JP2012205398A - Linear drive device and linear generator - Google Patents

Linear drive device and linear generator Download PDF

Info

Publication number
JP2012205398A
JP2012205398A JP2011067853A JP2011067853A JP2012205398A JP 2012205398 A JP2012205398 A JP 2012205398A JP 2011067853 A JP2011067853 A JP 2011067853A JP 2011067853 A JP2011067853 A JP 2011067853A JP 2012205398 A JP2012205398 A JP 2012205398A
Authority
JP
Japan
Prior art keywords
mover
stator
coil
levitation
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011067853A
Other languages
Japanese (ja)
Other versions
JP5803195B2 (en
Inventor
Kosuke Aiki
宏介 相木
Hidemasa Kosaka
英雅 小坂
Yoshihiro Hotta
義博 堀田
Yuichi Oteru
祐一 大輝
Kiyomi Nakakita
清己 中北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2011067853A priority Critical patent/JP5803195B2/en
Publication of JP2012205398A publication Critical patent/JP2012205398A/en
Application granted granted Critical
Publication of JP5803195B2 publication Critical patent/JP5803195B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress eccentricity of a mover which reciprocates with respect to a stator in a linear drive device and a linear generator.SOLUTION: Stator cores 12 and stator coils 14 are stacked in an axial direction in a cylindrical stator 10 and a mover core 22 and a mover permanent magnet 24 are provided on a mover 20. Levitation coils 16, which are provided on a tip of the stator core 12 and sandwich the mover 20 oppositely, are connected with each other by null flux wires. When eccentricity of the mover 20 is generated, the mover 20 is restored to a central axis by an electromagnetic force due to induction current generated in the levitation coil 16. Power is supplied from the outside to the levitation coil 16 on an end position where moving velocity of the mover 20 is low.

Description

本発明はリニア駆動/発電装置、特に浮上コイルの構成に関する。   The present invention relates to a linear drive / power generation device, and more particularly to a configuration of a floating coil.

従来から、リニアモータ等のリニア駆動装置や、フリーピストンを用いたリニア発電装置が知られている。   Conventionally, linear drive devices such as linear motors and linear power generation devices using free pistons are known.

下記の特許文献1には、軸方向に永久磁石を配置した棒状の固定子と、その外側に配置された電機子コイルを装着した可動子からなるリニアモータにおいて、固定子の撓み等による接触から保護し、固定子と可動子の空隙を一定に保持するための空気静圧軸受を備える構成が開示されている。   In the following Patent Document 1, in a linear motor composed of a rod-shaped stator in which permanent magnets are arranged in the axial direction and a mover equipped with an armature coil arranged on the outside thereof, contact due to deflection of the stator, etc. A configuration including an aerostatic bearing for protecting and maintaining a constant gap between the stator and the mover is disclosed.

また、特許文献2には、軸方向に永久磁石を配置した棒状の固定子と、その外側に配置された電機子コイルを装着した可動子からなるリニアモータにおいて、固定子の撓み等による接触から保護するために、可動子と固定子の間にアルミニウム製のコイル保護パイプを備える構成が開示されている。   Further, in Patent Document 2, in a linear motor including a rod-shaped stator in which permanent magnets are arranged in the axial direction and a mover equipped with an armature coil arranged on the outside thereof, contact due to deflection of the stator or the like is avoided. In order to protect, the structure provided with the coil protection pipe made from aluminum between a needle | mover and a stator is disclosed.

また、特許文献3には、フリーピストンエンジン駆動リニア発電装置の構成が開示されており、シャフトをその中心軸回りに回転運動させる回転手段を設けることが開示されている。   Patent Document 3 discloses a configuration of a free-piston engine-driven linear power generator, and discloses that a rotating unit that rotates the shaft about its central axis is provided.

また、特許文献4には、リニアモータ及びこれを駆動源とするプレス成形装置が開示されている。ステータの内周面に沿いかつ軸線方向に伸びるコアとこのコア内に整列配設された複数のコイルとを含むコイルユニットを取り付け、ステータの両端側に装着されたリニアブッシュで軸線方向に往復直線運動可能に支持されたロッドの外周面に永久磁石ユニットを取り付ける構成としている。   Patent Document 4 discloses a linear motor and a press molding apparatus using this as a drive source. A coil unit including a core extending along the inner peripheral surface of the stator and extending in the axial direction and a plurality of coils arranged in the core is mounted, and linear bushes mounted on both ends of the stator are linearly reciprocated in the axial direction. The permanent magnet unit is attached to the outer peripheral surface of the rod supported so as to be movable.

さらに、非特許文献1には、フリーピストンエネルギ変換器用のリニア永久磁石発電機が開示されており、軸方向に固定子鉄心とコイルとを積層して固定子を構成し、各列の固定子鉄心を円周方向に分割して配置する構成としている。   Furthermore, Non-Patent Document 1 discloses a linear permanent magnet generator for a free piston energy converter, in which a stator is formed by laminating a stator core and a coil in the axial direction, and each row of stators. The iron core is divided and arranged in the circumferential direction.

特開2009−225640号公報JP 2009-225640 A 特開2007−174804号公報JP 2007-174804 A 特開2004−11577号公報JP 2004-11777 A 特開2001−352747号公報JP 2001-352747 A

”Design and Experimental Verification of a Linear Permanent Magnet Generator for a Free-Piston Energy Converter”, Jiabin Wang et al, IEEE Transaction on Energy Conversion, Vol. 22, No.2, June 2007“Design and Experimental Verification of a Linear Permanent Magnet Generator for a Free-Piston Energy Converter”, Jiabin Wang et al, IEEE Transaction on Energy Conversion, Vol. 22, No. 2, June 2007

可動子が軸方向に往復運動するリニア駆動/発電装置においては、可動子の進行方向と磁束の向きが直交するため、可動子位置を径方向(進行方向に直交する方向)に支持することが困難である。   In a linear drive / power generation device in which the mover reciprocates in the axial direction, the moving direction of the mover and the direction of the magnetic flux are orthogonal to each other, so that the position of the mover can be supported in the radial direction (direction orthogonal to the traveling direction). Have difficulty.

特許文献1では、空気静圧軸受で可動子を支持する構成であるが、空気静圧軸受だけでは固定子の撓み等から保護することは可能であっても、外力、例えば振動等による接触から保護することは支持力が比較的低いために難しい。また、空気軸受を構成するには硬質な部材を高精度に加工する必要があるため、コスト的にも安価に製造できない問題がある。   In Patent Document 1, the movable element is supported by an aerostatic bearing. However, even if the aerostatic bearing alone can protect the stator from bending or the like, it can be protected from contact due to external force, such as vibration. It is difficult to protect because of its relatively low support. Moreover, since it is necessary to process a hard member with high precision in order to comprise an air bearing, there exists a problem which cannot be manufactured cheaply also in cost.

また、特許文献2では、固定子と可動子の間に配置されたアルミニウム製のコイル保護パイプは接触からコイルを保護するためのものであり、可動子を支持するためのものではない。また、導電性を有するアルミニウムで構成されているので、電磁誘導により仮に電磁力が生じたとしても発生する支持力が相殺されてしまう。また、このときの電磁力及び誘導電流は損失となり、効率低下を招く。   Moreover, in patent document 2, the coil protection pipe made from aluminum arrange | positioned between a stator and a needle | mover is for protecting a coil from a contact, and is not for supporting a needle | mover. Moreover, since it is made of conductive aluminum, even if an electromagnetic force is generated by electromagnetic induction, the generated supporting force is offset. Further, the electromagnetic force and the induced current at this time are lost, and the efficiency is reduced.

本発明の目的は、リニア駆動/発電装置において、簡易な構成で効率的に可動子の偏心を抑制して可動子の径方向位置を維持することにある。   An object of the present invention is to maintain the radial position of the mover by efficiently suppressing the eccentricity of the mover with a simple configuration in a linear drive / power generation device.

本発明は、リニア駆動/発電装置であって、円筒状の固定子と、前記固定子内を軸方向に往復移動する、磁石を備えた可動子とを有し、前記固定子は、前記軸方向に積層された固定子鉄心及び固定子コイルと、前記固定子鉄心の前記可動子側の端部に設けられた浮上コイルとを有し、前記浮上コイルは、少なくとも前記可動子を挟んで互いに対向する1組のコイルからなり、前記1組のコイルはヌルフラックス線により互いに接続されることを特徴とする。   The present invention is a linear drive / power generation device, which includes a cylindrical stator and a mover including a magnet that reciprocally moves in the stator in the axial direction, and the stator includes the shaft A stator core and a stator coil stacked in a direction, and a levitation coil provided at an end of the stator core on the mover side, and the levitation coil at least sandwiching the mover. It consists of a set of opposing coils, and the set of coils are connected to each other by a null flux wire.

本発明の1つの実施形態では、前記浮上コイルの内、前記可動子の前記往復移動の端部に位置する浮上コイルに電流を印加する手段を有する。   In one embodiment of the present invention, there is provided means for applying a current to the levitating coil located at the end of the reciprocating movement of the mover in the levitating coil.

また、本発明の他の実施形態では、前記浮上コイルの内、前記可動子の移動速度が相対的に小さい位置の浮上コイルに電流を印加する手段を有する。   In another embodiment of the present invention, there is provided means for applying a current to the levitation coil at a position where the moving speed of the mover is relatively small in the levitation coil.

また、本発明の他の実施形態では、前記固定子鉄心及び前記浮上コイルは、前記固定子の円周方向に複数に分割される。   In another embodiment of the present invention, the stator core and the levitation coil are divided into a plurality in the circumferential direction of the stator.

また、本発明の他の実施形態では、前記浮上コイルは、前記固定子の円周方向に4分割され、4分割された前記浮上コイルは、前記可動子を挟んで互いに対向する第1組のコイルと、前記可動子を挟んで互いに対向し、前記第1組のコイルと直交する方向に配設された第2組のコイルからなる。   In another embodiment of the present invention, the levitation coil is divided into four in the circumferential direction of the stator, and the four divided levitation coils are opposed to each other across the mover. The coil includes a second set of coils that are opposed to each other with the mover interposed therebetween and are disposed in a direction orthogonal to the first set of coils.

本発明によれば、可動子が偏心してもヌルフラックス線により接続された少なくとも1組の浮上コイルにより可動子に復元力が生じて偏心を抑制することができる。また、本発明によれば、可動子の移動速度が小さい場合においても、浮上コイルに電流を供給することで復元力不足を補うことができる。   According to the present invention, even if the mover is eccentric, a restoring force is generated in the mover by at least one set of floating coils connected by a null flux wire, and the eccentricity can be suppressed. In addition, according to the present invention, even when the moving speed of the mover is low, it is possible to compensate for the lack of restoring force by supplying current to the levitation coil.

第1実施形態におけるリニア発電装置の構成図である。It is a block diagram of the linear electric power generating apparatus in 1st Embodiment. 図1の一部拡大図及び断面図である。It is the partially expanded view and sectional drawing of FIG. 浮上コイルの配置説明図である。It is arrangement | positioning explanatory drawing of a floating coil. x軸方向の浮上コイルの接続図である。It is a connection diagram of the levitation coil in the x-axis direction. y軸方向の浮上コイルの接続図である。It is a connection diagram of a floating coil in the y-axis direction. 可動子位置と可動子速度との関係を示すグラフ図である。It is a graph which shows the relationship between a needle | mover position and a needle | mover speed. 第2実施形態におけるシステム構成図である。It is a system configuration figure in a 2nd embodiment. 第2実施形態における可動子速度と浮上力との関係を示すグラフ図である。It is a graph which shows the relationship between the needle | mover speed | rate and levitation | floating force in 2nd Embodiment. 他の実施形態における固定子鉄心及び浮上コイルの分割説明図である。It is division | segmentation explanatory drawing of the stator core and the floating coil in other embodiment. 他の実施形態における固定子鉄心及び浮上コイルの分割説明図である。It is division | segmentation explanatory drawing of the stator core and the floating coil in other embodiment. 他の実施形態における固定子鉄心及び浮上コイルの分割説明図である。It is division | segmentation explanatory drawing of the stator core and the floating coil in other embodiment.

以下、図面に基づき本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<基本原理>
まず、本実施形態の基本原理について説明する。
<Basic principle>
First, the basic principle of this embodiment will be described.

円筒状の固定子内をシャフト状の可動子が往復移動するリニア駆動装置あるいはリニア発電装置において、固定子鉄心の先端、つまり固定子鉄心の可動子側の端部に浮上コイルを設け、可動子の径方向の偏心を抑制する。すなわち、可動子が径方向に偏心すると、偏心した方向にある浮上コイルに鎖交する磁束は増大する一方、可動子を挟んで対向する位置にある浮上コイルに鎖交する磁束は減少するため、これら対向する1組の浮上コイルの誘導電流による生じる電磁力は互いに逆向きで相殺してしまい、可動子を中心位置に復元する復元力として用いることはできない。   In a linear drive device or linear power generator in which a shaft-like mover reciprocates in a cylindrical stator, a levitating coil is provided at the end of the stator core, that is, the end of the stator core on the mover side. Suppresses radial eccentricity. That is, when the mover is eccentric in the radial direction, the magnetic flux interlinked with the levitating coil in the eccentric direction increases, while the magnetic flux interlinked with the levitating coil in the position facing the mover decreases, The electromagnetic forces generated by the induced currents of the pair of opposed levitation coils cancel each other in opposite directions, and cannot be used as a restoring force for restoring the mover to the center position.

そこで、本実施形態では、可動子を挟んで対向する1組の浮上コイルを互いにヌルフラックス線で接続する。ヌルフラックス方式は、1組の浮上コイルを構成するそれぞれの浮上コイルの巻き方向が交差するように接続するものであり、これにより1組の浮上コイルには可動子の偏心方向と逆向きの電磁力が生じるようになり、可動子の偏心を有効に防止する。   Therefore, in the present embodiment, a pair of floating coils facing each other with the mover interposed therebetween are connected to each other by a null flux wire. The null flux system is connected so that the winding directions of the respective levitation coils constituting one set of levitation coils intersect with each other, whereby one set of levitation coils is connected to electromagnetic waves in a direction opposite to the eccentric direction of the mover. A force is generated, and the eccentricity of the mover is effectively prevented.

浮上コイルは、可動子の偏心方向に可動子を挟むように対向して配設されるが、可動子が任意の方向に偏心し得るのであれば、少なくとも互いに直交する2組の浮上コイルを用いることが望ましい。すなわち、互いに直交する方向をx方向及びy方向とすると、x方向に1組の浮上コイルを配設し、y方向にもう1組の浮上コイルを配設する。x方向の1組の浮上コイルは互いにヌルフラックス方式で接続され、y方向のもう1組の浮上コイルも互いにヌルフラックス方式で接続される。これにより、x−yの2方向で可動子の偏心が抑制される。   The levitation coils are arranged opposite to each other so as to sandwich the mover in the eccentric direction of the mover. However, if the mover can be eccentric in any direction, at least two sets of levitation coils that are orthogonal to each other are used. It is desirable. That is, assuming that the directions perpendicular to each other are the x direction and the y direction, one set of levitation coils is arranged in the x direction, and another set of levitation coils is arranged in the y direction. One set of levitation coils in the x direction are connected to each other by a null flux method, and another set of levitation coils in the y direction are also connected to each other by a null flux method. Thereby, the eccentricity of the mover is suppressed in the two directions of xy.

以下、本実施形態について、より具体的に説明する。   Hereinafter, the present embodiment will be described more specifically.

<第1実施形態>
図1に、本実施形態におけるリニア駆動装置の構成を示す。リニア駆動装置は、固定子10と可動子20を備える。固定子10は中空円筒形状をなし、可動子20はシャフト状をなして中空円筒形状の固定子10の軸方向に沿って往復移動する。
<First Embodiment>
FIG. 1 shows the configuration of the linear drive device according to this embodiment. The linear drive device includes a stator 10 and a mover 20. The stator 10 has a hollow cylindrical shape, and the mover 20 has a shaft shape and reciprocates along the axial direction of the hollow cylindrical stator 10.

固定子10は、固定子鉄心12及び固定子コイル14並びに浮上コイル16を備える。固定子鉄心12及び固定子コイル14は、軸方向に積層して配設される。また、浮上コイル16は、固定子鉄心12の先端、すなわち固定子鉄心12の可動子20側の端部に配設される。   The stator 10 includes a stator core 12, a stator coil 14, and a levitation coil 16. The stator core 12 and the stator coil 14 are laminated in the axial direction. The levitation coil 16 is disposed at the tip of the stator core 12, that is, the end of the stator core 12 on the side of the mover 20.

可動子20は、可動子鉄心22と永久磁石24を備える。可動子鉄心22及び永久磁石24は、固定子10の固定子鉄心12及び固定子コイル14と同様に軸方向に積層されて配設される。可動子10は、例えばフリーピストンエンジンにより往復駆動される。すなわち、可動子20の両端に対向して配置された一対のフリーピストンエンジンの一方のピストンエンジンが膨張、ガス交換、圧縮、燃焼を繰り返し、他方のピストンエンジンが一方のピストンエンジンとタイミングをずらして膨張、ガス交換、収縮、燃焼を繰り返すことで可動子20が往復移動する。可動子の往復移動により、固定子コイル16には誘導起電力が生じて誘導電流が流れ発電する。浮上コイル16は、固定子10と可動子20との接触を防止し、固定子10と可動子20との径方向の相対的位置関係を維持するためのコイルである。   The mover 20 includes a mover iron core 22 and a permanent magnet 24. The mover iron core 22 and the permanent magnet 24 are laminated in the axial direction in the same manner as the stator iron core 12 and the stator coil 14 of the stator 10. The mover 10 is driven to reciprocate by, for example, a free piston engine. That is, one piston engine of a pair of free piston engines arranged opposite to both ends of the mover 20 repeats expansion, gas exchange, compression, and combustion, and the other piston engine is shifted in timing from one piston engine. The mover 20 reciprocates by repeating expansion, gas exchange, contraction, and combustion. Due to the reciprocating movement of the mover, an induced electromotive force is generated in the stator coil 16 and an induced current flows to generate power. The levitation coil 16 is a coil for preventing contact between the stator 10 and the mover 20 and maintaining a radial relative positional relationship between the stator 10 and the mover 20.

図2に、固定子10の固定子鉄心12、固定子コイル14、浮上コイル16の配設状態を示す。図2(a)は、図1における固定子10の一部拡大図であり、図2(b)は図2(a)のB−B断面図、図2(c)は図2(a)のC−C断面図である。図2(b)、図2(c)に示すように、固定子鉄心12は、円周方向に分割されており、本実施形態では円周方向に4分割される。固定子コイル12が存在しない部位では、図2(c)に示すように、固定子鉄心12は円周方向に分割されて放射状に配設されるため、結果として十文字状の配置をなす。また、固定子コイル14は、円周方向に巻回される。さらに、浮上コイル16も、固定子鉄心12と同様に円周方向に4分割される。浮上コイル16は、4分割された内の互いに対向する位置にある2つのコイルが組となる。径方向から見た平面における互いに直交する2軸をx軸及びy軸とすると、4分割された内の互いに対向する位置にある2組のコイルの一方の組で可動子20のx方向位置を調整し、2組のコイルの他方の組で可動子20のy方向位置を調整する。   In FIG. 2, the arrangement | positioning state of the stator core 12, the stator coil 14, and the floating coil 16 of the stator 10 is shown. 2A is a partially enlarged view of the stator 10 in FIG. 1, FIG. 2B is a cross-sectional view taken along line BB in FIG. 2A, and FIG. 2C is FIG. 2A. It is CC sectional drawing of. As shown in FIGS. 2B and 2C, the stator core 12 is divided in the circumferential direction, and is divided into four in the circumferential direction in this embodiment. In the part where the stator coil 12 does not exist, as shown in FIG. 2C, the stator core 12 is divided in the circumferential direction and arranged radially, so that a cross-shaped arrangement is formed as a result. The stator coil 14 is wound in the circumferential direction. Further, the levitation coil 16 is also divided into four in the circumferential direction, like the stator core 12. The levitation coil 16 is a set of two coils at positions facing each other among the four divided coils. Assuming that two axes orthogonal to each other in a plane viewed from the radial direction are an x-axis and a y-axis, the position of the mover 20 in the x-direction is determined by one set of two sets of coils that are opposed to each other among the four divisions. It adjusts and the y direction position of the needle | mover 20 is adjusted with the other group of two sets of coils.

図3に、浮上コイル16の配置位置を示す。円周方向に4分割された固定子鉄心12を固定子鉄心12a、12b、12c、12dとし、固定子鉄心12aと12bが互いに対向し、固定子鉄心12cと12dが互いに対向するものとする。図に示すように直交する2軸をx軸、y軸とすると、固定子鉄心12a、12bはx軸方向の固定子鉄心であり、固定子鉄心12c、12dはy軸方向の固定子鉄心となる。固定子鉄心12aには、浮上コイル16の内、x軸方向の浮上コイル16x+が巻回される。また、固定子鉄心12aに対向する固定子鉄心12bには、浮上コイル16の内、同じx軸方向の他の浮上コイル16x−が巻回される。可動子20が固定子10に対してx軸方向に変位した場合、その変位に応じた電流がこれらx軸方向の浮上コイル16x+、16x−に流れる。すなわち、可動子20が固定子10に対してx軸方向に変位すると、その分だけ可動子20の可動子永久磁石24と浮上コイル16x+、16x−との間に相対的変位が生じ、浮上コイル16x+及び16x−に誘導電流が生じる。具体的には、可動子20が浮上コイル16x+の方向に偏心すると、浮上コイル16x+に鎖交する可動子永久磁石24の磁束が増加し、これを妨げる向きに浮上コイル16x+に誘導電流が流れる。他方、浮上コイル16x−に鎖交する可動子永久磁石24の磁束は減少し、これを妨げる向きに浮上コイル16x−に誘導電流が流れる。   FIG. 3 shows the arrangement position of the levitation coil 16. The stator core 12 divided into four in the circumferential direction is referred to as stator cores 12a, 12b, 12c, and 12d. The stator cores 12a and 12b face each other, and the stator cores 12c and 12d face each other. As shown in the figure, if the two orthogonal axes are the x-axis and the y-axis, the stator cores 12a and 12b are the stator cores in the x-axis direction, and the stator cores 12c and 12d are the stator cores in the y-axis direction. Become. Of the levitation coil 16, a levitation coil 16x + in the x-axis direction is wound around the stator core 12a. Further, the other levitation coil 16x− in the same x-axis direction among the levitation coils 16 is wound around the stator iron core 12b facing the stator iron core 12a. When the mover 20 is displaced with respect to the stator 10 in the x-axis direction, a current corresponding to the displacement flows through the floating coils 16x + and 16x− in the x-axis direction. That is, when the mover 20 is displaced with respect to the stator 10 in the x-axis direction, a relative displacement is generated between the mover permanent magnet 24 of the mover 20 and the levitation coils 16x + and 16x−. Inductive currents occur at 16x + and 16x-. Specifically, when the mover 20 is decentered in the direction of the levitation coil 16x +, the magnetic flux of the mover permanent magnet 24 linked to the levitation coil 16x + increases, and an induced current flows through the levitation coil 16x + in a direction that prevents this. On the other hand, the magnetic flux of the mover permanent magnet 24 interlinking with the levitation coil 16x− decreases, and an induced current flows through the levitation coil 16x− in a direction that prevents this.

また、固定子鉄心12cには、浮上コイル16の内、y軸方向の浮上コイル16y+が巻回される。また、固定子鉄心12cに対向する固定子鉄心12dには、浮上コイル16の内、同じy軸方向の他の浮上コイル16y−が巻回される。可動子20が固定子10に対してy軸方向に変位した場合、その変位に応じた電流がこれらy軸方向の浮上コイル16y+、16y−に流れる。すなわち、可動子20が固定子10に対してy軸方向に変位すると、その分だけ可動子20の可動子永久磁石24と浮上コイル16y+、16y−との間に相対的変位が生じ、浮上コイル16y+及び16y−に誘導電流が生じる。具体的には、可動子20が浮上コイル16y+の方向に偏心すると、浮上コイル16y+に鎖交する可動子永久磁石24の磁束が増加し、これを妨げる向きに浮上コイル16y+に誘導電流が流れる。他方、浮上コイル16y−に鎖交する可動子永久磁石24の磁束は減少し、これを妨げる向きに浮上コイル16y−に誘導電流が流れる。   Of the levitation coil 16, a levitation coil 16y + in the y-axis direction is wound around the stator core 12c. Further, the other floating coil 16y− in the same y-axis direction among the floating coils 16 is wound around the stator core 12d facing the stator core 12c. When the mover 20 is displaced with respect to the stator 10 in the y-axis direction, a current corresponding to the displacement flows through the floating coils 16y + and 16y− in the y-axis direction. That is, when the mover 20 is displaced with respect to the stator 10 in the y-axis direction, a relative displacement is generated between the mover permanent magnet 24 of the mover 20 and the levitation coils 16y + and 16y−. An induced current is generated at 16y + and 16y−. Specifically, when the mover 20 is decentered in the direction of the levitation coil 16y +, the magnetic flux of the mover permanent magnet 24 linked to the levitation coil 16y + increases, and an induced current flows in the levitation coil 16y + in a direction that prevents this. On the other hand, the magnetic flux of the mover permanent magnet 24 interlinking with the levitation coil 16y− decreases, and an induced current flows through the levitation coil 16y− in a direction that prevents this.

このように、可動子20が径方向に偏心すると、偏心した方向にある浮上コイルとそれに対向する浮上コイルには互いに逆向きの誘導電流が流れるため、偏心した方向にある浮上コイルとこれに対向する浮上コイルの誘導電流により生じる電磁力も互いに逆向きとなって相殺されてしまうので、このままでは誘導電流により生じた電磁力を可動子20の支持力として利用することができない。   In this way, when the mover 20 is eccentric in the radial direction, induced currents flowing in opposite directions flow through the levitating coil in the eccentric direction and the levitating coil opposite thereto, so that the levitating coil in the eccentric direction is opposed to this. Since the electromagnetic force generated by the induced current of the floating coil that is generated is opposite to each other and cancels out, the electromagnetic force generated by the induced current cannot be used as the support force of the mover 20 as it is.

そこで、本実施形態では、互いに対向する2つの浮上コイルをそれぞれヌルフラックス線で接続する。   Therefore, in the present embodiment, two levitation coils facing each other are connected by null flux wires.

図4に、x軸方向の浮上コイル16x+、16x−の接続方法を示す。浮上コイル16x+及び16x−をヌルフラックス線17xで接続する。これにより、ヌルフラックス線17xには、浮上コイル16x+、16x−でそれぞれ形成される2つの閉回路の誘導起電力の差に応じた電流が流れることになり、浮上コイル16x+、16x−の位相を揃えて誘導電流により生じる電磁力の向きを一致させる。これにより、可動子20には中心軸方向に戻す復元力が生じて偏心が抑制される。   FIG. 4 shows a method for connecting the levitation coils 16x + and 16x− in the x-axis direction. The levitation coils 16x + and 16x− are connected by a null flux wire 17x. As a result, a current corresponding to the difference between the induced electromotive forces of the two closed circuits formed by the levitation coils 16x + and 16x− flows through the null flux wire 17x, and the phases of the levitation coils 16x + and 16x− are changed. Align the direction of the electromagnetic force generated by the induced current. Thereby, the restoring force which returns to the center axis direction arises in the needle | mover 20, and eccentricity is suppressed.

図5に、y軸方向の浮上コイル16y+、16y−の接続方法を示す。浮上コイル16y+及び16y−をヌルフラックス線17yで接続する。これにより、ヌルフラックス線17yには、浮上コイル16y+、16y−でそれぞれ形成される2つの閉回路の誘導起電力の差に応じた電流が流れることになり、浮上コイル16y+、16y−の位相を揃えて誘導電流により生じる電磁力の向きを一致させる。これにより、可動子20には中心軸方向に戻す復元力が生じて偏心が抑制される。   FIG. 5 shows a method of connecting the floating coils 16y + and 16y− in the y-axis direction. The levitation coils 16y + and 16y− are connected by a null flux wire 17y. As a result, a current corresponding to the difference between the induced electromotive forces of the two closed circuits formed by the levitation coils 16y + and 16y− flows through the null flux wire 17y, and the phases of the levitation coils 16y + and 16y− are changed. Align the direction of the electromagnetic force generated by the induced current. Thereby, the restoring force which returns to the center axis direction arises in the needle | mover 20, and eccentricity is suppressed.

<第2実施形態>
上記の第1実施形態では、x軸方向に互いに対向した2つの浮上コイル16x+、16x−をヌルフラックス線17xで接続し、かつ、y軸方向に互いに対向した2つの浮上コイル16y+、16y−をヌルフラックス線17yで接続することで、誘導電流により生じる電磁力を利用して可動子20の偏心を抑制しているが、浮上コイル16に生じる誘導電流は可動子20との相対速度に応じて変化するところ、可動子20の移動速度は往復運動の中央において相対的に大きく、往復運動の両端部において相対的に小さくなる。
Second Embodiment
In the first embodiment, two levitation coils 16x + and 16x− facing each other in the x-axis direction are connected by the null flux wire 17x, and two levitation coils 16y + and 16y− facing each other in the y-axis direction are connected. By connecting with the null flux wire 17y, the electromagnetic force generated by the induced current is used to suppress the eccentricity of the mover 20, but the induced current generated in the levitation coil 16 depends on the relative speed with the mover 20. As it changes, the moving speed of the mover 20 is relatively large at the center of the reciprocating motion and relatively small at both ends of the reciprocating motion.

図6に、可動子20の軸方向位置と可動子20の速度との関係を示す。可動子20の位置は、往復運動の一方端を0、他方端を1.0として規格化している。また、図において、往路の可動子速度を実線で、復路の可動子速度を破線で示す。図に示すように、可動子速度は往復運動の一方端から中央に向けて増加し、中央において最大となり、中央から他方端に向けて減少する。往路及び復路ともに同様な特性を示す。   FIG. 6 shows the relationship between the axial position of the mover 20 and the speed of the mover 20. The position of the mover 20 is normalized by setting one end of the reciprocating motion to 0 and the other end to 1.0. Further, in the figure, the mover speed on the forward path is indicated by a solid line, and the mover speed on the return path is indicated by a broken line. As shown in the figure, the mover speed increases from one end of the reciprocating motion toward the center, reaches a maximum at the center, and decreases from the center toward the other end. The same characteristics are shown for both the outbound and inbound routes.

往復運動の中央においては可動子速度が相対的に大きいため、誘導電流により生じる浮上コイル16の電磁力も大きく、可動子20の偏心を抑制することができる。ところが、往復運動の端部においては可動子速度が相対的に小さいため、誘導電流により生じる浮上コイル16の電磁力も小さく、これだけでは可動子20の偏心を抑制することが困難となる場合も生じ得る。   Since the mover speed is relatively high at the center of the reciprocating motion, the electromagnetic force of the levitation coil 16 generated by the induced current is also large, and the eccentricity of the mover 20 can be suppressed. However, since the mover speed is relatively small at the end of the reciprocating motion, the electromagnetic force of the levitation coil 16 generated by the induced current is also small, and this alone may make it difficult to suppress the eccentricity of the mover 20. .

そこで、本実施形態では、可動子20の速度が低下して十分な電磁力が得られない両端部の浮上コイル16に外部から電力を供給し、外部から「強制的に」電流を流して電磁力を発生させ、誘導電流により生じた電磁力を補強する。   Therefore, in this embodiment, electric power is supplied from the outside to the levitation coils 16 at both ends where the speed of the mover 20 is reduced and sufficient electromagnetic force cannot be obtained, and current is forced to flow from the outside to electromagnetically. Generates a force and reinforces the electromagnetic force generated by the induced current.

図7に、本実施形態のシステム構成図を示す。バッテリ50からの電力をスイッチング制御器52を介して固定子10の両端部の浮上コイル16に供給する。スイッチング制御器52のスイッチングは、制御器54により制御される。制御器54は、可動子20の位置を検出するセンサからの信号に基づき可動子20が端部に位置することを検出した場合に、スイッチング制御器52のスイッチをオンする指令を出力する。これにより、バッテリ50からの電力は端部の浮上コイル16に供給され、不足する電磁力を補う。また、制御器54は、可動子20の位置を検出するセンサからの信号に基づき可動子20が中央に位置することを検出した場合に、スイッチング制御器52のスイッチをオフする指令を出力する。これにより、バッテリ50からの電力は端部の浮上コイル16に供給されず、中央の浮上コイル16の誘導電流による電磁力で可動子20の偏心を抑制する。   FIG. 7 shows a system configuration diagram of the present embodiment. The electric power from the battery 50 is supplied to the levitation coils 16 at both ends of the stator 10 via the switching controller 52. Switching of the switching controller 52 is controlled by the controller 54. The controller 54 outputs a command to turn on the switch of the switching controller 52 when it is detected that the mover 20 is positioned at the end based on a signal from a sensor that detects the position of the mover 20. Thereby, the electric power from the battery 50 is supplied to the levitation coil 16 at the end portion to compensate for the insufficient electromagnetic force. Further, the controller 54 outputs a command to turn off the switch of the switching controller 52 when it is detected that the mover 20 is located at the center based on a signal from a sensor that detects the position of the mover 20. Thereby, the electric power from the battery 50 is not supplied to the floating coil 16 at the end, and the eccentricity of the mover 20 is suppressed by the electromagnetic force generated by the induced current of the central floating coil 16.

図8に、可動子速度と浮上力、すなわち誘導電流による電磁力との関係を示す。可動子速度が小さいと浮上力も小さく、可動子速度が大きいと浮上力も大きくなる。したがって、浮上コイル16に外部から電力を供給しないと、図中一点鎖線100で示すように可動子速度が小さい端部において浮上力が不足する。   FIG. 8 shows the relationship between the mover speed and the levitation force, that is, the electromagnetic force caused by the induced current. When the mover speed is low, the levitating force is small, and when the mover speed is high, the levitating force is also large. Therefore, if electric power is not supplied to the levitation coil 16 from the outside, the levitation force is insufficient at the end portion where the mover speed is low, as indicated by a one-dot chain line 100 in the figure.

一方、可動子速度が小さい端部において外部のバッテリ50から強制的に浮上コイル16に電流を流すと、図中実線200で示すように端部における浮上力が増大し、結果として可動子速度によらず、つまり可動子20の軸方向位置によらず一定値以上の浮上力が得られることとなり、可動子20の偏心を抑制することができる。   On the other hand, if a current is forced to flow from the external battery 50 to the levitation coil 16 at the end where the mover speed is low, the levitation force at the end increases as shown by the solid line 200 in the figure, resulting in a mover speed. Regardless of this, that is, a levitating force of a certain value or more is obtained regardless of the axial position of the mover 20, and the eccentricity of the mover 20 can be suppressed.

<他の実施形態>
以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、種々の変更が可能である。
<Other embodiments>
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various change is possible.

例えば、上記の第1及び第2実施形態では、固定子鉄心12を円周方向に4分割しているが、それ以上に分割することもできる。また、浮上コイル16も固定子鉄心12と同様に4分割以上に分割することもできる。固定子鉄心12と浮上コイル16の分割数は必ずしも同一である必要はなく、異なっていてもよい。   For example, in the first and second embodiments described above, the stator core 12 is divided into four parts in the circumferential direction, but it can be further divided. In addition, the levitation coil 16 can also be divided into four or more parts in the same manner as the stator core 12. The number of divisions of the stator core 12 and the levitation coil 16 is not necessarily the same, and may be different.

図9に、固定子鉄心12及び浮上コイル16を円周方向に6分割した場合を示す。また、図10に、固定子鉄心12及び浮上コイル16を円周方向に8分割した場合を示す。さらに、図11に、固定子鉄心12を円周方向に8分割し、浮上コイル16を円周方向に4分割した場合を示す。いずれの図も、図2(b)に対応するものであり、固定子10のB−B断面を示すものである。一般に、固定子鉄心12及び浮上コイル16の分割数が増大するほど、より正確に可動子20の位置を中心に近づけることができる。但し、分割数が増大するほど部品点数が増大するので、コストとのバランスを考慮することが望ましい。図11の形態では、浮上コイル16の分割数を4に抑えることで部品点数を削減し、安価に製造することができる。   FIG. 9 shows a case where the stator core 12 and the levitation coil 16 are divided into six in the circumferential direction. FIG. 10 shows a case where the stator core 12 and the levitation coil 16 are divided into eight in the circumferential direction. Further, FIG. 11 shows a case where the stator core 12 is divided into eight in the circumferential direction and the levitation coil 16 is divided into four in the circumferential direction. All the figures correspond to FIG. 2 (b) and show a BB cross section of the stator 10. Generally, as the number of divisions of the stator core 12 and the levitation coil 16 increases, the position of the mover 20 can be more accurately brought closer to the center. However, since the number of parts increases as the number of divisions increases, it is desirable to consider the balance with cost. In the form of FIG. 11, the number of parts can be reduced by suppressing the number of divisions of the levitation coil 16 to 4 and manufacturing can be performed at low cost.

また、本実施形態では、可動子20は一対のフリーピストンにより往復移動しているが、本発明は必ずしもこれに限定されるものではなく、他のエンジンないし駆動機構により可動子20を往復移動してもよい。但し、フリーピストンを用いたリニア発電装置、言い換えればフリーピストンエネルギコンバータ(Free-Piston Energy Converter:FREC)は、化学エネルギを電気エネルギに変換する効率に優れており、望ましいといえる。   In this embodiment, the mover 20 is reciprocated by a pair of free pistons. However, the present invention is not necessarily limited to this, and the mover 20 is reciprocated by another engine or drive mechanism. May be. However, a linear power generator using a free piston, in other words, a free-piston energy converter (FREC), is excellent in the efficiency of converting chemical energy into electric energy, and is desirable.

また、本実施形態では、可動子20の往復移動の端部において可動子速度が小さくなることに伴い、往復移動の端部に位置する浮上コイル16に外部のバッテリ50から電力を供給して電流を強制的に流しているが、可動子20の位置を検出する代わりに可動子20の速度を検出し、可動子20の速度が小さくなったときにその位置の浮上コイル16に外部のバッテリ50から電力を供給して電流を強制的に流してもよい。この場合、外部電力により電流が流れる浮上コイル16は、必ずしも往復移動の端部に限定されるものではない。   In the present embodiment, as the mover speed decreases at the end of the reciprocating movement of the mover 20, electric power is supplied from the external battery 50 to the levitation coil 16 located at the end of the reciprocating movement. However, instead of detecting the position of the mover 20, the speed of the mover 20 is detected, and when the speed of the mover 20 decreases, an external battery 50 is connected to the floating coil 16 at that position. Electric power may be supplied to forcibly flow current. In this case, the levitation coil 16 through which current flows by external power is not necessarily limited to the end of the reciprocating movement.

さらに、本実施形態をリニア駆動装置に適用する場合には、固定子コイル14を発電コイルでなく、駆動コイルとして用いて駆動電流を流せばよい。   Furthermore, when this embodiment is applied to a linear drive device, the stator coil 14 may be used as a drive coil instead of a power generation coil, and a drive current may be passed.

10 固定子、12 固定子鉄心、14 固定子コイル、16 浮上コイル、20 可動子、22 可動子鉄心、24 可動子永久磁石。   DESCRIPTION OF SYMBOLS 10 Stator, 12 Stator iron core, 14 Stator coil, 16 Levitation coil, 20 Movable element, 22 Movable iron core, 24 Movable element permanent magnet

Claims (5)

リニア駆動/発電装置であって、
円筒状の固定子と、
前記固定子内を軸方向に往復移動する、磁石を備えた可動子と、
を有し、
前記固定子は、
前記軸方向に積層された固定子鉄心及び固定子コイルと、
前記固定子鉄心の前記可動子側の端部に設けられた浮上コイルと、
を有し、
前記浮上コイルは、少なくとも前記可動子を挟んで互いに対向する1組のコイルからなり、前記1組のコイルはヌルフラックス線により互いに接続される
ことを特徴とするリニア駆動/発電装置。
A linear drive / power generator,
A cylindrical stator,
A mover including a magnet that reciprocates in the stator in the axial direction; and
Have
The stator is
A stator core and a stator coil laminated in the axial direction;
A levitation coil provided at an end of the stator core on the mover side;
Have
The levitation coil includes a pair of coils facing each other with at least the mover interposed therebetween, and the one set of coils is connected to each other by a null flux wire.
請求項1記載のリニア駆動/発電装置において、
前記浮上コイルの内、前記可動子の前記往復移動の端部に位置する浮上コイルに電流を印加する手段
を有することを特徴とするリニア駆動/発電装置。
The linear drive / power generation device according to claim 1,
A linear drive / power generation device comprising: means for applying a current to a floating coil located at an end of the reciprocating movement of the mover in the floating coil.
請求項1記載のリニア駆動/発電装置において、
前記浮上コイルの内、前記可動子の移動速度が相対的に小さい位置の浮上コイルに電流を印加する手段
を有することを特徴とするリニア駆動/発電装置。
The linear drive / power generation device according to claim 1,
A linear drive / power generation device comprising: means for applying a current to the levitation coil at a position where the moving speed of the mover is relatively small in the levitation coil.
請求項1記載のリニア駆動/発電装置において、
前記固定子鉄心及び前記浮上コイルは、前記固定子の円周方向に複数に分割される
ことを特徴とするリニア駆動/発電装置。
The linear drive / power generation device according to claim 1,
The stator core and the levitation coil are divided into a plurality in the circumferential direction of the stator.
請求項4記載のリニア駆動/発電装置において、
前記浮上コイルは、前記固定子の円周方向に4分割され、
4分割された前記浮上コイルは、前記可動子を挟んで互いに対向する第1組のコイルと、前記可動子を挟んで互いに対向し、前記第1組のコイルと直交する方向に配設された第2組のコイルからなる
ことを特徴とするリニア駆動/発電装置。
The linear drive / power generation device according to claim 4.
The levitation coil is divided into four in the circumferential direction of the stator,
The four-part levitation coil is disposed in a direction perpendicular to the first set of coils and the first set of coils facing each other with the mover interposed therebetween, and the first set of coils opposed to each other with the mover interposed therebetween. A linear drive / power generation device comprising a second set of coils.
JP2011067853A 2011-03-25 2011-03-25 Linear drive / power generator Expired - Fee Related JP5803195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011067853A JP5803195B2 (en) 2011-03-25 2011-03-25 Linear drive / power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011067853A JP5803195B2 (en) 2011-03-25 2011-03-25 Linear drive / power generator

Publications (2)

Publication Number Publication Date
JP2012205398A true JP2012205398A (en) 2012-10-22
JP5803195B2 JP5803195B2 (en) 2015-11-04

Family

ID=47185818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011067853A Expired - Fee Related JP5803195B2 (en) 2011-03-25 2011-03-25 Linear drive / power generator

Country Status (1)

Country Link
JP (1) JP5803195B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086757A (en) * 2017-05-27 2017-08-22 沈阳工业大学 A kind of cylindrical permanent-magnet linear motor
CN111049348A (en) * 2019-12-25 2020-04-21 三峡大学 Non-permanent-magnet electromagnetic force driven reciprocating power device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218306A (en) * 1988-02-25 1989-08-31 Railway Technical Res Inst Coil connection method for magnetic levitation mechanism
JP2006149087A (en) * 2004-11-19 2006-06-08 Yaskawa Electric Corp Magnetic levitation propulsion device
JP2009213254A (en) * 2008-03-04 2009-09-17 Tamagawa Seiki Co Ltd Cylindrical linear motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218306A (en) * 1988-02-25 1989-08-31 Railway Technical Res Inst Coil connection method for magnetic levitation mechanism
JP2006149087A (en) * 2004-11-19 2006-06-08 Yaskawa Electric Corp Magnetic levitation propulsion device
JP2009213254A (en) * 2008-03-04 2009-09-17 Tamagawa Seiki Co Ltd Cylindrical linear motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086757A (en) * 2017-05-27 2017-08-22 沈阳工业大学 A kind of cylindrical permanent-magnet linear motor
CN111049348A (en) * 2019-12-25 2020-04-21 三峡大学 Non-permanent-magnet electromagnetic force driven reciprocating power device

Also Published As

Publication number Publication date
JP5803195B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
US9000626B2 (en) Thrust generation mechanism, drive device, XY stage and XYZ stage
JP5796576B2 (en) Generator and power generator using the same
US8310113B2 (en) Multiple armature linear motor/alternator having magnetic spring with no fringe fields and increased power output
TW201136107A (en) Linear motor
CN102064618A (en) Design method of permanent magnet motor capable of reducing cogging effect and permanent magnet motor
Sugimoto et al. Design of homopolar consequent-pole bearingless motor with wide magnetic gap
JP5702204B2 (en) Linear drive / power generator
CN101345467A (en) U-shaped straight line servo motor
CN102361388A (en) Thrust fluctuation active compensation type linear permanent magnet synchronous motor
EP3118976A1 (en) Electric machine having a radial electrodynamic bearing
JP2021531724A (en) Linear electromagnetic machine
JP5803195B2 (en) Linear drive / power generator
CN105656281B (en) Three-phase magnetic resistance cylindrical linear motor with Exciting Windings for Transverse Differential Protection
US6538349B1 (en) Linear reciprocating flux reversal permanent magnetic machine
JP5589507B2 (en) Mover and stator of linear drive unit
US20080203829A1 (en) Vibrating-type motor
US6940190B2 (en) Electric machine
JP5467436B2 (en) Linear actuator
CN209358414U (en) Linear motor and compressor
Poltschak et al. Winding layout for active bearing force reduction in tubular linear motors
JP2010178484A (en) Linear electromagnetic driving device
CN102297202B (en) Single shaft controlled type five-degrees-of-freedom (DOF) miniature magnetic bearing
CN206472016U (en) The dual excitation cartridge reciprocating permanent-magnetic linear electric motors of high pushing force density
Rubio et al. Requirements for full passive suspension on a bearingless motor with electrodynamic axial stabilization and radial permanent magnet bearings
JP2023012651A (en) Linear motor, and suspension device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5803195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees