JP2012204338A - Safe and long-life ccfl lighting - Google Patents

Safe and long-life ccfl lighting Download PDF

Info

Publication number
JP2012204338A
JP2012204338A JP2011087731A JP2011087731A JP2012204338A JP 2012204338 A JP2012204338 A JP 2012204338A JP 2011087731 A JP2011087731 A JP 2011087731A JP 2011087731 A JP2011087731 A JP 2011087731A JP 2012204338 A JP2012204338 A JP 2012204338A
Authority
JP
Japan
Prior art keywords
tube
ccfl
temperature
tube temperature
optimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011087731A
Other languages
Japanese (ja)
Inventor
Eiichi Hirose
榮一 廣瀬
Miyuki Ryu
みゆき 笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOHKOHSYA KK
COX Inc
Original Assignee
HOHKOHSYA KK
COX Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOHKOHSYA KK, COX Inc filed Critical HOHKOHSYA KK
Priority to JP2011087731A priority Critical patent/JP2012204338A/en
Publication of JP2012204338A publication Critical patent/JP2012204338A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide safe and long-life cold-cathode fluorescent lamp (CCFL) lighting by controlling a tube current in advance so that a tube temperature may be optimum for the CCFL.SOLUTION: A tube temperature control device measures a predetermined time interval after a CCFL is turned off, and detects a tube temperature and a tube current. The tube temperature control device compares the detected tube current with data on an optimum tube current value, which is stored in a control unit, corresponding to the CCFL tube temperature, and controls a tube current value so that the optimum tube temperature may be reached. By controlling the tube current value before the tube temperature is saturated so that the CCFL tube temperature, which changes significantly depending on the ambient temperature, may be at the optimum value, the CCFL can be turned on at the optimum luminance suited to the ambient temperature.

Description

本発明は、冷陰極蛍光管(以下、CCFLと記す)を用いた照明器に関するものである。The present invention relates to an illuminator using a cold cathode fluorescent tube (hereinafter referred to as CCFL).

本発明は、CCFL管温度制御方法に関し、管温度の予測処理を行い、CCFLにとって最適な管温度となるよう事前に管電流を制御することにより、安全で長寿命なCCFL照明を提供するものである。The present invention relates to a CCFL tube temperature control method, which provides a safe and long-life CCFL illumination by performing tube temperature prediction processing and controlling tube current in advance so that the tube temperature is optimal for the CCFL. is there.

CCFLは、液晶パネル用バックライトなどで長年の実績がある光源である。CCFL is a light source with many years of experience in backlights for liquid crystal panels.

長寿命で消費電力も小さく、高輝度の光を放つため、近年では蛍光灯や白熱電球の置き換えとして一般照明用途への応用が広がっている。Long life, low power consumption, and high-luminance light emission have led to widespread use in general lighting applications as a replacement for fluorescent and incandescent bulbs in recent years.

CCFLの点灯用に使われるインバータ回路は、直流電圧からCCFLを駆動するための高電圧の高周波交流電圧を出力するDC−ACインバータである。The inverter circuit used for lighting the CCFL is a DC-AC inverter that outputs a high-frequency, high-frequency AC voltage for driving the CCFL from a DC voltage.

図1に従来のCCFL用DC−ACインバータの回路ブロック図を示す。図1において、2は交流電源1から直流電源を生成する回路部である。3は2から入力される直流電圧により動作する発振回路であり、トランジスタ等で高周波発振動作を行う。3の出力電圧は4のトランスによって昇圧され、5のCCFLの駆動に必要な高電圧の高周波交流電圧を供給する。FIG. 1 shows a circuit block diagram of a conventional CCFL DC-AC inverter. In FIG. 1, reference numeral 2 denotes a circuit unit that generates a DC power source from the AC power source 1. Reference numeral 3 denotes an oscillation circuit that operates by a DC voltage input from 2, and performs high-frequency oscillation operation with a transistor or the like. The output voltage of 3 is boosted by a transformer of 4, and a high-frequency high-frequency AC voltage necessary for driving the CCFL of 5 is supplied.

従来のDC−ACインバータ動作において、CCFLにかかる高周波交流電圧の周波数は図1の3で設定され、電圧値は4のトランスによって決まるので、固定の周波数・電圧での駆動が主流である。In the conventional DC-AC inverter operation, the frequency of the high-frequency AC voltage applied to the CCFL is set at 3 in FIG. 1 and the voltage value is determined by the transformer of 4, so that driving at a fixed frequency / voltage is the mainstream.

CCFLの管電流、すなわち輝度は、この固定されたインバータの発振周波数と管電圧によって決まる。The CCFL tube current, that is, the luminance, is determined by the oscillation frequency and tube voltage of the fixed inverter.

しかし、CCFLの輝度特性は周囲温度によっても大きく変化する。図2にCCFLの輝度立ち上がりと周囲温度の関係を示す。点灯直後の輝度は低いが、管があたためられると次第に明るくなる。管の飽和温度は周囲温度によって異なり、管温度に比例した輝度に飽和する。However, the luminance characteristics of the CCFL vary greatly depending on the ambient temperature. FIG. 2 shows the relationship between the rise in CCFL brightness and the ambient temperature. Although the brightness immediately after lighting is low, it gradually becomes brighter when the tube is warmed up. The tube saturation temperature depends on the ambient temperature and saturates to a brightness proportional to the tube temperature.

図3にCCFLの最適温度特性を示す。周囲温度が高くても低くても発光効率が悪くなり輝度が低下する傾向にある。CCFLの管温度も同様の特性であり、効率よく点灯させるためには管温度が最適となるように管電流を設定する必要がある。FIG. 3 shows the optimum temperature characteristics of the CCFL. Whether the ambient temperature is high or low, the luminous efficiency tends to deteriorate and the luminance tends to decrease. The tube temperature of the CCFL has the same characteristics, and it is necessary to set the tube current so that the tube temperature is optimal for efficient lighting.

発明が解決しようとする課題Problems to be solved by the invention

しかしながら、従来の固定周波数発振のDC−ACインバータでは、温度など外的環境に関わらず管電流が設定されているため、周囲温度を考慮した最適な動作ができない。However, in the conventional fixed frequency oscillation DC-AC inverter, since the tube current is set regardless of the external environment such as temperature, the optimum operation in consideration of the ambient temperature cannot be performed.

特に、一般照明用途において、天井に埋め込むダウンライトなどに数多く使われており、放熱がうまくなされておらずCCFLが異常加熱してしまった場合、本来の寿命を確保できず、焼損などの危険な事故が発生してしまうことがある。また、冷気にさらされた場合も同様に輝度が低下し、CCFLの寿命を短くしてしまう。In particular, in general lighting applications, many are used for downlights embedded in the ceiling, etc. If the heat dissipation is not done well and the CCFL heats up abnormally, the original life cannot be ensured and there is danger such as burning. Accidents may occur. Similarly, when exposed to cold, the luminance is lowered and the life of the CCFL is shortened.

本発明は、上記の課題を解決するもので、CCFLの点灯後に、管の飽和温度を予測し、最適な管温度となるよう事前に管電流を調整することにより、安全でかつCCFL本来の寿命を確保したCCFL照明を提供することを目的とするものである。The present invention solves the above-mentioned problem. After the CCFL is turned on, the saturation temperature of the tube is predicted, and the tube current is adjusted in advance so as to obtain an optimum tube temperature. The object is to provide CCFL lighting that ensures the above.

課題を解決するための手段Means for solving the problem

この目的を達成するために、本発明は、CCFL点灯後の一定間隔時間とその時の管温度から、管の飽和温度を予測することを大きな特徴とする。In order to achieve this object, the present invention is characterized by predicting the saturation temperature of the tube from the constant interval time after the CCFL is turned on and the tube temperature at that time.

図4に管の飽和温度を予測するための手段を示す。一定間隔時間とその時の管温度から傾きを算出することで、管の飽和温度を予測する。図4のBのように、算出された傾きが最適飽和温度よりも大きいほど管温度ひいては周囲温度が高く、Aのように傾きが小さいほど周囲温度が低い環境であることが予測される。FIG. 4 shows a means for predicting the saturation temperature of the tube. The saturation temperature of the pipe is predicted by calculating the slope from the fixed interval time and the pipe temperature at that time. As shown in B of FIG. 4, the tube temperature and the ambient temperature are higher as the calculated gradient is higher than the optimum saturation temperature, and the ambient temperature is predicted to be lower as the gradient is smaller as shown in A.

本発明の管温度制御方法においては、予測された管温度に基づいて管電流を事前に決定する。そのために、最適な管温度毎の管電流値を記憶する記憶手段と、ある一定間隔時間を測ってその時の管温度と管電流を検出する手段を有する。また、最適な管温度と管電流値と現在の管温度と管電流値を比較し、管電流を決定する制御部も有する。In the tube temperature control method of the present invention, the tube current is determined in advance based on the predicted tube temperature. For this purpose, it has storage means for storing the tube current value for each optimum tube temperature, and means for measuring a certain interval time and detecting the tube temperature and the tube current at that time. Further, it has a control unit that compares the optimum tube temperature and tube current value with the current tube temperature and tube current value to determine the tube current.

発明の効果Effect of the invention

本発明の管温度制御方法によれば、CCFL管温度に適した管電流すなわち輝度を得ることができるので、CCFL管にとって厳しい管電流での点灯を避けることができる。According to the tube temperature control method of the present invention, it is possible to obtain a tube current suitable for the CCFL tube temperature, that is, luminance, so that it is possible to avoid lighting at a severe tube current for the CCFL tube.

また、CCFL管温度から周囲温度すなわち周辺の環境を予測できるので、CCFL照明が設置されている環境に適した点灯ができ、CCFLの異常な熱の発生や温度低下といった不安定な動作を抑えることが可能となる。In addition, since the ambient temperature, that is, the surrounding environment can be predicted from the CCFL tube temperature, lighting suitable for the environment where the CCFL lighting is installed can be performed, and unstable operation such as abnormal heat generation or temperature drop of the CCFL can be suppressed. Is possible.

また、本発明は予測処理であるので、管温度が飽和する前にCCFLの点灯動作を決定することができる。Further, since the present invention is a prediction process, the CCFL lighting operation can be determined before the tube temperature is saturated.

図5を参照して、本発明の概要を説明する。図5は本発明における回路ブロック図である。The outline of the present invention will be described with reference to FIG. FIG. 5 is a circuit block diagram in the present invention.

図5は、従来のDC−ACインバータに、温度検出機能とCCFL管電流検出機能と管電流を決定するプログラム制御部を加えたものである。FIG. 5 shows a conventional DC-AC inverter with a temperature detection function, a CCFL tube current detection function, and a program control unit for determining tube current.

図5の6は温度センサで、CCFL管で一番高温となる電極部分の温度を検出する。Reference numeral 6 in FIG. 5 denotes a temperature sensor, which detects the temperature of the electrode portion having the highest temperature in the CCFL tube.

CCFLの管電流は7の電流検知抵抗によって検出される。The CCFL tube current is detected by a current sensing resistor 7.

図5の8のプログラム制御部はタイマーと記憶媒体を有しており、時間テーブルごとに最適な管温度と管電流が対応づけられて記憶されている。そして、設定された時間を測り、記憶された管温度・管電流と、検出された管温度・管電流を比較する。The program control unit 8 in FIG. 5 has a timer and a storage medium, and an optimum tube temperature and tube current are stored in association with each time table. Then, the set time is measured, and the stored tube temperature / tube current is compared with the detected tube temperature / tube current.

プログラム制御部は、比較したデータに基づき、発振回路に最適な周波数信号を与え、発振回路がその周波数でスイッチングすることによって管電流が変化する。The program control unit gives an optimal frequency signal to the oscillation circuit based on the compared data, and the tube current changes as the oscillation circuit switches at the frequency.

図6にプログラム制御部が行う、比較と管電流決定という主に2つの処理のフローチャートを示す。ある一定間隔時間ごとに検出した管温度と管電流をその時間での最適な管温度と管電流と比較し、管電流を上げたり下げたりすることで、CCFLにとって最適な管温度に近づけていく。この制御は、管温度が飽和するまでの期間で実行される。FIG. 6 is a flowchart of two processes mainly performed by the program control unit, that is, comparison and tube current determination. The tube temperature and tube current detected at regular intervals are compared with the optimum tube temperature and tube current at that time, and the tube current is raised or lowered to approach the optimum tube temperature for CCFL. . This control is executed in a period until the tube temperature is saturated.

上述したように、管温度に応じて、CCFL管に供給される管電流値を変化するように制御することで、最適な管電流を管温度が飽和する前に選択することができる。このようにして、CCFL管は最適な管温度に飽和しつづける。As described above, by controlling the tube current value supplied to the CCFL tube to change in accordance with the tube temperature, the optimum tube current can be selected before the tube temperature is saturated. In this way, the CCFL tube continues to saturate at the optimum tube temperature.

また、時間テーブルと対応する最適な管温度と管電流は、管の長さや太さなど種類によって異なるので、比較する最適データを管の種類に合わせて選択することにより、様々な種類のCCFL管に対応することができる。つまり、プログラムの変更だけで対応することができる。In addition, the optimum tube temperature and tube current corresponding to the time table differ depending on the type such as the length and thickness of the tube, so various types of CCFL tubes can be selected by selecting the optimum data for comparison according to the tube type. It can correspond to. In other words, it can be dealt with only by changing the program.

従来のDC−ACインバータの回路ブロック図Circuit block diagram of conventional DC-AC inverter CCFLの輝度立ち上がりと周囲温度CCFL brightness rise and ambient temperature CCFLの周囲温度と輝度特性CCFL ambient temperature and luminance characteristics 本発明の実施手段を示すCCFL管の飽和予測方法CCFL tube saturation prediction method showing means for implementing the present invention 本発明の実施形態を示す回路ブロック図The circuit block diagram which shows embodiment of this invention 本発明のプログラム制御部が実施する処理のフローチャートThe flowchart of the process which the program control part of this invention implements

1・・・・交流電源
2・・・・直流電源を生成する回路部
3・・・・発振回路
4・・・・トランス
5・・・・冷陰極管(CCFL)
6・・・・温度センサ
7・・・・電流検知抵抗
8・・・・プログラム制御部
DESCRIPTION OF SYMBOLS 1 ... AC power supply 2 ... Circuit part 3 which generates DC power supply ... Oscillation circuit 4 ... Transformer 5 ... Cold cathode tube (CCFL)
6 ... Temperature sensor 7 ... Current detection resistor 8 ... Program control unit

Claims (4)

CCFLの管温度制御方法において、点灯後に一定間隔時間を測定し、その時間の管温度と管電流を検出し、CCFLの管温度に対応する最適な管電流値と比較し、最適飽和温度となるよう事前に管電流を制御することによって管温度を制御する方法。In the CCFL tube temperature control method, a certain interval time is measured after lighting, the tube temperature and tube current at that time are detected, and compared with the optimum tube current value corresponding to the CCFL tube temperature, the optimum saturation temperature is obtained. How to control tube temperature by controlling tube current in advance. 上述の管温度制御を、管温度が飽和する前に行い、一定間隔時間とその時の管温度から傾きを算出することで、管の飽和温度を予測することを特徴とした管温度制御方法。A tube temperature control method characterized in that the tube temperature control described above is performed before the tube temperature is saturated, and the saturation temperature of the tube is predicted by calculating a slope from a certain interval time and the tube temperature at that time. CCFLの管温度制御装置であり、時間を測定する手段と、管温度を検出する温度センサと、管電流を検出する手段と、CCFLの管温度に対応する最適な管電流値データを記憶する手段と、記憶されたデータと比較し最適な管温度となるように管電流値を制御するプログラム制御部を有する管温度制御装置。CCFL tube temperature control device, means for measuring time, temperature sensor for detecting tube temperature, means for detecting tube current, and means for storing optimum tube current value data corresponding to CCFL tube temperature And a tube temperature control device having a program control unit for controlling the tube current value so as to obtain an optimum tube temperature compared with the stored data. 上述の管温度制御装置を有したCCFL照明。CCFL illumination with the tube temperature control device described above.
JP2011087731A 2011-03-23 2011-03-23 Safe and long-life ccfl lighting Withdrawn JP2012204338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087731A JP2012204338A (en) 2011-03-23 2011-03-23 Safe and long-life ccfl lighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087731A JP2012204338A (en) 2011-03-23 2011-03-23 Safe and long-life ccfl lighting

Publications (1)

Publication Number Publication Date
JP2012204338A true JP2012204338A (en) 2012-10-22

Family

ID=47185084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087731A Withdrawn JP2012204338A (en) 2011-03-23 2011-03-23 Safe and long-life ccfl lighting

Country Status (1)

Country Link
JP (1) JP2012204338A (en)

Similar Documents

Publication Publication Date Title
JP4951369B2 (en) Lighting device and lighting system
JP2007081394A (en) Circuit for controlling driving of led with temperature-compensation function
US8836235B2 (en) Apparatus for automatically controlling the illumination of LED lighting
KR101435847B1 (en) Led device
KR20060125021A (en) Display apparatus and control method thereof
WO2022127343A1 (en) Control method for backlight circuit, backlight circuit and lcd display screen
US20130187562A1 (en) Device and method for automatically detecting installed lamp type
JP2012204338A (en) Safe and long-life ccfl lighting
JP2014131420A (en) Power-supply device
JP2010113986A (en) Led lighting device
JP2010097897A (en) Illumination control device
JP4697009B2 (en) Backlight device, mercury discharge lamp lighting device and lighting device
JP2015088422A (en) Lighting method of high-pressure discharge lamp, and lighting circuit
JP2014216060A (en) Driver circuit of led backlight of liquid crystal display device
JP2006236634A (en) Discharge lamp lighting device and luminaire
JP6248528B2 (en) Discharge lamp driving device, light source device, projector, and discharge lamp driving method
JP2009300726A (en) Liquid crystal backlight device
JP5558690B2 (en) Lighting system
KR100941145B1 (en) Device for driving multi light source
JP2007080740A (en) Discharge lamp lighting device and lighting system
KR101210901B1 (en) Led light dimming system
JP4925304B2 (en) Discharge lamp lighting device, illumination device using the same, and liquid crystal display device
JP6043268B2 (en) How to turn on the high-pressure discharge lamp
JP5643027B2 (en) Deterioration degree detection method and detector for high-intensity discharge lamp, and lighting apparatus
JP2014220193A (en) Lighting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603