JP2012207354A - Manufacturing method and manufacturing apparatus for solid particle supporting fiber and sheet of solid particle supporting fiber - Google Patents

Manufacturing method and manufacturing apparatus for solid particle supporting fiber and sheet of solid particle supporting fiber Download PDF

Info

Publication number
JP2012207354A
JP2012207354A JP2011075945A JP2011075945A JP2012207354A JP 2012207354 A JP2012207354 A JP 2012207354A JP 2011075945 A JP2011075945 A JP 2011075945A JP 2011075945 A JP2011075945 A JP 2011075945A JP 2012207354 A JP2012207354 A JP 2012207354A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
solid particle
fiber sheet
solid particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011075945A
Other languages
Japanese (ja)
Inventor
Tatsuya Kawasaki
達也 川崎
Koichi Kato
宏一 加藤
Yasuko Matsubayashi
康子 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2011075945A priority Critical patent/JP2012207354A/en
Publication of JP2012207354A publication Critical patent/JP2012207354A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing a solid particle supporting fiber and a sheet of the solid particle supporting fiber, that can strongly support a solid particle in the fiber or a surface of the fiber sheet, along with keeping effectively the surface property of the solid particle.SOLUTION: A fiber or a fiber sheet with a solid particle attached on its surface through a thermoplastic resin is heated while the fiber or the fiber sheet is placed under a higher temperature condition than the melting point of the thermoplastic resin. The method and the apparatus for manufacturing the solid particle supporting fiber and the sheet of the solid particle supporting fiber provide effects of preventing that the melted thermoplastic resin flows to unintentionally cover the surface of the solid surface, and of strongly supporting the solid particle along with effectively keeping the surface property of the solid particle on the fiber or the surface of the fiber sheet.

Description

本発明は、固体粒子担持繊維及び固体粒子担持繊維シートの製造方法及びそれらの製造装置に関する。
The present invention relates to a solid particle-supporting fiber, a method for manufacturing a solid particle-supporting fiber sheet, and a manufacturing apparatus thereof.

固体粒子担持繊維及び固体粒子担持繊維シートの製造方法及びそれらの製造装置として、例えば、特開2004-3070号公報(特許文献1)に開示されている技術が知られている。   As a method for producing solid particle-carrying fibers and solid particle-carrying fiber sheets and a production apparatus therefor, for example, a technique disclosed in JP 2004-3070 A (Patent Document 1) is known.

特許文献1に係る発明は、表面が主として熱可塑性樹脂からなる繊維表面に、熱可塑性樹脂の融点以上の高い温度に加熱された固体粒子を接触させることで、溶融した熱可塑性樹脂により固体粒子が覆われてしまうことを少なくして、繊維又は繊維シート表面に、固体粒子の表面特性を有効に保持したまま、均一に担持できることを開示している。   The invention according to Patent Document 1 is such that solid particles heated by a molten thermoplastic resin are brought into contact with a fiber surface whose surface is mainly made of a thermoplastic resin and heated to a temperature higher than the melting point of the thermoplastic resin. It is disclosed that it can be uniformly supported on the surface of the fiber or fiber sheet while keeping the surface characteristics of the solid particles effectively while reducing the covering.

しかしながら、このような方法によって製造される固体粒子担持繊維又は固体粒子担持繊維シート表面から、固体粒子が剥落し易いという問題があった。   However, there is a problem that the solid particles easily peel off from the surface of the solid particle-supporting fiber or the solid particle-supporting fiber sheet manufactured by such a method.

そのため、繊維又は繊維シート表面に固体粒子の表面特性を有効に保持したまま、固体粒子を強固に担持できる、固体粒子担持繊維及び固体粒子担持繊維シートの製造方法及びそれらの製造装置が求められている。
Therefore, there is a need for a solid particle-carrying fiber, a method for producing a solid particle-carrying fiber sheet, and a production apparatus for the solid particle-carrying fiber sheet that can firmly carry solid particles while effectively maintaining the surface characteristics of the solid particles on the fiber or fiber sheet surface. Yes.

別の、固体粒子担持繊維シートの製造方法として、例えば、特開平05-131136号公報(特許文献2)に開示されている技術が知られている。   As another method for producing a solid particle-supporting fiber sheet, for example, a technique disclosed in Japanese Patent Laid-Open No. 05-131136 (Patent Document 2) is known.

特許文献2に係る発明は、不織布などのシートに固体粒子である活性炭粒子を付着させた後、更にシートを構成する繊維ポリマーの軟化点よりも高温の熱風を吹き付けると共にシートの裏面から熱風を吸引することで、活性炭粒子をよりシートへ強固に担持できることを開示している。   In the invention according to Patent Document 2, after the activated carbon particles, which are solid particles, are adhered to a sheet such as a nonwoven fabric, hot air higher than the softening point of the fiber polymer constituting the sheet is further blown and the hot air is sucked from the back surface of the sheet By doing this, it is disclosed that the activated carbon particles can be more firmly supported on the sheet.

しかしながら、引用文献2に係る発明では、シートに対して熱風を作用させるため、熱風の力により溶融したポリマーが流動して固体粒子の表面を意図せず覆うことがあり、固体粒子の表面特性を有効に保持したまま担持できない恐れがあった。
However, in the invention according to the cited document 2, since hot air acts on the sheet, the polymer melted by the force of the hot air may flow and cover the surface of the solid particles unintentionally. There was a possibility that it could not be supported while being held effectively.

特開2004-3070号公報(特許請求の範囲、0102など)JP 2004-3070 (Claims 0102, etc.) 特開平05-131136号公報(特許請求の範囲、0009、0017など)JP 05-131136 A (Claims 0009, 0017, etc.)

本発明は、固体粒子の表面特性を有効に保持したまま、繊維又は繊維シート表面に固体粒子を強固に担持できる、固体粒子担持繊維及び固体粒子担持繊維シートの製造方法及び製造装置の提供を目的とする。
An object of the present invention is to provide a solid particle-carrying fiber, a method for producing a solid particle-carrying fiber sheet, and a production apparatus that can firmly carry solid particles on the surface of the fiber or fiber sheet while effectively maintaining the surface characteristics of the solid particles. And

請求項1に係る発明は、
「1.表面が主として熱可塑性樹脂からなる繊維の表面に、前記熱可塑性樹脂の融点以上の高い温度に加熱された固体粒子を接触させ、前記熱可塑性樹脂を介して前記固体粒子を前記繊維表面に付着させる工程、
2.前記表面に固体粒子が付着した繊維を、前記熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理する工程、
を有することを特徴とする、固体粒子担持繊維の製造方法。」
である。
The invention according to claim 1
“1. The solid surface heated to a temperature higher than the melting point of the thermoplastic resin is brought into contact with the surface of the fiber whose surface is mainly made of a thermoplastic resin, and the solid particle is brought into contact with the fiber surface via the thermoplastic resin. The process of adhering to,
2. a step of heat-treating the fiber having solid particles attached to the surface while still standing under a high temperature condition higher than the melting point of the thermoplastic resin;
A method for producing a solid particle-supporting fiber, comprising: "
It is.

請求項2に係る発明は、
「1.表面が主として熱可塑性樹脂からなる繊維を含んで構成されている繊維シート表面に、前記熱可塑性樹脂の融点以上の高い温度に加熱された固体粒子を接触させ、前記熱可塑性樹脂を介して前記固体粒子を前記繊維シート表面に付着させる工程、
2.前記表面に固体粒子が付着した繊維シートを、前記熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理する工程、
を有することを特徴とする、固体粒子担持繊維シートの製造方法。」
である。
The invention according to claim 2
“1. Solid particles heated to a temperature higher than the melting point of the thermoplastic resin are brought into contact with the fiber sheet surface, the surface of which is configured to include fibers mainly composed of thermoplastic resin, and the thermoplastic resin is interposed therebetween. Attaching the solid particles to the fiber sheet surface;
2. a step of heat-treating the fiber sheet having solid particles attached to the surface, while still standing under a high temperature condition higher than the melting point of the thermoplastic resin;
A method for producing a solid particle-supporting fiber sheet, comprising: "
It is.

請求項3に係る発明は、
「1.表面が主として熱可塑性樹脂からなる繊維の表面に、前記熱可塑性樹脂の融点以上の高い温度に加熱された固体粒子を接触させ、前記熱可塑性樹脂を介して前記固体粒子を前記繊維表面に付着させることのできる手段、
2.前記表面に固体粒子が付着した繊維を、前記熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理できる手段、
を有することを特徴とする、固体粒子担持繊維の製造装置。」
である。
The invention according to claim 3
“1. The solid surface heated to a temperature higher than the melting point of the thermoplastic resin is brought into contact with the surface of the fiber whose surface is mainly made of a thermoplastic resin, and the solid particle is brought into contact with the fiber surface via the thermoplastic resin. Means that can be attached to,
2. Means capable of heat-treating the fiber having solid particles attached to the surface while still standing under a high temperature condition higher than the melting point of the thermoplastic resin,
An apparatus for producing a solid particle-supporting fiber, comprising: "
It is.

請求項4に係る発明は、
「1.表面が主として熱可塑性樹脂からなる繊維を含んで構成されている繊維シート表面に、前記熱可塑性樹脂の融点以上の高い温度に加熱された固体粒子を接触させ、前記熱可塑性樹脂を介して前記固体粒子を前記繊維シート表面に付着させることのできる手段、
2.前記表面に固体粒子が付着した繊維シートを、前記熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理できる手段、
を有することを特徴とする、固体粒子担持繊維シートの製造装置。」
である。
The invention according to claim 4
“1. Solid particles heated to a temperature higher than the melting point of the thermoplastic resin are brought into contact with the fiber sheet surface, the surface of which is configured to include fibers mainly composed of thermoplastic resin, and the thermoplastic resin is interposed therebetween. Means for adhering the solid particles to the surface of the fiber sheet,
2. Means capable of heat-treating the fiber sheet with solid particles attached to the surface, while still standing under a high temperature condition higher than the melting point of the thermoplastic resin,
An apparatus for producing a solid particle-supporting fiber sheet, comprising: "
It is.

本発明の請求項1に係る固体粒子担持繊維の製造方法は、熱可塑性樹脂を介して表面に固体粒子が付着した繊維を、「熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理する工程」へと供することで、溶融した熱可塑性樹脂が流動して固体粒子の表面を意図せず覆うことを防いで、繊維表面に固体粒子の表面特性を有効に保持したまま、固体粒子を強固に担持できる、という効果を奏する、固体粒子担持繊維の製造方法である。
In the method for producing a solid particle-supporting fiber according to claim 1 of the present invention, a fiber having solid particles attached to the surface via a thermoplastic resin is “still left standing under a high temperature condition higher than the melting point of the thermoplastic resin. , A heat treatment process prevents the molten thermoplastic resin from flowing and unintentionally covering the surface of the solid particles, while maintaining the surface characteristics of the solid particles on the fiber surface effectively. This is a method for producing a solid particle-supporting fiber, which has the effect that particles can be firmly supported.

本発明の請求項2に係る固体粒子担持繊維シートの製造方法は、熱可塑性樹脂を介して表面に固体粒子が付着した繊維シートを、「熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理する工程」へと供することで、溶融した熱可塑性樹脂が流動して固体粒子の表面を意図せず覆うことを防いで、繊維シート表面に固体粒子の表面特性を有効に保持したまま、固体粒子を強固に担持できる、という効果を奏する、固体粒子担持繊維シートの製造方法である。
In the method for producing a solid particle-supporting fiber sheet according to claim 2 of the present invention, the fiber sheet having the solid particles attached to the surface through the thermoplastic resin is allowed to stand under a high temperature condition equal to or higher than the melting point of the thermoplastic resin. As a result, the molten thermoplastic resin is prevented from flowing and unintentionally covering the surface of the solid particles, and the surface characteristics of the solid particles are effectively retained on the fiber sheet surface. This is a method for producing a solid particle-carrying fiber sheet that has the effect that solid particles can be carried firmly.

本発明の請求項3に係る固体粒子担持繊維の製造装置は、熱可塑性樹脂を介して表面に固体粒子が付着した繊維を、「熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理できる手段」を有しているため、溶融した熱可塑性樹脂が流動して固体粒子の表面を意図せず覆うことを防いで、繊維表面に固体粒子の表面特性を有効に保持したまま、固体粒子を強固に担持できる、という効果を奏する、固体粒子担持繊維の製造装置である。
The apparatus for producing a solid particle-supporting fiber according to claim 3 of the present invention is such that a fiber having solid particles attached to the surface via a thermoplastic resin is left standing under a high temperature condition equal to or higher than the melting point of the thermoplastic resin. , Means that can be heat-treated, preventing molten thermoplastic resin from flowing and unintentionally covering the surface of the solid particles, while effectively maintaining the surface characteristics of the solid particles on the fiber surface, This is an apparatus for producing a solid particle-carrying fiber that has the effect of being able to carry solid particles firmly.

本発明の請求項4に係る固体粒子担持繊維の製造装置は、熱可塑性樹脂を介して表面に固体粒子が付着した繊維シートを、「熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理できる手段」を有しているため、溶融した熱可塑性樹脂が流動して固体粒子の表面を意図せず覆うことを防いで、繊維シート表面に固体粒子の表面特性を有効に保持したまま、固体粒子を強固に担持できる、という効果を奏する、固体粒子担持繊維シートの製造装置である。
In the solid particle-carrying fiber manufacturing apparatus according to claim 4 of the present invention, the fiber sheet having the solid particles attached to the surface via the thermoplastic resin is allowed to stand under a high temperature condition equal to or higher than the melting point of the thermoplastic resin. Since the molten thermoplastic resin flows and prevents the surface of the solid particles from being unintentionally covered, the surface properties of the solid particles are effectively retained on the fiber sheet surface. This is an apparatus for producing a solid particle-carrying fiber sheet that produces the effect that solid particles can be carried firmly.

また、本発明の請求項1-4によれば、表面に固体粒子が付着した繊維又は繊維シートを静置したまま熱処理するため、熱処理によって繊維形状が意図せず変化することを防ぐことができる、という副次的な効果を奏する。
According to claim 1-4 of the present invention, since the fiber or the fiber sheet with the solid particles attached to the surface is heat-treated while standing, the fiber shape can be prevented from unintentionally changing due to the heat treatment. , Has the secondary effect of.

本発明に係る固体粒子担持繊維又は固体粒子担持繊維シートの製造装置の一態様を示した、模式的構成図である。It is the typical block diagram which showed the one aspect | mode of the manufacturing apparatus of the solid particle carrying fiber or solid particle carrying fiber sheet which concerns on this invention. (a)参考例に係る繊維シートの表面を、500倍に拡大した写真である。(b)参考例に係る繊維シートの表面を、2000倍に拡大した写真である。(A) It is the photograph which expanded the surface of the fiber sheet which concerns on a reference example 500 times. (B) It is the photograph which expanded the surface of the fiber sheet which concerns on a reference example 2000 times. (a)実施例1に係る繊維シートの表面を、500倍に拡大した写真である。(b)実施例1に係る繊維シートの表面を、2000倍に拡大した写真である。(A) A photograph in which the surface of the fiber sheet according to Example 1 is magnified 500 times. (B) A photograph of the surface of the fiber sheet according to Example 1 magnified 2000 times. (a)比較例1に係る繊維シートの表面を、500倍に拡大した写真である。(b)比較例1に係る繊維シートの表面を、2000倍に拡大した写真である。(A) A photograph in which the surface of the fiber sheet according to Comparative Example 1 is magnified 500 times. (B) A photograph in which the surface of the fiber sheet according to Comparative Example 1 is magnified 2000 times.

本発明に係る固体粒子担持繊維又は固体粒子担持繊維シートの製造方法について、本発明に係る固体粒子担持繊維又は固体粒子担持繊維シートの製造装置の一態様を示した、模式的構成図である図1に沿って説明する。
FIG. 1 is a schematic configuration diagram showing an embodiment of a solid particle-carrying fiber or solid particle-carrying fiber sheet production apparatus according to the present invention for a method for producing a solid particle-carrying fiber or solid particle-carrying fiber sheet according to the present invention. I will explain along 1.

本発明に係る固体粒子担持繊維又は固体粒子担持繊維シートの製造装置(10、以降、製造装置と称する)は、従来技術として挙げた引用文献1に係る製造装置と同様に、表面が主として熱可塑性樹脂からなる繊維(1、以降、繊維と称する)又は繊維シート(1’、以降、繊維シートと称する)の搬送手段(7)、繊維又は繊維シート(1,1’)に加熱された固体粒子(3)を付着させることのできる固体粒子の付着手段(2)を備えていると共に、表面に固体粒子(3)が付着した繊維(8、以降、固体粒子付着繊維、と称する)又は表面に固体粒子(3)が付着した繊維シート(8’、以降、固体粒子付着繊維シート、と称する)を前記熱可塑性樹脂の融点以上の高い温度条件下に静置できる熱処理手段(4)を備えている。
また、図1では固体粒子担持繊維又は固体粒子担持繊維シートの生産方向を、矢印線(A)で表している。
The solid particle-carrying fiber or solid particle-carrying fiber sheet production apparatus according to the present invention (10, hereinafter referred to as production apparatus) is similar to the production apparatus according to the cited document 1 cited as the prior art in that the surface is mainly thermoplastic. Solid particles heated by a conveying means (7) of fiber (1; hereinafter referred to as fiber) or fiber sheet (1 ′, hereinafter referred to as fiber sheet) made of resin, fiber or fiber sheet (1, 1 ′) (3) A solid particle adhering means (2) capable of adhering to the surface is provided, and the solid particle (3) adhering to the surface (8, hereinafter referred to as solid particle adhering fiber) or the surface A heat treatment means (4) capable of allowing a fiber sheet (8 ′, hereinafter referred to as a solid particle-attached fiber sheet) to which solid particles (3) are attached to stand under a temperature condition higher than the melting point of the thermoplastic resin; Yes.
In FIG. 1, the production direction of the solid particle-carrying fiber or the solid particle-carrying fiber sheet is indicated by an arrow line (A).

なお、本発明でいう「静置」とは、固体粒子付着繊維又は固体粒子付着繊維シート(8,8’)の形状が変化するほどの風力、圧力などの意図的な外力を受けていない状態を指す。
例えば、固体粒子付着繊維又は固体粒子付着繊維シート(8,8’)が、熱処理において自発的に伸縮あるいは溶融する動作、重力の作用、熱処理中に熱風が自然に移動する作用は、上述の外力に含まない。
In addition, the term “stationary” as used in the present invention refers to a state in which a solid particle-adhered fiber or a solid particle-adhered fiber sheet (8,8 ′) is not subjected to an intentional external force such as wind force or pressure that changes the shape of the solid particle-adhered fiber sheet (8,8 ′). Point to.
For example, the solid particle-adhered fiber or the solid particle-adhered fiber sheet (8,8 ') spontaneously expands and contracts or melts during heat treatment, the action of gravity, and the action of hot air naturally moving during heat treatment are Not included.

また、図1では、繊維又は繊維シート(1、1’)を連続的に各工程へ供することのできる態様を図示しているが、断続的に各工程へ供することもできる。
Further, FIG. 1 illustrates an embodiment in which the fiber or the fiber sheet (1, 1 ′) can be continuously supplied to each step, but it can also be intermittently supplied to each step.

本発明に係る、固体粒子担持繊維又は固体粒子担持繊維シート(6、6’)の製造方法では、従来技術として挙げた引用文献1に係る製造方法と同様に、まず、搬送手段(7)により繊維又は繊維シート(1,1’)を固体粒子の付着手段(2)へと搬送する。   In the production method of the solid particle-carrying fiber or the solid particle-carrying fiber sheet (6, 6 ′) according to the present invention, as in the production method according to the cited document 1 cited as the prior art, first, by the conveying means (7) The fiber or fiber sheet (1,1 ') is conveyed to the solid particle adhesion means (2).

そして、繊維又は繊維シート(1,1’)の表面を構成する熱可塑性樹脂の融点より高い温度に加熱された固体粒子(3)を、固体粒子の付着手段(2)を用いて繊維又は繊維シート(1,1’)に接触させることで、固体粒子(3)が接触した部分のみを溶融させ、固体粒子(3)を繊維又は繊維シート(1,1’)の表面に付着させて、固体粒子付着繊維又は固体粒子付着繊維シート(8,8’)を調製する。   Then, the solid particles (3) heated to a temperature higher than the melting point of the thermoplastic resin constituting the surface of the fiber or fiber sheet (1, 1 ') are converted into fibers or fibers using the solid particle adhering means (2). By contacting the sheet (1,1 ′), only the part in contact with the solid particles (3) is melted, and the solid particles (3) are adhered to the surface of the fiber or fiber sheet (1,1 ′). A solid particle-attached fiber or a solid particle-attached fiber sheet (8, 8 ′) is prepared.

次いで、固体粒子付着繊維又は固体粒子付着繊維シート(8,8’)を、熱処理手段(4)へと搬送して、前記熱可塑性樹脂の融点以上の高い温度条件下に静置したまま加熱することで、固体粒子担持繊維又は固体粒子担持繊維シート(6、6’)を製造できる。   Next, the solid particle-attached fiber or the solid particle-attached fiber sheet (8, 8 ') is conveyed to the heat treatment means (4) and heated while being left still under a high temperature condition higher than the melting point of the thermoplastic resin. Thereby, a solid particle carrying fiber or a solid particle carrying fiber sheet (6, 6 ′) can be produced.

本発明によれば、固体粒子付着繊維又は固体粒子付着繊維シート(8,8’)を、熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理することで、固体粒子(3)が付着した態様のまま熱可塑性樹脂を溶融させ、固体粒子(3)が繊維又は繊維シート(1、1’)の表面に付着している態様をより密にすることができる。   According to the present invention, the solid particle (3, 8 ') is subjected to a heat treatment while still standing under a high temperature condition higher than the melting point of the thermoplastic resin. The thermoplastic resin is melted in the form in which) is attached, and the form in which the solid particles (3) are attached to the surface of the fiber or fiber sheet (1, 1 ′) can be made denser.

そのため、固体粒子(3)の表面特性を有効に保持したまま、繊維又は繊維シート(1、1’)の表面に固体粒子(3)を均一かつ強固に担持してなる、固体粒子担持繊維又は固体粒子担持繊維シート(6、6’)を製造できる。
Therefore, the solid particle-carrying fiber or the solid particle (3) that is uniformly and firmly supported on the surface of the fiber or fiber sheet (1, 1 ') while maintaining the surface characteristics of the solid particle (3) effectively. A solid particle carrying fiber sheet (6, 6 ') can be produced.

次いで、本発明に係る各部材の詳細について、説明する。
Next, details of each member according to the present invention will be described.

本発明で製造される、固体粒子担持繊維又は固体粒子担持繊維シート(6、6’)は「表面が主として熱可塑性樹脂からなる繊維の表面に」、熱可塑性樹脂を介して固体粒子(3)が担持されてなることを特徴とする。   The solid particle-carrying fiber or the solid particle-carrying fiber sheet (6, 6 ′) produced in the present invention is “on the surface of the fiber whose surface is mainly composed of a thermoplastic resin”. Is carried.

本発明に係る「表面が主として熱可塑性樹脂からなる」とは、繊維(1)表面に占める熱可塑性樹脂の面積割合が50%以上である状態をいう。繊維(1)表面における熱可塑性樹脂の面積割合が高ければ高いほど、固体粒子(3)の担持量が多くなることから、その割合は60%以上であるのが好ましく、70%以上であるのがより好ましく、80%以上であるのが最も好ましい。特に、本発明に係る繊維(1)が、熱可塑性樹脂のみから構成されている繊維(1)あるいは表面全てが熱可塑性樹脂で被覆されている繊維(1)であると、その面積割合が100%となり、固体粒子(3)の担持量を多くできると共に、繊維表面に固体粒子(3)を均一に担持しやすくなる。
“The surface is mainly composed of a thermoplastic resin” according to the present invention refers to a state in which the area ratio of the thermoplastic resin in the surface of the fiber (1) is 50% or more. The higher the area ratio of the thermoplastic resin on the surface of the fiber (1), the larger the amount of the solid particles (3) supported. Therefore, the ratio is preferably 60% or more, more preferably 70% or more. Is more preferable, and 80% or more is most preferable. In particular, when the fiber (1) according to the present invention is a fiber (1) composed only of a thermoplastic resin or a fiber (1) whose entire surface is coated with a thermoplastic resin, the area ratio is 100. %, The amount of the solid particles (3) supported can be increased, and the solid particles (3) can be uniformly supported on the fiber surface.

本発明に係る繊維(1)として、例えば、熱可塑性樹脂( 例えば、ポリオレフィン、ポリエステル、又はポリアミドなど) からなる合成繊維を挙げることができ、前記合成繊維は、1種類の熱可塑性樹脂からなる合成繊維であっても、異なる2種類以上の樹脂が複合された複合繊維であっても使用することができる。このような複合繊維としては、融点の異なる2種類以上の樹脂が複合された複合繊維を挙げることができ、例えば、共重合ポリエステル/ポリエステル、共重合ポリプロピレン/ポリプロピレン、ポリプロピレン/ポリアミド、ポリエチレン/ポリプロピレン、ポリプロピレン/ポリエステル、又はポリエチレン/ポリエステルなどの樹脂の組み合わせからなる複合繊維を挙げることができる。   Examples of the fiber (1) according to the present invention include a synthetic fiber made of a thermoplastic resin (for example, polyolefin, polyester, polyamide, etc.), and the synthetic fiber is a synthetic fiber made of one kind of thermoplastic resin. Even if it is a fiber, it can be used even if it is the composite fiber by which 2 or more types of different resin were composited. Examples of such composite fibers include composite fibers in which two or more kinds of resins having different melting points are combined, such as copolymer polyester / polyester, copolymer polypropylene / polypropylene, polypropylene / polyamide, polyethylene / polypropylene, Mention may be made of composite fibers made of a combination of resins such as polypropylene / polyester or polyethylene / polyester.

複合繊維が、芯に高融点樹脂を有し、鞘に低融点樹脂を有する芯鞘型複合繊維である場合には、固体粒子が繊維表面に固着し、担持される際に繊維の収縮や糸切れが更に生じにくくなるので好ましい。
なお、本発明において融点はJIS K 7121-1987に則して示差走査熱量分析計を用いて求める。
When the composite fiber is a core-sheath type composite fiber having a high melting point resin in the core and a low melting point resin in the sheath, the solid particles adhere to the surface of the fiber and are contracted or threaded when supported. This is preferable because breakage is less likely to occur.
In the present invention, the melting point is determined using a differential scanning calorimeter in accordance with JIS K 7121-1987.

また、前記繊維は、芯部分が融点を有せずに分解温度を有するような、例えば、レーヨン繊維、アセテート繊維、羊毛繊維、又は炭素繊維などの繊維、あるいは無機繊維であり、高融点を有するような、例えば、ガラス繊維、セラミック繊維、又は金属繊維などの繊維の表面に、熱可塑性樹脂が、例えば、コーティングなどにより塗布されてなる繊維であることもできる。
Further, the fiber has a high melting point, for example, a fiber such as rayon fiber, acetate fiber, wool fiber, or carbon fiber, or an inorganic fiber in which the core portion does not have a melting point but has a decomposition temperature. For example, it is also possible to use a fiber in which a thermoplastic resin is applied to the surface of a fiber such as glass fiber, ceramic fiber, or metal fiber by, for example, coating.

本発明に係る繊維(1)は、例えば、溶融紡糸法、乾式紡糸法、湿式紡糸法、直接紡糸法(メルトブロー法、スパンボンド法、静電紡糸法、紡糸原液と気体流を平行に吐出して紡糸する方法(例えば、特開2009-287138号公報)など)、複合繊維から一種類以上の樹脂成分を除去することで繊維径が細い繊維を抽出する方法、繊維を叩解して分割された繊維を得る方法など公知の方法により得ることができる。   The fiber (1) according to the present invention is, for example, a melt spinning method, a dry spinning method, a wet spinning method, a direct spinning method (a melt blow method, a spun bond method, an electrostatic spinning method, a spinning stock solution and a gas stream are discharged in parallel. Spinning method (for example, JP-A-2009-287138), a method of extracting a fiber having a small fiber diameter by removing one or more kinds of resin components from a composite fiber, and beating and dividing the fiber It can be obtained by a known method such as a method of obtaining a fiber.

また、本発明に係る繊維(1)の断面形状はアルファベット型、略多角形型、丸型、だ円型、半円型、星型など公知の形状から、固体粒子(3)が担持され易いように、適宜選択できる。本発明に係る繊維(1)が複合繊維である場合、複合繊維の態様は芯鞘型、サイドバイサイド型、海島型、オレンジ型などにするのが好ましい。
In addition, the cross-sectional shape of the fiber (1) according to the present invention is a known shape such as an alphabet, a polygon, a circle, an ellipse, a semicircle, or a star, and the solid particles (3) are easily supported. Thus, it can be selected as appropriate. When the fiber (1) according to the present invention is a composite fiber, the form of the composite fiber is preferably a core-sheath type, a side-by-side type, a sea-island type, an orange type, or the like.

本発明に係る繊維(1)の平均繊維径は、特に限定されるものではないが、好ましくは0.01μm〜3mmの範囲であり、より好ましくは0.1μm〜500μmの範囲であり、最も好ましくは1μm〜100μmの範囲である。   The average fiber diameter of the fiber (1) according to the present invention is not particularly limited, but is preferably in the range of 0.01 μm to 3 mm, more preferably in the range of 0.1 μm to 500 μm, and most preferably. Is in the range of 1 μm to 100 μm.

繊維の平均繊維径とは、500本の繊維を測定して各繊維の断面形状から求められる繊維径の平均値を意味し、繊維(1)の断面形状が円である場合には繊維断面の直径を繊維径とし、繊維(1)の断面形状が円以外の場合には繊維の断面積と同じ面積の円の直径を繊維径とする。
The average fiber diameter of the fiber means an average value of fiber diameters determined from the cross-sectional shape of each fiber by measuring 500 fibers. When the cross-sectional shape of the fiber (1) is a circle, The diameter is the fiber diameter, and when the cross-sectional shape of the fiber (1) is other than a circle, the diameter of the circle having the same area as the cross-sectional area of the fiber is the fiber diameter.

繊維シート(1’)は上述した繊維(1)を含んで構成されており、繊維シート(1’)における固体粒子(3)の付着を予定する表面には、上述した繊維(1)の少なくとも一部が露出している。繊維シート(1’)を構成する繊維に占める前記表面が主として熱可塑性樹脂からなる繊維(1)の割合は、高ければ高いほど固体粒子(3)の担持量が多くなることから、その割合は10%以上であるのが好ましく、30%以上であるのがより好ましく、50%以上であるのが最も好ましい。   The fiber sheet (1 ′) is configured to include the above-described fiber (1), and the surface of the fiber sheet (1 ′) on which the solid particles (3) are to be attached has at least the above-described fiber (1). Some are exposed. The proportion of the fibers (1) whose surface is mainly composed of thermoplastic resin in the fibers constituting the fiber sheet (1 ') is higher, the higher the amount of solid particles (3) supported, the proportion is It is preferably 10% or more, more preferably 30% or more, and most preferably 50% or more.

特に、繊維シート(1’)が上述した繊維(1)のみから構成されていると、固体粒子(3)の担持量を多くできて繊維シート(1’)表面に固体粒子(3)を均一に担持しやすくなる。   In particular, when the fiber sheet (1 ′) is composed only of the fibers (1) described above, the amount of the solid particles (3) supported can be increased, and the solid particles (3) are evenly distributed on the surface of the fiber sheet (1 ′). It becomes easy to carry on.

繊維シート(1’)の構造としては、例えば、織物、編物、若しくは不織布などの布帛、又はそれらの組合せなどを挙げることができる。織物又は編物の場合には、例えば、前記繊維(1)を織機又は編機により加工することによって得られる。   Examples of the structure of the fiber sheet (1 ') include a fabric such as a woven fabric, a knitted fabric, or a nonwoven fabric, or a combination thereof. In the case of a woven fabric or a knitted fabric, for example, it can be obtained by processing the fiber (1) with a loom or a knitting machine.

また、繊維シート(1’)が不織布の場合には、例えば、従来の不織布の製法である、乾式法、湿式法、又は直接法(メルトブロー法、スパンボンド法、静電紡糸法、紡糸原液と気体流を平行に吐出して紡糸する方法(例えば、特開2009-287138号公報に開示の方法)など)などによって製造される不織布を繊維シート(1’)とすることができる。あるいはこのようにして得られた不織布を機械的絡合処理(例えば、水流絡合又はニードルパンチなど)に供することもできる。   When the fiber sheet (1 ′) is a non-woven fabric, for example, a conventional non-woven fabric production method, a dry method, a wet method, or a direct method (melt blow method, spun bond method, electrostatic spinning method, spinning stock solution and A non-woven fabric produced by a method of spinning by discharging gas flows in parallel (for example, a method disclosed in JP-A-2009-287138) or the like can be used as the fiber sheet (1 ′). Or the nonwoven fabric obtained in this way can also be used for a mechanical entanglement process (for example, hydroentanglement, a needle punch, etc.).

また、前記不織布を、平滑なロール同士の間、凹凸のあるロール同士の間、あるいは平滑なロールと凹凸のあるロールの間に供することで、部分的に加熱結合あるいは厚さ調整された不織布とすることもできる。   Further, by providing the nonwoven fabric between smooth rolls, between uneven rolls, or between a smooth roll and uneven rolls, and a non-woven fabric partially heat-bonded or adjusted in thickness You can also

低融点の樹脂を含んでなることで接着性を有する繊維及び/又は融点の異なる2種類以上の樹脂が複合された複合繊維などを混合して布帛を調製し、熱処理に供する、あるいは、布帛構成繊維をバインダで接着して繊維シート(1’)を調製することで、繊維同士が接合された繊維シート(1’)を調製することができる。   A fabric is prepared by mixing a fiber having a low melting point and having an adhesive property and / or a composite fiber in which two or more types of resins having different melting points are combined, and subjected to heat treatment, or a fabric configuration The fiber sheet (1 ′) can be prepared by bonding the fibers with a binder to prepare the fiber sheet (1 ′).

また、繊維シート(1’)の外観も特に限定されるものではなく、例えば、長尺状(例えば、ロールに巻回した繊維シート)、又は非長尺状(すなわち、前記長尺状繊維シートを切断して得ることのできる繊維シート)等を挙げることができる。
Further, the appearance of the fiber sheet (1 ′) is not particularly limited. For example, the fiber sheet (1 ′) is long (for example, a fiber sheet wound on a roll) or non-long (that is, the long fiber sheet). And the like can be obtained by cutting the fiber sheet).

繊維シート(1’)の目付、厚さ、空隙率などの諸特性は、特に限定されるべきものではないが、1mあたりの質量である目付は1〜500g/mであるのが好ましく、3〜400g/mであるのがより好ましく、5〜300g/mであるのが最も好ましい。
また、繊維シート(1’)の厚さは、0.01〜50mmであるのが好ましく、0.05〜40mmであるのがより好ましく、0.1〜30mmであるのが最も好ましい。なお、本発明において厚さは、厚さ測定器(ダイヤルシックネスゲージ0.01mmタイプH型式(株)尾崎製作所製)により計測した、5点の厚さの算術平均値をいう。
そして、繊維シートの空隙率は、30〜99%であるのが好ましく、50〜95%であるのがより好ましく、70〜90%であるのが最も好ましい。なお、本発明において空隙率とは、繊維シートの総体積に対する空隙の存在比率を意味しており、{1−(目付÷厚み)÷比重}×100で求められる値(目付g/m、厚みμm、比重g/cm)のことをいう。
Basis weight of the fiber sheet (1 '), thickness, properties such as porosity, but it should not be particularly limited, but is preferably a basis weight is the mass per 1 m 2 is 1 to 500 g / m 2 3 to 400 g / m 2 is more preferable, and 5 to 300 g / m 2 is most preferable.
Further, the thickness of the fiber sheet (1 ′) is preferably 0.01 to 50 mm, more preferably 0.05 to 40 mm, and most preferably 0.1 to 30 mm. In addition, in this invention, thickness says the arithmetic mean value of the thickness of 5 points | pieces measured with the thickness measuring device (Dial thickness gauge 0.01mm type H type | mold company make Ozaki Seisakusho).
And the porosity of a fiber sheet is preferably 30 to 99%, more preferably 50 to 95%, and most preferably 70 to 90%. In the present invention, the porosity means the abundance ratio of voids to the total volume of the fiber sheet, and is a value determined by {1− (weight per unit area / thickness) / specific gravity} × 100 (weight per unit area g / m 2 , Thickness μm, specific gravity g / cm 3 ).

本発明で使用できる搬送手段(7)は、繊維又は繊維シート(1、1’)を移動できるのであれば、限定されるものではなく、例えば、1本以上のローラ、エンドレス回転をなすベルトコンベアなどを使用することができる。また、前記搬送手段(7)はメッシュや布帛など多孔性の材料から構成することができる。
The conveying means (7) that can be used in the present invention is not limited as long as it can move the fiber or fiber sheet (1, 1 '). For example, one or more rollers, a belt conveyor that performs endless rotation. Etc. can be used. Moreover, the said conveyance means (7) can be comprised from porous materials, such as a mesh and a cloth.

本発明で用いることのできる固体粒子(3)は、繊維(1)の表面を構成する熱可塑性樹脂の融点より高い融点又は分解温度を有する限り、無機質又は有機質のいずれであることもできる。このような固体粒子(3)の材質としては、例えば、炭化ケイ素、活性炭、ゼオライト、酸化チタン、吸水性樹脂、イオン交換樹脂、金属粒子、金属酸化物粒子、トルマリン、炭酸カルシウム、又は撥水性樹脂など、種々の材質を選択して又は2種類以上組み合わせて使用することができる。   The solid particles (3) that can be used in the present invention can be either inorganic or organic as long as they have a melting point or decomposition temperature higher than the melting point of the thermoplastic resin constituting the surface of the fiber (1). Examples of the material of such solid particles (3) include silicon carbide, activated carbon, zeolite, titanium oxide, water absorbent resin, ion exchange resin, metal particles, metal oxide particles, tourmaline, calcium carbonate, or water repellent resin. For example, various materials can be selected or used in combination of two or more.

なお、前記固体粒子(3)は、例えば、脱臭、ガス除去、触媒、吸水、イオン交換、電磁波放射、放熱、吸熱、イオン発生、抗菌、難燃、電磁波遮蔽、防音、又は撥水撥油などの機能性を有する固体粒子(3)を担持させると、繊維表面でその機能を有効に発揮することができる。
The solid particles (3) include, for example, deodorization, gas removal, catalyst, water absorption, ion exchange, electromagnetic wave radiation, heat radiation, heat absorption, ion generation, antibacterial, flame retardant, electromagnetic wave shielding, soundproofing, or water / oil repellent. When the solid particles (3) having the above functionality are supported, the function can be effectively exhibited on the fiber surface.

固体粒子(3)の粒子径分布における累積高さ50%点の粒子径D50が、繊維(1)の平均繊維径の大きさを超えると、固体粒子(3)が繊維の表面より脱落し易くなる傾向があり、また、0.01μmよりも小さいと、固体粒子(3)が繊維の表面に付着し難くなる傾向がある。
そのため、固体粒子(3)の累積高さ50%点の粒子径D50が、0.01μm〜3mmの範囲内であるのが好ましく、0.1μm〜500μmの範囲内であるのがより好ましく、1μm〜100μmの範囲内であるのが最も好ましい。
なお、固体粒子(3)の累積高さ50%点の粒子径D50の値は、レーザー回析・散乱式粒度分布測定器((株)セイシン社製 LMS-30)を用いて、500個以上の固体粒子(3)を測定して求める。
If the particle size D50 at the 50% cumulative height in the particle size distribution of the solid particles (3) exceeds the average fiber size of the fibers (1), the solid particles (3) are more likely to fall off the fiber surface. Also, if it is smaller than 0.01 μm, the solid particles (3) tend not to adhere to the fiber surface.
Therefore, the particle diameter D50 at the 50% cumulative height of the solid particles (3) is preferably within a range of 0.01 μm to 3 mm, more preferably within a range of 0.1 μm to 500 μm. Most preferably, it is in the range of 100 μm.
In addition, the value of the particle diameter D50 at the 50% cumulative height of the solid particles (3) is 500 or more using a laser diffraction / scattering particle size distribution analyzer (LMS-30 manufactured by Seishin Co., Ltd.). Determine the solid particles (3).

本発明で使用できる固体粒子の付着手段(2)は、熱可塑性樹脂の融点以上の高い温度に加熱された固体粒子(3)を、表面が主として熱可塑性樹脂からなる繊維又は繊維シート(1、1’)の表面に接触させて、付着できるものであれば、限定されるものではない。
例えば、
(1)加熱した固体粒子を含有する気流を繊維又は繊維シートに吹き付ける方法;
(2)加熱した固体粒子を繊維又は繊維シートに対して自然落下させる方法;
(3)加熱した固体粒子と繊維又は繊維シートとを装入した耐熱性容器を振盪する方法;
(4)加熱した固体粒子中に繊維又は繊維シートを浸漬する方法;
(5)加熱した固体粒子の流動層中に繊維又は繊維シートを曝す方法
などの方法を有する、固体粒子の付着手段(4)を挙げることができる。
The solid particle adhering means (2) that can be used in the present invention comprises solid particles (3) heated to a temperature higher than the melting point of the thermoplastic resin, fibers or fiber sheets (1, It is not limited as long as it can contact and adhere to the surface of 1 ′).
For example,
(1) A method of spraying an air stream containing heated solid particles onto a fiber or fiber sheet;
(2) A method in which the heated solid particles are naturally dropped on the fiber or fiber sheet;
(3) A method of shaking a heat-resistant container charged with heated solid particles and fibers or fiber sheets;
(4) A method of immersing fibers or fiber sheets in heated solid particles;
(5) Solid particle adhesion means (4) having a method such as exposing a fiber or fiber sheet to a fluidized bed of heated solid particles.

本発明の製造方法では、固体粒子(3)を熱可塑性樹脂の融点以上に加熱することが必要であるが、固体粒子(3)の付着時に、繊維(1)の糸切れや収縮を起こすという問題が生じる場合には、固体粒子(3)を熱可塑性樹脂の融点より100℃高い温度を超えない温度に加熱するのが好ましく、熱可塑性樹脂の融点より50℃高い温度を超えない温度に加熱するのがより好ましい。
In the production method of the present invention, it is necessary to heat the solid particles (3) to a temperature higher than the melting point of the thermoplastic resin. However, when the solid particles (3) are attached, the fibers (1) are broken or shrunk. If problems arise, it is preferable to heat the solid particles (3) to a temperature not exceeding 100 ° C. above the melting point of the thermoplastic resin, and to a temperature not exceeding 50 ° C. above the melting point of the thermoplastic resin. More preferably.

加熱した固体粒子(3)を含有する気流を繊維又は繊維シート(1、1’)に吹き付ける方法を採用する場合、気流の温度が固体粒子(3)の加熱温度よりも高い温度であると、固体粒子(3)が冷却するのを防いで繊維又は繊維シート(1、1’)へ効率よく付着でき、好ましい。   When adopting a method in which an air stream containing heated solid particles (3) is sprayed onto fibers or fiber sheets (1, 1 '), the temperature of the air stream is higher than the heating temperature of the solid particles (3). It is preferable that the solid particles (3) can be prevented from cooling and can be efficiently attached to the fiber or fiber sheet (1, 1 ′).

加熱した気流を得るには、例えば、気流発生手段(例えば、ブロアー又はコンプレッサーなど)によって気流を発生させ、次いで、公知の加熱手段によって前記気流を所定温度に加熱する方法を用いることができる。また、加熱した固体粒子(3)を得るには、例えば、固体粒子供給手段(例えば、ホッパー又は供給容器など、図示せず)の内外にヒーターを取り付けて、固体粒子供給手段内の固体粒子(3)を所定温度に加熱する方法、あるいは、一般的に粉体の乾燥機として用いられる流動層型乾燥機などの装置を利用して、固体粒子(3)を所定温度に加熱する方法などを用いることができる。   In order to obtain a heated airflow, for example, a method of generating an airflow by an airflow generating means (for example, a blower or a compressor) and then heating the airflow to a predetermined temperature by a known heating means can be used. Moreover, in order to obtain the heated solid particles (3), for example, a heater is attached to the inside and outside of the solid particle supply means (for example, a hopper or a supply container, not shown), and the solid particles ( 3) Heating the solid particles (3) to a predetermined temperature using a device such as a fluidized bed dryer generally used as a powder dryer. Can be used.

気流に固体粒子(3)を供給して混合気流を調製する方法としては、例えば、固体粒子供給手段(例えば、ホッパー又は供給容器など)から固体粒子(3)を気流中に一定量ずつ供給する方法、あるいは、流動層型乾燥機などの装置を利用して熱可塑性樹脂の融点以上の温度まで固体粒子を加熱した後、加熱された固体粒子(3)が分散混合されてなる混合気体を調製して、これを供給する方法を挙げることができる。
As a method for preparing the mixed air flow by supplying the solid particles (3) to the air flow, for example, the solid particles (3) are supplied into the air flow by a fixed amount from a solid particle supply means (for example, a hopper or a supply container). Prepare a mixed gas in which the solid particles (3) are dispersed and mixed after heating the solid particles to a temperature above the melting point of the thermoplastic resin using a method or a fluidized bed dryer. And a method for supplying the same.

本発明で使用できる熱処理手段(4)は、固体粒子付着繊維又は固体粒子付着繊維シート(8、8’)を、前記熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理を行うことのできるものであれば、限定されるものではない。例えば、恒温器、乾熱器、オーブン、遠赤外線ヒーターなどの熱処理手段を挙げることができる。   The heat treatment means (4) that can be used in the present invention comprises a solid particle-adhered fiber or a solid particle-adhered fiber sheet (8, 8 ') that is left to stand under a high temperature condition higher than the melting point of the thermoplastic resin. It is not limited as long as it can be performed. For example, heat treatment means such as a thermostatic device, a dry heat device, an oven, and a far infrared heater can be used.

固体粒子付着繊維又は固体粒子付着繊維シート(8、8’)を熱処理する際の、熱処理の温度は、熱可塑性樹脂の融点以上の温度となるようにする。
The heat treatment temperature when the solid particle-attached fiber or the solid particle-attached fiber sheet (8, 8 ′) is heat-treated is set to be equal to or higher than the melting point of the thermoplastic resin.

熱可塑性樹脂の融点以上の高い温度条件下に静置したまま熱処理を行うことで、溶融した熱可塑性樹脂が流動することを防ぐことができる。そのため、溶融した熱可塑性樹脂が流動して固体粒子(3)の表面を意図せず覆うことを防いで、繊維又は繊維シート(1、1’)表面に固体粒子(3)の表面特性を有効に保持したまま、固体粒子(3)を強固に担持できる。   By performing the heat treatment while still standing under a high temperature condition higher than the melting point of the thermoplastic resin, it is possible to prevent the molten thermoplastic resin from flowing. Therefore, it prevents the molten thermoplastic resin from flowing and unintentionally covering the surface of the solid particles (3), and the surface characteristics of the solid particles (3) are effective on the surface of the fiber or fiber sheet (1, 1 '). The solid particles (3) can be firmly supported while being held in the container.

更に、静置した状態で熱処理を行うと、熱処理によって固体粒子付着繊維又は固体粒子付着繊維シート(8,8’)の形状が意図せず変化することを防ぐことができる。
Furthermore, when the heat treatment is performed in a stationary state, the shape of the solid particle-attached fiber or the solid particle-attached fiber sheet (8, 8 ′) can be prevented from unintentionally changing due to the heat treatment.

本発明に係る製造装置(10)では、従来技術として挙げた引用文献1に係る発明と同様に、熱処理してなる固体粒子担持繊維又は固体粒子担持繊維シート(6、6’)に対して、例えば、冷風を作用させる、低温空間に曝す、低温の部材と接触させるなどして、前記熱可塑性樹脂の融点より低い温度にできる冷却手段(図示せず)を備えていても良い。   In the production apparatus (10) according to the present invention, as in the invention according to the cited document 1 cited as the prior art, for the solid particle-supporting fiber or the solid particle-supporting fiber sheet (6, 6 ′) formed by heat treatment, For example, a cooling means (not shown) that can make the temperature lower than the melting point of the thermoplastic resin by applying cold air, exposing to a low temperature space, or contacting with a low temperature member may be provided.

また、前記熱可塑性樹脂の融点が室温(例えば、25℃)よりも高い場合、熱処理してなる固体粒子担持繊維又は固体粒子担持繊維シート(6、6’)を上述の冷却手段へ供する替わりに、室温下に静置することで、冷却を行うこともできる。   Further, when the melting point of the thermoplastic resin is higher than room temperature (for example, 25 ° C.), instead of supplying the solid particle-supporting fiber or the solid particle-supporting fiber sheet (6, 6 ′) obtained by heat treatment to the cooling means described above. Cooling can also be performed by standing at room temperature.

特に、上述した熱処理と同様に、静置した状態で冷却を行うと、冷却中に熱可塑性樹脂が流動することや繊維(1)形状が意図せず変化することを防ぐことができるため、好ましい。
In particular, as in the case of the heat treatment described above, it is preferable to perform cooling in a stationary state because it is possible to prevent the thermoplastic resin from flowing during cooling and unintentionally changing the fiber (1) shape. .

また、本発明に係る製造装置(10)では、従来技術として挙げた引用文献1に係る発明と同様に、空隙に充填しているなど繊維又は繊維シート(1、1’)の表面に付着していない固体粒子(3)を、例えば、振動により落下させる、気流で吹き飛ばす、液体で洗浄するなどして除去できる、除去手段(図示せず)を備えていても良い。   In addition, in the production apparatus (10) according to the present invention, as in the invention according to the cited document 1 cited as the prior art, it adheres to the surface of the fiber or the fiber sheet (1, 1 ′) such as filling the gap. The removal means (not shown) which can remove the solid particle (3) which is not removed by, for example, dropping by vibration, blowing off with an air current, or washing with liquid may be provided.

上述の除去手段は、固体粒子の付着手段(2)と熱処理手段(4)の間に設ける、あるいは、本発明に係る製造装置(10)が冷却手段を備えている場合、生産方向(A)において冷却手段に次いで設けることができる。
The removal means described above is provided between the solid particle adhering means (2) and the heat treatment means (4), or when the production apparatus (10) according to the present invention includes a cooling means, the production direction (A) The cooling means can be provided next.

以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.

(参考例)
芯成分および鞘成分が共にポリエステル樹脂からなり、前記鞘成分が前記芯成分よりも低融点である、市販のポリエステル芯鞘型繊維(平均繊維径:50μm)100質量%をカード機に供することで、ポリエステル繊維不織布を調製した。なお、前記繊維不織布を構成するポリエステル芯鞘型繊維における、鞘部の融点は75℃、芯部の融点は250℃であった。
このようにして調製したポリエステル繊維不織布を140℃の雰囲気下で加熱して鞘成分のポリエステル樹脂を溶融させることで、前記ポリエステル芯鞘型繊維を互いに加熱一体化し、室温(25℃)下に静置することで冷却処理して、ポリエステル繊維シート(目付:300g/m、厚さ:14mm)を調製した。

次に、220℃に加熱した市販の炭化ケイ素の研磨砥粒(ナニワ研磨工業社製、GC微粉、粒度:♯1200、累積高さ50%点の粒子径D50:9.5μm±0.8μm)を、220℃のエアと共に前記ポリエステル繊維シートの一方の主面側から吹き付けた後、室温(25℃)下に静置することで冷却処理して、表面に研磨砥粒が付着したポリエステル繊維シート(目付:390g/m、研磨砥粒の担持量:90g/m、厚さ:10mm)を調製した。
このようにして製造された、シートの表面を、500倍に拡大した写真を図2(a)に、2000倍に拡大した写真を図2(b)に示す。
(Reference example)
By providing a card machine with 100% by mass of a commercially available polyester core-sheath fiber (average fiber diameter: 50 μm), in which both the core component and the sheath component are made of polyester resin, and the sheath component has a lower melting point than the core component. A polyester fiber nonwoven fabric was prepared. In the polyester core-sheath fiber constituting the fiber nonwoven fabric, the melting point of the sheath part was 75 ° C., and the melting point of the core part was 250 ° C.
The polyester fiber nonwoven fabric thus prepared is heated in an atmosphere of 140 ° C. to melt the polyester resin of the sheath component, so that the polyester core-sheath fibers are heated and integrated with each other, and statically cooled at room temperature (25 ° C.). The polyester fiber sheet (weight per unit: 300 g / m 2 , thickness: 14 mm) was prepared by cooling.

Next, commercially available silicon carbide abrasive grains heated to 220 ° C. (manufactured by Naniwa Abrasive Industry Co., Ltd., GC fine powder, particle size: # 1200, particle size D50 at 50% cumulative height: 9.5 μm ± 0.8 μm) After being sprayed from one main surface side of the polyester fiber sheet together with air at 220 ° C., the polyester fiber sheet is cooled by standing at room temperature (25 ° C.), and the abrasive grains adhere to the surface. (A basis weight: 390 g / m 2 , a load of polishing abrasive grains: 90 g / m 2 , a thickness: 10 mm) was prepared.
A photograph of the surface of the sheet thus produced, magnified 500 times, is shown in FIG. 2 (a), and a photograph magnified 2000 times is shown in FIG. 2 (b).

(実施例1)
1.上述のようにして製造した、表面に研磨砥粒が付着されたポリエステル繊維シートを、内部温度が220℃に調整された恒温装置へ供することで、220℃雰囲気下で静置したまま10秒間熱処理した。

2.次いで、前記熱処理した繊維シートを、室温(25℃)下に1分間静置することで冷却処理した。
その後、前記冷却処理した繊維シートに25℃の気流を当て、前記繊維シートの表面に担持されていない研磨砥粒を取り除き、繊維シート表面に研磨砥粒が担持されたポリエステル繊維シート(目付:387g/m、研磨砥粒の担持量:87g/m、厚さ:10mm)を調製した。
このようにして製造された、繊維シートの表面を、500倍に拡大した写真を図3(a)に、2000倍に拡大した写真を図3(b)に示す。
(Example 1)
1. The polyester fiber sheet produced as described above and having abrasive grains attached to the surface thereof is supplied to a thermostatic device whose internal temperature is adjusted to 220 ° C., so that the polyester fiber sheet is left still in a 220 ° C. atmosphere. Heat treated for 2 seconds.

2. Next, the heat-treated fiber sheet was subjected to a cooling treatment by standing at room temperature (25 ° C.) for 1 minute.
Thereafter, an air flow of 25 ° C. was applied to the cooled fiber sheet to remove abrasive grains not supported on the surface of the fiber sheet, and a polyester fiber sheet (weight per unit: 387 g) having abrasive grains supported on the fiber sheet surface. / m 2, the abrasive grains of the support amount: 87g / m 2, thickness: 10 mm) was prepared.
A photograph of the surface of the fiber sheet thus produced, magnified 500 times, is shown in FIG. 3 (a), and a photograph magnified 2000 times is shown in FIG. 3 (b).

(比較例1)
参考例で得られた表面に研磨砥粒が付着されたポリエステル繊維シートを、実施例1と同様に室温(25℃)下に1分間静置した後、25℃の気流を当て、前記繊維シートの表面に担持されていない研磨砥粒を取り除き、繊維シート表面に研磨砥粒が付着されたポリエステル繊維シート(目付:350g/m、研磨砥粒の担持量:50g/m、厚さ:10mm)を調製した。
このようにして製造された、繊維シートの表面を、500倍に拡大した写真を図4(a)に、2000倍に拡大した写真を図4(b)に示す。
(Comparative Example 1)
The polyester fiber sheet with the abrasive grains attached to the surface obtained in the reference example was allowed to stand at room temperature (25 ° C.) for 1 minute in the same manner as in Example 1, and then air flow at 25 ° C. was applied to the fiber sheet. Abrasive grains not supported on the surface of the polyester fiber sheet with the abrasive grains adhered to the surface of the fiber sheet (weight per unit: 350 g / m 2 , supported amount of abrasive grains: 50 g / m 2 , thickness: 10 mm) was prepared.
FIG. 4 (a) shows a photograph of the surface of the fiber sheet produced in this manner, magnified 500 times, and FIG. 4 (b) shows a photograph magnified 2000 times.

(評価方法)
参考例に係る繊維シートの表面拡大写真(図2(a)(b))、実施例1に係る繊維シートの表面拡大写真(図3(a)(b))、比較例1に係る繊維シートの表面拡大写真(図4(a)(b))を比較した結果から、以下のことが判明した。

実施例1と比較例1とを比較した結果、実施例1に係る繊維シートを構成する繊維の表面には、固体粒子が完全に埋没することなく均一に担持されていることが判明した。
一方、比較例1に係る繊維シートを構成する繊維の表面に、固体粒子は不均一に担持されているものであった。
(Evaluation method)
Surface enlarged photograph of the fiber sheet according to the reference example (FIG. 2 (a) (b)), Surface enlarged photograph of the fiber sheet according to the example 1 (FIG. 3 (a) (b)), Fiber sheet according to the comparative example 1 From the results of comparison of the enlarged surface photographs (FIGS. 4 (a) and (b)), the following was found.

As a result of comparing Example 1 with Comparative Example 1, it was found that the solid particles were uniformly supported on the surface of the fibers constituting the fiber sheet according to Example 1 without being completely buried.
On the other hand, the solid particles were nonuniformly supported on the surface of the fibers constituting the fiber sheet according to Comparative Example 1.

また、参考例、実施例1、比較例1に係る各繊維シートにおける、研磨砥粒の担持量を比較した結果から、以下のことが判明した。
参考例に対する実施例1の研磨砥粒の担持量の百分率は約97%であるのに対して、参考例に対する比較例1の研磨砥粒の担持量の百分率は約56%であることが判明した。
そして、図4(b)では繊維表面に研磨砥粒が剥落した痕跡(窪み)が認められたことから、比較例1では研磨砥粒を取り除くため気流を当てた際に、繊維表面から固体粒子が剥落したものであることが判明した。
一方、図3(b)では繊維表面に研磨砥粒が剥落した痕跡(窪み)が認められなかったことから、実施例1では余剰の研磨砥粒を取り除くため気流を当てた際に、繊維表面から固体粒子が剥落していないことが判明した。
In addition, the following was found from the results of comparing the amount of abrasive grains carried in each of the fiber sheets according to Reference Example, Example 1, and Comparative Example 1.
It was found that the percentage of the loading amount of the abrasive grains of Example 1 relative to the reference example was about 97%, whereas the percentage of the loading volume of the abrasive grains of Comparative Example 1 relative to the reference example was about 56%. did.
In FIG. 4B, traces (dents) from which the abrasive grains were peeled off were observed on the fiber surface. In Comparative Example 1, when airflow was applied to remove the abrasive grains, solid particles were removed from the fiber surface. Was found to have fallen off.
On the other hand, in FIG. 3 (b), no traces (dents) where the abrasive grains were peeled off were observed on the fiber surface. In Example 1, when the air flow was applied to remove excess abrasive grains, the fiber surface From this, it was found that solid particles were not peeled off.

以上から、本発明に係る、固体粒子担持繊維及び固体粒子担持繊維シートの製造方法及び製造装置は、固体粒子が完全に埋没することなく均一に担持されてなる固体粒子担持繊維シートを製造することができたことから、溶融した熱可塑性樹脂が流動して固体粒子の表面を意図せず覆うことを防いで、繊維シート表面に固体粒子の表面特性を有効に保持したまま、固体粒子を強固に担持できる、という効果を奏することが判明した。
From the above, according to the present invention, the solid particle-carrying fiber and the solid particle-carrying fiber sheet production method and production apparatus produce a solid particle-carrying fiber sheet in which solid particles are uniformly supported without being completely buried. Therefore, the molten thermoplastic resin is prevented from flowing and unintentionally covering the surface of the solid particles, and the solid particles are strengthened while effectively maintaining the surface characteristics of the solid particles on the fiber sheet surface. It has been found that there is an effect that it can be supported.

更に、参考例と実施例1に係る各繊維シートを構成する繊維形状を比較した結果、実施例1に係る繊維シートを構成する繊維は、熱処理前後で繊維形状が変化していないことが判明した。   Furthermore, as a result of comparing the fiber shape constituting each fiber sheet according to Reference Example and Example 1, it was found that the fiber constituting the fiber sheet according to Example 1 did not change in fiber shape before and after heat treatment. .

以上から、本発明に係る、固体粒子担持繊維及び固体粒子担持繊維シートの製造方法及び製造装置は、熱処理によって繊維形状が意図せず変化することを防ぐことができる、という副次的な効果を奏することが判明した。
From the above, according to the present invention, the solid particle-carrying fiber and the solid particle-carrying fiber sheet production method and production apparatus have the secondary effect that the fiber shape can be prevented from unintentionally changing due to heat treatment. It turned out to play.

本発明によれば、固体粒子の表面特性を有効に保持したまま、繊維又は繊維シート表面に固体粒子を強固に担持できる、固体粒子担持繊維及び固体粒子担持繊維シートの製造方法及び製造装置が提供される。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method and manufacturing apparatus of a solid particle carrying fiber and a solid particle carrying fiber sheet which can carry | support a solid particle firmly on the fiber or fiber sheet surface, maintaining the surface characteristic of a solid particle effectively are provided. Is done.

1、1’・・・繊維又は繊維シート
2・・・固体粒子の付与手段
3・・・固体粒子
4・・・熱処理手段
6、6’・・・固体粒子担持繊維又は固体粒子担持繊維シート
7・・・搬送手段
8、8’・・・固体粒子付着繊維又は固体粒子付着繊維シート
10・・・固体粒子担持繊維及び固体粒子担持繊維シートの製造装置
A・・・固体粒子担持繊維又は固体粒子担持繊維シートの生産方向
1, 1 '... fiber or fiber sheet
2 ... Means for applying solid particles
3 ... Solid particles
4 ... Heat treatment means
6, 6 '... Solid particle carrying fiber or solid particle carrying fiber sheet
7 ... Conveying means
8, 8 '... Solid particle-attached fiber or solid particle-attached fiber sheet
10 ... Manufacturing apparatus for solid particle-carrying fiber and solid particle-carrying fiber sheet
A ... Production direction of solid particle-carrying fiber or solid particle-carrying fiber sheet

Claims (4)

1.表面が主として熱可塑性樹脂からなる繊維の表面に、前記熱可塑性樹脂の融点以上の高い温度に加熱された固体粒子を接触させ、前記熱可塑性樹脂を介して前記固体粒子を前記繊維表面に付着させる工程、
2.前記表面に固体粒子が付着した繊維を、前記熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理する工程、
を有することを特徴とする、固体粒子担持繊維の製造方法。
1. The surface of a fiber mainly composed of a thermoplastic resin is brought into contact with solid particles heated to a temperature higher than the melting point of the thermoplastic resin, and the solid particles are brought into contact with the fiber surface via the thermoplastic resin. A process of attaching,
2. a step of heat-treating the fiber having solid particles attached to the surface while still standing under a high temperature condition higher than the melting point of the thermoplastic resin;
A method for producing a solid particle-supporting fiber, comprising:
1.表面が主として熱可塑性樹脂からなる繊維を含んで構成されている繊維シート表面に、前記熱可塑性樹脂の融点以上の高い温度に加熱された固体粒子を接触させ、前記熱可塑性樹脂を介して前記固体粒子を前記繊維シート表面に付着させる工程、
2.前記表面に固体粒子が付着した繊維シートを、前記熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理する工程、
を有することを特徴とする、固体粒子担持繊維シートの製造方法。
1. A solid sheet heated to a temperature higher than the melting point of the thermoplastic resin is brought into contact with a fiber sheet surface, the surface of which is configured to include fibers mainly composed of a thermoplastic resin, and the thermoplastic resin is interposed through the thermoplastic resin. Attaching the solid particles to the fiber sheet surface;
2. a step of heat-treating the fiber sheet having solid particles attached to the surface, while still standing under a high temperature condition higher than the melting point of the thermoplastic resin;
A method for producing a solid particle-supporting fiber sheet, comprising:
1.表面が主として熱可塑性樹脂からなる繊維の表面に、前記熱可塑性樹脂の融点以上の高い温度に加熱された固体粒子を接触させ、前記熱可塑性樹脂を介して前記固体粒子を前記繊維表面に付着させることのできる手段、
2.前記表面に固体粒子が付着した繊維を、前記熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理できる手段、
を有することを特徴とする、固体粒子担持繊維の製造装置。
1. The surface of a fiber mainly composed of a thermoplastic resin is brought into contact with solid particles heated to a temperature higher than the melting point of the thermoplastic resin, and the solid particles are brought into contact with the fiber surface via the thermoplastic resin. Means that can be attached,
2. Means capable of heat-treating the fiber having solid particles attached to the surface while still standing under a high temperature condition higher than the melting point of the thermoplastic resin,
An apparatus for producing a solid particle-supporting fiber, comprising:
1.表面が主として熱可塑性樹脂からなる繊維を含んで構成されている繊維シート表面に、前記熱可塑性樹脂の融点以上の高い温度に加熱された固体粒子を接触させ、前記熱可塑性樹脂を介して前記固体粒子を前記繊維シート表面に付着させることのできる手段、
2.前記表面に固体粒子が付着した繊維シートを、前記熱可塑性樹脂の融点以上の高い温度条件下に静置したまま、熱処理できる手段、
を有することを特徴とする、固体粒子担持繊維シートの製造装置。
1. A solid sheet heated to a temperature higher than the melting point of the thermoplastic resin is brought into contact with a fiber sheet surface, the surface of which is configured to include fibers mainly composed of a thermoplastic resin, and the thermoplastic resin is interposed through the thermoplastic resin. Means capable of adhering the solid particles to the fiber sheet surface;
2. Means capable of heat-treating the fiber sheet with solid particles attached to the surface, while still standing under a high temperature condition higher than the melting point of the thermoplastic resin,
An apparatus for producing a solid particle-supporting fiber sheet, comprising:
JP2011075945A 2011-03-30 2011-03-30 Manufacturing method and manufacturing apparatus for solid particle supporting fiber and sheet of solid particle supporting fiber Pending JP2012207354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011075945A JP2012207354A (en) 2011-03-30 2011-03-30 Manufacturing method and manufacturing apparatus for solid particle supporting fiber and sheet of solid particle supporting fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011075945A JP2012207354A (en) 2011-03-30 2011-03-30 Manufacturing method and manufacturing apparatus for solid particle supporting fiber and sheet of solid particle supporting fiber

Publications (1)

Publication Number Publication Date
JP2012207354A true JP2012207354A (en) 2012-10-25

Family

ID=47187330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011075945A Pending JP2012207354A (en) 2011-03-30 2011-03-30 Manufacturing method and manufacturing apparatus for solid particle supporting fiber and sheet of solid particle supporting fiber

Country Status (1)

Country Link
JP (1) JP2012207354A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535885U (en) * 1991-10-16 1993-05-14 クラレケミカル株式会社 Activated carbon impregnated fiber
JPH07268767A (en) * 1994-03-23 1995-10-17 Asahi Optical Co Ltd Production of functional nonwoven fabric
JP2003286660A (en) * 2002-03-25 2003-10-10 Japan Vilene Co Ltd Method for producing solid particle-carrying fiber, method for producing solid particle-carrying sheet and apparatus for producing the sheet
JP2004003070A (en) * 2001-09-06 2004-01-08 Japan Vilene Co Ltd Method and equipment for producing solid particle-bearing fiber and solid particle-bearing fiber sheet, and solid particle-bearing fiber and solid particle-bearing fiber sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535885U (en) * 1991-10-16 1993-05-14 クラレケミカル株式会社 Activated carbon impregnated fiber
JPH07268767A (en) * 1994-03-23 1995-10-17 Asahi Optical Co Ltd Production of functional nonwoven fabric
JP2004003070A (en) * 2001-09-06 2004-01-08 Japan Vilene Co Ltd Method and equipment for producing solid particle-bearing fiber and solid particle-bearing fiber sheet, and solid particle-bearing fiber and solid particle-bearing fiber sheet
JP2003286660A (en) * 2002-03-25 2003-10-10 Japan Vilene Co Ltd Method for producing solid particle-carrying fiber, method for producing solid particle-carrying sheet and apparatus for producing the sheet

Similar Documents

Publication Publication Date Title
JP4820426B2 (en) Solid particle carrying fiber and solid particle carrying fiber sheet
CA2641371C (en) Absorbent non-woven fibrous mats and process for preparing same
JP2015503682A (en) Apparatus and method for producing a nonwoven fibrous web
CN102212935A (en) Processing apparatus for hot-air treatment of nonwoven fabric and processing process for the same
JP5529518B2 (en) Nonwoven manufacturing method
KR20140105615A (en) Methods and apparatus for producing nonwoven fibrous webs
JP4300006B2 (en) Production method and production apparatus for solid particle carrying fiber and solid particle carrying fiber sheet
JP2012219391A (en) Method and apparatus for producing solid particle-carrying fiber and solid particle-carrying fiber sheet
JP2012207354A (en) Manufacturing method and manufacturing apparatus for solid particle supporting fiber and sheet of solid particle supporting fiber
JP2008031600A (en) Heat-resistant spun bond and cleaning sheet
JP2003286661A (en) Method for producing solid particle-carrying fiber, method for producing solid particle-carrying sheet and apparatus for producing the sheet
KR101400280B1 (en) An apparatus for electrospinning
JP6843035B2 (en) Non-woven fabric manufacturing method and non-woven fabric manufacturing equipment
JP5756362B2 (en) Solid particle fusion fiber and method for producing solid particle fusion fiber sheet
JP5756627B2 (en) Manufacturing method of shaped nonwoven fabric and manufacturing apparatus of shaped nonwoven fabric
JP2021116513A (en) Fiber structure manufacturing device, fiber structure manufacturing method, and fiber structure
JP2013204156A (en) Method for producing fiber sheet with fixed particles
JP2003286660A (en) Method for producing solid particle-carrying fiber, method for producing solid particle-carrying sheet and apparatus for producing the sheet
JP2009161889A (en) Manufacturing equipment of spunbond web
JPH0365878B2 (en)
JPS61118113A (en) Manufacture of bulky nonwoven filter
JP2004291180A (en) Coated abrasive, and method and apparatus for manufacturing the same
JPS6334133A (en) Organic fiber composite material in which generation of electrostatic trouble is reduced
KR20230072287A (en) Non-woven fabric, manufacturing method thereof, apparatus for manufacturing thereof and articles
KR20140069511A (en) An apparatus for electrospinning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407