JP2012206862A - Radiation shield of single crystal pulling-up apparatus - Google Patents

Radiation shield of single crystal pulling-up apparatus Download PDF

Info

Publication number
JP2012206862A
JP2012206862A JP2011071310A JP2011071310A JP2012206862A JP 2012206862 A JP2012206862 A JP 2012206862A JP 2011071310 A JP2011071310 A JP 2011071310A JP 2011071310 A JP2011071310 A JP 2011071310A JP 2012206862 A JP2012206862 A JP 2012206862A
Authority
JP
Japan
Prior art keywords
single crystal
insulating member
radiation shield
heat insulating
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011071310A
Other languages
Japanese (ja)
Inventor
Shinrin Fu
森林 符
Osamu Katayama
修 片山
Hiromichi Isogai
宏道 磯貝
Takashi Matsumura
尚 松村
Sunao Abe
直 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2011071310A priority Critical patent/JP2012206862A/en
Publication of JP2012206862A publication Critical patent/JP2012206862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation shield of a single crystal pulling-up apparatus, which is improved in the pulling-up speed of a single crystal and can suppress the generation of crystal defects and the dislocation of the crystal.SOLUTION: The radiation shield has a cylindrical straight barrel part 6b and a lower shoulder part 6c curving inward from the lower end of the straight barrel part and forming an opening on the lower end part. If the diameter of a single crystal to be grown is taken as Φ(mm), the thickness size tof the lower end part opening of a heat-insulating member 6d of the lower shoulder part is prescribed by expression (1): t=0.1Φto 0.5 Φ. When an inclined line at 45° against a horizontal surface described below is drawn toward the lower shoulder part from an intersection point of a virtual line extending downward the outer side surface of the heat-insulating member of the straight barrel part with the horizontal surface containing the lower end part of the heat-insulating member of the straight barrel part, the thickness size tof the heat-insulating member at the intersection point against the heat-insulating member is prescribed by expression (2): t≤2t.

Description

本発明は、チョクラルスキー法(以下、「CZ法」という)によって単結晶を育成しながら引き上げる単結晶引上装置が具備する輻射シールドに関する。   The present invention relates to a radiation shield provided in a single crystal pulling apparatus that pulls up a single crystal while growing it by the Czochralski method (hereinafter referred to as “CZ method”).

シリコン単結晶の育成に関し、CZ法が広く用いられている。この方法は、図7に示すように、ヒータ52の熱によりルツボ50内にシリコンの溶融液Mを形成し、その表面に種結晶Pを接触させ、ルツボ50を回転させるとともに、この種結晶Pを反対方向に回転させながら上方へ引上げることによって、種結晶Pの下端に単結晶Cを形成していくものである。   The CZ method is widely used for the growth of silicon single crystals. In this method, as shown in FIG. 7, a silicon melt M is formed in the crucible 50 by the heat of the heater 52, the seed crystal P is brought into contact with the surface thereof, the crucible 50 is rotated, and the seed crystal P The single crystal C is formed at the lower end of the seed crystal P by pulling upward while rotating in the opposite direction.

このCZ法を実施する単結晶引上装置においては、特許文献1に開示されるように、単結晶Cの引上領域を囲むように、ルツボの上方に輻射シールド51が設けられる。この輻射シールド51は、育成する単結晶Cの外周面への輻射熱を効果的に遮断するものであって、これにより引き上げ中の単結晶Cの凝固を促進し、単結晶Cを速やかに冷却することができる。
また、図示するように輻射シールド51の内側に水冷体53を配置した構成の場合には結晶からの抜熱効果が向上するため、引上速度を速くすることができる。
また、シールド内面に断熱材54を設けることによって、輻射熱を効果的に遮蔽することができる。
In the single crystal pulling apparatus that performs this CZ method, as disclosed in Patent Document 1, a radiation shield 51 is provided above the crucible so as to surround the pulling region of the single crystal C. The radiation shield 51 effectively blocks the radiant heat to the outer peripheral surface of the single crystal C to be grown, thereby promoting the solidification of the single crystal C being pulled up and quickly cooling the single crystal C. be able to.
Moreover, in the case of the structure which has arrange | positioned the water cooling body 53 inside the radiation shield 51 so that it may show in figure, since the heat removal effect from a crystal | crystallization improves, pulling-up speed can be made quick.
Further, by providing the heat insulating material 54 on the shield inner surface, the radiant heat can be effectively shielded.

特開2010−52982号公報JP 2010-52982 A

ところで、図7の構成にあっては、図8に輻射シールド51の一部拡大図を示すように、シールド内側の断熱材54は、結晶外周面からの熱を効率的に散発するために、シールド下端部開口における厚さ寸法t1が薄く形成されている。 By the way, in the configuration of FIG. 7, as shown in FIG. 8, a partially enlarged view of the radiation shield 51, the heat insulating material 54 inside the shield efficiently dissipates heat from the crystal outer peripheral surface. The thickness t 1 at the shield lower end opening is formed thin.

しかしながら、その場合、固液界面近傍の結晶外周面に対する熱遮蔽効果が不十分となるため、結晶外周近傍の熱流束(図7の溶融液M中に示す矢印、及び単結晶C中に示す矢印)が結晶中心部よりも非常に大きくなり、結晶外周近傍の溶融液内において、過冷却部M1が発生しやすいという課題があった。
また、特に、図示するように水冷体53が配置され、更にルツボ側方からの横磁場印加がなされる構成にあっては、溶融液Mにおいて中央から外側に向かう離心流(図示せず)が発生するため、それにより図6に示すように結晶の周りに一層、過冷却部M1が形成されやすくなり、育成する単結晶が有転位化しやすいという課題があった。
However, in that case, since the heat shielding effect on the crystal outer peripheral surface in the vicinity of the solid-liquid interface becomes insufficient, the heat flux in the vicinity of the crystal outer periphery (the arrow shown in the melt M and the arrow shown in the single crystal C in FIG. 7). ) Is much larger than the center portion of the crystal, and there is a problem that the supercooled portion M1 is likely to occur in the melt near the periphery of the crystal.
In particular, in the configuration in which the water-cooled body 53 is arranged as shown in the drawing and a lateral magnetic field is applied from the side of the crucible, an eccentric flow (not shown) from the center to the outside is caused in the melt M. Therefore, as shown in FIG. 6, the supercooling part M <b> 1 is more easily formed around the crystal, and there is a problem that the single crystal to be grown is easily dislocated.

一方、前記シールド開口部における断熱材54の厚さ寸法t1を厚く形成した場合には、結晶外周面からの熱が散発され難くなるため、結晶引上速度を速くすることができず、グローイン欠陥などの結晶欠陥が発生しやすくなるという別の課題があった。 On the other hand, when the thickness t 1 of the heat insulating material 54 at the shield opening is formed thick, heat from the outer peripheral surface of the crystal is difficult to be scattered, so that the crystal pulling speed cannot be increased, and the glow-in Another problem is that crystal defects such as defects are likely to occur.

本発明は、前記したような事情の下になされたものであり、チョクラルスキー法によってルツボからシリコン単結晶を引上げる単結晶引上装置の輻射シールドであって、単結晶の引上速度を向上して結晶欠陥の発生を抑制し、且つ、結晶の有転位化を抑制できる単結晶引上装置の輻射シールドを提供することを目的とする。   The present invention has been made under the circumstances as described above, and is a radiation shield of a single crystal pulling apparatus that pulls a silicon single crystal from a crucible by the Czochralski method, and has a single crystal pulling speed. An object of the present invention is to provide a radiation shield for a single crystal pulling apparatus that can improve the generation of crystal defects and suppress dislocations of crystals.

前記課題を解決するためになされた、本発明に係る単結晶引上装置の輻射シールドは、種結晶をルツボ内のシリコン溶融液に接触させ、チョクラルスキー法によりシリコン単結晶を引き上げる単結晶引上装置において、引き上げられるシリコン単結晶を包囲するように前記ルツボ上方に配置されると共に、所定の厚さに形成された外筒部材と、前記外筒部材の内側に設けられた断熱部材とからなる輻射シールドであって、円筒状の直胴部と、前記直胴部の下端から内側に湾曲し、下端部に開口を形成する下肩部とを有し、育成する単結晶の直径をΦcry(mm)とすると、前記下肩部における断熱部材の下端部開口の厚さ寸法t1は、式(1)により規定され、前記直胴部における断熱部材の外側面を下方に延長した仮想線と、前記下肩部における断熱部材の下端部を含む水平面との交点から、水平面に対して45°の傾斜線を前記下肩部に向けてひいたとき、その断熱部材に対する交点における断熱部材の厚さ寸法t2は、式(2)により規定されることに特徴を有する。
[数1]
1=0.1Φcry〜0.5Φcry ・・・式(1)
2≦2t1 ・・・式(2)
尚、前記断熱部材は、カーボン繊維からなるフェルト材によって形成されていることが望ましい。
また、前記下肩部における断熱部材は、その内側面が断面放物線状に形成され、外側面が断面円弧状に形成されていることが望ましい。
The radiation shield of the single crystal pulling apparatus according to the present invention, which has been made to solve the above problems, is a single crystal pulling method in which a seed crystal is brought into contact with a silicon melt in a crucible and the silicon single crystal is pulled up by the Czochralski method. In the upper device, the outer cylinder member is disposed above the crucible so as to surround the silicon single crystal to be pulled up, and has a predetermined thickness, and a heat insulating member provided inside the outer cylinder member A radiation shield comprising: a cylindrical straight body portion; a lower shoulder portion that curves inward from the lower end of the straight body portion and forms an opening at the lower end portion; and the diameter of a single crystal to be grown is Φ Assuming that cry (mm), the thickness t 1 of the lower end opening of the heat insulating member in the lower shoulder is defined by the equation (1), and the virtual surface in which the outer surface of the heat insulating member in the straight body is extended downward. Line and the lower shoulder That from the intersection of the horizontal plane including the lower end portion of the heat insulating member, when the sloping line of 45 ° to the horizontal plane drawn toward the lower shoulder, the thickness t 2 of the heat insulating member at the intersection for the heat insulating member , Defined by the formula (2).
[Equation 1]
t 1 = 0.1Φ cry to 0.5Φ cry Formula (1)
t 2 ≦ 2t 1 Formula (2)
The heat insulating member is preferably formed of a felt material made of carbon fiber.
In addition, it is desirable that the heat insulating member in the lower shoulder portion has an inner side surface formed in a parabolic cross section and an outer side surface formed in a circular arc shape.

このように構成することにより、下肩部における断熱部材の下端部開口の厚さ寸法t1が薄すぎることがなく、固液界面近傍の結晶外周面に対し充分に熱遮蔽することができ、結晶外周における熱流束を低減することができる。その結果、結晶外周近傍の溶融液における過冷却の発生を抑制し、結晶の有転位化を防止することができる。
また、下肩部における断熱部材の厚さ寸法t2が適度に薄く形成されるため、輻射シールド内の水冷体を配置した場合に、水冷体を溶融液面に近づけることができ、結晶中心部を効果的に冷却することができる。
即ち、結晶の引上速度を向上できるため、欠陥析出温度帯の通過時間を短縮することができ、欠陥発生を抑制することができる。
With this configuration, there is no thickness t 1 of the lower end opening of the heat insulating member in the lower shoulder is too thin, sufficient can heat shield to the crystal outer peripheral surface near the solid-liquid interface, The heat flux at the crystal periphery can be reduced. As a result, it is possible to suppress the occurrence of supercooling in the melt near the crystal periphery and to prevent dislocation of the crystal.
Further, since the thickness t 2 of the insulating member under a shoulder portion is formed moderately thin, in the case of arranging the water-cooling structure in the radiation shield, it is possible to approximate the water-cooling structure to melt surface, the crystal center Can be effectively cooled.
That is, since the pulling speed of the crystal can be improved, the transit time of the defect precipitation temperature zone can be shortened, and the generation of defects can be suppressed.

本発明によれば、チョクラルスキー法によってルツボからシリコン単結晶を引上げる単結晶引上装置の輻射シールドであって、単結晶の引上速度を向上して結晶欠陥の発生を抑制し、且つ、結晶の有転位化を抑制できる単結晶引上装置の輻射シールドを得ることができる。   According to the present invention, a radiation shield of a single crystal pulling apparatus that pulls a silicon single crystal from a crucible by the Czochralski method, the single crystal pulling speed is improved to suppress the occurrence of crystal defects, and Thus, it is possible to obtain a radiation shield of a single crystal pulling apparatus that can suppress the dislocation of crystals.

図1は、本発明に係る輻射シールドが配置された単結晶引上装置の一部構成を示す断面図である。FIG. 1 is a sectional view showing a partial configuration of a single crystal pulling apparatus in which a radiation shield according to the present invention is arranged. 図2は、図1の単結晶引上装置が具備する輻射シールドの一部拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view of the radiation shield provided in the single crystal pulling apparatus of FIG. 図3(a)〜図3(f)は、本発明に係る輻射シールドの変形例を示す一部拡大断面図である。FIG. 3A to FIG. 3F are partially enlarged cross-sectional views showing modifications of the radiation shield according to the present invention. 図4(a)〜図4(d)は、本発明に係る輻射シールドの変形例を示す一部拡大断面図である。4 (a) to 4 (d) are partially enlarged cross-sectional views showing modifications of the radiation shield according to the present invention. 図5は、実施例1と比較例1の実験結果を示すグラフである。FIG. 5 is a graph showing experimental results of Example 1 and Comparative Example 1. 図6は、磁場印加方向との交差角度θ(deg)を説明するために概略図である。FIG. 6 is a schematic diagram for explaining the intersection angle θ (deg) with the magnetic field application direction. 図7は、従来の輻射シールドが配置された単結晶引上装置の一部構成を示す断面図である。FIG. 7 is a sectional view showing a partial configuration of a single crystal pulling apparatus in which a conventional radiation shield is arranged. 図8は、図7の単結晶引上装置が具備する輻射シールドの一部拡大断面図である。FIG. 8 is a partially enlarged cross-sectional view of the radiation shield provided in the single crystal pulling apparatus of FIG.

以下、本発明に係る単結晶引上装置の輻射シールドの実施形態について図面に基づき説明する。図1は本発明に係る輻射シールドが配置された単結晶引上装置の一部構成を示す断面図である。
この単結晶引上装置1は、炉体(図示せず)内に設けられたルツボ2と、ルツボ2に装填された半導体原料(原料ポリシリコン)Mを溶融するヒータ3と、育成される単結晶Cをワイヤ4で引上げる引上げ機構5とを有している。尚、ルツボ2は、二重構造であり、内側が石英ガラスルツボ、外側が黒鉛ルツボで構成されている。また、ワイヤ4の先端に種結晶Pが取り付けられている。
Hereinafter, embodiments of a radiation shield of a single crystal pulling apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a partial configuration of a single crystal pulling apparatus in which a radiation shield according to the present invention is arranged.
This single crystal pulling apparatus 1 includes a crucible 2 provided in a furnace body (not shown), a heater 3 for melting a semiconductor material (raw material polysilicon) M loaded in the crucible 2, and a single unit to be grown. And a pulling mechanism 5 for pulling up the crystal C with the wire 4. The crucible 2 has a double structure, and is composed of a quartz glass crucible on the inside and a graphite crucible on the outside. A seed crystal P is attached to the tip of the wire 4.

また、ルツボ2の上方且つ近傍には、本発明に係る輻射シールド6が設けられている。この輻射シールド6は、単結晶Cの周囲を包囲するよう上部と下部が開口形成され、育成中の単結晶Cに対するヒータ3や溶融液M等からの余計な輻射熱を遮蔽する。また、輻射シールド6は、所定の厚さに形成された外筒部材7が炉体(図示せず)に固定され、外筒部7の内側に断熱部材8が設けられることによって構成されている。   A radiation shield 6 according to the present invention is provided above and in the vicinity of the crucible 2. The radiation shield 6 has an upper portion and a lower portion formed so as to surround the periphery of the single crystal C, and shields extra radiant heat from the heater 3, the melt M, and the like on the growing single crystal C. Further, the radiation shield 6 is configured by an outer cylinder member 7 having a predetermined thickness being fixed to a furnace body (not shown) and a heat insulating member 8 being provided inside the outer cylinder portion 7. .

前記外筒部材7は、例えば高純度な黒鉛、或いは表面にSiCがコーティングされた黒鉛により形成されている。また、前記断熱部材8は、例えばカーボン繊維からなるフェルト材によって形成されている。
尚、輻射シールド6下端と溶融液面との間の距離寸法(ギャップ)は、育成する単結晶の所望の特性に応じて所定の距離を維持するよう制御される。
The outer cylinder member 7 is made of, for example, high-purity graphite or graphite whose surface is coated with SiC. Moreover, the said heat insulation member 8 is formed with the felt material which consists of carbon fibers, for example.
The distance dimension (gap) between the lower end of the radiation shield 6 and the melt surface is controlled so as to maintain a predetermined distance according to desired characteristics of the single crystal to be grown.

前記輻射シールド6は、図2の一部拡大断面図に示すように、上端に形成され、炉体(図示せず)に固定されるフランジ部6aと、フランジ部6aの内周縁から下方に延びる円筒状の直胴部6bと、直胴部6bの下端から内側に湾曲し、下端部に開口を形成する下肩部6cとからなる。
下肩部6cにおける断熱部材8は、その内側面6dが、断面放物線状に形成され、外側面6eが、断面円弧状に形成されている。
また、育成する単結晶Cの直径をΦcry(mm)とすると、輻射シールド6の下端部開口における断熱部材8の厚さ寸法t1は、式(1)で規定される。
As shown in the partially enlarged sectional view of FIG. 2, the radiation shield 6 is formed at the upper end, and is fixed to a furnace body (not shown), and extends downward from the inner peripheral edge of the flange portion 6a. It consists of a cylindrical straight body 6b and a lower shoulder 6c that curves inward from the lower end of the straight body 6b and forms an opening at the lower end.
As for the heat insulation member 8 in the lower shoulder part 6c, the inner surface 6d is formed in the cross-sectional parabola shape, and the outer surface 6e is formed in the cross-section arc shape.
When the diameter of the single crystal C to be grown is Φ cry (mm), the thickness dimension t 1 of the heat insulating member 8 at the lower end opening of the radiation shield 6 is defined by Expression (1).

[数2]
1=0.1Φcry〜0.5Φcry ・・・式(1)
また、直胴部6bにおける断熱部材8の外側面を下方に延長した仮想線と、下肩部6cにおける断熱部材8の下端の高さの水平面との交点Cから、水平面に対して45°の傾斜線を下肩部6cに向けてひいたとき、断熱部材8に対する交点Dにおける断熱部材8の厚さ寸法tは、式(2)で規定される。この厚さ寸法tは前記交点Dを通る断熱部材8の内側面に垂直な垂線上の長さ寸法である。
[Equation 2]
t 1 = 0.1Φ cry to 0.5Φ cry Formula (1)
Also, from the intersection C between the imaginary line extending the outer surface of the heat insulating member 8 in the straight body portion 6b downward and the horizontal plane at the lower end of the heat insulating member 8 in the lower shoulder portion 6c, it is 45 ° to the horizontal plane. when the sloping line drawn towards the Shitakata portion 6c, the thickness t 2 of the heat insulating member 8 at the intersection D with respect to the heat insulating member 8 is defined by equation (2). The thickness t 2 is the length of the line perpendicular to the inner surface of the heat insulating member 8 through the intersection D.

[数3]
2≦2t1 ・・・式(2)
また、輻射シールド6の下端開口の直径Φ1は、式(3)で規定される。
[数4]
Φcry+50mm≧Φ1≧Φcry ・・・式(3)
また、輻射シールド6の直胴部内径Φ2は、式(4)で規定される。
[数5]
Φ2=1.5Φcry〜3Φcry ・・・式(4)
[Equation 3]
t 2 ≦ 2t 1 Formula (2)
Further, the diameter Φ1 of the lower end opening of the radiation shield 6 is defined by Expression (3).
[Equation 4]
Φ cry + 50mm ≧ Φ 1 ≧ Φ cry Formula (3)
Moreover, the straight body part inner diameter Φ2 of the radiation shield 6 is defined by the equation (4).
[Equation 5]
Φ 2 = 1.5Φ cry 〜3Φ cry・ ・ ・ Formula (4)

また、輻射シールド6の直胴部6bの内側であって、下肩部6cの上方には、円筒状の水冷体9が配備されている。この水冷体9には、冷却水供給手段(図示せず)によって冷却水が供給され、循環することによって所定温度が維持されるように構成されている。   A cylindrical water-cooled body 9 is disposed inside the straight body portion 6b of the radiation shield 6 and above the lower shoulder portion 6c. The water cooling body 9 is configured to be supplied with cooling water by a cooling water supply means (not shown) and circulate to maintain a predetermined temperature.

前記のように構成された輻射シールド6によれば、下肩部6cの下端部開口における断熱部材8の厚さ寸法t1が式(1)に従い規定されている。これにより、前記下端部開口の厚さ寸法t1が薄すぎることがなく、結晶外周面に対し充分に熱遮蔽することができ、結晶外周における熱流束を低減することができる。その結果、結晶外周近傍の溶融液における過冷却の発生を抑制し、結晶の有転位化を防止することができる。 According to the radiation shield 6 configured as described above, the thickness dimension t 1 of the heat insulating member 8 at the lower end opening of the lower shoulder 6c is defined according to the equation (1). Thereby, the thickness t 1 of the lower end opening is not too thin, and the heat can be sufficiently shielded from the crystal outer peripheral surface, and the heat flux at the crystal outer periphery can be reduced. As a result, it is possible to suppress the occurrence of supercooling in the melt near the crystal periphery and to prevent dislocation of the crystal.

また、下肩部6cの厚さ寸法t2が式(2)に従い規定され、これにより下肩部6cにおける断熱部材8の厚さ寸法が適度に薄く形成されるため、水冷体9を溶融液面に近づけることができ、結晶中心部を効果的に冷却することができる。
即ち、結晶の引上速度を向上し、欠陥析出温度帯の通過時間を短縮することができ、欠陥発生を抑制することができる。
Further, the thickness dimension t 2 of the lower shoulder portion 6c is defined according to the formula (2), whereby the thickness dimension of the heat insulating member 8 in the lower shoulder portion 6c is formed to be appropriately thin. The crystal center can be effectively cooled.
That is, the crystal pulling speed can be improved, the transit time of the defect precipitation temperature zone can be shortened, and the generation of defects can be suppressed.

尚、前記実施の形態においては、輻射シールド6の下肩部6c(断熱部材8)の形状について、その内側面6dを、断面放物線状に形成し、外側面6eを、断面円弧状に形成したものを示した。
しかしながら、本発明に係る輻射シールド6は、それに限定されることなく、前記式(1)、及び式(2)を満足する形状であれば、前記した効果を得ることができる。
例えば、図3(a)〜図3(f)、図4(a)〜図4(d)に示す変形例のいずれかの形状であってもよい。
In the embodiment described above, the lower shoulder 6c (heat insulating member 8) of the radiation shield 6 has an inner side surface 6d formed in a parabolic section and an outer surface 6e formed in an arc shape in section. Showed things.
However, the radiation shield 6 according to the present invention is not limited thereto, and the above-described effects can be obtained as long as the shape satisfies the expressions (1) and (2).
For example, the shape may be any one of the modifications shown in FIGS. 3A to 3F and FIGS. 4A to 4D.

本発明に係る単結晶引上装置の輻射シールドについて、実施例に基づきさらに説明する。本実施例では、前記実施形態に示した輻射シールドを用いて単結晶引き上げを行った。   The radiation shield of the single crystal pulling apparatus according to the present invention will be further described based on examples. In this example, single crystal pulling was performed using the radiation shield shown in the above embodiment.

(実施例1)
実施例1では、結晶外周直下における溶融液の温度分布を測定した。具体的な条件としては、ルツボへの原料シリコンのチャージ量を370kg、育成する単結晶の直径を300mm、結晶長さを1700mm、磁場強度(磁束密度)を3000ガウス、磁場位置を0mm、ルツボ下端と溶融液面とのギャップを20mmとした。
また、輻射シールドは、下端部開口における断熱部材の厚さ寸法t1を55mm、下肩部中央における断熱部材の厚さ寸法t2を60mmに形成したものを用いた。
Example 1
In Example 1, the temperature distribution of the melt immediately below the crystal periphery was measured. Specifically, the amount of silicon charged to the crucible is 370 kg, the diameter of the single crystal to be grown is 300 mm, the crystal length is 1700 mm, the magnetic field strength (magnetic flux density) is 3000 gauss, the magnetic field position is 0 mm, and the lower end of the crucible The gap between the melt and the melt surface was 20 mm.
The radiation shield used was a heat insulation member having a thickness t 1 of 55 mm at the lower end opening and a heat insulation member thickness t 2 of 60 mm at the center of the lower shoulder.

(比較例1)
比較例1では、前記実施例1の条件のうち、厚さ寸法t1を20mm、厚さ寸法t2を100mmに形成したものを用いた。
図5に実施例1、並びに比較例1の結果をグラフとして示す。このグラフにおいて、横軸は、磁場印加方向との交差角度θ(deg)であり、縦軸は、溶融液温度(K)である。尚、磁場印加方向との交差角度θ(deg)とは、図6に示すように、ルツボ2の中心を通るシリコン溶融液Mの任意垂直断面とシリコン溶融液表面とが接する交線Lが磁場印加方向Bを0度として反時計方向になす角度である。
図5に示すように、比較例1では、磁場印加方向に拘わらず、シリコン融点を下回る(過冷却が生じやすい)結果となったが、本発明の構成であれば、溶融液温度がシリコン融点を殆ど下回ることが無く、過冷却が生じないことを確認した。
(Comparative Example 1)
In the comparative example 1, among the conditions of the example 1, the one having the thickness dimension t 1 of 20 mm and the thickness dimension t 2 of 100 mm was used.
FIG. 5 shows the results of Example 1 and Comparative Example 1 as a graph. In this graph, the horizontal axis represents the crossing angle θ (deg) with the magnetic field application direction, and the vertical axis represents the melt temperature (K). Note that the crossing angle θ (deg) with the magnetic field application direction is defined as an intersection line L where an arbitrary vertical section of the silicon melt M passing through the center of the crucible 2 and the silicon melt surface contact each other as shown in FIG. This is an angle formed in the counterclockwise direction with the application direction B as 0 degree.
As shown in FIG. 5, in Comparative Example 1, the result was lower than the silicon melting point (supercooling is likely to occur) regardless of the magnetic field application direction. However, in the configuration of the present invention, the melt temperature is the silicon melting point. It was confirmed that supercooling did not occur.

(実施例2)
実施例2では、実施例1の条件において、300mmの結晶長さ育成後における無転位化率を10本の引上本数に基づき求めた。
(比較例2)
比較例2では、比較例2の条件において、300mmの結晶長さ形成後における無転位化率を10本の引上本数に基づき求めた。
表1に、実施例2、並びに比較例2の結果(無転位化率)を示す。
(Example 2)
In Example 2, the dislocation-free rate after the growth of the crystal length of 300 mm was obtained based on the number of 10 pulled up under the conditions of Example 1.
(Comparative Example 2)
In Comparative Example 2, under the conditions of Comparative Example 2, the dislocation-free rate after forming a 300 mm crystal length was determined based on the number of ten pulls.
Table 1 shows the results (dislocation-free rate) of Example 2 and Comparative Example 2.

Figure 2012206862
表1に示すように、実施例2では、10本中8本について無転位化を達成することができた。一方、比較例2では、10本中1本のみを無転位のまま引き上げることが出来た。
Figure 2012206862
As shown in Table 1, in Example 2, dislocation-free formation was achieved for 8 out of 10 pieces. On the other hand, in Comparative Example 2, only 1 out of 10 was able to be pulled up without dislocation.

(実施例3)
実施例3では、実施例1の条件において、結晶長さ500mmまで育成したときの単結晶引上速度と、結晶中のグローイン欠陥密度について測定した。
(比較例3)
比較例3では、比較例1の条件において、結晶長さ500mmまで育成したときの単結晶引上速度と、結晶中のグローイン欠陥密度について測定した。
(Example 3)
In Example 3, under the conditions of Example 1, the single crystal pulling speed when grown to a crystal length of 500 mm and the glow-in defect density in the crystal were measured.
(Comparative Example 3)
In Comparative Example 3, the single crystal pulling speed when grown to a crystal length of 500 mm under the conditions of Comparative Example 1 and the glow-in defect density in the crystal were measured.

表2に、実施例3、並びに比較例3の結果(引上速度、グローイン欠陥密度)を示す。尚、表中の引上速度は、比較例3での引上速度に対する相対速度(割合)で示す。また、グローイン欠陥密度は、実施例3でのウエハ面内の80nm以上のグローイン欠陥数と、比較例3での欠陥数との比率を示す。   Table 2 shows the results (pulling speed, glow-in defect density) of Example 3 and Comparative Example 3. The pulling speed in the table is shown as a relative speed (ratio) with respect to the pulling speed in Comparative Example 3. The glow-in defect density indicates a ratio between the number of glow-in defects of 80 nm or more in the wafer surface in Example 3 and the number of defects in Comparative Example 3.

Figure 2012206862
Figure 2012206862

表2に示すように、実施例3では、従来よりも引上速度を30%向上することができた。また、従来よりもグローイン欠陥を20%低減することができた。
以上の実施例の結果より、本発明に係る輻射シールドによれば、単結晶の引上速度を向上して結晶欠陥の発生を抑制し、且つ、結晶の有転位化を抑制できることを確認した。
As shown in Table 2, in Example 3, the pulling speed could be improved by 30% compared to the conventional example. In addition, the glow-in defects could be reduced by 20% compared to the prior art.
From the results of the above examples, it was confirmed that according to the radiation shield of the present invention, the pulling speed of the single crystal can be improved, the generation of crystal defects can be suppressed, and the dislocation of the crystal can be suppressed.

1 単結晶引上装置
2 ルツボ
3 ヒータ
4 ワイヤ
5 引上機構
6 輻射シールド
6a フランジ部
6b 直胴部
6c 下肩部
7 外筒部材
8 断熱部材
9 水冷部材
C 単結晶
M シリコン溶融液
P 種結晶
θ 磁場印加方向との交差角
DESCRIPTION OF SYMBOLS 1 Single crystal pulling apparatus 2 Crucible 3 Heater 4 Wire 5 Pulling mechanism 6 Radiation shield 6a Flange part 6b Straight trunk | drum 6c Lower shoulder part 7 Outer cylinder member 8 Heat insulation member 9 Water cooling member C Single crystal M Silicon melt P Seed crystal θ Crossing angle with magnetic field application direction

Claims (3)

種結晶をルツボ内のシリコン溶融液に接触させ、チョクラルスキー法によりシリコン単結晶を引き上げる単結晶引上装置において、引き上げられるシリコン単結晶を包囲するように前記ルツボ上方に配置されると共に、所定の厚さに形成された外筒部材と、前記外筒部材の内側に設けられた断熱部材とからなる輻射シールドであって、
円筒状の直胴部と、前記直胴部の下端から内側に湾曲し、下端部に開口を形成する下肩部とを有し、
育成する単結晶の直径をΦcry(mm)とすると、前記下肩部における断熱部材の下端部開口の厚さ寸法t1は、式(1)により規定され、
前記直胴部における断熱部材の外側面を下方に延長した仮想線と、前記下肩部における断熱部材の下端部を含む水平面との交点から、水平面に対して45°の傾斜線を前記下肩部に向けてひいたとき、その断熱部材に対する交点における断熱部材の厚さ寸法t2は、式(2)により規定されることを特徴とする単結晶引上装置の輻射シールド。
[数1]
1=0.1Φcry〜0.5Φcry ・・・式(1)
2≦2t1 ・・・式(2)
In a single crystal pulling apparatus for bringing a seed crystal into contact with a silicon melt in a crucible and pulling the silicon single crystal by the Czochralski method, the seed crystal is disposed above the crucible so as to surround the silicon single crystal to be pulled, A radiation shield consisting of an outer cylinder member formed to a thickness of, and a heat insulating member provided inside the outer cylinder member,
A cylindrical straight body, and a lower shoulder that curves inward from the lower end of the straight body and forms an opening at the lower end;
When the diameter of the single crystal to be grown is Φ cry (mm), the thickness dimension t 1 of the lower end opening of the heat insulating member in the lower shoulder is defined by the equation (1),
An inclined line of 45 ° with respect to a horizontal plane is formed on the lower shoulder from the intersection of an imaginary line extending the outer surface of the heat insulating member in the straight body portion downward and a horizontal plane including the lower end of the heat insulating member in the lower shoulder. when drawn toward the part, the radiation shield of the thickness t 2 of the heat insulating member at the intersection relative to the heat insulating member may be defined by equation (2) single crystal pulling apparatus.
[Equation 1]
t 1 = 0.1Φ cry to 0.5Φ cry Formula (1)
t 2 ≦ 2t 1 Formula (2)
前記断熱部材は、カーボン繊維からなるフェルト材によって形成されていることを特徴とする請求項1に記載された単結晶引上装置の輻射シールド。   The radiation shield for a single crystal pulling apparatus according to claim 1, wherein the heat insulating member is formed of a felt material made of carbon fiber. 前記下肩部における断熱部材は、その内側面が断面放物線状に形成され、外側面が断面円弧状に形成されていることを特徴とする請求項1または請求項2に記載された単結晶引上装置の輻射シールド。   3. The single crystal pulling according to claim 1, wherein an inner surface of the heat insulating member in the lower shoulder portion is formed in a parabolic section and an outer surface is formed in an arc shape in cross section. Radiation shield for upper device.
JP2011071310A 2011-03-29 2011-03-29 Radiation shield of single crystal pulling-up apparatus Pending JP2012206862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071310A JP2012206862A (en) 2011-03-29 2011-03-29 Radiation shield of single crystal pulling-up apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071310A JP2012206862A (en) 2011-03-29 2011-03-29 Radiation shield of single crystal pulling-up apparatus

Publications (1)

Publication Number Publication Date
JP2012206862A true JP2012206862A (en) 2012-10-25

Family

ID=47186952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071310A Pending JP2012206862A (en) 2011-03-29 2011-03-29 Radiation shield of single crystal pulling-up apparatus

Country Status (1)

Country Link
JP (1) JP2012206862A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327481A (en) * 1999-05-25 2000-11-28 Komatsu Electronic Metals Co Ltd Production of single crystal and its apparatus
JP2004107132A (en) * 2002-09-18 2004-04-08 Sumitomo Mitsubishi Silicon Corp Heat shielding member for silicon single crystal pulling apparatus
JP2004123516A (en) * 2002-09-13 2004-04-22 Toshiba Ceramics Co Ltd Device for pulling up single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327481A (en) * 1999-05-25 2000-11-28 Komatsu Electronic Metals Co Ltd Production of single crystal and its apparatus
JP2004123516A (en) * 2002-09-13 2004-04-22 Toshiba Ceramics Co Ltd Device for pulling up single crystal
JP2004107132A (en) * 2002-09-18 2004-04-08 Sumitomo Mitsubishi Silicon Corp Heat shielding member for silicon single crystal pulling apparatus

Similar Documents

Publication Publication Date Title
JP3944879B2 (en) Single crystal ingot production equipment
JP4095975B2 (en) Method and apparatus for producing silicon single crystal, silicon single crystal and semiconductor wafer cut from the same
JP5904079B2 (en) Silicon single crystal growing apparatus and silicon single crystal growing method
JP5141020B2 (en) Casting method of polycrystalline silicon
US20100101485A1 (en) Manufacturing method of silicon single crystal
US9217208B2 (en) Apparatus for producing single crystal
US20120304916A1 (en) Method of producing silicon carbide single crystal
JP2001220289A (en) Production unit of high quality silicon single crystal
US9738989B2 (en) Single-crystal manufacturing apparatus and method of manufacturing single crystal
US20130220216A1 (en) Method and an apparatus for growing a silicon single crystal from a melt
JP6202119B2 (en) Method for producing silicon single crystal
JP2014080302A (en) Single crystal pulling apparatus and single crystal pulling method
JP5782323B2 (en) Single crystal pulling method
JP6121422B2 (en) System with additional lateral heat source for making crystalline materials by directional solidification
JP5392040B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2012206862A (en) Radiation shield of single crystal pulling-up apparatus
JP6354615B2 (en) Method for producing SiC single crystal
US20210140065A1 (en) Semiconductor crystal growth apparatus
US20130247815A1 (en) Single crystal production apparatus and method for producing single crystal
JP2009292684A (en) Silicon single crystal production method and production apparatus therefore
JP2007210820A (en) Method of manufacturing silicon single crystal
JP4150167B2 (en) Method for producing silicon single crystal
JP2013010646A (en) Single crystal pulling apparatus
JP6702169B2 (en) Heat shield member, single crystal pulling apparatus, and method for manufacturing single crystal silicon ingot
WO2022249614A1 (en) Monocrystal production device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140702