inventor
Yoshikazu Matsui
松井義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saw&spr Tech
SAW&SPR-TECH CO Ltd
Original Assignee
Saw&spr Tech
SAW&SPR-TECH CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saw&spr Tech, SAW&SPR-TECH CO Ltd filed Critical Saw&spr Tech
Priority to JP2011075461A priority Critical patent/JP5891482B2/en
Publication of JP2012208075A publication Critical patent/JP2012208075A/en
Application granted granted Critical
Publication of JP5891482B2 publication Critical patent/JP5891482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method of a contact angle on a solid surface and a system therefor, in which a droplet of a constant volume is placed on a surface of a subject to be measured, a contact area of the droplet in contact with the surface of the subject to be measured is measured, and an average contact angle of the droplet is calculated based on the volume and the contact area of the droplet.SOLUTION: Even when a droplet has any shape, the contact angle of the droplet can be measured only by measuring the volume and the contact area of the droplet. A contact configuration of the droplet on the surface of the subject to be measured viewed from the top in the vertical direction (plainer view) is recorded, and the contact area thereof is measured; thereby the contact angle can be measured even in an area of high hydrophilia at contact angle of 80° or less with a simple and highly reliable manner.

Description

この発明は固体表面の接触角測定方法及びその装置に関し、0°〜90°の範囲の接触角を測定し、例えば、固体表面の親水性を評価する場合に使用されるものである。     The present invention relates to a method for measuring a contact angle of a solid surface and an apparatus therefor, which is used for measuring a contact angle in a range of 0 ° to 90 °, for example, for evaluating the hydrophilicity of a solid surface.

雨水や湿気等による腐食、機能の劣化、汚れを防止するため、多くの物品はその表面を塗膜等で保護している。自動車、建物の外壁、窓ガラス等は絶えず外気・風雨等厳しい環境下におかれるものは特にこの対策が重要である。近年ではこの様な用途に用いられる塗膜には水、液体をはじく撥水性、あるいはこれとは全く逆の親水性が求められるようになった。従来これら性質を評価する方法は液体と被測定物(固体)間の接触角によってあらわす方法が一般的である。     In order to prevent corrosion, deterioration of function, and contamination due to rainwater, moisture, etc., many articles have their surfaces protected with a coating film or the like. This measure is especially important for automobiles, building outer walls, window glass, etc., which are constantly exposed to harsh environments such as outside air and wind and rain. In recent years, coatings used for such applications have been required to have water repellency that repels water and liquids, or hydrophilic properties that are completely opposite to these. Conventionally, a method for evaluating these properties is generally a method represented by a contact angle between a liquid and an object to be measured (solid).

従来の接触角測定装置の多くは固体表面上の液滴を真横方向から液滴断面像を光学的映像として捕らえ、この横断面画像より接触角を直接測定する。また、最近では液滴を鉛直上方から撮像し、コンピュータ画像解析により液滴像の直径を算出した後、この値と液滴体積の値とから試料表面における液滴の接触角を算出する方法(特開平5−232009)、あるいは試料上の液滴の高さをレーザ顕微鏡など非接触式距離測定手段で測定し、別手法による液滴径の測定値から接触角を求める方法(特開平8−5008)、体積一定の液滴を試料上に滴下し試料の鉛直上方よりカメラで液滴の射影直径を計測し、接触角を求める方法(特開平1‐126523)などがある。     Many conventional contact angle measuring devices capture a droplet cross-sectional image as an optical image from a lateral direction of a droplet on a solid surface, and directly measure the contact angle from the cross-sectional image. Recently, a method of calculating the contact angle of a droplet on the sample surface from this value and the value of the droplet volume after the droplet is imaged from above and the diameter of the droplet image is calculated by computer image analysis ( JP-A-5-232009) or a method of measuring the height of a droplet on a sample by a non-contact distance measuring means such as a laser microscope and obtaining a contact angle from a measured value of the droplet diameter by another method (JP-A-8-2008). 5008), a method of obtaining a contact angle by dropping a droplet having a constant volume on a sample and measuring the projected diameter of the droplet with a camera from above the sample (JP-A-1-126523).

また、近年、レイリータイプの表面弾性波を利用して、表面弾性波の励起によって液滴を励振させ、励起を停止後の液滴の自由振動の振動数と減衰率を測定することによって、液体の粘性、表面張力及び接触角を測定する研究報告もある。     In recent years, by using Rayleigh-type surface acoustic waves, the liquid is excited by exciting the surface acoustic waves, and the frequency and attenuation rate of the free vibration of the liquid droplet after the excitation is stopped are measured. There are also reports on the measurement of the viscosity, surface tension and contact angle.

更に、最近、本発明者らは液滴の被測定物上での自由振動数より、接触角を測定する方法を発明し、特許出願している(特開2009−36634)。この手法は従来法の液滴断面像より接触角を求める手法に比し、撥水性を示す接触角80°以上の測定値は非常に安定し、人為的誤差を含まず高精度で測定できる。また、接触面が真円でなくとも、また曲面、従来測定が不可能とされた凹面内の測定も可能である等、非常に優れた測定法である。     Furthermore, recently, the present inventors have invented a method for measuring the contact angle from the free frequency of the droplet on the object to be measured, and have applied for a patent (Japanese Patent Laid-Open No. 2009-36634). Compared with the conventional method of obtaining the contact angle from the liquid droplet cross-sectional image, this method is very stable in the measured value of the contact angle of 80 ° or more indicating water repellency, and can be measured with high accuracy without any human error. In addition, even if the contact surface is not a perfect circle, it is a very excellent measurement method, such as a curved surface, and measurement within a concave surface where conventional measurement is impossible.

特開平5−232009号公報JP-A-5-232009 特開平8−5008号公報JP-A-8-5008 特開平1‐126523号公報Japanese Patent Laid-Open No. 1-126523 特開2009−36634号公報JP 2009-36634 A

しかしながら、従来における前記した最初の3方法にあっては、いずれも、測定装置には撮像装置、被測定物位置調整装置、画像表示装置等が必要となり、一般的に高価なであり、被測定物のサイズ、測定位置等に制限がある。また、測定において固液界面の状態を正確に識別することは非常に難しい。特に親水性が強く(接触角が小さく)なるほど、被測定物上の液滴形状は必ずしも真球の一部ではなく、楕円球の一部等、歪んだ形状を呈するようになる。従来の測定法はいずれも液滴が真球の一部であると仮定することによって成り立つ測定法であるため、測定値の精度、信頼性は必ずしも満足できるものではないという不都合を有した。     However, in each of the first three methods described above, the measuring device requires an imaging device, a measured object position adjusting device, an image display device, etc., which are generally expensive and are subject to measurement. There are restrictions on the size of objects, measurement positions, etc. In addition, it is very difficult to accurately identify the state of the solid-liquid interface in the measurement. In particular, the stronger the hydrophilicity (the smaller the contact angle), the droplet shape on the object to be measured is not necessarily a part of a true sphere but a distorted shape such as a part of an elliptical sphere. All of the conventional measurement methods are measurement methods that are established by assuming that the droplet is a part of a true sphere, and thus have the disadvantage that the accuracy and reliability of the measurement values are not always satisfactory.

また、従来における前記レイリータイプの表面弾性波を利用する方法にあっては、表面弾性波を励起可能な圧電基板上における液体の物性を測定するものであり、個体としては表面弾性波を励起可能な固体に限られ、且つ、光学的構造から測定可能な形状、大きさ等に制限があり、装置は大掛かりとなり、簡便な手法ではないという不都合を有した。     Further, in the conventional method using the Rayleigh type surface acoustic wave, the physical property of the liquid on the piezoelectric substrate capable of exciting the surface acoustic wave is measured, and the surface acoustic wave can be excited as an individual. However, there is a limitation that the shape and size that can be measured from the optical structure is limited, and the apparatus becomes large and is not a simple method.

更に、従来における本出願人の前記方法にあっては、接触角が80°以下の親水領域においては、振動振幅が小さくなると共に接触角変化に対する自由振動数変化が微小になるため、測定が困難であるという不都合を有した。     Further, in the conventional method of the present applicant, in the hydrophilic region where the contact angle is 80 ° or less, the vibration amplitude becomes small and the change in the free frequency with respect to the change in the contact angle becomes minute, so that measurement is difficult. It had the inconvenience of being.

この発明の課題はこれらの不都合を解消することである。     An object of the present invention is to eliminate these disadvantages.

前記課題を解消するために、発明者等は鋭意研究した。そして、液滴と被測定物表面の付着形状と付着面積に着目し、液滴の固体界面に接する面積と接触角の関係を明らかにし、高い信頼性と非常に簡便な手段によって液滴と固体材料間の接触角を測定可能な固体表面の接触角測定方法及びその装置を案出したものである。     In order to solve the above problems, the inventors have conducted intensive research. Then, paying attention to the adhesion shape and adhesion area of the droplet and the surface of the object to be measured, the relationship between the area of the droplet contacting the solid interface and the contact angle is clarified. A solid surface contact angle measuring method and apparatus capable of measuring a contact angle between materials have been devised.

この発明(請求項1)に係る固体表面の接触角測定方法においては、被測定物表面上に体積一定の液滴を載せ、前記液滴の前記被測定物表面への接触面の接触面積を測定し、前記液滴の体積とこの接触面積から液滴の平均的接触角を算出するようにしたものである。     In the contact angle measurement method for a solid surface according to the present invention (invention 1), a droplet having a constant volume is placed on the surface of the object to be measured, and the contact area of the contact surface of the droplet with the surface of the object to be measured is determined. An average contact angle of the droplet is calculated from the volume of the droplet and the contact area.

この場合、前記接触面積を、その面積に等しい円の面積に換算することにより求めるようにすることができる(請求項2)。     In this case, the contact area can be obtained by converting the contact area into an area of a circle equal to the area (claim 2).

また、この場合、前記平均的接触角を、前記接触面の形状に内接する最大直径の円の面積に換算して求められた接触面積に基づく接触角と、前記接触面の形状に外接する最小直径の円の面積に換算して求められた接触面積に基づく接触角とに挟まれたものとして表すこともできる(請求項3)。     Further, in this case, the average contact angle is converted into the area of a circle with the maximum diameter inscribed in the shape of the contact surface, the contact angle based on the contact area determined and the minimum circumscribed in the shape of the contact surface. It can also be expressed as being sandwiched between contact angles based on the contact area determined by converting to the area of a circle of diameter.

更に、これらの場合、前記液滴を着色することもできる(請求項4)。     Further, in these cases, the droplets can be colored (claim 4).

また、この発明(請求項5)に係る固体表面の接触角測定装置においては、被測定物表面への液滴載置手段と、前記被測定物表面への前記液滴の接触面積測定手段と、前記液滴の体積とこの接触面積から液滴の平均的接触角を算出する接触角算出手段とを備えているものである。     Further, in the solid surface contact angle measuring device according to the present invention (invention 5), the droplet placing means on the surface of the object to be measured, and the contact area measuring means of the droplet on the surface of the object to be measured; And a contact angle calculating means for calculating an average contact angle of the droplet from the volume of the droplet and the contact area.

この場合、液滴の被測定物上での自由振動数により接触角を測定する接触角測定手段(特開2009−36634の発明)を備えるようにすることができる(請求項6)。     In this case, it is possible to provide contact angle measuring means (invention of Japanese Patent Application Laid-Open No. 2009-36634) for measuring the contact angle by the free frequency of the droplet on the object to be measured.

この発明(請求項1)に係る固体表面の接触角測定方法は上記のように構成されているため、即ち、被測定物表面上に体積一定の液滴を載せ、前記液滴の前記被測定物表面への接触面の接触面積を測定し、前記液滴の体積とこの接触面積から液滴の平均的接触角を算出するようにしたため、液滴形状がいかなる形状であっても、液滴の体積と前記接触面積を測定するのみで当該液滴の接触角を測定することができるものである。     Since the method for measuring the contact angle of the solid surface according to the present invention (invention 1) is configured as described above, that is, a droplet having a constant volume is placed on the surface of the object to be measured, and the measurement of the droplet is performed. The contact area of the contact surface with the object surface was measured, and the average contact angle of the droplet was calculated from the volume of the droplet and the contact area. The contact angle of the droplet can be measured only by measuring the volume and the contact area.

よって、この測定方法を使用すれば、垂直上方から被測定物表面上の液滴の付着形状(平面視状態)を記録しその接触面積を測定することにより、接触角が80°以下の親水性の強い領域でも接触角の測定を簡易且つ信頼性の高い方法で行うことができる。     Therefore, if this measurement method is used, the adhesion shape (planar state) of the droplet on the surface of the object to be measured is recorded from above and the contact area is measured, so that the hydrophilicity with a contact angle of 80 ° or less is obtained. Even in a strong region, the contact angle can be measured by a simple and reliable method.

この場合、請求項2に示すように、前記接触面積を、その面積に等しい円の面積に換算するようにすれば、接触面積の測定が容易になり、より一層、簡易に測定することができる。     In this case, as shown in claim 2, if the contact area is converted into an area of a circle equal to the area, the contact area can be easily measured, and can be measured more easily. .

また、請求項3に示すように、前記平均的接触角を、前記接触面の形状に内接する最大直径の円の面積に換算して求められた接触面積に基づく接触角と、前記接触面の形状に外接する最小直径の円の面積に換算して求められた接触面積に基づく接触角とに挟まれたものとして表すようにすれば、従来、測定が困難であった接触面形状が真円でないものの接触角を表す有効な手段を提供する効果を奏することができる。     According to a third aspect of the present invention, the average contact angle is converted into an area of a circle with the maximum diameter inscribed in the shape of the contact surface. If it is expressed as being sandwiched between the contact angle based on the contact area obtained by converting to the area of the circle with the smallest diameter circumscribing the shape, the contact surface shape, which was conventionally difficult to measure, is a perfect circle. The effect which provides the effective means which represents the contact angle of what is not can be show | played.

更に、これらの場合、請求項4に示すように、前記液滴を着色すれば、液滴の接触面積を測定する場合、デジタル顕微鏡の画像において被測定物と液滴とを明確に識別することができ、測定しやすいものである。     Further, in these cases, as shown in claim 4, when the droplet is colored, when the contact area of the droplet is measured, the object to be measured and the droplet are clearly identified in the image of the digital microscope. It is easy to measure.

また、この発明(請求項5)に係る固体表面の接触角測定装置は上記のように構成されているため、即ち、被測定物表面への液滴載置手段と、前記被測定物表面への前記液滴の接触面積測定手段と、前記液滴の体積とこの接触面積から液滴の平均的接触角を算出する接触角算出手段とを備えているため、上記接触角測定方法を簡易に実施することができる。     In addition, since the solid surface contact angle measuring device according to the present invention (invention 5) is configured as described above, that is, the droplet placing means on the surface of the object to be measured and the surface of the object to be measured. The droplet contact area measuring means and the contact angle calculating means for calculating an average contact angle of the droplet from the volume of the droplet and the contact area are provided. Can be implemented.

この場合、請求項6に示すように、液滴の被測定物上での自由振動数により接触角を測定する接触角測定手段を備えるようにすれば、一の装置で、上記方法(請求項1〜4)では測定しにくい90°以上の接触角の測定も可能となり、その使用価値は拡大する。     In this case, as shown in claim 6, if a contact angle measuring means for measuring the contact angle by the free frequency of the droplet on the object to be measured is provided, the above method (claim) is provided. In 1 to 4), it is possible to measure a contact angle of 90 ° or more, which is difficult to measure, and the use value is expanded.

更に、図7及び図8に基づいて本発明の効果を詳述する。     Further, the effects of the present invention will be described in detail with reference to FIGS.

これらの図は、いずれも被測定物表面に垂直上方より観測した固体表面の液滴付着形状の一例を示したもので、図7は液量が約6μlの水滴を用いたプラスチック表面の観測画像であり、接触角が90°近傍にある。一見すると接触面は真円のように見えるが、形状測定をすると真円ではないことが分かる。また、図8は液量が約6μlの水滴を用いた圧延、研磨加工された金属材料表面の観測画像であり、接触角は60度前後と観測された。     Each of these figures shows an example of a droplet adhesion shape on the solid surface observed from above the surface of the object to be measured. FIG. 7 shows an observation image of the plastic surface using water droplets having a liquid volume of about 6 μl. And the contact angle is in the vicinity of 90 °. At first glance, the contact surface looks like a perfect circle, but it can be seen that the shape measurement is not a perfect circle. FIG. 8 is an observation image of the surface of a metal material that has been rolled and polished using a water droplet having a liquid volume of about 6 μl. The contact angle was observed to be around 60 degrees.

この様に固体表面における液滴の形状は必ずしも真球の一部ではなく、固体表面状態に大きく依存し、接触角が小さくなるに従い、楕円球状、瓜状を呈することが多くなる。従って、従来の液滴を横方向から観測して接触角を測定する方法(特開平5−0232009)にはこの様な形状を呈するものの接触角測定には多くの誤差が含まれることになる。また、一定体積の液滴を固体表面に垂直上方より観測したときの液滴像の直径の値とから計算により接触角を求める方法(特開平5-232009)においても同様に、液滴を真球の一部として扱うため、真球からずれた液滴の接触角には誤差が大きく含まれる、あるいは測定不能となる。     As described above, the shape of the droplet on the solid surface is not necessarily a part of a true sphere, but greatly depends on the state of the solid surface. Therefore, although the conventional method (JP-A-5-0232009) for measuring a contact angle by observing a droplet from the lateral direction exhibits such a shape, the contact angle measurement includes many errors. Similarly, in the method of obtaining the contact angle by calculation from the value of the diameter of the droplet image when a droplet of a certain volume is observed from vertically above the solid surface (JP-A-5-232009), Since it is handled as a part of the sphere, the contact angle of the liquid droplet deviated from the true sphere includes a large error or cannot be measured.

この様に従来の測定方法では被測定面上において液滴が真球の一部と見なせなくなったとき、測定が困難になるが、本発明においてはこの様な液滴形状が真球からずれたとしても、この液滴の接触形状を記録し、この接触形状の接触面積から平均円を仮定することにより平均的接触角を表すこと、或は請求項3記載の方法を用い、撮影された液滴の付着形状を表す実画像に内接円と外接円の面積より算出される2つの接触角で挟む形で、接触角を表わせば、これまで測定・表現が不可能と思われた領域における被測定物の所要液に対する表面性状を評価することが可能になる。     As described above, in the conventional measurement method, when the droplet cannot be regarded as a part of the true sphere on the surface to be measured, the measurement becomes difficult. However, in the present invention, such a droplet shape deviates from the true sphere. In this case, the contact shape of the droplet is recorded, and the average contact angle is expressed by assuming an average circle from the contact area of the contact shape, or photographed using the method according to claim 3. Regions that would have been impossible to measure or represent in the past if the contact angle was expressed by sandwiching it between two contact angles calculated from the area of the inscribed circle and circumscribed circle in the actual image representing the adhesion shape of the droplet It is possible to evaluate the surface properties of the object to be measured with respect to the required liquid.

この発明に係る固体表面の接触角測定方法及びその装置は実施するにあたって下記の構成に最も主要な特徴を有する。     The solid surface contact angle measuring method and apparatus according to the present invention have the following main features when implemented.

被測定物表面上に体積一定の液滴を載せる場合、マイクロシリンジ、マイクロピペット、あるいは液滴落下装置によって行う(液滴載置手段)。この場合、液滴の体積は約1〜7μl、着色する場合は被測定物表面色の補色が適しているが、被測定表面と液滴とのコントラストが得られるものであればよい。     When a fixed volume droplet is placed on the surface of the object to be measured, it is performed by a micro syringe, a micro pipette, or a droplet dropping device (droplet placing means). In this case, the volume of the droplet is about 1 to 7 μl, and when it is colored, a complementary color of the surface color of the object to be measured is suitable, but it is sufficient if the contrast between the surface to be measured and the droplet can be obtained.

前記液滴の前記被測定物表面への接触面の接触面積を測定する場合は、垂直上方からデジタル顕微鏡を用いて被測定物表面上の液滴の付着形状(平面視状態)を観測・記録し、その平面図から接触面積を測定する(接触面積測定手段)。この接触面積の測定はパソコン上で行われるが、具体的には、デジタル顕微鏡の倍率を一定にして、この全視野面積の占める画素数に対する液滴接触面積の占める画素数の比から算出するように行う。なお、この接触面積の値をその面積に等しい円の面積に換算することもできる。     When measuring the contact area of the contact surface of the liquid droplet to the surface of the object to be measured, observe and record the adhesion shape (planar view state) of the liquid droplet on the surface of the object to be measured from above using a digital microscope. Then, the contact area is measured from the plan view (contact area measuring means). The contact area is measured on a personal computer. Specifically, it is calculated from the ratio of the number of pixels occupied by the droplet contact area to the number of pixels occupied by the entire visual field area with a constant magnification of the digital microscope. To do. In addition, the value of this contact area can also be converted into the area of a circle equal to the area.

前記液滴の平均的接触角を測定する場合は、前記液滴の体積とこの接触面積からパソコン上で算出する(接触角算出手段)。     When measuring the average contact angle of the droplet, it is calculated on a personal computer from the volume of the droplet and the contact area (contact angle calculation means).

接触角算出手段によって、前記液滴の体積とこの接触面積から液滴の平均的接触角を算出する理論の根拠を説明する。     The basis of the theory for calculating the average contact angle of the droplet from the volume of the droplet and the contact area by the contact angle calculation means will be described.

この発明の発明者は、液滴の体積が既知であるならば、固体表面に接する液滴の接触角は液滴形状を球の一部と仮定し、固体との接触表面積算出できることを明らかにした。また、特に接触角が小さい領域では液滴が真球の一部とならないことが容易に予想されるが、この様な時、液滴の接触状態が明らかになれば、液滴とこれに接する物体間の接触角に対する有用なデータ、接触形状に基づく平均的接触角を供することができることを発見した。     The inventor of the present invention clearly understands that if the volume of the droplet is known, the contact angle of the droplet contacting the solid surface can calculate the contact surface area with the solid assuming that the droplet shape is part of a sphere. did. In addition, it is easily predicted that the droplet does not become a part of the true sphere, particularly in a region where the contact angle is small, but in such a case, if the contact state of the droplet becomes clear, the droplet contacts the droplet. We have found that useful data for contact angles between objects, average contact angles based on contact shapes can be provided.

そして、固体表面の液滴付着面積と平均的接触角の関係については、図3に示すように付着液滴の接触角が90°以下(θ<90°)の真球面の一部であると仮定すれば、液滴体積と液滴の固体表面付着面積より、この条件における接触角Θが次の式によって与えられる。 As for the relationship between the droplet adhesion area on the solid surface and the average contact angle, as shown in FIG. 3, the contact angle of the adhered droplet is a part of a true sphere with 90 ° or less (θ <90 °). Assuming that the contact angle Θ in this condition is given by the following equation from the droplet volume and the solid surface adhesion area of the droplet.

Figure 2012208075
Figure 2012208075

ここにSは液滴の固体表面付着面積、Vは液滴体積、θは接触角である。図4は式(1)を基にして、固体表面の液滴付着面積の3乗をその体積の2乗で基準化した値と平均的接触角の関係を表したものである。この図より接触角が小さくなるに従い指数関数的に接触面積が増大すること、すなわちθが小さいほど高感度な測定が可能である。尚、図3におけるρは液滴の接触面半径、hは液滴の高さ、θは接触角、rは液滴を真球と仮定したときの半径である。     Here, S is the solid surface adhesion area of the droplet, V is the droplet volume, and θ is the contact angle. FIG. 4 shows the relationship between the average contact angle and the value obtained by standardizing the cube of the droplet adhesion area on the solid surface by the square of the volume based on the formula (1). From this figure, as the contact angle becomes smaller, the contact area increases exponentially, that is, the smaller the θ is, the more sensitive measurement is possible. In FIG. 3, ρ is the contact surface radius of the droplet, h is the height of the droplet, θ is the contact angle, and r is the radius when the droplet is assumed to be a true sphere.

なお、この測定装置に、液滴の被測定物上での自由振動数により接触角を測定する接触角測定手段を備え、一の装置(パソコン共用)で、上記方法(請求項1〜5)では測定しにくい90°以上の接触角の測定も可能となる。     In addition, this measuring apparatus is provided with contact angle measuring means for measuring the contact angle by the free frequency of the droplet on the object to be measured, and the above method (Claims 1 to 5) can be performed with one apparatus (shared with a personal computer). Then, it is possible to measure a contact angle of 90 ° or more, which is difficult to measure.

以下、この発明の実施例を図面に基づいて説明する。     Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明に係る固体表面の接触角測定装置の実施例の模式図、図2は同他の実施例の模式図、図3は接触角θ<90°の場合の固体表面上の液滴を示す模式図、図4は固体表面の液滴付着面積をその体積で基準化した値と平均的接触角の関係を示すグラフ、図5は液滴の実画像よりこの平均的接触角を算出する方法を示す模式図、図6は液滴の実画像よりこの液滴の接触角の存在範囲を求める方法を示す模式図、図7は固体表面上の液滴付着形状画像の1例を示した写真、図8は同他の1例を示した写真である。     1 is a schematic diagram of an embodiment of a solid surface contact angle measuring apparatus according to the present invention, FIG. 2 is a schematic diagram of another embodiment, and FIG. 3 is a liquid on a solid surface when the contact angle θ <90 °. FIG. 4 is a schematic diagram showing a droplet, FIG. 4 is a graph showing the relationship between a value obtained by standardizing a droplet adhesion area on a solid surface by its volume, and an average contact angle, and FIG. 5 shows this average contact angle from an actual image of a droplet. FIG. 6 is a schematic diagram showing a method for calculating, FIG. 6 is a schematic diagram showing a method for determining the existence range of the contact angle of the droplet from the actual image of the droplet, and FIG. 7 is an example of the droplet adhesion shape image on the solid surface. FIG. 8 is a photograph showing another example.

以下、実施例等を示し、さらに詳しくこの発明の実施の形態について説明する。図1は請求項1から請求項5の発明の実施例であり、4は被測定物(例えば金属表面)、3はその表面上に滴下された一定量(約1〜7μl)の液滴である。被測定物1と液滴3を明確に識別するが困難な場合、この液滴3は被測定物面の補色、あるいは被測定物表面とコントラストの強くなる色によって着色され、マイクロシリンジ、マイクロピペット、あるいは液滴落下装置によって滴下される。1はデジタル顕微鏡(接触面積測定手段)であり、前記被測定物4の上方に配置されている。このデジタル顕微鏡1によって前記液滴3を垂直上方から所要の倍率(例えば50倍)で捉え、この画像をUSB接続5によってパーソナルコンピュータ(PC)(接触面積測定手段)2の画面上に表示・記録する。記録された液滴3の被測定物4表面の付着形状画像は予めPC(接触角算出手段)2に書き込まれたソフトによって、その面積が算出され、接触角θは図4に示す固体表面への液滴接触面積をその体積で基準化した値(縦軸)と平均的接触角(横軸)の関係より求める。なお、前記液滴3を着色する着色料は、デジタル顕微鏡2の画像において、被測定物1と液滴3を明確に識別するために供されるものであり、液滴3の物性値、特に表面張力値に影響を与えないものとする。
具体例(図8を参照のこと)を説明する。無着色、6μlの水滴3を液滴下装置によって表面処理されたプラスチック4の表面に滴下した。この液滴3をデジタル顕微鏡1によって垂直上方から所要の倍率(約50倍)で捉え、この画像をUSB接続5によってパーソナルコンピュータ(PC)(接触面積測定手段)2の画面上に表示・記録し、PC(接触角算出手段)2によって、全視野面積の占める画素数に対する液滴接触面積の占める画素数の比からその面積が6.9ミリmmであると算出された。この面積にもと付いて図4のグラフより、接触角は85°であると測定された。
Examples and the like will be described below, and the embodiments of the present invention will be described in more detail. FIG. 1 shows an embodiment of the invention of claims 1 to 5, wherein 4 is an object to be measured (for example, a metal surface), and 3 is a fixed amount (about 1 to 7 μl) of droplets dropped on the surface. is there. When it is difficult to clearly distinguish the object 1 and the droplet 3 from each other, the droplet 3 is colored by a complementary color of the surface of the object to be measured or by a color having a strong contrast with the surface of the object to be measured. Alternatively, it is dropped by a droplet dropping device. Reference numeral 1 denotes a digital microscope (contact area measuring means), which is arranged above the object to be measured 4. The digital microscope 1 captures the droplet 3 at a required magnification (for example, 50 times) from vertically above, and displays and records this image on the screen of a personal computer (PC) (contact area measuring means) 2 through the USB connection 5. To do. The area of the adhesion shape image of the recorded droplet 3 on the surface of the object 4 to be measured is calculated by software written in advance on a PC (contact angle calculation means) 2, and the contact angle θ is applied to the solid surface shown in FIG. The droplet contact area is obtained from the relationship between the value (vertical axis) normalized by the volume and the average contact angle (horizontal axis). The colorant for coloring the droplet 3 is provided for clearly identifying the object to be measured 1 and the droplet 3 in the image of the digital microscope 2. It shall not affect the surface tension value.
A specific example (see FIG. 8) will be described. Uncolored, 6 μl of water droplets 3 were dropped on the surface of the plastic 4 which had been surface-treated by the dropping device. The droplet 3 is captured at a required magnification (approximately 50 times) from above by the digital microscope 1, and this image is displayed and recorded on the screen of a personal computer (PC) (contact area measuring means) 2 by the USB connection 5. PC (contact angle calculation means) 2 calculated that the area was 6.9 mm 2 from the ratio of the number of pixels occupied by the droplet contact area to the number of pixels occupied by the entire visual field area. Based on this area, the contact angle was measured to be 85 ° from the graph of FIG.

求められた平均的接触角はPC2画面上に付着形状画像と共に表示することで、固体表面の当該液滴に対する付着情況とその平均的接触角を示すことができる。     The obtained average contact angle is displayed on the PC2 screen together with the adhesion shape image, so that the adhesion situation of the solid surface to the droplet and the average contact angle can be shown.

前記デジタル顕微鏡1は必要な画像をスナップ撮影する機能、連続的に撮影するビデオ機能、一定の時間間隔で撮影するインターバル機能を備えており、その目的に応じてこの機能を使い分ける。例えば液体が被測定材料4に時間と共に吸収される場合にはビデオ機能、或はインターバル機能を使うことにより、液滴3の時系列変化を観測・測定することが出来るものである。     The digital microscope 1 has a function of taking a snapshot of necessary images, a video function of continuously shooting, and an interval function of shooting at a constant time interval, and this function is properly used according to the purpose. For example, when the liquid is absorbed by the material 4 to be measured over time, the time series change of the droplet 3 can be observed and measured by using the video function or the interval function.

図5は請求項2の発明を説明するための図である。8はデジタル顕微鏡1によって撮影された液滴3の付着形状を表す実画像、9はこれと面積の等しい円を表している。請求項1の発明において、図5に示すように、液滴3の平均的接触角を算出する方法が、液滴3の体積とデジタル顕微鏡1で撮影された個体表面に接触する液滴3の画像から、その面積に等しい円の面積に換算して求めた平均的接触角を液滴3の画像と共にPC2画面上に表示するようにしたものである。従来法では観測方向によって接触角が異なる値を呈していたが、本方法ではその平均的な接触角を表すようにしたものである。
なお、前記具体例の場合には、半径1.48mmの円に換算される。
FIG. 5 is a view for explaining the invention of claim 2. 8 is a real image representing the adhesion shape of the droplet 3 photographed by the digital microscope 1, and 9 is a circle having the same area. In the invention of claim 1, as shown in FIG. 5, the method for calculating the average contact angle of the droplet 3 is the method of calculating the volume of the droplet 3 and the droplet 3 in contact with the individual surface photographed by the digital microscope 1. The average contact angle obtained by converting the image into an area of a circle equal to the area is displayed on the PC 2 screen together with the image of the droplet 3. In the conventional method, the contact angle varies depending on the observation direction, but in this method, the average contact angle is expressed.
In the case of the specific example, it is converted into a circle with a radius of 1.48 mm.

図6は請求項3の発明の実施例である。8はデジタル顕微鏡1によって撮影された液滴3の付着形状を表す実画像、10はこの実画像に内接する最大の内接円、11は実画像に外接する最小の外接円を表している。請求項1の発明において、接触角の表し方が、図6に示すように、撮影された液滴3の付着形状を表す実画像に内接円10と外接円11の面積より算出される2つの接触角で挟む形で、接触角を算出し、表すようにしたものである。
なお、前記具体例の場合には、内接円(半径1.47mm)の面積の接触角
85.9°と外接円(半径1.49mm)の面積の接触角84.7°とによって挟まれた状態(84.7°≦θ≦85.9°)として表される。
FIG. 6 shows an embodiment of the third aspect of the present invention. 8 is an actual image representing the adhesion shape of the droplet 3 photographed by the digital microscope 1, 10 is a maximum inscribed circle inscribed in the actual image, and 11 is a minimum inscribed circle circumscribed in the actual image. In the first aspect of the invention, the way of expressing the contact angle is calculated from the area of the inscribed circle 10 and the circumscribed circle 11 in the real image representing the adhesion shape of the photographed droplet 3 as shown in FIG. The contact angle is calculated and expressed in a form sandwiched between two contact angles.
In the case of the above specific example, the contact angle of the area of the inscribed circle (radius 1.47 mm)
It is expressed as a state (84.7 ° ≦ θ ≦ 85.9 °) sandwiched between 85.9 ° and a contact angle of 84.7 ° in the area of a circumscribed circle (radius 1.49 mm).

図2は請求項6の発明の実施例である。1はデジタル顕微鏡、2はPC,3は液滴、4は被測定物、5はデジタル顕微鏡のUSB接続、6は液滴振動式接触角測定装置検出部、7は液滴振動式接触角測定装置検出部出力信号伝達媒体を表している。請求項5の発明において、これら発明と液滴振動式の接触角測定装置を組み合わせることで、請求項1〜5の発明の弱点である接触角が90°以上の接触角測定は液滴振動式の接触角測定装置(特開2009−36634の発明)を用い、本請求項5の発明は接触角90°以下の測定に限定することで、測定領域を拡大すると共にPC2を共用することで、簡素な構成の接触角測定装置にしたものである。     FIG. 2 shows an embodiment of the invention of claim 6. 1 is a digital microscope, 2 is a PC, 3 is a droplet, 4 is an object to be measured, 5 is a USB connection of the digital microscope, 6 is a droplet vibration contact angle measuring device detector, and 7 is a droplet vibration contact angle measurement The apparatus detection part output signal transmission medium is represented. In the invention of claim 5, by combining these inventions with a droplet vibration type contact angle measuring device, the contact angle measurement which is a weak point of the inventions of claims 1 to 5 is a droplet vibration type. By using the contact angle measuring device (invention of JP 2009-36634 A), the invention of claim 5 is limited to the measurement with a contact angle of 90 ° or less, thereby expanding the measurement area and sharing the PC 2. The contact angle measuring device has a simple configuration.

この発明に係る固体表面の接触角測定方法及びその装置は、液滴形状がいかなる形状であっても、液滴の体積と前記接触面積を測定するのみで当該液滴の接触角を測定することができため、接触角が80°以下の親水性の強い領域でも接触角の測定を簡易且つ信頼性の高い方法で行うことができる。よって、固体表面の性状を接触角で評価する場合等、産業上の利用可能性は高いものである。
The solid surface contact angle measuring method and apparatus according to the present invention measure the contact angle of a liquid droplet only by measuring the volume of the liquid droplet and the contact area, regardless of the shape of the liquid droplet. Therefore, even in a highly hydrophilic region having a contact angle of 80 ° or less, the contact angle can be measured by a simple and reliable method. Therefore, industrial applicability is high, for example, when the property of the solid surface is evaluated by the contact angle.

図1は本発明に係る固体表面の接触角測定装置の実施例の模式図であるFIG. 1 is a schematic view of an embodiment of a solid surface contact angle measuring apparatus according to the present invention. 図2は同他の実施例の模式図である。FIG. 2 is a schematic diagram of another embodiment. 図3は接触角θ<90°の場合の固体表面上の液滴を示す模式図である。FIG. 3 is a schematic diagram showing droplets on the solid surface when the contact angle θ <90 °. 図4は固体表面の液滴付着面積をその体積で基準化した値と平均的接触角の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the average contact angle and the value obtained by standardizing the droplet adhesion area on the solid surface by its volume. 図5は液滴の実画像よりこの平均的接触角を算出する方法を示す模式図である。FIG. 5 is a schematic diagram showing a method for calculating the average contact angle from the actual image of the droplet. 図6は液滴の実画像よりこの液滴の接触角の存在範囲を求める方法を示す模式図である。FIG. 6 is a schematic diagram showing a method for determining the existence range of the contact angle of the droplet from the actual image of the droplet. 図7は固体表面上の液滴付着形状画像の1例を示した写真である。FIG. 7 is a photograph showing an example of a droplet adhesion shape image on a solid surface. 図8は固体表面上の液滴付着形状画像の他の1例を示した写真である。FIG. 8 is a photograph showing another example of the droplet adhesion shape image on the solid surface.

1 … デジタル顕微鏡(接触面積測定手段)
2 … パーソナルコンピュータ(接触面積測定手段)(接触角算出手段)
3 … 液滴
4 … 被測定物
5 … USB接続
6 … 液滴振動式接触角測定装置検出部
7 … 液滴振動式接触角測定装置検出部出力信号伝達媒体
8 … 液滴付着画像の模式図
9 … 液滴の付着面積に等しい円
10 … 液滴付着画像の内接円
11 … 液滴付着画像の外接円
1 ... Digital microscope (contact area measuring means)
2 ... Personal computer (contact area measuring means) (contact angle calculating means)
DESCRIPTION OF SYMBOLS 3 ... Droplet 4 ... To-be-measured object 5 ... USB connection 6 ... Droplet vibration type contact angle measuring device detection part 7 ... Droplet vibration type contact angle measuring device detection part Output signal transmission medium 8 ... Schematic diagram of a droplet adhesion image 9 ... Circle equal to the adhesion area of the droplet 10 ... Inscribed circle of the droplet adhesion image 11 ... circumscribed circle of the droplet adhesion image

Claims (6)

被測定物表面上に体積一定の液滴を載せ、前記液滴の前記被測定物表面への接触面の接触面積を測定し、前記液滴の体積とこの接触面積から液滴の平均的接触角を算出することを特徴とする固体表面の接触角測定方法。 A droplet having a constant volume is placed on the surface of the object to be measured, and the contact area of the contact surface of the droplet with the surface of the object to be measured is measured. A method for measuring a contact angle of a solid surface, wherein the angle is calculated. 前記接触面積を、その面積に等しい円の面積に換算することにより求めることを特徴とする請求項1の固体表面の接触角測定方法。 2. The method for measuring a contact angle of a solid surface according to claim 1, wherein the contact area is obtained by converting into an area of a circle equal to the area. 前記平均的接触角を、前記接触面の形状に内接する最大直径の円の面積に換算して求められた接触面積に基づく接触角と、前記接触面の形状に外接する最小直径の円の面積に換算して求められた接触面積に基づく接触角とに挟まれたものとして表すことを特徴とする請求項1の固体表面の接触角測定方法。 The contact angle based on the contact area obtained by converting the average contact angle into the area of a circle with the maximum diameter inscribed in the shape of the contact surface, and the area of the circle with the minimum diameter circumscribed in the shape of the contact surface The contact angle measurement method for a solid surface according to claim 1, wherein the contact angle is expressed as being sandwiched between contact angles based on contact areas obtained by conversion into 前記液滴を着色したことを特徴とする請求項1、請求項2又は請求項3の固体表面の接触角測定方法。 4. The method for measuring a contact angle of a solid surface according to claim 1, wherein the droplet is colored. 被測定物表面への液滴載置手段と、前記被測定物表面への前記液滴の接触面積測定手段と、前記液滴の体積とこの接触面積から液滴の平均的接触角を算出する接触角算出手段とを備えた固体表面の接触角測定装置。 Means for placing the droplet on the surface of the object to be measured, means for measuring the contact area of the droplet to the surface of the object to be measured, and the volume and the contact area of the droplet, and calculating the average contact angle of the droplet A solid surface contact angle measuring device comprising a contact angle calculating means. 液滴の被測定物上での自由振動数により接触角を測定する接触角測定手段を備えたことを特徴とする請求項5の固体表面の接触角測定装置。








6. The apparatus for measuring a contact angle of a solid surface according to claim 5, further comprising contact angle measuring means for measuring a contact angle based on a free frequency of the droplet on the object to be measured.








JP2011075461A 2011-03-30 2011-03-30 Method and apparatus for measuring contact angle of solid surface Active JP5891482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011075461A JP5891482B2 (en) 2011-03-30 2011-03-30 Method and apparatus for measuring contact angle of solid surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011075461A JP5891482B2 (en) 2011-03-30 2011-03-30 Method and apparatus for measuring contact angle of solid surface

Publications (2)

Publication Number Publication Date
JP2012208075A true JP2012208075A (en) 2012-10-25
JP5891482B2 JP5891482B2 (en) 2016-03-23

Family

ID=47187933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011075461A Active JP5891482B2 (en) 2011-03-30 2011-03-30 Method and apparatus for measuring contact angle of solid surface

Country Status (1)

Country Link
JP (1) JP5891482B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148603A (en) * 2014-01-16 2015-08-20 ザ・ボーイング・カンパニーTheBoeing Company Methods and apparatus to determine integrity of composite structures
CN106501134A (en) * 2016-12-27 2017-03-15 吴志远 The accurate measurement method of low-angle contact angle
JP7274808B1 (en) 2023-01-31 2023-05-17 国立大学法人 名古屋工業大学 CONTACT ANGLE DETERMINATION METHOD, CONTACT ANGLE DETERMINATION SYSTEM AND PROGRAM

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773093B (en) * 2021-01-19 2022-08-01 京元電子股份有限公司 Titration module, test apparatus and method for measuring titration contact angle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232009A (en) * 1992-02-18 1993-09-07 Nagoyashi Method and device for measuring contact angle by computer image analysis system
JP2000097835A (en) * 1998-09-25 2000-04-07 Seiko Epson Corp Wettability determination method of substrate and manufacture of test applicator and liquid crystal device used in determination method
JP2003254810A (en) * 2002-03-06 2003-09-10 Canon Inc Method and apparatus for measuring droplet amount
JP2004281010A (en) * 2003-03-18 2004-10-07 Tdk Corp Method of evaluating optical information medium
JP2005077170A (en) * 2003-08-29 2005-03-24 Seiko Epson Corp Microarray manufacture device, and method of manufacturing microarray
JP2005083754A (en) * 2003-09-04 2005-03-31 Seiko Epson Corp Wettability measuring instrument and wettability measuring method
JP2009036634A (en) * 2007-08-01 2009-02-19 Saw & Spr-Tech Kk Contact angle measuring device
JP2010531720A (en) * 2007-05-23 2010-09-30 インテグリス・インコーポレーテッド Articles containing wettable structured surfaces
JP4646009B1 (en) * 2009-09-17 2011-03-09 株式会社ニック Wetability evaluation device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232009A (en) * 1992-02-18 1993-09-07 Nagoyashi Method and device for measuring contact angle by computer image analysis system
JP2000097835A (en) * 1998-09-25 2000-04-07 Seiko Epson Corp Wettability determination method of substrate and manufacture of test applicator and liquid crystal device used in determination method
JP2003254810A (en) * 2002-03-06 2003-09-10 Canon Inc Method and apparatus for measuring droplet amount
JP2004281010A (en) * 2003-03-18 2004-10-07 Tdk Corp Method of evaluating optical information medium
JP2005077170A (en) * 2003-08-29 2005-03-24 Seiko Epson Corp Microarray manufacture device, and method of manufacturing microarray
JP2005083754A (en) * 2003-09-04 2005-03-31 Seiko Epson Corp Wettability measuring instrument and wettability measuring method
JP2010531720A (en) * 2007-05-23 2010-09-30 インテグリス・インコーポレーテッド Articles containing wettable structured surfaces
JP2009036634A (en) * 2007-08-01 2009-02-19 Saw & Spr-Tech Kk Contact angle measuring device
JP4646009B1 (en) * 2009-09-17 2011-03-09 株式会社ニック Wetability evaluation device
JP2011064586A (en) * 2009-09-17 2011-03-31 Nick Corp Wettability evaluation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148603A (en) * 2014-01-16 2015-08-20 ザ・ボーイング・カンパニーTheBoeing Company Methods and apparatus to determine integrity of composite structures
CN106501134A (en) * 2016-12-27 2017-03-15 吴志远 The accurate measurement method of low-angle contact angle
JP7274808B1 (en) 2023-01-31 2023-05-17 国立大学法人 名古屋工業大学 CONTACT ANGLE DETERMINATION METHOD, CONTACT ANGLE DETERMINATION SYSTEM AND PROGRAM

Also Published As

Publication number Publication date
JP5891482B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
Luo et al. Robust vision sensor for multi-point displacement monitoring of bridges in the field
Heib et al. Statistical contact angle analyses with the high-precision drop shape analysis (HPDSA) approach: Basic principles and applications
JP5891482B2 (en) Method and apparatus for measuring contact angle of solid surface
Ovcharenko et al. A novel test rig for in situ and real time optical measurement of the contact area evolution during pre-sliding of a spherical contact
EP3347694B1 (en) Cuvette assembly for optical microscopy of nanoparticles in liquids
Samaha et al. Effects of hydrostatic pressure on the drag reduction of submerged aerogel-particle coatings
WO2017179535A1 (en) Structure condition assessing device, condition assessing system, and condition assessing method
Ehrhart et al. Image-based dynamic deformation monitoring of civil engineering structures from long ranges
JP4317743B2 (en) Mechanical property measurement method based on in-situ determination of optical indenter contact surface and its test equipment
CN109870450A (en) A kind of coating mechanical behavior online test method, equipment and system
CN101782419A (en) Liquid level measuring method and device based on isosceles right triangular prism
Cao et al. Non-contact damage detection under operational conditions with multipoint laservibrometry
Dafico et al. Comparison of Infrared Thermography and Other Traditional Techniques to Assess Moisture Content of Wall Specimens
Shang et al. Multi-point vibration measurement for mode identification of bridge structures using video-based motion magnification
CN102252997B (en) Method for measuring refractive index of microsphere or medium and application thereof
Yang et al. Image analyses for video-based remote structure vibration monitoring system
JP6217941B2 (en) Contact angle meter
Eriksson et al. Two measurement modes for mobile phone optical sensing
RU2556310C2 (en) Device for remote measurement of geometric parameters of profiled objects
Tzu et al. Detection of electrical circuit in a thin-film-transistor Liquid-Crystal display using a Hybrid OPTOELECTRONIC Apparatus: An ARRAY tester and Automatic optical inspection
JP5018194B2 (en) Observation device
Singh et al. Deformation of Display for Handheld Devices During Drop Impact
McCarthy et al. 3D case studies of monitoring dynamic structural tests using long exposure imagery
TWI491866B (en) Apparatus for measuring viscosity of sample and method thereof
US20170370825A1 (en) Special purpose cuvette assembly and method for optical microscopy of nanoparticles in liquids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150828

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20150928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160105

R150 Certificate of patent or registration of utility model

Ref document number: 5891482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250