JP2012204279A - Secondary battery manufacturing method - Google Patents

Secondary battery manufacturing method Download PDF

Info

Publication number
JP2012204279A
JP2012204279A JP2011070075A JP2011070075A JP2012204279A JP 2012204279 A JP2012204279 A JP 2012204279A JP 2011070075 A JP2011070075 A JP 2011070075A JP 2011070075 A JP2011070075 A JP 2011070075A JP 2012204279 A JP2012204279 A JP 2012204279A
Authority
JP
Japan
Prior art keywords
electrode plate
separator
electrolyte solution
secondary battery
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011070075A
Other languages
Japanese (ja)
Inventor
Eiichiro Aoki
栄一郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2011070075A priority Critical patent/JP2012204279A/en
Publication of JP2012204279A publication Critical patent/JP2012204279A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery manufacturing method capable of inexpensively manufacturing a secondary battery in a shorter time.SOLUTION: A secondary battery 1 comprises an electrode plate laminate 4, and a container 6 for housing the electrode plate laminate 4 together with an electrolyte solution 5. A method of the secondary battery 1 includes a separator lamination step, an electrolyte solution permeation step, an electrode plate lamination step, and a step for housing the electrode plate laminate 4 in the container 6 and injecting the electrolyte solution 5 in the container 6. In the separator lamination step, a separator 7 is laminated on one of a positive electrode plate 2 and a negative electrode plate 3. In the electrolyte solution permeation step, the electrolyte solution 5 is permeated in the separator 7 from a side of the separator 7 opposite to one electrode plate. In the electrode plate lamination step, the other one of the positive electrode plate 2 and the negative electrode plate 3 is laminated on the side of the separator 7 opposite to one electrode plate, so as to form the electrode plate laminate 4.

Description

本発明は、セパレータを介して積層された正極板および負極板を有する二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a secondary battery having a positive electrode plate and a negative electrode plate laminated via a separator.

充放電が可能な二次電池は、携帯電話機やノート型パソコン、ビデオカムレコーダ、デジタルスチルカメラなどの携帯用電子機器の駆動用電源として用いられている。近年では、電気自動車や家庭用蓄電池にも二次電池が採用されており、二次電池の需要は増加している。二次電池の需要の増加に対応するために、二次電池の生産性の向上が望まれている。   A chargeable / dischargeable secondary battery is used as a driving power source for portable electronic devices such as a mobile phone, a notebook computer, a video cam recorder, and a digital still camera. In recent years, secondary batteries have been adopted in electric vehicles and household storage batteries, and the demand for secondary batteries is increasing. In order to cope with the increase in demand for secondary batteries, it is desired to improve the productivity of secondary batteries.

二次電池の構造および製造方法について、図4および図5を用いて説明する。図4は、二次電池の構造の断面図である。   The structure and manufacturing method of the secondary battery will be described with reference to FIGS. FIG. 4 is a cross-sectional view of the structure of the secondary battery.

図4に示すように、二次電池1は、正極板2および負極板3が積層されてなる極板積層体4と、電解質溶液5とともに極板積層体4を収容した容器6と、を備えている。正極板2および負極板3の間には、セパレータ7が設けられている。セパレータ7は、例えば多孔質樹脂膜といった、液体の浸透が可能な材料を用いて形成されており、セパレータ7には電解質溶液5が浸透している。電解質溶液5中のイオンが、セパレータ7を通過して正極板2と負極板3との間を往復することによって、二次電池1の充放電が行われる。   As shown in FIG. 4, the secondary battery 1 includes an electrode plate laminate 4 in which a positive electrode plate 2 and a negative electrode plate 3 are laminated, and a container 6 that houses the electrode plate laminate 4 together with an electrolyte solution 5. ing. A separator 7 is provided between the positive electrode plate 2 and the negative electrode plate 3. The separator 7 is formed using a material capable of penetrating liquid, such as a porous resin film, and the electrolyte solution 5 penetrates the separator 7. As the ions in the electrolyte solution 5 pass through the separator 7 and reciprocate between the positive electrode plate 2 and the negative electrode plate 3, the secondary battery 1 is charged and discharged.

図5は、二次電池の製造方法を説明するための図である。まず、図5(a)に示すように、所定の大きさを有する正極板2および負極板3を、セパレータ7を介して積層し、極板積層体4を形成する。次に、図5(b)に示すように、極板積層体4を、凹部を持つ一対の容器本体6a,6bで挟み、一対の容器本体6a,6bの縁を互いに接合する。このとき、一対の容器本体6a,6bの縁部のうちの一部分を接合しないでおく。続いて、図5(c)に示すように、一対の容器本体6a,6bの縁部のうちの接合されていない一部分から容器6内に電解質溶液5を注入して容器6内を電解質溶液5で満たす。最後に、一対の容器本体6a,6bの縁部のうちの接合されていない一部分を接合し、電解質溶液5とともに極板積層体4を容器6内に収容して二次電池1が完成する。   FIG. 5 is a diagram for explaining a method of manufacturing a secondary battery. First, as shown in FIG. 5A, the positive electrode plate 2 and the negative electrode plate 3 having a predetermined size are laminated via the separator 7 to form the electrode plate laminate 4. Next, as shown in FIG. 5 (b), the electrode plate laminate 4 is sandwiched between a pair of container main bodies 6a and 6b having recesses, and the edges of the pair of container main bodies 6a and 6b are joined to each other. At this time, a part of the edges of the pair of container main bodies 6a and 6b is not joined. Subsequently, as shown in FIG. 5 (c), the electrolyte solution 5 is injected into the container 6 from the unjoined part of the edges of the pair of container main bodies 6 a and 6 b, and the electrolyte solution 5 flows through the container 6. Fill with. Finally, a part of the edges of the pair of container main bodies 6a and 6b that are not joined is joined, and the electrode laminate 4 is accommodated in the container 6 together with the electrolyte solution 5 to complete the secondary battery 1.

このような二次電池の製造方法では、比較的短い時間で容器6内を電解質溶液5で満たした場合、セパレータ7に存在する微小孔に空気が残り、電解質溶液5が十分にセパレータ7に浸透しないことがある。   In such a secondary battery manufacturing method, when the container 6 is filled with the electrolyte solution 5 in a relatively short time, air remains in the micropores existing in the separator 7, and the electrolyte solution 5 sufficiently penetrates the separator 7. There are things that do not.

セパレータ7の微小孔に空気が残る理由は、セパレータ7と正極板2または負極板3との間には、隙間がほとんどないか、非常に小さい隙間(25μm以下)しか設けられていないためである。比較的短い時間で容器6内を電解質溶液5で満たした場合、電解質溶液5は、セパレータ7の全周縁からセパレータ7に浸透し始める。したがって、セパレータ7の中央付近の微小孔中の空気は、セパレータ7の周縁から外側に抜けることができない。その結果、セパレータ7の中央付近の微小孔に空気が残る。   The reason why air remains in the minute holes of the separator 7 is that there is almost no gap or only a very small gap (25 μm or less) between the separator 7 and the positive electrode plate 2 or the negative electrode plate 3. . When the container 6 is filled with the electrolyte solution 5 in a relatively short time, the electrolyte solution 5 starts to penetrate the separator 7 from the entire periphery of the separator 7. Therefore, the air in the minute holes near the center of the separator 7 cannot escape from the periphery of the separator 7 to the outside. As a result, air remains in the minute hole near the center of the separator 7.

セパレータ7に電解質溶液5が十分に浸透していない場合、正極板2と負極板3との間を往復する電解質溶液5中のイオンが減少するため、二次電池の性能(例えば、作動電圧や電気容量)が低下する。また、電解質溶液5が十分に浸透していない状態で充放電を行うと、セパレータ7中に空気が残存しているため、セパレータ7から発火する虞がある。   When the electrolyte solution 5 does not sufficiently permeate the separator 7, ions in the electrolyte solution 5 that reciprocate between the positive electrode plate 2 and the negative electrode plate 3 decrease, so that the performance of the secondary battery (for example, operating voltage or (Electric capacity) decreases. Further, if charging / discharging is performed in a state where the electrolyte solution 5 is not sufficiently permeated, air remains in the separator 7, which may cause ignition from the separator 7.

セパレータ7に電解質溶液5を十分に浸透させるために、次のような、容器6に電解質溶液5を注入する方法が提案されている。電解質溶液5を容器6へ注入する電解質溶液注入工程において、セパレータ7が鉛直方向に沿うように容器6を配置し(図5(c)にします状態)、極板積層体4の半分が浸かるまで電解質溶液5を容器6に注入する。この状態では、セパレータ7の鉛直方向上側の半分には電解質溶液5が浸透していないため、セパレータ7の中央付近の空気がセパレータ7から抜けやすく、電解質溶液5がセパレータ7の中央付近まで浸透する。電解質溶液5がセパレータ7の中央付近まで浸透した後、容器6に電解質溶液5を再度注入して容器6を電解質溶液5で満たす。このように電解質溶液5を容器6に注入することによって、セパレータ7中の空気を抜くことができ、電解質溶液5をセパレータ7に十分に浸透させることができる。微量の電解質溶液5を連続して容器6に注入する方法でもよい。   In order to sufficiently infiltrate the electrolyte solution 5 into the separator 7, the following method for injecting the electrolyte solution 5 into the container 6 has been proposed. In the electrolyte solution injection step of injecting the electrolyte solution 5 into the container 6, the container 6 is arranged so that the separator 7 is along the vertical direction (as shown in FIG. 5C), and half of the electrode plate laminate 4 is immersed. The electrolyte solution 5 is injected into the container 6. In this state, since the electrolyte solution 5 does not permeate the upper half of the separator 7 in the vertical direction, air near the center of the separator 7 easily escapes from the separator 7, and the electrolyte solution 5 penetrates to the vicinity of the center of the separator 7. . After the electrolyte solution 5 has penetrated to the vicinity of the center of the separator 7, the electrolyte solution 5 is again injected into the container 6 to fill the container 6 with the electrolyte solution 5. By injecting the electrolyte solution 5 into the container 6 in this manner, the air in the separator 7 can be extracted, and the electrolyte solution 5 can be sufficiently permeated into the separator 7. A method of continuously injecting a small amount of the electrolyte solution 5 into the container 6 may be used.

しかしながら、このような方法では、電解質溶液5がセパレータ7の中央付近まで浸透するまで比較的長い時間放置しなければならない。特に、電解質溶液5には、セパレータ7に対して親和性が低い非水溶液が用いられることが多い。したがって、電解質溶液5はセパレータ7に浸透しにくい。   However, in such a method, the electrolyte solution 5 must be left for a relatively long time until it penetrates to the vicinity of the center of the separator 7. In particular, a nonaqueous solution having a low affinity for the separator 7 is often used for the electrolyte solution 5. Therefore, the electrolyte solution 5 hardly penetrates into the separator 7.

さらに、正極板2や負極板3には炭素系導電物質を含むことが多い。非水溶液の、当該炭素系導電物質に対する親和性は比較的低い。そのため、正極板2や負極板3と、セパレータ7とが接近している場合には、当該炭素系導電物質が電解質溶液5のセパレータ7への浸透を妨げることがある。   Furthermore, the positive electrode plate 2 and the negative electrode plate 3 often contain a carbon-based conductive material. The affinity of the non-aqueous solution for the carbon-based conductive material is relatively low. Therefore, when the positive electrode plate 2 or the negative electrode plate 3 and the separator 7 are close to each other, the carbon-based conductive material may prevent the electrolyte solution 5 from penetrating into the separator 7.

したがって、電解質溶液5に非水溶液が用いられ、正極板2や負極板3に炭素系導電物質を含む二次電池では、より長い時間をかけてセパレータ7に電解質溶液5を浸透させなければならなかった。その結果、二次電池の生産性が低下していた。そこで、二次電池の生産性を低下させることなく、セパレータ7に電解質溶液5を十分に浸透させることができる二次電池の製造方法が、特許文献1〜5に提案されている。   Therefore, in a secondary battery in which a nonaqueous solution is used for the electrolyte solution 5 and the positive electrode plate 2 or the negative electrode plate 3 contains a carbon-based conductive material, the electrolyte solution 5 must be permeated into the separator 7 over a longer time. It was. As a result, the productivity of the secondary battery has been reduced. In view of this, Patent Documents 1 to 5 propose methods for manufacturing a secondary battery in which the electrolyte solution 5 can sufficiently permeate the separator 7 without reducing the productivity of the secondary battery.

特許文献1では、電解質溶液注入工程を真空状態にある空間内で行う製造方法が開示されている。当該空間内に極板積層体4を配置することによって、セパレータ7内の空気が抜かれる。したがって、比較的短い時間で容器6を電解質溶液5で満たしても、セパレータ7内に空気が残らずに、電解質溶液5がセパレータ7の中央付近まで浸透することができる。   Patent Document 1 discloses a manufacturing method in which an electrolyte solution injection process is performed in a space in a vacuum state. By disposing the electrode laminate 4 in the space, the air in the separator 7 is extracted. Therefore, even if the container 6 is filled with the electrolyte solution 5 in a relatively short time, the electrolyte solution 5 can permeate to the vicinity of the center of the separator 7 without air remaining in the separator 7.

特許文献2では、セパレータ7に対する親和性が比較的高い高親和性溶媒を用いた二次電池の製造方法が開示されている。高親和性溶媒を電解質溶液5に混入させて高親和性溶媒と電解質溶液5との混合溶液を作り、当該混合溶液を容器6に注入する。混合溶液には高親和性溶媒が含まれているため、混合溶液は比較的短い時間でセパレータ7に浸透することができる。   Patent Document 2 discloses a method for manufacturing a secondary battery using a high affinity solvent having a relatively high affinity for the separator 7. A high affinity solvent is mixed into the electrolyte solution 5 to form a mixed solution of the high affinity solvent and the electrolyte solution 5, and the mixed solution is injected into the container 6. Since the mixed solution contains the high affinity solvent, the mixed solution can penetrate into the separator 7 in a relatively short time.

特許文献3では、正極板2や負極板3の表面、特に炭素系導電物質に存在する官能基の数を一定範囲内に制限する官能基制限剤を正極板2や負極板3に加える製造方法が開示されている。正極板2や負極板3の官能基の数を制限すると、正極板2や負極板3の、電解質溶液5に対する親和性が向上することが知られている。正極板2や負極板3の官能基の数が制限されることにより、正極板2や負極板3が電解質溶液5のセパレータ7への浸透を妨げなくなり、電解質溶液5がセパレータ7へ浸透しやすくなる。その結果、比較的短い時間で電解質溶液5をセパレータ7へ十分に浸透させることができる。   In Patent Document 3, a manufacturing method of adding a functional group limiting agent that limits the number of functional groups present on the surfaces of the positive electrode plate 2 and the negative electrode plate 3, particularly the carbon-based conductive material, to a certain range is added to the positive electrode plate 2 and the negative electrode plate 3. Is disclosed. It is known that when the number of functional groups of the positive electrode plate 2 and the negative electrode plate 3 is limited, the affinity of the positive electrode plate 2 and the negative electrode plate 3 to the electrolyte solution 5 is improved. By limiting the number of functional groups of the positive electrode plate 2 and the negative electrode plate 3, the positive electrode plate 2 and the negative electrode plate 3 do not hinder the penetration of the electrolyte solution 5 into the separator 7, and the electrolyte solution 5 easily penetrates into the separator 7. Become. As a result, the electrolyte solution 5 can be sufficiently permeated into the separator 7 in a relatively short time.

特許文献4や特許文献5では、極板積層体4を形成する前に、セパレータ7に、電解質溶液5に対する親和性が比較的高い溶剤を浸透させる工程を含む二次電池の製造方法が開示されている。当該溶剤をセパレータ7に染み込ませておくことによって、電解質溶液注入工程において、電解質溶液5がセパレータ7に浸透しやすくなる。したがって、電解質溶液注入工程の時間を短縮することができる。   Patent Document 4 and Patent Document 5 disclose a method for manufacturing a secondary battery including a step of allowing a separator 7 to permeate a solvent having a relatively high affinity for the electrolyte solution 5 before the electrode plate laminate 4 is formed. ing. By soaking the solvent into the separator 7, the electrolyte solution 5 can easily penetrate into the separator 7 in the electrolyte solution injection step. Therefore, the time for the electrolyte solution injection step can be shortened.

WO99/41797号公報WO99 / 41797 特開2009−176598号公報JP 2009-176598 A 特開2005−310764号公報JP-A-2005-310764 特開2003−308877号公報JP 2003-308877 A 特開2007−280948号公報JP 2007-280948 A

しかしながら、特許文献1で開示されている製造方法では、真空装置といった、真空状態にある空間を形成するための装置が新たに必要となる。したがって、製造装置が高価になり、二次電池の製造コストが高くなる。   However, the manufacturing method disclosed in Patent Document 1 requires a new device for forming a space in a vacuum state, such as a vacuum device. Therefore, a manufacturing apparatus becomes expensive and the manufacturing cost of a secondary battery becomes high.

また、特許文献2ないし5に開示されている製造方法では、高親和性溶媒や官能基制限剤などの新たな溶剤が用いられているため、材料費が高くなる。さらに、新たな溶剤を製造するための工程が必要となり、製造コストが増加する虞がある。   In addition, in the production methods disclosed in Patent Documents 2 to 5, since a new solvent such as a high affinity solvent or a functional group limiting agent is used, the material cost becomes high. Furthermore, a process for producing a new solvent is required, which may increase the production cost.

そこで、本発明の目的の一例は、より短い時間でより安価に二次電池を製造することができる、二次電池の製造方法を提供することにある。   Therefore, an example of the object of the present invention is to provide a secondary battery manufacturing method capable of manufacturing a secondary battery in a shorter time and at a lower cost.

上記目的を達成するために、本発明の一つの態様は、電解質溶液が浸透したセパレータを介して正極板および負極板が積層された極板積層体と、電解質溶液とともに極板積層体を収容した容器と、を備える二次電池の製造方法に係る。この態様において、正極板、負極板、および電解質溶液が浸透していないセパレータを用意する工程と、セパレータ積層工程と、電解質溶液浸透工程と、極板積層工程と、容器を用意し、極板積層体を容器に収容して該容器内に電解質溶液を注入する工程と、を含む。セパレータ積層工程では、正極板または負極板のうちの一方の極板にセパレータを積層する。電解質溶液浸透工程では、セパレータの、一方の極板とは反対の側から電解質溶液をセパレータに浸透させる。極板積層工程では、セパレータの、一方の極板とは反対の側に、正極板または負極板のうちの他方の極板を積層して極板積層体を形成する。   In order to achieve the above object, one aspect of the present invention accommodates an electrode plate laminate in which a positive electrode plate and a negative electrode plate are laminated via a separator infiltrated with an electrolyte solution, and an electrode plate laminate together with the electrolyte solution. A secondary battery including the container. In this aspect, a positive electrode plate, a negative electrode plate, and a step of preparing a separator in which an electrolyte solution does not permeate, a separator laminating step, an electrolyte solution permeating step, an electrode plate laminating step, and a container are prepared. Containing a body in a container and injecting an electrolyte solution into the container. In the separator stacking step, the separator is stacked on one of the positive electrode plate and the negative electrode plate. In the electrolyte solution infiltration step, the electrolyte solution is infiltrated into the separator from the side of the separator opposite to the one electrode plate. In the electrode plate lamination step, the other electrode plate of the positive electrode plate or the negative electrode plate is laminated on the side of the separator opposite to the one electrode plate to form an electrode plate laminate.

本発明の二次電池の製造方法によれば、より短い時間でより安価に二次電池を製造することができる。   According to the method for manufacturing a secondary battery of the present invention, a secondary battery can be manufactured in a shorter time and at a lower cost.

本発明に係る製造方法により製造される二次電池の断面図である。It is sectional drawing of the secondary battery manufactured by the manufacturing method which concerns on this invention. 本発明に係る二次電池の製造方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the secondary battery which concerns on this invention. 複数の正極板、負極板およびセパレータが積層されてなる極板積層体を有する二次電池の断面図である。It is sectional drawing of the secondary battery which has an electrode plate laminated body by which a some positive electrode plate, a negative electrode plate, and a separator are laminated | stacked. 二次電池の構造を説明するための断面図である。It is sectional drawing for demonstrating the structure of a secondary battery. 従来の二次電池の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the conventional secondary battery.

以下、本発明の実施形態に係る二次電池の製造方法について、図面に基づいて詳細に説明する。   Hereinafter, the manufacturing method of the secondary battery which concerns on embodiment of this invention is demonstrated in detail based on drawing.

図1は、本発明の実施形態に係る製造方法により製造される二次電池の断面図である。図1に示すように、二次電池1は、正極板2および負極板3が積層されてなる極板積層体4と、電解質溶液5とともに極板積層体4を収容した容器6と、を備えている。   FIG. 1 is a cross-sectional view of a secondary battery manufactured by a manufacturing method according to an embodiment of the present invention. As shown in FIG. 1, the secondary battery 1 includes an electrode plate laminate 4 in which a positive electrode plate 2 and a negative electrode plate 3 are laminated, and a container 6 that houses the electrode plate laminate 4 together with an electrolyte solution 5. ing.

正極板2および負極板3の間には、セパレータ7が設けられている。セパレータ7により、正極板2と負極板3との接触が防止されている。正極板2とセパレータ7との間、および負極板3とセパレータ7との間に隙間を設けてもよい。また、当該隙間を確保するためのスペーサ(不図示)を、正極板2とセパレータ7との間、および負極板3とセパレータ7との間に配設してもよい。   A separator 7 is provided between the positive electrode plate 2 and the negative electrode plate 3. Contact between the positive electrode plate 2 and the negative electrode plate 3 is prevented by the separator 7. A gap may be provided between the positive electrode plate 2 and the separator 7 and between the negative electrode plate 3 and the separator 7. In addition, spacers (not shown) for securing the gap may be disposed between the positive electrode plate 2 and the separator 7 and between the negative electrode plate 3 and the separator 7.

正極板2は、正極集電体2a、および正極集電体2aの、セパレータ7側の面に配設された正極活物質層2bを含んでいる。負極板3は、負極集電体3a、および負極集電体3aの、セパレータ7側の面に配設された負極活物質層3bを含んでいる。正極活物質層2bや負極活物質層3bには、炭素系導電物質が用いられている。   The positive electrode plate 2 includes a positive electrode current collector 2a and a positive electrode active material layer 2b disposed on the surface of the positive electrode current collector 2a on the separator 7 side. The negative electrode plate 3 includes a negative electrode current collector 3a and a negative electrode active material layer 3b disposed on the surface of the negative electrode current collector 3a on the separator 7 side. A carbon-based conductive material is used for the positive electrode active material layer 2b and the negative electrode active material layer 3b.

セパレータ7は、例えば多孔質樹脂膜といった、液体の浸透が可能な材料を用いて形成されており、セパレータ7には電解質溶液5が浸透している。電解質溶液5中のイオンが、セパレータ7を通過して正極板2と負極板3との間を往復することによって、二次電池1の充放電が行われる。   The separator 7 is formed using a material capable of penetrating liquid, such as a porous resin film, and the electrolyte solution 5 penetrates the separator 7. As the ions in the electrolyte solution 5 pass through the separator 7 and reciprocate between the positive electrode plate 2 and the negative electrode plate 3, the secondary battery 1 is charged and discharged.

次に、本発明の第一の実施形態に係る二次電池の製造方法について、図2を用いて説明する。図2(a)ないし(f)は、本実施形態に係る二次電池の製造方法について説明するための図である。   Next, a method for manufacturing a secondary battery according to the first embodiment of the present invention will be described with reference to FIG. 2A to 2F are views for explaining a method for manufacturing a secondary battery according to the present embodiment.

図2(a)に示すように、作業者または製造装置は、所定の大きさを有する正極板2、負極板3およびセパレータ7を用意する。このとき、セパレータ7には電解質溶液5(図1)が浸透していない。したがって、セパレータ7を用意する段階において、セパレータ7から電解質溶液5が滴下することはなく、電解質溶液5の消費や、製造装置周辺の汚れが抑制される。   As shown in FIG. 2A, the worker or the manufacturing apparatus prepares the positive electrode plate 2, the negative electrode plate 3, and the separator 7 having a predetermined size. At this time, the electrolyte solution 5 (FIG. 1) does not penetrate into the separator 7. Therefore, when the separator 7 is prepared, the electrolyte solution 5 is not dripped from the separator 7 and consumption of the electrolyte solution 5 and contamination around the manufacturing apparatus are suppressed.

次に、図2(b)に示すように、正極板2にセパレータ7を積層するセパレータ積層工程を実施する。セパレータ積層工程において、正極板2とセパレータ7との間の隙間を確保するためのスペーサ(不図示)を正極板2とセパレータ7との間に配設してもよい。   Next, as shown in FIG. 2B, a separator stacking process for stacking the separator 7 on the positive electrode plate 2 is performed. In the separator stacking step, a spacer (not shown) for securing a gap between the positive electrode plate 2 and the separator 7 may be disposed between the positive electrode plate 2 and the separator 7.

続いて、図2(c)に示すように、セパレータ7の、正極板2とは反対の側から電解質溶液5をセパレータ7に浸透させる電解質溶液浸透工程を実施する。セパレータ7に電解質溶液5を浸透させる方法としては、正極板2およびセパレータ7を鉛直方向と交わるようにかつセパレータ7を正極板2よりも鉛直方向上側に配置し、セパレータ7の鉛直方向上方から電解質溶液5を滴下する方法が挙げられる。   Subsequently, as shown in FIG. 2 (c), an electrolyte solution infiltration step is performed in which the electrolyte solution 5 is infiltrated into the separator 7 from the side of the separator 7 opposite to the positive electrode plate 2. As a method for infiltrating the electrolyte solution 5 into the separator 7, the positive electrode plate 2 and the separator 7 are arranged so as to cross the vertical direction, and the separator 7 is arranged above the positive electrode plate 2 in the vertical direction. The method of dripping the solution 5 is mentioned.

電解質溶液浸透工程では、セパレータ7の、正極板2とは反対の側には負極板3が積層されていない。そのため、セパレータ7の微小孔に存在していた空気は、セパレータ7の、正極板2とは反対の側から抜けることができる。したがって、正極板2および負極板3に挟まれたセパレータ7の縁から電解質溶液5を浸透させる場合に比べて、より短い時間で電解質溶液5をセパレータ7に浸透させることができる。   In the electrolyte solution infiltration step, the negative electrode plate 3 is not laminated on the side of the separator 7 opposite to the positive electrode plate 2. Therefore, the air existing in the minute holes of the separator 7 can escape from the side of the separator 7 opposite to the positive electrode plate 2. Therefore, the electrolyte solution 5 can be permeated into the separator 7 in a shorter time than the case where the electrolyte solution 5 is permeated from the edge of the separator 7 sandwiched between the positive electrode plate 2 and the negative electrode plate 3.

また、セパレータ7の、正極板2とは反対側の面の複数の箇所に電解質溶液5を滴下することができる。したがって、セパレータ7の縁部から電解質溶液5を浸透させる場合に比べて、より短い時間で電解質溶液5をセパレータ7に浸透させることができる。   Moreover, the electrolyte solution 5 can be dripped at a plurality of locations on the surface of the separator 7 opposite to the positive electrode plate 2. Therefore, the electrolyte solution 5 can be permeated into the separator 7 in a shorter time as compared with the case where the electrolyte solution 5 is permeated from the edge of the separator 7.

セパレータ7へ電解質溶液5を浸透させる方法は、電解質溶液5をセパレータ7の鉛直方向上方から滴下する方法に限られない。例えば、正極板2およびセパレータ7を鉛直方向に沿って配置し、電解質溶液5を霧状にしてセパレータ7へ吹きかけることによってセパレータ7へ電解質溶液5を浸透させてもよい。   The method of infiltrating the electrolyte solution 5 into the separator 7 is not limited to the method of dropping the electrolyte solution 5 from above the separator 7 in the vertical direction. For example, the positive electrode plate 2 and the separator 7 may be disposed along the vertical direction, and the electrolyte solution 5 may be infiltrated into the separator 7 by spraying the electrolyte solution 5 in the form of a mist to the separator 7.

セパレータ7に浸透させる電解質溶液5の量は、セパレータ7が吸収することができる電解質溶液5の最大量とほぼ等しいことが望ましい。当該最大量を超える量の電解質溶液5をセパレータ7に滴下した場合、セパレータ7から電解質溶液5が溢れ落ちるからである。また、当該最大量よりも少ない場合には、電解質溶液5がセパレータ7に十分に浸透せず、セパレータ7に空気が残ることがあるからである。   The amount of the electrolyte solution 5 that permeates the separator 7 is desirably substantially equal to the maximum amount of the electrolyte solution 5 that can be absorbed by the separator 7. This is because when the amount of the electrolyte solution 5 exceeding the maximum amount is dropped onto the separator 7, the electrolyte solution 5 overflows from the separator 7. In addition, when the amount is less than the maximum amount, the electrolyte solution 5 does not sufficiently permeate the separator 7 and air may remain in the separator 7.

セパレータ7に電解質溶液5が浸透したところで、図2(d)に示すように、セパレータ7の、正極板2とは反対の側に負極板3を積層する極板積層工程を実施する。このようにして、セパレータ7を介して正極板2および負極板3が積層された極板積層体4が形成される。セパレータ7と負極板3との間の隙間を確保するためのスペーサ(不図示)をセパレータ7と負極板3との間に配設してもよい。   When the electrolyte solution 5 has permeated the separator 7, as shown in FIG. 2 (d), an electrode plate stacking step is performed in which the negative electrode plate 3 is stacked on the side of the separator 7 opposite to the positive electrode plate 2. In this way, the electrode plate laminate 4 in which the positive electrode plate 2 and the negative electrode plate 3 are laminated via the separator 7 is formed. A spacer (not shown) for securing a gap between the separator 7 and the negative electrode plate 3 may be disposed between the separator 7 and the negative electrode plate 3.

なお、本実施形態では、セパレータ積層工程(図2(b))において正極板2にセパレータ7を積層しているが、セパレータ積層工程において負極板3にセパレータ7を積層してもよい。この場合、極板積層工程(図2(d))では、セパレータ7に正極板2を積層する。   In this embodiment, the separator 7 is laminated on the positive electrode plate 2 in the separator lamination step (FIG. 2B), but the separator 7 may be laminated on the negative electrode plate 3 in the separator lamination step. In this case, the positive electrode plate 2 is stacked on the separator 7 in the electrode plate stacking step (FIG. 2D).

次に、図2(e)に示すように、電解質溶液5とともに極板積層体4を収容するための容器6を用意し、極板積層体4を容器6に収容する。容器6としては、例えば、それぞれが凹部を持つ一対の容器本体6a,6bを接合してなる構造が挙げられる。一対の容器本体6a,6bの間に極板積層体4を配置し、一対の容器本体6a,6bの縁を互いに接合することによって、極板積層体4が容器6に収容される。   Next, as shown in FIG. 2 (e), a container 6 for preparing the electrode laminate 4 together with the electrolyte solution 5 is prepared, and the electrode laminate 4 is accommodated in the container 6. Examples of the container 6 include a structure formed by joining a pair of container main bodies 6a and 6b each having a recess. The electrode plate laminate 4 is accommodated in the container 6 by arranging the electrode plate laminate 4 between the pair of container main bodies 6 a and 6 b and joining the edges of the pair of container main bodies 6 a and 6 b to each other.

最後に、図2(f)に示すように、電解質溶液5を容器6内に注入する電解質溶液注入工程を実施する。容器6の一部に開口8を形成し、開口8から容器6内へ電解質溶液5を注入する。開口8は、極板積層体4を容器6に収容する工程(図2(e))において、一対の容器本体6a,6bの縁の一部を接合しないでおくことによって形成してもよい。   Finally, as shown in FIG. 2F, an electrolyte solution injection step for injecting the electrolyte solution 5 into the container 6 is performed. An opening 8 is formed in a part of the container 6, and the electrolyte solution 5 is injected into the container 6 from the opening 8. The opening 8 may be formed by not joining a part of the edges of the pair of container main bodies 6a and 6b in the step of housing the electrode plate laminate 4 in the container 6 (FIG. 2 (e)).

電解質溶液5を注入した後に開口8を接合することによって、電解質溶液5とともに極板積層体4を容器6に収容することができる。   The electrode plate laminate 4 can be accommodated in the container 6 together with the electrolyte solution 5 by joining the opening 8 after injecting the electrolyte solution 5.

また、電解質溶液注入工程において、極板積層体4の積層方向と交わる方向から電解質溶液5を注入することによって、セパレータ7により短い時間で電解質溶液5を浸透させることができる。これは、電解質溶液浸透工程(図2(c))において、セパレータ7が吸収することができる電解質溶液5の最大量よりも少ない場合に好適である。このように電解質溶液5を注入することによって、電解質溶液5が正極板2および負極板3の間を通過しやすくなるからである。   Further, in the electrolyte solution injection step, the electrolyte solution 5 can be permeated into the separator 7 in a short time by injecting the electrolyte solution 5 from the direction intersecting with the stacking direction of the electrode plate laminate 4. This is suitable when the separator 7 is less than the maximum amount of the electrolyte solution 5 that can be absorbed in the electrolyte solution permeation step (FIG. 2C). This is because by injecting the electrolyte solution 5 in this way, the electrolyte solution 5 easily passes between the positive electrode plate 2 and the negative electrode plate 3.

電解質溶液5を極板積層体4の積層方向と交わる方向から電解質溶液5を注入するために、本実施形態では次のような方法で二次電池を製造している。   In order to inject the electrolyte solution 5 from the direction crossing the stacking direction of the electrode laminate 4, the secondary battery is manufactured in the present embodiment by the following method.

すなわち、極板積層体4を容器6に収容するとき(図2(e))に、一対の容器本体6a,6bが対向する方向と極板積層体4の積層方向とが平行になるように、極板積層体4を一対の容器本体6a,6bの間に配置した。さらに、一対の容器本体6a,6bの縁の一部を接合しないことによって開口8を形成した。容器6の、極板積層体4の積層方向に対して交わる方向に位置する開口8を容易に形成することができる。   That is, when the electrode plate laminate 4 is accommodated in the container 6 (FIG. 2 (e)), the direction in which the pair of container main bodies 6a and 6b face each other and the lamination direction of the electrode plate laminate 4 are parallel to each other. The electrode plate laminate 4 was disposed between the pair of container main bodies 6a and 6b. Furthermore, the opening 8 was formed by not joining a part of edge of a pair of container main body 6a, 6b. The opening 8 located in the direction which cross | intersects with respect to the lamination direction of the electrode laminated body 4 of the container 6 can be formed easily.

また、開口8が鉛直方向上側に位置するように容器6を配置し、電解質溶液5を鉛直方向下側に向かって容器6内に注入した。電解質溶液5が容器6から漏れることなく電解質溶液5を容器6に注入することができる。   Further, the container 6 was arranged so that the opening 8 was positioned on the upper side in the vertical direction, and the electrolyte solution 5 was injected into the container 6 toward the lower side in the vertical direction. The electrolyte solution 5 can be injected into the container 6 without the electrolyte solution 5 leaking from the container 6.

本発明に係る、二次電池の製造方法によれば、電解質溶液注入工程におけるセパレータ7には、すでに電解質溶液5が浸透している。すなわち、セパレータ7が電解質溶液5になじんでおり、セパレータ7に対する電解質溶液5の親和性が向上している。   According to the method for manufacturing a secondary battery according to the present invention, the electrolyte solution 5 has already penetrated into the separator 7 in the electrolyte solution injection step. That is, the separator 7 is familiar with the electrolyte solution 5, and the affinity of the electrolyte solution 5 for the separator 7 is improved.

したがって、電解質溶液注入工程において、電解質溶液5をセパレータ7に浸透させるための時間は必要なくなるか、より短くなる。その結果、電解質溶液注入工程においてセパレータ7に電解質溶液5を浸透させる場合に比べて、より短い時間で電解質溶液5を容器6に注入することが可能となる。   Therefore, in the electrolyte solution injection step, the time for allowing the electrolyte solution 5 to permeate the separator 7 becomes unnecessary or shorter. As a result, it is possible to inject the electrolyte solution 5 into the container 6 in a shorter time than in the case where the electrolyte solution 5 is infiltrated into the separator 7 in the electrolyte solution injection step.

図4に示す二次電池の製造方法では、電解質溶液注入工程に8時間を必要としていたが、本実施形態に係る二次電池の製造方法では、電解質溶液注入工程を2時間で完了させることができた。   In the method for manufacturing the secondary battery shown in FIG. 4, the electrolyte solution injection process requires 8 hours. However, in the method for manufacturing the secondary battery according to the present embodiment, the electrolyte solution injection process can be completed in 2 hours. did it.

また、本発明の製造方法によれば、セパレータ7内の空気を抜くための、真空装置といった新たな装置を必要としない。さらに、電解質溶液5をセパレータ7に浸透しやすくするための高親和性溶媒や官能基制限剤などの新たな溶剤を必要としない。したがって、より安価に二次電池を製造することができる。   In addition, according to the manufacturing method of the present invention, a new device such as a vacuum device for removing the air in the separator 7 is not required. Furthermore, a new solvent such as a high affinity solvent or a functional group restricting agent for making the electrolyte solution 5 easily penetrate into the separator 7 is not required. Therefore, a secondary battery can be manufactured at a lower cost.

なお、本実施形態では、それぞれ1枚の正極板2、負極板3およびセパレータ7からなる二次電池について説明したが、複数の正極板2、負極板3およびセパレータ7が積層された極板積層体を有する二次電池(図3)についても適用することができる。   In the present embodiment, the secondary battery including one positive electrode plate 2, negative electrode plate 3, and separator 7 has been described. However, an electrode plate stack in which a plurality of positive electrode plates 2, negative electrode plates 3, and separators 7 are stacked. The present invention can also be applied to a secondary battery having a body (FIG. 3).

図3は、複数の正極板2、負極板3およびセパレータ7が積層された極板積層体を有する二次電池の断面図である。図3に示される二次電池1を製造する場合には、極板積層工程の後に、セパレータ積層工程、電解質溶液浸透工程および極板積層工程をこの順番で繰り返し行い、所望の枚数の正極板2、負極板3およびセパレータ7を積層する。   FIG. 3 is a cross-sectional view of a secondary battery having an electrode plate laminate in which a plurality of positive electrode plates 2, negative electrode plates 3, and separators 7 are laminated. When the secondary battery 1 shown in FIG. 3 is manufactured, the separator lamination step, the electrolyte solution infiltration step, and the electrode plate lamination step are repeated in this order after the electrode plate lamination step, and a desired number of positive electrode plates 2 are obtained. The negative electrode plate 3 and the separator 7 are laminated.

1 二次電池
2 正極板
3 負極板
4 極板積層体
5 電解質溶液
6 容器
7 セパレータ
8 開口
DESCRIPTION OF SYMBOLS 1 Secondary battery 2 Positive electrode plate 3 Negative electrode plate 4 Electrode plate laminated body 5 Electrolyte solution 6 Container 7 Separator 8 Opening

Claims (5)

セパレータを介して正極板および負極板が積層された極板積層体と、
電解質溶液とともに前記極板積層体を収容した容器と、を備える二次電池の製造方法であって、
前記正極板、前記負極板、前記電解質溶液が浸透していない前記セパレータ、および前記容器を用意する工程と、
前記正極板または前記負極板のうちの一方の極板に前記セパレータを積層するセパレータ積層工程と、
前記セパレータの、前記一方の極板とは反対の側から前記電解質溶液を前記セパレータに浸透させる電解質溶液浸透工程と、
前記セパレータの、前記一方の極板とは反対の側に、前記正極板または前記負極板のうちの他方の極板を積層して前記極板積層体を形成する極板積層工程と、
前記極板積層体を前記容器に収容して該容器内に前記電解質溶液を注入する電解質溶液注入工程と、を含む、二次電池の製造方法。
An electrode plate laminate in which a positive electrode plate and a negative electrode plate are laminated via a separator;
A container containing the electrode plate laminate together with an electrolyte solution, and a manufacturing method of a secondary battery comprising:
Preparing the positive electrode plate, the negative electrode plate, the separator not penetrating the electrolyte solution, and the container;
A separator laminating step of laminating the separator on one of the positive electrode plate or the negative electrode plate;
An electrolyte solution infiltration step for infiltrating the electrolyte solution into the separator from the side of the separator opposite to the one electrode plate;
An electrode plate stacking step of forming the electrode plate laminate by stacking the other electrode plate of the positive electrode plate or the negative electrode plate on the side of the separator opposite to the one electrode plate;
A method of manufacturing a secondary battery, comprising: an electrolyte solution injection step of accommodating the electrode laminate in the container and injecting the electrolyte solution into the container.
前記電解質溶液浸透工程において、前記一方の極板および前記セパレータを鉛直方向と交わるようにかつ前記セパレータを前記一方の極板に対して鉛直方向上側に配置し、前記セパレータの鉛直方向上方から前記電解質溶液を滴下する、請求項1に記載の二次電池の製造方法。   In the electrolyte solution permeation step, the one electrode plate and the separator are arranged so as to intersect with the vertical direction, and the separator is arranged on the upper side in the vertical direction with respect to the one electrode plate, and the electrolyte from above in the vertical direction of the separator. The method for producing a secondary battery according to claim 1, wherein the solution is dropped. 前記電解質溶液浸透工程において、前記セパレータの少なくとも2つの箇所に前記電解質溶液を滴下する、請求項2に記載の二次電池の製造方法。   The method for manufacturing a secondary battery according to claim 2, wherein in the electrolyte solution permeation step, the electrolyte solution is dropped into at least two locations of the separator. 前記電解質溶液注入工程において、前記容器の、前記極板積層体の積層方向に対して交わる方向の一部に開口を形成し、該開口が鉛直方向上側に位置するように前記容器を配置して前記電解質溶液を鉛直方向下側に向かって前記容器内に注入する、請求項1ないし3のいずれか1項に記載の二次電池の製造方法。   In the electrolyte solution injection step, an opening is formed in a part of the container in a direction intersecting with the stacking direction of the electrode plate laminate, and the container is arranged so that the opening is positioned on the upper side in the vertical direction. The method for manufacturing a secondary battery according to claim 1, wherein the electrolyte solution is injected into the container downward in the vertical direction. 前記極板積層体が、それぞれ少なくとも2枚の前記正極板、前記負極板および前記セパレータを有し、
前記セパレータ積層工程、前記電解質溶液浸透工程および前記極板積層工程をこの順番で繰り返し行うことを含む、請求項1ないし4のいずれか1項に記載の二次電池の製造方法。
Each of the electrode laminates includes at least two of the positive electrode plate, the negative electrode plate, and the separator;
The manufacturing method of the secondary battery of any one of Claim 1 thru | or 4 including repeatedly performing the said separator lamination process, the said electrolyte solution osmosis | permeation process, and the said electrode plate lamination process in this order.
JP2011070075A 2011-03-28 2011-03-28 Secondary battery manufacturing method Withdrawn JP2012204279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070075A JP2012204279A (en) 2011-03-28 2011-03-28 Secondary battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070075A JP2012204279A (en) 2011-03-28 2011-03-28 Secondary battery manufacturing method

Publications (1)

Publication Number Publication Date
JP2012204279A true JP2012204279A (en) 2012-10-22

Family

ID=47185033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070075A Withdrawn JP2012204279A (en) 2011-03-28 2011-03-28 Secondary battery manufacturing method

Country Status (1)

Country Link
JP (1) JP2012204279A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105723558A (en) * 2013-11-11 2016-06-29 日产自动车株式会社 Method for manufacturing film-packaged cell
KR101800481B1 (en) * 2013-10-30 2017-11-22 주식회사 엘지화학 Method and apparatus of manufacturing electrode assembly
CN109461974A (en) * 2018-11-02 2019-03-12 中山市众旺德新能源科技有限公司 A kind of lamination button cell and its production technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101800481B1 (en) * 2013-10-30 2017-11-22 주식회사 엘지화학 Method and apparatus of manufacturing electrode assembly
CN105723558A (en) * 2013-11-11 2016-06-29 日产自动车株式会社 Method for manufacturing film-packaged cell
CN109461974A (en) * 2018-11-02 2019-03-12 中山市众旺德新能源科技有限公司 A kind of lamination button cell and its production technology

Similar Documents

Publication Publication Date Title
JP5552731B2 (en) Bipolar battery manufacturing method and bipolar battery
JP5610057B2 (en) Solid battery
KR101005705B1 (en) Bipolar battery and manufacturing method for the same
JP5157354B2 (en) Bipolar battery and manufacturing method thereof
JP5096851B2 (en) Method for manufacturing power storage device
WO2011118418A1 (en) Storage element for an electrochemical device, electrochemical device using said storage element, method for manufacturing storage element for electrochemical device, and method for manufacturing electrochemical device
JP2012238583A (en) Energy storage apparatus and method for manufacturing the same
JP2012248465A (en) Secondary battery and method of manufacturing the same
JP5798050B2 (en) Secondary battery, storage battery system using the secondary battery, and maintenance method
JP2012204279A (en) Secondary battery manufacturing method
JP2012248381A (en) Battery
KR20120075953A (en) Electrode assembly and manufacture thereof
JP2018092830A (en) Secondary battery, and method of manufacturing secondary battery
WO2017209101A1 (en) Battery and method for manufacturing same
JP2012221580A (en) Solid-state battery
TWI472084B (en) Secondary battery of excellent productability and safety
JP2010238424A (en) Manufacturing method and manufacturing device of bipolar secondary battery
KR101357311B1 (en) Pouch type secondary battery and method of preparing the same
JP2011086406A (en) Lithium ion secondary battery, vehicle, and battery-mounted device
JP5205749B2 (en) Bipolar battery manufacturing method
KR101562345B1 (en) Electrode assembly for secondary battery and manufacturing method thereof
KR20160016040A (en) Lithium secondary battery with improved electrolyte-injection and a method for making the same
JP2007250449A (en) Bipolar secondary battery
JP2018156886A (en) Manufacturing method of stack battery
JP2018073641A (en) Secondary battery and manufacturing method of secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603