JP2012202909A - Excitation experiment method for connection part of two buildings - Google Patents

Excitation experiment method for connection part of two buildings Download PDF

Info

Publication number
JP2012202909A
JP2012202909A JP2011069602A JP2011069602A JP2012202909A JP 2012202909 A JP2012202909 A JP 2012202909A JP 2011069602 A JP2011069602 A JP 2011069602A JP 2011069602 A JP2011069602 A JP 2011069602A JP 2012202909 A JP2012202909 A JP 2012202909A
Authority
JP
Japan
Prior art keywords
base
isolated building
isolated
response
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011069602A
Other languages
Japanese (ja)
Other versions
JP5570466B2 (en
Inventor
Hiroshi Hibino
浩 日比野
Ichiro Nagashima
一郎 長島
Tatsuhiro Ranki
龍大 欄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2011069602A priority Critical patent/JP5570466B2/en
Publication of JP2012202909A publication Critical patent/JP2012202909A/en
Application granted granted Critical
Publication of JP5570466B2 publication Critical patent/JP5570466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an excitation experiment method for a connection part of two buildings, which can verify validity of design by evaluating response displacement applied to a connection part installed between a base-isolated building and a non-base-isolated building in the occurrence of an earthquake in addition to an excitation experiment for spuriously reproducing response acceleration of the non-base-isolated building side only by one vibration table.SOLUTION: Displacement response waveforms of the base-isolated building and the non-base-isolated building against a previously estimated earthquake are found by simulation to calculate a relative displacement response waveform of the base-isolated building and the non-base-isolated building, a connection portion 2 of the connection part with the non-base-isolated building through the connection part is fixed on the vibration table, a connection portion 1 of the connection part with the base-isolated building is fixed on a fixing table, and the excitation experiment is performed by driving the vibration table by using the relative displacement response waveform as an excitation wave to verify the response of the connection part.

Description

本発明は、一端部が免震建物に連結されるとともに他端部が非免震建物に連結されることにより、これら免震建物と非免震建物との間に伸縮自在に設けられた連結部の地震時における挙動を検証するための加振実験方法に関するものである。   In the present invention, one end is connected to a base-isolated building and the other end is connected to a non-base-isolated building. This is related to an excitation experiment method for verifying the behavior of the part during an earthquake.

基礎に固定された非免震建物と免震装置が介装された免震建物とが隣接して建設されるとともに、これら建物間に連続した床を形成する場合がある。このような場合に、地震発生時には、上記免震建物と非免震建物との間に数十cmの相対変位が生じることから、これら免震建物と非免震建物との間の連結部は、伸縮自在の支持部材(エキスパンション・ジョイント)によって連結し、当該支持部材の上面に、床材を載置することになる。   In some cases, a non-base-isolated building fixed to the foundation and a base-isolated building with a base-isolating device are constructed adjacent to each other, and a continuous floor is formed between these buildings. In such a case, when an earthquake occurs, a relative displacement of several tens of centimeters occurs between the above-mentioned base-isolated building and the non-base-isolated building. The floor material is placed on the upper surface of the support member by connecting with an extendable support member (expansion joint).

図7および図8は、本発明者等が先に試作したこの種の連結部における床構造を示すものである。
これらの図において、図中符号1が基礎との間に免震装置が介装された免震建物における床スラブであり、符号2が基礎に固定された非免震建物における床スラブである。これら床スラブ1、2上には、各々床材となるタイルカーペット1a、2aが貼着されて敷設されており、これら床スラブ1、2間に、地震時に床スラブ1、2間に生じる相対変位に追従可能な連結部材3が設けられている。
FIG. 7 and FIG. 8 show the floor structure of this type of connecting portion that the inventors of the present invention have prototyped previously.
In these drawings, reference numeral 1 in the drawings is a floor slab in a base-isolated building in which a base isolation device is interposed between the foundation and reference numeral 2 is a floor slab in a non-base-isolated building fixed to the foundation. On these floor slabs 1 and 2, tile carpets 1a and 2a, which are floor materials, are respectively attached and laid. A connecting member 3 capable of following the displacement is provided.

この連結部材3は、図7に示すように、床スラブ1、2間に、その接離方向に等間隔をおいて複数本(図では5本)の根太4が、隣接する根太4、4間において平行四辺形を形成する複数本の斜材5によってパンタグラフ状にピン連結されたエキスパンションジョイントによって構成されている。   As shown in FIG. 7, the connecting member 3 includes a plurality of (5 in the figure) joists 4 that are adjacent to each other between the floor slabs 1 and 2 at equal intervals in the contact and separation directions. It is constituted by an expansion joint pin-connected in a pantograph shape by a plurality of diagonal members 5 forming a parallelogram therebetween.

さらに、図8に示すように、各々の根太4の上面には、隣接する根太4の上面側へと延出する金属板6が固定されており、隣接する金属板6は、互いの板面の一部を上記相対変位方向に重複させて設けられている。そして、これら金属板6上にウレタンフォーム製シート7が載置されている。このウレタンフォーム製シート7は、一端部7aが貼着されるとともに他端部7bが自由端とされており、当該ウレタンフォーム製シート7上に、上記タイルカーペット1a、2aと同様のタイルカーペット8がこれらと連続するように載置されている。   Furthermore, as shown in FIG. 8, the metal plate 6 extended to the upper surface side of the adjacent joist 4 is being fixed to the upper surface of each joist 4, and the adjacent metal plate 6 is each plate surface. Is partially overlapped in the relative displacement direction. A urethane foam sheet 7 is placed on the metal plate 6. The urethane foam sheet 7 has one end 7a attached and the other end 7b a free end. A tile carpet 8 similar to the tile carpets 1a and 2a is formed on the urethane foam sheet 7. Are placed so as to be continuous with these.

上記構成からなる連結部の床構造は、地震発生時に生じる免震建物と非免震建物との床スラブ1、2間の相対変位を、連結部材3の伸縮によって吸収するとともに、当該連結部材3の上面とウレタンフォーム製シート7の自由端側との間に滑りを生じさせることにより、地震終了後に当該ウレタンフォーム製シート7およびこれに載置されているタイルカーペット8を元位置に復帰させようとするものである。   The floor structure of the connecting portion configured as described above absorbs the relative displacement between the floor slabs 1 and 2 between the base-isolated building and the non-base-isolating building that occurs when an earthquake occurs, and the connecting member 3 extends and contracts. The urethane foam sheet 7 and the tile carpet 8 mounted on the urethane foam sheet 7 are returned to their original positions after the end of the earthquake by causing a slip between the upper surface of the sheet and the free end side of the urethane foam sheet 7. It is what.

ところで、地震時における免震建物と非免震建物との応答変位および応答加速度は、互いに大きく異なるために、上記連結部材3の挙動は、これら免震建物および非免震建物の応答変位や応答加速度の影響を受けることになる。   By the way, since the response displacement and response acceleration of the base-isolated building and the non-base-isolated building at the time of the earthquake are greatly different from each other, the behavior of the connecting member 3 is the response displacement and the response of the base-isolated building and the non-base-isolated building. It will be affected by acceleration.

このため、地震時に、例えば上記連結部材3上のウレタンフォーム製シート7やタイルカーペット8が所定の挙動を実現可能か否か、あるいは特に上記連結部材3のタイルカーペット8上に、ロッカーや本棚等の什器類9を設置する要請がある場合には、想定される地震時に、これら什器類9がどのような挙動をするか、具体的には転倒等を生じて避難の妨げ等になるか否か等を事前に確認しておく必要がある。   Therefore, at the time of an earthquake, for example, whether the urethane foam sheet 7 and the tile carpet 8 on the connecting member 3 can realize a predetermined behavior, or in particular, a locker, a bookshelf, etc. on the tile carpet 8 of the connecting member 3. If there is a request to install other fixtures 9, how will these fixtures 9 behave in the event of an anticipated earthquake, specifically, whether they will cause a fall or the like and prevent evacuation, etc. It is necessary to confirm in advance.

一方、一般的に、建物の耐震実験や免震構造の性能実験等の地震に対する建物の応答を実験的に確かめる場合には、油圧シリンダによって地盤に対して移動自在に設けられた振動台上に上記建物を模した構造物を載置し、上記油圧シリンダに過去の大地震時に取得した変位および加速度に基づいて制御用の応答波形を入力することにより、実際に上記構造物に大地震時の振動を与える加振実験が実施されている。   On the other hand, in general, when experimentally confirming a building's response to an earthquake such as a seismic test of a building or a performance test of a seismic isolation structure, it is placed on a shaking table that is movable with respect to the ground by a hydraulic cylinder. A structure imitating the building is placed, and a response waveform for control is input to the hydraulic cylinder based on the displacement and acceleration acquired during a past large earthquake. An excitation experiment that gives vibration is being carried out.

ところが、このような加振実験によって、上述した地震時における応答が異なる免震建物と非免震建物とを連結する連結部材の挙動を確認するには、2台の振動台を用意して、一方の振動台に免震建物における推定応答波形を入力し、他方の振動台に非免震建物における推定応答波形を入力する必要がある。このため、実験設備として規模が極めて大きなものになり、導入コストや施設維持コストの観点から現実的ではない。   However, in order to confirm the behavior of the connecting member that connects the base-isolated building and the non-base-isolated building with different responses at the time of the earthquake described above, prepare two shaking tables, It is necessary to input an estimated response waveform in a base-isolated building on one shaking table and input an estimated response waveform in a non-base-isolated building on the other shaking table. For this reason, the scale of the experimental equipment becomes extremely large, which is not realistic from the viewpoint of introduction cost and facility maintenance cost.

そこで、連結部材が設置される階が低層部の場合に、非免震建物の当該階の基礎部に対する相対変形は、さほど大きくないために、免震建物における免震層の基礎部に対する相対変形をシミュレーション等により求め、免震建物を振動台上に載置するとともに、非免震建物を地盤上に固定して、上記振動台に上記相対変形の波形を入力することにより、地震時における上記連結部材の応答変位については検証することが可能にある。   Therefore, when the floor where the connecting member is installed is a low-rise part, the relative deformation of the non-base-isolated building with respect to the foundation of the floor is not so large. Is obtained by simulation, etc., and the base-isolated building is placed on the shaking table, the non-base-isolating building is fixed on the ground, and the waveform of the relative deformation is input to the shaking table to It is possible to verify the response displacement of the connecting member.

しかしながら、1台の振動台を用いた上記加振実験においては、固定されている非免震建物側から連結部材に対して、実際の地震時には当該非免震建物において生じる応答加速度が作用しないために、上記連結部材に作用する応答加速度を正しく検証することはできないという欠点がある。   However, in the above vibration experiment using one shaking table, the response acceleration generated in the non-isolated building does not act on the connecting member from the fixed non-isolated building side during the actual earthquake. In addition, there is a drawback that the response acceleration acting on the connecting member cannot be correctly verified.

このように、従来の振動台を用いた加振実験方法にあっては、1台の振動台によって、地震時に免震建物と非免震建物との間に介装されたエキスパンション等からなる連結部材に作用する応答変位および応答加速度を評価することが難しく、その開発が望まれている。   As described above, in the vibration test method using the conventional shaking table, a single shaking table is used to connect the expansion base interposed between the base-isolated building and the non-base-isolated building at the time of the earthquake. It is difficult to evaluate response displacement and response acceleration acting on a member, and development of such response is desired.

本発明は、上記事情に鑑みてなされたものであり、1台の振動台によって、非免震建物側の応答加速度を擬似的に再現する加振実験と併せて、地震時に免震建物と非免震建物との間に介装された連結部材に作用する応答変位および応答加速度を評価して、その設計の妥当性を検証することが可能になる2棟の建物の連結部材に対する加振実験方法を提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and in combination with an excitation experiment in which the response acceleration on the non-isolated building side is simulated by a single shaking table, Excitation experiment on the connecting member of two buildings that can evaluate the response displacement and response acceleration acting on the connecting member interposed between the base-isolated building and verify the validity of the design It is an object to provide a method.

上記課題を解決するため、請求項1に記載の発明は、免震建物と非免震建物との間に伸縮自在に設けられた連結部の地震時における挙動を検証するための加振実験方法であって、予め想定される地震に対する上記免震建物および非免震建物の変位応答波形をシミュレーションによって求めて、上記免震建物および非免震建物の相対変位応答波形を算出し、次いで、上記連結部を間に介して当該連結部の上記非免震建物との連結部分を振動台に固定するとともに、当該連結部の上記免震建物との連結部分を固定台に固定して、上記振動台を、上記相対変位応答波形を加振波として駆動して加振実験を行うことにより上記連結部の応答を検証することを特徴とするものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is an excitation test method for verifying the behavior of a connecting portion provided between a base-isolated building and a non-base-isolated building in a stretchable manner during an earthquake. The displacement response waveforms of the base-isolated building and the non-base-isolated building with respect to a presumed earthquake are obtained by simulation, the relative displacement response waveforms of the base-isolated building and the non-base-isolated building are calculated, and then the above-mentioned The connecting part of the connecting part with the non-base-isolated building is fixed to a shaking table with a connecting part in between, and the connecting part of the connecting part with the base-isolated building is fixed to a fixing base, and the vibration The response of the connecting portion is verified by driving a table using the relative displacement response waveform as an excitation wave and performing an excitation experiment.

また、請求項2に記載の発明は、免震建物と非免震建物との間に伸縮自在に設けられた連結部の地震時における挙動を検証するための加振実験方法であって、予め想定される地震に対する上記免震建物および非免震建物の加速度応答波形をシミュレーションによって求めて、上記免震建物および非免震建物の相対加速度応答波形を算出し、次いで、上記連結部を間に介して当該連結部の上記非免震建物との連結部分を振動台に固定するとともに、当該連結部の上記免震建物との連結部分を固定台に固定して、上記振動台を、上記相対加速度応答波形を加振波として駆動して加振実験を行うことにより上記連結部の応答を検証することを特徴とするものである。   The invention according to claim 2 is an excitation experiment method for verifying the behavior at the time of an earthquake of a connecting portion provided to be stretchable between a base-isolated building and a non-base-isolated building, Obtain the acceleration response waveforms of the base-isolated and non-base-isolated buildings for the expected earthquake by simulation, calculate the relative acceleration response waveforms of the base-isolated and non-base-isolated buildings, and then place the connecting part in between. Fixing the connecting part of the connecting part to the non-base-isolated building to a shaking table, fixing the connecting part of the connecting part to the base-isolated building to a fixing base, and The response of the connecting portion is verified by performing an excitation experiment by driving an acceleration response waveform as an excitation wave.

請求項1または2に記載の発明においては、振動台側を非免震建物側と想定して、振動台上に非免震建物側の連結部分を設置するとともに、地震時に免震層を介して地盤からの振動が緩和される免震建物側の連結部分を地盤上の固定台に固定して、上記振動台に予めシミュレーションによって求めた想定される地震時の相対変位応答波形または相対加速度応答波形を加振波として入力しているために、連結部に対しては、免震建物および非免震建物の相対的な応答変位または応答加速度を考慮した高い精度による検証を行うことができる。   In the invention described in claim 1 or 2, assuming that the shaking table side is the non-base-isolated building side, the connecting portion of the non-base-isolating building side is installed on the shaking table, and the earthquake isolation layer is interposed during the earthquake. Relative vibration response response or relative acceleration response at the time of an assumed earthquake obtained by simulation in advance on the above-mentioned shaking table by fixing the connecting part on the base-isolated building where vibration from the ground is mitigated Since the waveform is input as the excitation wave, the connection portion can be verified with high accuracy in consideration of the relative response displacement or response acceleration of the base-isolated building and the non-base-isolated building.

また、一般に非免震建物側の応答加速度は、500Gal以上が想定されるのに対して、免震建物側の応答加速度は、100Gal程度と相対的に小さいために、請求項2に記載の発明のように、シミュレーションによって免震建物および非免震建物の加速度応答波形も求めて、上記振動台を、上記相対加速度応答波形を加振波として駆動して加振実験を行うことにより、概ね実際の地震時における応答を再現することができる。この結果、上記非免震建物の連結部分が設置された振動台を、上記相対応答加速度波形を加振波とし駆動することにより、非免震建物側に対しても、擬似的な振動実験を行うことができる。   In general, the response acceleration on the non-base-isolated building side is assumed to be 500 Gal or higher, whereas the response acceleration on the base-isolated building side is relatively small, about 100 Gal, so the invention according to claim 2 As shown above, the acceleration response waveforms of base-isolated and non-base-isolated buildings are also obtained by simulation, and the vibration table is driven by using the relative acceleration response waveform as an excitation wave. The response during an earthquake can be reproduced. As a result, by driving the shaking table in which the connection part of the non-isolated building is installed using the relative response acceleration waveform as an excitation wave, a pseudo vibration experiment is also performed on the non-isolated building side. It can be carried out.

したがって、請求項1または2に記載の発明によれば、1台の振動台によって、免震建物および非免震建物間に介装される連結部に対する実際の地震を模した精緻な加振実験と、非免震建物側に対する模擬的な振動実験とを同時に行うことができる。   Therefore, according to the first or second aspect of the invention, a precise excitation experiment simulating an actual earthquake with respect to a connecting portion interposed between a base-isolated building and a non-base-isolated building by one shaking table. And a simulated vibration experiment on the non-base-isolated building side can be performed simultaneously.

本発明に係る2棟の建物の連結部に対する加振実験方法の実施状況を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the implementation condition of the vibration test method with respect to the connection part of two buildings which concern on this invention. 図1の平面図である。It is a top view of FIG. 予め2007年新潟県中越沖地震についてシミュレーションによって求めた免震建物および非免震建物の最大加速度および最大変位、並びに上記免震建物および非免震建物の相対加速度および相対変位を示す図表である。It is a chart which shows the maximum acceleration and maximum displacement of a base-isolated building and a non-base-isolated building obtained by simulation about the 2007 Niigata Chuetsu-oki earthquake in advance, and the relative acceleration and relative displacement of the base-isolated and non-base-isolated buildings. 図3の非免震建物の加速度応答波形、並びに上記免震建物および非免震建物の相対加速度応答波形および相対変位応答波形を示すグラフである。It is a graph which shows the acceleration response waveform of the non-base-isolated building of FIG. 3, and the relative acceleration response waveform and relative displacement response waveform of the said base-isolated building and a non-base-isolated building. 予め2004年新潟県中越地震についてシミュレーションによって求めた免震建物および非免震建物の最大加速度および最大変位、並びに上記免震建物および非免震建物の相対加速度および相対変位を示す図表である。It is a chart which shows the maximum acceleration and maximum displacement of the base-isolated building and non-base-isolated building which were calculated | required by simulation about the 2004 Niigata Chuetsu Earthquake beforehand, and the relative acceleration and relative displacement of the said base-isolated building and non-base-isolated building. 図5の非免震建物の加速度応答波形、並びに上記免震建物および非免震建物の相対加速度応答波形および相対変位応答波形を示すグラフである。It is a graph which shows the acceleration response waveform of the non-base-isolated building of FIG. 5, and the relative acceleration response waveform and relative displacement response waveform of the said base-isolated building and a non-base-isolated building. 免震建物と非免震建物との連結部における連結部材の一例を示す斜視図である。It is a perspective view which shows an example of the connection member in the connection part of a base isolation building and a non-base isolation building. 図7の連結部材上に金属板、シートおよびタイルを設けた連結部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the connection part which provided the metal plate, the sheet | seat, and the tile on the connection member of FIG.

以下、図面に基づいて、本発明に係る2棟の建物の連結部に対する加振実験方法の一実施形態について説明する。なお、本実施形態に試験体として用いた免震建物および非免震建物の連結部は、図7および図8に示したものと同一の構成であるために、同一符号を用いてその構成の説明を簡略化する。   Hereinafter, an embodiment of a vibration experiment method for a connecting portion of two buildings according to the present invention will be described based on the drawings. In addition, since the connection part of the base-isolated building and non-base-isolated building used as a test body in this embodiment is the same structure as what was shown in FIG.7 and FIG.8, it uses the same code | symbol of the structure. Simplify the description.

この加振実験方法においては、事前に、過去の地震データに基づいて、想定される地震に対する免震建物および非免震建物の変位応答波形または加速度応答波形をシミュレーションによって求める。そして、これらの個々の変位応答波形または加速度応答波形から、その差分となる上記免震建物および非免震建物の相対変位応答波形または相対加速度応答波形を算出する。   In this excitation experiment method, based on past earthquake data, displacement response waveforms or acceleration response waveforms of base-isolated and non-base-isolated buildings against an expected earthquake are obtained in advance by simulation. Then, from these individual displacement response waveforms or acceleration response waveforms, the relative displacement response waveform or the relative acceleration response waveform of the base-isolated building and the non-base-isolated building that is the difference is calculated.

例えば、図3は、2007年新潟県中越沖地震の地震データに基づいて、シミュレーションによって求めた免震建物および非免震建物の最大加速度および最大変位、並びに上記免震建物および非免震建物の相対加速度および相対変位を示すものである。また、図4は、非免震建物の加速度応答波形、並びに上記免震建物および非免震建物の相対加速度応答波形および相対変位応答波形を示すものである。   For example, FIG. 3 shows the maximum acceleration and maximum displacement of base-isolated and non-base-isolated buildings obtained by simulation based on the earthquake data of the 2007 Niigata Chuetsu-oki earthquake, and the above-mentioned base-isolated and non-base-isolated buildings. It shows relative acceleration and relative displacement. FIG. 4 shows the acceleration response waveform of the non-base-isolated building, and the relative acceleration response waveform and the relative displacement response waveform of the base-isolated building and the non-base-isolated building.

さらに、図5は、2004年新潟県中越地震の地震データに基づいて、シミュレーションによって求めた免震建物および非免震建物の最大加速度および最大変位、並びに上記免震建物および非免震建物の相対加速度および相対変位を示すものである。また、図6は、非免震建物の加速度応答波形、並びに上記免震建物および非免震建物の相対加速度応答波形および相対変位応答波形を示すものである。   Further, FIG. 5 shows the maximum acceleration and maximum displacement of the base-isolated and non-base-isolated buildings obtained by simulation based on the earthquake data of the 2004 Niigata Chuetsu Earthquake, and the relative of the base-isolated and non-base-isolated buildings. It shows acceleration and relative displacement. FIG. 6 shows the acceleration response waveform of the non-base-isolated building, and the relative acceleration response waveform and the relative displacement response waveform of the base-isolated building and the non-base-isolated building.

そして次に、図1および図2に示すように、連結部材3を用いた連結部(EXPJ部)を間に介して、この連結部と連結される非免震建物側の床スラブ(連結部分)2を振動台に固定するとともに、上記連結部と連結される免震建物側の床スラブ(連結部分)1を、実験設備の床上に固定されたテストフロア(固定台)に固定する。   Then, as shown in FIG. 1 and FIG. 2, the floor slab on the non-seismic isolation building side (connection portion) connected to the connection portion via the connection portion (EXPJ portion) using the connection member 3 therebetween. ) 2 is fixed to the shaking table, and the floor slab (connecting portion) 1 on the seismic isolation building side connected to the connecting portion is fixed to a test floor (fixed base) fixed on the floor of the experimental equipment.

そして、床スラブ1、2および連結部材3上、ならびに床スラブ1、2上に載置した什器類9上に、各々の箇所の加速度を計測するための加速度計10を設置するとともに、床スラブ1に、対向する床スラブ2との間隔を計測するレーザ式の変位計11を設置する。   And while installing the accelerometer 10 for measuring the acceleration of each location on the floor slabs 1 and 2 and the connection member 3, and the fixtures 9 mounted on the floor slabs 1 and 2, the floor slab 1, a laser-type displacement meter 11 for measuring the distance from the facing floor slab 2 is installed.

このようにして、試験体および計測計の設置が完了した後に、上記振動台を、予め求めた上記相対変位応答波形または上記相対加速度応答波形を加振波として駆動する加振実験を行う。そして、上記加速度計10および変位計11によって得られたデータによって、上記連結部における変位および加速度の応答を検証する。   In this way, after the installation of the test body and the measuring instrument is completed, an excitation experiment is performed in which the shaking table is driven using the relative displacement response waveform or the relative acceleration response waveform obtained in advance as an excitation wave. And the response of the displacement and acceleration in the said connection part is verified by the data obtained by the said accelerometer 10 and the displacement meter 11. FIG.

以上の構成からなる加振実験方法においては、振動台側を非免震建物側と想定して、当該振動台上に連結部と連結される非免震建物側の床スラブ2を設置し、他方地盤上に固定されたテストフロアに上記連結部と連結される免震建物側の床スラブ1を設置して、上記振動台に予めシミュレーションによって求めた、想定される地震時の相対応答波形または相対加速度応答波形を加振波として入力しているために、1台の振動台によって、免震建物および非免震建物間に介装される連結部に対する実際の地震を模した精緻な加振実験と、非免震建物側に対する模擬的な振動実験を同時に行うことができる。   In the vibration test method having the above configuration, assuming that the shaking table side is the non-base-isolated building side, the floor slab 2 on the non-base-isolating building side connected to the connecting portion is installed on the shaking table, On the other hand, the floor slab 1 on the seismic isolation building side connected to the connecting part is installed on a test floor fixed on the ground, and the relative response waveform at the time of an assumed earthquake obtained by simulation in advance on the shaking table or Since the relative acceleration response waveform is input as an excitation wave, precise excitation imitating an actual earthquake on a connecting part interposed between a base-isolated building and a non-base-isolated building by one shaking table Experiments and simulated vibration tests on non-base-isolated buildings can be performed simultaneously.

すなわち、地震に対する連結部が設けられた免震建物および非免震建物の階の応答を、各々1質点系で考察すると、地震時の地盤の変位をx0、地盤に対する免震建物の上記階における相対変位をx1、同じく地盤に対する非免震建物の上記階における相対変位をx2、とすると、免震建物の絶対変位X1=x1+x0、非免震建物の絶対変位X2=x2+x0になる。 In other words, considering the response of the floors of base-isolated buildings and non-base-isolated buildings that are connected to the earthquake in terms of one mass system, the displacement of the ground at the time of the earthquake is x 0 , and the above-mentioned floor of the base-isolated building relative to the ground x 1 relative displacement in, the same x 2 relative displacement in the floor Himen seismic building for ground, and to the absolute displacement X 1 = x 1 + x 0 seismic isolation building, Himen seismic absolute displacement of the building X 2 = X 2 + x 0 .

そして、連結部(EXPJ部)における相対変位Xを解析によって求めれば、上記相対変位X=X2−X1=(x2+x0)−(x1+x0)=x2−x1 になる。
また、免震建物の上記階における応答加速度がα1、非免震建物の上記階における応答加速度がα2であれば、連結部(EXPJ部)の相対加速度α=α2−α1である。
If the relative displacement X in the connecting portion (EXPJ portion) is obtained by analysis, the relative displacement X = X 2 −X 1 = (x 2 + x 0 ) − (x 1 + x 0 ) = x 2 −x 1 . .
If the response acceleration at the above-mentioned floor of the base-isolated building is α 1 and the response acceleration at the above-mentioned floor of the non-base-isolated building is α 2 , the relative acceleration α = α 2 −α 1 of the connecting portion (EXPJ portion). .

したがって、連結部に対しては、免震建物および非免震建物の相対的な応答変位または応答加速度を考慮した高い精度による検証を行うことができる。   Therefore, it is possible to verify the connecting portion with high accuracy in consideration of the relative response displacement or response acceleration of the base-isolated building and the non-base-isolated building.

また、本来、非免震建物における応答加速度はα2であるが、上述したように、非免震建物側の応答加速度α2は、500Gal以上が想定されるのに対して、免震建物側の応答加速度α1は、100Gal程度と相対的に小さいために、上記振動台を、上記相対加速度(α2−α1)の応答波形を加振波として駆動して加振実験を行っても、概ね実際の地震時における応答を再現することができる。 In addition, the response acceleration in the non-base-isolated building is α 2 originally, but as described above, the response acceleration α 2 on the non-base-isolated building side is assumed to be 500 Gal or more, whereas the base-isolation building side Since the response acceleration α 1 is relatively small, such as about 100 Gal, even if the vibration table is driven with the response waveform of the relative acceleration (α 2 −α 1 ) as an excitation wave, an excitation experiment is performed. In general, the response at the time of an actual earthquake can be reproduced.

この結果、上記非免震建物の連結部分が設置された振動台を、上記相対応答加速度波形を加振波とし駆動することにより、非免震建物側に対しても、擬似的な振動実験を行うことができる。   As a result, by driving the shaking table in which the connection part of the non-isolated building is installed using the relative response acceleration waveform as an excitation wave, a pseudo vibration experiment is also performed on the non-isolated building side. It can be carried out.

なお、図3〜図6に示した2007年新潟県中越沖地震の地震データおよび2004年新潟県中越地震の地震データに基づいて、本発明者等が行った解析結果によれば、相対変位(x2−x1)の応答波形における卓越周期が、3〜5秒程度の長周期側であって、かつ非免震建物の上記階が低層部であって、応答加速度α2の周期が1秒程度までの短周期側にある場合に、上記相対変位応答波形を加振波として駆動して加振実験を行うことにより、連結部における相対変位と非免震建物側の加速度の再現を、同時に高い精度で再現し得ることが判明している。 According to the analysis results performed by the present inventors based on the earthquake data of the 2007 Niigata Chuetsu-oki earthquake and the 2004 Niigata Chuetsu earthquake shown in FIGS. x 2 −x 1 ) in the response waveform has a dominant period on the long period side of about 3 to 5 seconds, and the above-mentioned floor of the non-base-isolated building is a low-rise part, and the period of the response acceleration α 2 is 1. When it is on the short cycle side up to about 2 seconds, by driving the relative displacement response waveform as an excitation wave and performing an excitation experiment, reproduction of the relative displacement in the connecting part and the acceleration on the non-base-isolated building side At the same time, it has been found that it can be reproduced with high accuracy.

以上のように、上記構成からなる免震建物および非免震建物の2棟の建物の連結部に対する加振実験方法によれば、1台の振動台で、非免震建物側の応答加速度を擬似的に再現する加振実験と併せて、地震時に免震建物と非免震建物との間に介装された連結部に作用する応答変位を評価して、その設計の妥当性を検証することが可能になる。   As described above, according to the vibration test method for the connecting part of the two buildings, the base-isolated building and the non-base-isolated building having the above configuration, the response acceleration on the non-base-isolated building side is obtained with one shaking table. In conjunction with a simulated vibration experiment, we evaluate the response displacement that acts on the connection between the base-isolated building and the non-base-isolated building during an earthquake, and verify the validity of the design. It becomes possible.

免震建物と非免震建物との間に伸縮自在に設けられた連結部の地震時における挙動を検証するために利用可能である。   It can be used to verify the behavior of a connecting part that is stretchable between a base-isolated building and a non-base-isolated building during an earthquake.

1 床スラブ(免震建物側の連結部分)
2 床スラブ(非免震建物側の連結部分)
3 連結部材
9 什器類
10 加速度計
11 変位計
1 Floor slab (connecting part on the base-isolated building side)
2 Floor slabs (connections on non-base-isolated buildings)
3 Connecting member 9 Fixtures 10 Accelerometer 11 Displacement meter

Claims (2)

免震建物と非免震建物との間に伸縮自在に設けられた連結部の地震時における挙動を検証するための加振実験方法であって、
予め想定される地震に対する上記免震建物および非免震建物の変位応答波形をシミュレーションによって求めて、上記免震建物および非免震建物の相対変位応答波形を算出し、
次いで、上記連結部を間に介して当該連結部の上記非免震建物との連結部分を振動台に固定するとともに、当該連結部の上記免震建物との連結部分を固定台に固定して、上記振動台を、上記相対変位応答波形を加振波として駆動して加振実験を行うことにより上記連結部の応答を検証することを特徴とする2棟の建物の連結部に対する加振実験方法。
An excitation test method for verifying the behavior of a connecting portion provided between a base-isolated building and a non-base-isolated building at the time of an earthquake,
Obtain the displacement response waveform of the base-isolated building and non-base-isolated building with respect to the earthquake assumed in advance, and calculate the relative displacement response waveform of the base-isolated building and non-base-isolated building,
Next, the connecting portion of the connecting portion with the non-base-isolated building is fixed to a shaking table with the connecting portion interposed therebetween, and the connecting portion of the connecting portion with the base-isolated building is fixed to a fixed base. Exciting experiment on the connecting part of two buildings characterized by verifying the response of the connecting part by driving the shaking table with the relative displacement response waveform as an excitation wave Method.
免震建物と非免震建物との間に伸縮自在に設けられた連結部の地震時における挙動を検証するための加振実験方法であって、
予め想定される地震に対する上記免震建物および非免震建物の加速度応答波形をシミュレーションによって求めて、上記免震建物および非免震建物の相対加速度応答波形を算出し、
次いで、上記連結部を間に介して当該連結部の上記非免震建物との連結部分を振動台に固定するとともに、当該連結部の上記免震建物との連結部分を固定台に固定して、上記振動台を、上記相対加速度応答波形を加振波として駆動して加振実験を行うことにより上記連結部の応答を検証することを特徴とする2棟の建物の連結部に対する加振実験方法。
An excitation test method for verifying the behavior of a connecting portion provided between a base-isolated building and a non-base-isolated building at the time of an earthquake,
Obtain the acceleration response waveform of the above-mentioned base-isolated building and non-base-isolated building with respect to the earthquake assumed in advance, and calculate the relative acceleration response waveform of the above base-isolated building and non-base-isolated building,
Next, the connecting portion of the connecting portion with the non-base-isolated building is fixed to a shaking table with the connecting portion interposed therebetween, and the connecting portion of the connecting portion with the base-isolated building is fixed to a fixed base. Exciting experiment on the connecting part of two buildings characterized by verifying the response of the connecting part by driving the shaking table with the relative acceleration response waveform as an exciting wave and conducting an exciting experiment Method.
JP2011069602A 2011-03-28 2011-03-28 Excitation test method for connecting part of two buildings Active JP5570466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011069602A JP5570466B2 (en) 2011-03-28 2011-03-28 Excitation test method for connecting part of two buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069602A JP5570466B2 (en) 2011-03-28 2011-03-28 Excitation test method for connecting part of two buildings

Publications (2)

Publication Number Publication Date
JP2012202909A true JP2012202909A (en) 2012-10-22
JP5570466B2 JP5570466B2 (en) 2014-08-13

Family

ID=47184062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069602A Active JP5570466B2 (en) 2011-03-28 2011-03-28 Excitation test method for connecting part of two buildings

Country Status (1)

Country Link
JP (1) JP5570466B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094655A (en) * 2013-11-12 2015-05-18 大成建設株式会社 Characteristic evaluation method of connection member
JP2016017765A (en) * 2014-07-04 2016-02-01 ソルーション株式会社 Vibration apparatus
JP2017207413A (en) * 2016-05-20 2017-11-24 カネソウ株式会社 Moving-direction regulation tool for oscillation carriage
CN109738146A (en) * 2019-03-08 2019-05-10 敦煌研究院 A kind of full size cun rammed earth wall seismographic station test simulation connecting test method
CN111473934A (en) * 2020-06-05 2020-07-31 防灾科技学院 Device and method for simulating avoidance distance of buildings close to strong earthquake surface fractured zone
CN113883996A (en) * 2021-09-14 2022-01-04 中铁西北科学研究院有限公司 Simulation device and analysis method for influence of foundation additional stress on superstructure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224460A (en) * 1988-07-14 1990-01-26 Ohbayashi Corp Vibration control method for multistoried building
JPH1018444A (en) * 1996-07-09 1998-01-20 Takenaka Komuten Co Ltd Expansion joint part for building of base-isolated construction
JPH1171821A (en) * 1997-08-28 1999-03-16 Shimizu Corp Floor board structure of connecting corridor
JP2002169459A (en) * 2000-11-30 2002-06-14 Sekisui House Ltd Base-isolated structure experiencing device
JP2002214068A (en) * 1995-02-13 2002-07-31 Hitachi Ltd Vibration testing device for structure, digital computer used therefor, and method for vibration test
JP2006249833A (en) * 2005-03-11 2006-09-21 Matsushita Electric Works Ltd Apparatus for evaluating effectiveness of base isolation, oscillation measuring system, and control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224460A (en) * 1988-07-14 1990-01-26 Ohbayashi Corp Vibration control method for multistoried building
JP2002214068A (en) * 1995-02-13 2002-07-31 Hitachi Ltd Vibration testing device for structure, digital computer used therefor, and method for vibration test
JPH1018444A (en) * 1996-07-09 1998-01-20 Takenaka Komuten Co Ltd Expansion joint part for building of base-isolated construction
JPH1171821A (en) * 1997-08-28 1999-03-16 Shimizu Corp Floor board structure of connecting corridor
JP2002169459A (en) * 2000-11-30 2002-06-14 Sekisui House Ltd Base-isolated structure experiencing device
JP2006249833A (en) * 2005-03-11 2006-09-21 Matsushita Electric Works Ltd Apparatus for evaluating effectiveness of base isolation, oscillation measuring system, and control system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014025878; 戸松 征夫 他: '"免震建物と非免震建物の振動伝搬実験"' 日本建築学会大会学術講演梗概集(北陸)2002年8月 , 2002, 149〜150頁 *
JPN6014025879; 田中 学 他: '"エキスパンジョン・ジョイント部分の型枠セパレータから発生する熱変形衝撃音について"' GENERAL BUILDING RESEARCH CORPORATION VOL.25,NO.2 , 20000401, 21〜26頁 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094655A (en) * 2013-11-12 2015-05-18 大成建設株式会社 Characteristic evaluation method of connection member
JP2016017765A (en) * 2014-07-04 2016-02-01 ソルーション株式会社 Vibration apparatus
JP2017207413A (en) * 2016-05-20 2017-11-24 カネソウ株式会社 Moving-direction regulation tool for oscillation carriage
CN109738146A (en) * 2019-03-08 2019-05-10 敦煌研究院 A kind of full size cun rammed earth wall seismographic station test simulation connecting test method
CN109738146B (en) * 2019-03-08 2023-05-09 敦煌研究院 Full-size rammed earth wall seismic stand test simulation connection test method
CN111473934A (en) * 2020-06-05 2020-07-31 防灾科技学院 Device and method for simulating avoidance distance of buildings close to strong earthquake surface fractured zone
CN111473934B (en) * 2020-06-05 2024-05-07 防灾科技学院 Building avoiding distance simulation device and simulation method for fractured zone close to strong earthquake ground surface
CN113883996A (en) * 2021-09-14 2022-01-04 中铁西北科学研究院有限公司 Simulation device and analysis method for influence of foundation additional stress on superstructure
CN113883996B (en) * 2021-09-14 2024-02-02 中铁西北科学研究院有限公司 Simulation device and analysis method for influence of foundation additional stress on upper structure

Also Published As

Publication number Publication date
JP5570466B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5570466B2 (en) Excitation test method for connecting part of two buildings
Bryson et al. Cracking in walls of a building adjacent to a deep excavation
Qi et al. Investigating the vibration properties of integrated ceiling systems considering interactions with surrounding equipment
Zaghi et al. Development and validation of a numerical model for suspended-ceiling systems with acoustic tiles
Kawrza et al. Experimental and numerical modal analysis of a cross laminated timber floor system in different construction states
Lu et al. Shaking table test method of building curtain walls using floor capacity demand diagrams
McMullin et al. Response of exterior precast concrete cladding panels in NEES-TIPS/NEESGC/E-Defense tests on a full scale 5-story building
JP6066849B2 (en) Seismic isolation method for existing buildings
Pourali Bejarbaneh Seismic performance of suspended ceilings
Hasani et al. Pre-test seismic evaluation of drywall partition walls integrated with a timber rocking wall
Reynolds et al. Effects of false floors on vibration serviceability of building floors. I: Modal properties
Roik et al. A concept for fixing “heavy” façades in seismic zones
Higgins Prefabricated steel stair performance under combined seismic and gravity loads
JP5590369B2 (en) Seismic isolation structure of stigma-isolated steel structure
Melatti et al. Computational validation of dissipative device for the seismic upgrade of historic buildings
Feng et al. Frequency‐Sensitivity of the seismic damage to suspended ceilings
JP5719187B2 (en) Building floor insulation structure
Shabbir et al. Forced vibration testing of a thirteen storey concrete building
Patnana et al. Seismic performance of plasterboard suspended ceilings under shaking-table generated motions
JP4099299B2 (en) Seismic isolation member characteristic test method and characteristic test apparatus
Linton et al. Load distribution in light-frame wood buildings under experimentally simulated tsunami loads
Marchi et al. Numerical simulation of the coupled tension-shear response of an innovative dissipative connection for CLT buildings
JP7197072B2 (en) Floor insulation structure and floor insulation construction method
Kwiecień et al. Dynamic analysis of damaged masonry building repaired with the flexible joint method
Bagheri et al. Impact of Out-of-Plane Stiffness of the Diaphragm on Deflection of Wood Light-Frame Shear Walls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R150 Certificate of patent or registration of utility model

Ref document number: 5570466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250