JP2012202827A - Mode coupling measuring method and measuring device for multi-core optical fiber - Google Patents

Mode coupling measuring method and measuring device for multi-core optical fiber Download PDF

Info

Publication number
JP2012202827A
JP2012202827A JP2011067754A JP2011067754A JP2012202827A JP 2012202827 A JP2012202827 A JP 2012202827A JP 2011067754 A JP2011067754 A JP 2011067754A JP 2011067754 A JP2011067754 A JP 2011067754A JP 2012202827 A JP2012202827 A JP 2012202827A
Authority
JP
Japan
Prior art keywords
core
mode coupling
cores
fiber
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011067754A
Other languages
Japanese (ja)
Other versions
JP5685763B2 (en
Inventor
Masataka Nakazawa
正隆 中沢
Toshihiko Hirooka
俊彦 廣岡
Masato Yoshida
真人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2011067754A priority Critical patent/JP5685763B2/en
Publication of JP2012202827A publication Critical patent/JP2012202827A/en
Application granted granted Critical
Publication of JP5685763B2 publication Critical patent/JP5685763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for measuring the value of a mode coupling coefficient of a multi-core fiber and a lengthwise distribution together nondestructively.SOLUTION: An optical combiner is used which couples N single-core optical fibers to one multi-core fiber having N cores. An optical pulse is made incident on one core of the multi-core fiber from one OTDR device, and optical power scattered back by the N cores is measured. The value of a coupling coefficient from the incident core to other cores and the lengthwise distribution thereof are measured from ratios of scattered light power to the incident core and other cores, and further mode coupling between arbitrary cores can be simultaneously measured by placing the N OTDR devices in synchronous operation.

Description

本発明は、1本の光ファイバに複数のコアを設けたマルチコア光ファイバにおけるコア間のモード結合の大きさ、ならびにその長手方向の分布を測定する方法および装置に関するものである。   The present invention relates to a method and apparatus for measuring the size of mode coupling between cores in a multi-core optical fiber in which a plurality of cores are provided in one optical fiber, and the distribution in the longitudinal direction thereof.

グローバルな大容量情報通信インフラを支える今日の光ファイバ伝送路においては、近年の情報トラフィックの急増による入力光パワーの増大に伴い、過剰光パワーによる熱破壊(光ファイバフューズ)や非線形光学効果をはじめとする物理的な限界が指摘されている。今日世界中の基幹系光通信インフラに使用されている光ファイバは、1本のファイバに1つのコアが標準である。しかし最近では、既存の光ファイバの物理的限界を打破するために、1本の光ファイバに複数のコアを設けたマルチコアファイバによる空間多重伝送に高い関心が寄せられている。   In today's optical fiber transmission lines that support global high-capacity information and communication infrastructures, with the increase in input optical power due to the rapid increase in information traffic in recent years, thermal destruction (optical fiber fuse) due to excess optical power and nonlinear optical effects have been introduced. The physical limitations are pointed out. The optical fiber used in the backbone optical communication infrastructure around the world today is standard with one core per fiber. Recently, however, in order to overcome the physical limitations of existing optical fibers, there is a great interest in spatial multiplexing transmission using a multi-core fiber in which a plurality of cores are provided on one optical fiber.

マルチコアファイバの一例として7コアファイバの断面を図1(a),(b)に示す。いずれも中心コアの周りに6つのコアを六角形状に対称に配置した形状となっている。その構造は、図1(a)に示すように同一のクラッド内にGeOを添加した高屈折率のコアを複数設けたもの(ソリッドコア型マルチコアファイバ)、ならびに図1(b)に示すようにファイバ断面内に空孔クラッドに対し複数のシリカコア(空孔のない部分)を設けたもの(マルチコアフォトニック結晶ファイバ)の2種類がある。 As an example of the multi-core fiber, a cross section of a 7-core fiber is shown in FIGS. All have a shape in which six cores are symmetrically arranged in a hexagonal shape around the central core. As shown in FIG. 1A, the structure includes a plurality of high-refractive-index cores in which GeO 2 is added in the same clad (solid core type multi-core fiber), as shown in FIG. 1B. There are two types (multi-core photonic crystal fiber) in which a plurality of silica cores (portions having no holes) are provided in the fiber cross section in the fiber cross section.

K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Quasi-Homogeneous Solid Multi-Core Fiber,” Optical Fiber Communication Conference (OFC 2010), OWK7, March 2010.K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Quasi-Homogeneous Solid Multi-Core Fiber,” Optical Fiber Communication Conference (OFC 2010), OWK7 , March 2010. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” European Conference on Optical Communication (ECOC 2010), We.8.F.6, September 2010.T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” European Conference on Optical Communication (ECOC 2010), We.8.F .6, September 2010. M. Nakazawa, M. Tokuda, and Y. Negishi, “Measurement of polarization mode coupling along a polarization-maintaining optical fiber using a backscattering technique,” Opt. Lett., vol. 8, no. 10, pp. 546-548, October 1983.M. Nakazawa, M. Tokuda, and Y. Negishi, “Measurement of polarization mode coupling along a polarization-maintaining optical fiber using a backscattering technique,” Opt. Lett., Vol. 8, no. 10, pp. 546-548 , October 1983.

マルチコアファイバを用いた空間多重伝送においては、異なるコア間のモード結合を如何に抑制するかが最も重要な課題である。すなわち、各コアの導波モードはその界分布の裾野がクラッドに浸み出している(エバネセント成分と呼ばれる)ため、これが他コアの界分布と重なると両コアの間でモード結合が生じる。その結果、多数のコアを高密度に設けると、異なるコアを伝搬する信号の間でクロストークが生じてしまう。これがマルチコアファイバの高密度化にとって大きな障害となっている。   In spatial multiplexing transmission using a multicore fiber, the most important issue is how to suppress mode coupling between different cores. That is, since the waveguide mode of each core has its field distribution base oozing into the clad (called an evanescent component), when this overlaps with the field distribution of other cores, mode coupling occurs between the two cores. As a result, when many cores are provided at high density, crosstalk occurs between signals propagating through different cores. This is a major obstacle to increasing the density of multi-core fibers.

コア間のクロストークはマルチコアファイバの重要な評価項目として、これまで多くの報告がある。最近の研究によれば、長手方向に各コアの形状や配置の揺らぎが存在したり、あるいはファイバに曲げを与えると、クロストークが著しく増大することが報告されている(非特許文献1、2)。そのため、コア間のモード結合の大きさと同時にその長手方向の分布を測定することが出来れば、ファイバの基礎伝送特性として極めて有益な知見を得ることが出来る。   There have been many reports on crosstalk between cores as an important evaluation item for multicore fibers. According to recent research, it has been reported that crosstalk significantly increases when fluctuations in the shape and arrangement of the cores exist in the longitudinal direction or when the fiber is bent (Non-Patent Documents 1 and 2). ). Therefore, if it is possible to measure the longitudinal distribution at the same time as the mode coupling between the cores, extremely useful knowledge can be obtained as the basic transmission characteristics of the fiber.

しかしながら、従来のクロストークの測定においては、1つのコアに光を入力して、その出力端において各コアからの出力光パワーを測定し、入力コアから他コアに移行するパワーの大きさからクロストークの評価を行なっていた。そのため、Nコアファイバにおいては、一つのコアに対してN−1回、1芯全体ではN×(N−1)回のクロストークの測定が必要であり、測定が煩雑になるという問題があった。   However, in the conventional crosstalk measurement, light is input to one core, the output optical power from each core is measured at the output end, and the crossing is performed from the magnitude of the power transferred from the input core to the other core. The talk was being evaluated. For this reason, N-core fibers require N-1 times for one core and N × (N-1) times of crosstalk measurement for the entire core, which makes measurement complicated. It was.

さらに、長手方向にわたるモード結合係数の分布を評価するためには、ファイバを各点で切断し、コアごとに入出力光パワーを逐一測定してモード結合比を求める必要があった。そのためモード結合の長手方向の分布を一括して、しかも非破壊で測定することは困難であった。   Furthermore, in order to evaluate the distribution of the mode coupling coefficient over the longitudinal direction, it is necessary to cut the fiber at each point and measure the input / output optical power for each core to obtain the mode coupling ratio. Therefore, it has been difficult to measure the longitudinal distribution of mode coupling in a batch and nondestructively.

本発明はこのような課題を解決するためのものであり、マルチコアファイバにおけるモード結合係数の大きさと長手方向の分布を一括して且つ非破壊で測定する方法および装置を提供することを目的とする。   The present invention is intended to solve such problems, and an object of the present invention is to provide a method and an apparatus for collectively and nondestructively measuring the size of the mode coupling coefficient and the distribution in the longitudinal direction in a multicore fiber. .

かかる目的を達成するために、本発明のモード結合測定装置では、N本の単一コア光ファイバ(SCF)を1本のNコアMCFに結合する光コンバイナを用いて、1台のOTDR(Optical Time Domain Reflectometer)装置からMCFの1つのコアに光パルスを入射する。そしてN個のコアに後方散乱される光をN台のOTDR装置に入力して、コア間のモード結合を測定する。   In order to achieve such an object, in the mode coupling measurement apparatus of the present invention, an optical combiner that couples N single-core optical fibers (SCF) to one N-core MCF is used to provide one OTDR (Optical). A light pulse is incident on one core of the MCF from a time domain (Reflectometer) device. Then, the light back scattered by the N cores is input to N OTDR devices, and the mode coupling between the cores is measured.

具体的には、MCFの1つのコアに光パルスを入射し、入射端の各コアに戻る光を該光コンバイナを介してN本のSCFに分岐する。それらをN台のOTDR装置に入力してパワーP1、2、・・・、Pを測定し、入射コアの散乱光パワーPとその他のパワーP2、3、・・・、Pとの比率P/P,P/P,・・・P/Pを求める。これにより、入射コアから他コアへの結合係数の大きさおよびその長手方向の分布を測定する。 Specifically, an optical pulse is incident on one core of the MCF, and light returning to each core at the incident end is branched into N SCFs via the optical combiner. These are input to N OTDR devices to measure the powers P 1, P 2, ..., PN, and the scattered light power P 1 of the incident core and the other powers P 2, P 3 ,. the ratio of the P N P 2 / P 1, P 3 / P 1, obtaining the ··· P N / P 1. Thereby, the magnitude of the coupling coefficient from the incident core to the other core and the distribution in the longitudinal direction thereof are measured.

特に、N台のOTDR装置を同期動作させることにより、任意の2つコアに対してモード結合係数の大きさとその長手方向の分布を同時に測定することが出来る。   In particular, by synchronously operating N OTDR devices, the magnitude of the mode coupling coefficient and the distribution in the longitudinal direction can be measured simultaneously for any two cores.

本発明によりマルチコアファイバにおけるモード結合の長手方向の様子が、複数コアに対して同時に且つ非破壊で測定することが出来る。その結果、製造したファイバのクロストーク特性を容易に且つ効率よく評価することが可能となる。さらに、実際のマルチコアファイバ伝送において、ファイバの応力や温度変化などの外的要因によりコア間のクロストークが生じた場合に、ファイバ中のどの位置でモード結合が生じているかを容易に特定することが可能になる。以上のことから本発明はマルチコアファイバの伝送性能評価に重要な知見を与えることが出来る。   According to the present invention, the longitudinal state of mode coupling in a multi-core fiber can be measured simultaneously and non-destructively for a plurality of cores. As a result, it is possible to easily and efficiently evaluate the crosstalk characteristics of the manufactured fiber. Furthermore, in actual multi-core fiber transmission, when crosstalk between cores occurs due to external factors such as fiber stress and temperature change, it is easy to identify the position where mode coupling occurs in the fiber. Is possible. From the above, the present invention can provide important knowledge for evaluating the transmission performance of multi-core fibers.

マルチコアファイバの断面構造の一例Example of cross-sectional structure of multi-core fiber マルチコアファイバ用モード結合測定装置の構成の一例Example of configuration of multi-core fiber mode coupling measurement device 光コンバイナの一例An example of optical combiner 本実施例によるモード結合の測定原理の説明Explanation of measurement principle of mode coupling according to this embodiment 本実施例による後方散乱光パワーの測定結果の模式図Schematic diagram of measurement results of backscattered light power according to this example 後方散乱光パワーの比率とモード結合係数の関係Relationship between backscattered light power ratio and mode coupling coefficient 任意のコア間のモード結合を測定するための光パルスの励振Optical pulse excitation to measure mode coupling between arbitrary cores

本発明の実施形態の一例を図2に示す。N台のOTDR装置のうち1台から、単一コアファイバ2ならびに光コンバイナ3を介して光パルスを被測定マルチコアファイバ4のコアの1つに入射する。OTDR装置1の構成は、従来の単一コアファイバの測定に用いられているものと同じで、パルス光源、受光器ならびに信号処理部を備える。   An example of an embodiment of the present invention is shown in FIG. From one of the N OTDR devices, an optical pulse is incident on one of the cores of the multicore fiber 4 to be measured via the single core fiber 2 and the optical combiner 3. The configuration of the OTDR apparatus 1 is the same as that used for the measurement of a conventional single core fiber, and includes a pulse light source, a light receiver, and a signal processing unit.

光コンバイナ3の一例を図3に示す。同図に示すように、N本の単一コアファイバの各コアが、マルチコアファイバのN個のコアに結合される。また逆に、マルチコアファイバのN個のコアに戻る散乱光をN本の単一コアファイバに分岐するのにも用いられる。   An example of the optical combiner 3 is shown in FIG. As shown in the figure, each core of N single-core fibers is coupled to N cores of a multi-core fiber. Conversely, the scattered light returning to the N cores of the multi-core fiber is also used to branch into N single core fibers.

本実施形態によるモード結合の測定原理を図4を用いて説明する。いま1台のOTDR装置から、パワーP、パルス幅Δτの光パルスをマルチコアファイバ4のコアの一つ(同図ではコア1)に入射する。このときコア1中を伝搬する光は、その一部がファイバ中のレイリー散乱により後方へ散乱され、入力端に戻る。さらに、コア1からモード結合により他のコア(同図ではコア2〜7)に光が漏れ込むと、その後方散乱光が各コアの入力端に戻る。入力端に戻った散乱光をコアごとに分岐し、そのパワー(P,P,…)をそれぞれN台のOTDR装置で測定する。 The measurement principle of mode coupling according to this embodiment will be described with reference to FIG. Now, from one OTDR device, an optical pulse with power P 0 and pulse width Δτ is incident on one of the cores of the multi-core fiber 4 (core 1 in the figure). At this time, a part of the light propagating through the core 1 is scattered backward by Rayleigh scattering in the fiber and returns to the input end. Further, when light leaks from the core 1 to other cores (cores 2 to 7 in the figure) due to mode coupling, the backscattered light returns to the input end of each core. The scattered light returning to the input end is branched for each core, and the power (P 1 , P 2 ,...) Is measured by N OTDR devices.

ここで、光パルスの時間幅Δτは、モード結合の空間測定分解能ΔLに応じて、Δτ=2ΔL/vにより決定される。ただしvはファイバ中の光パルスの群速度である。パルス幅を細くすることにより空間分解能を向上させることが出来るが、狭いパルス幅に対してはパワーが小さくなるため、ダイナミックレンジを確保できないというトレードオフがある。従ってパルス幅は空間分解能と測定長に応じて適切な値に設定する必要がある。 Here, the time width .DELTA..tau of light pulses, in accordance with the spatial measurement resolution ΔL of mode coupling is determined by Δτ = 2ΔL / v g. However v g is the group velocity of the light pulse in the fiber. Although the spatial resolution can be improved by narrowing the pulse width, there is a trade-off in that the dynamic range cannot be secured because the power is reduced for a narrow pulse width. Therefore, it is necessary to set the pulse width to an appropriate value according to the spatial resolution and the measurement length.

N台のOTDR装置で散乱光パワーを時間を追って測定した様子を模式的に図5に示す。Pは入射コアにおける散乱光パワーであり、従来のOTDR測定と同様にその時間変化からコア1の伝搬に伴う長手方向の損失を評価することが出来る。すなわち、光パルスを入射してからの測定時間tを長さL=vt/2へ換算すれば、長手方向の損失が測定できる。 FIG. 5 schematically shows how the scattered light power is measured over time with N OTDR devices. P 1 is the scattered light power in the incident core, and the loss in the longitudinal direction accompanying the propagation of the core 1 can be evaluated from the time change as in the conventional OTDR measurement. That is, the loss in the longitudinal direction can be measured by converting the measurement time t from the incidence of the light pulse into the length L = v g t / 2.

一方、P,P・・・は他コアにおける散乱光パワーであり、この大きさがモード結合を反映している。すなわち、入射コアへの散乱光パワーPとの比P/P、P/P・・・の長手方向の変化から、被測定ファイバのモード結合を非破壊で測定することが出来る。 On the other hand, P 2 , P 3 ... Are scattered light powers in other cores, and this magnitude reflects mode coupling. That is, the mode coupling of the measured fiber can be measured nondestructively from the change in the longitudinal direction of the ratios P 2 / P 1 , P 3 / P 1 ... With the scattered light power P 1 to the incident core. .

例えば、コア1とコアmのモード結合は、電力結合方程式

Figure 2012202827
で記述される。ここでh1,mはモード結合係数、α,αは各モードの損失係数である。OTDRによってh1,mを測定する方法は、非特許文献3に記載されている。 For example, the mode coupling between core 1 and core m is the power coupling equation
Figure 2012202827
It is described by. Here, h 1 and m are mode coupling coefficients, and α 1 and α m are loss coefficients of the respective modes. A method for measuring h 1, m by OTDR is described in Non-Patent Document 3.

非特許文献3の解析結果より、パワーP,P、モード結合係数h1,m、ならびにファイバ長Lは、

Figure 2012202827
で関係付けられる。ここで右辺第1項の係数2は光パルスの往復に伴うものである。またKは定数であり、P/Pを長さLの関数として描いたときのL=0での切片より求められる。その結果h1,mは、パワーの比P/PをLの関数として描いたときの直線の傾きより求めることが出来る。その様子を図6に示す。 From the analysis results of Non-Patent Document 3, the powers P 1 and P m , the mode coupling coefficient h 1, m , and the fiber length L are
Figure 2012202827
Are related. Here, the coefficient 2 in the first term on the right side is associated with the reciprocation of the optical pulse. K is a constant, and is obtained from an intercept at L = 0 when P m / P 1 is drawn as a function of length L. As a result, h 1 and m can be obtained from the slope of a straight line when the power ratio P m / P 1 is drawn as a function of L. This is shown in FIG.

1,mが距離に依らず一定であればP/PはLに対して線形であるが、h1,mが局所的に変化しているとP/Pが線形から外れる。その直線からの変化量から、長手方向にわたるモード結合の分布の様子を評価することが出来る。このようにOTDRによりモード結合係数の大きさのみならずその長手方向の変化も測定できることが本手法の大きな特徴である。 P m / P 1 is linear with respect to L if h 1, m is constant regardless of distance, but P m / P 1 deviates from linear when h 1, m changes locally. . From the amount of change from the straight line, the mode coupling distribution in the longitudinal direction can be evaluated. As described above, the major feature of this method is that not only the magnitude of the mode coupling coefficient but also the change in the longitudinal direction can be measured by OTDR.

本発明では、N台のOTDR装置を同期して動作させることにより、P/P、P/P・・・、P/Pを同時に測定することが出来る。その結果、コア1とコア2〜Nとのモード結合が1回の測定で一括して評価できる。その結果、マルチコアファイバのモード結合測定の効率が大幅に向上する。 In the present invention, P 2 / P 1 , P 3 / P 1 ..., P N / P 1 can be measured simultaneously by operating N OTDR devices in synchronization. As a result, the mode coupling between the core 1 and the cores 2 to N can be collectively evaluated by one measurement. As a result, the efficiency of the mode coupling measurement of the multi-core fiber is greatly improved.

さらに、図7に示すように、N台のOTDR装置から1つずつ光パルスを時間間隔Tを空けてマルチコアファイバに入射することにより、任意のコア間のモード結合hm,nを一括して測定することが可能となる。間隔Tは、1つの光パルスが被測定ファイバを1往復するのに要する時間よりも長く設定すればよい。 Furthermore, as shown in FIG. 7, mode coupling hm , n between arbitrary cores is collectively performed by inputting optical pulses from N OTDR devices one by one to the multi-core fiber with a time interval T. It becomes possible to measure. The interval T may be set longer than the time required for one optical pulse to make one round trip through the measured fiber.

モード結合係数hm,nが得られれば、各コアを光パワーP(z)(m=1,2,・・・,N)の信号が同時に伝搬する様子は、

Figure 2012202827
と書くことが出来る。ここで右辺のhm,nの項はコアnからコアmへモードが結合することによるPの増加を、−hn,mの項はコアmからコアnへのモード結合によるPの減衰を表している。またαはコアmの損失係数である。コアmからnへのモード結合とnからmへのモード結合係数は等しいことに注意すると、hm,n=hn,mと置いて下式の電力結合方程式を得る。
Figure 2012202827
If the mode coupling coefficient h m, n is obtained, the state in which signals of optical power P m (z) (m = 1, 2,.
Figure 2012202827
Can be written. Here, the term h m, n P m on the right side indicates the increase in P m due to the mode coupling from the core n to the core m, and the term −h n, m P n represents the mode coupling from the core m to the core n. Represents the attenuation of P m by. Α m is the loss factor of the core m. Note that the mode coupling coefficient from the core m to n is equal to the mode coupling coefficient from n to m, and h m, n = h n, m is obtained to obtain the following power coupling equation.
Figure 2012202827

式(4)を行列で表示すると以下の方程式が得られる。

Figure 2012202827
初期条件P(0)が与えられれば、式(5)の連立微分方程式の解より距離z伝搬後の各コアのパワー分布P(z)を求めることが出来る。 When equation (4) is displayed as a matrix, the following equation is obtained.
Figure 2012202827
If the initial condition P (0) is given, the power distribution P (z) of each core after propagation of the distance z can be obtained from the solution of the simultaneous differential equations of the equation (5).

もしHがzによらない定数行列であれば、式(5)の解析解は、行列Hの固有値λ,λ,・・・,λならびに固有ベクトルs,s,・・・,sを用いて求めることが出来る。行列Hの固有値は、特性方程式

Figure 2012202827
の解で与えられる。式(6)はλについてのN次の代数方程式であり、そのN個の解λ,λ,・・・,λが行列Hの固有値を与える。固有値λ,λ,・・・,λはモード結合係数に関係している。固有値が求まれば、各固有値λに対応する固有ベクトルs
Figure 2012202827
の解より求められる。以上の計算により得られたN個の固有値および固有ベクトルを用いて、式(5)の解は
Figure 2012202827
で与えられる。ここでc,c,・・・,cは初期条件P(0)より決定される定数である。 If H is a constant matrix that does not depend on z, the analytic solution of equation (5) is the eigenvalues λ 1 , λ 2 ,..., Λ N of the matrix H and the eigenvectors s 1 , s 2 ,. It can be determined using s N. The eigenvalues of the matrix H are characteristic equations
Figure 2012202827
Given by the solution. Equation (6) is an Nth-order algebraic equation for λ, and its N solutions λ 1 , λ 2 ,..., Λ N give the eigenvalues of the matrix H. The eigenvalues λ 1 , λ 2 ,..., Λ N are related to the mode coupling coefficient. If the eigenvalues is obtained, is eigenvector s m corresponding to each eigenvalue λ m
Figure 2012202827
It is obtained from the solution of Using the N eigenvalues and eigenvectors obtained by the above calculation, the solution of equation (5) is
Figure 2012202827
Given in. Here, c 1 , c 2 ,..., C N are constants determined from the initial condition P (0).

モード結合係数が長手方向に変化している場合など、行列Hがzの関数である場合は、逐次近似法や差分化による数値解析法を用いることで解P(z)を求めることが出来る。   If the matrix H is a function of z, such as when the mode coupling coefficient changes in the longitudinal direction, the solution P (z) can be obtained by using a numerical approximation method such as a successive approximation method or a difference.

以上の計算によりP(z)が得られれば、コアmとコアnのモード結合の大きさ(クロストーク)が

Figure 2012202827
として求められる。 If P (z) is obtained by the above calculation, the mode coupling magnitude (crosstalk) between the core m and the core n is
Figure 2012202827
As required.

このように、行列Hには被測定ファイバのモード結合に関する全ての情報が含まれており、ファイバ伝送路として利用するにあたり極めて有益な知見を与えることが出来る。   As described above, the matrix H includes all the information related to the mode coupling of the fiber to be measured, and can provide extremely useful knowledge for use as a fiber transmission line.

以上詳細に説明したように、N台のOTDR装置を用いることにより、マルチコアファイバにおけるコア間のモード結合係数を簡便な形で評価することが出来る。本発明は特にモード結合の長手方向の分布を非破壊で測定できることが最大の特徴であり、製造ファイバの性能評価にあたって重要な指標を与えることが出来る。また適切なタイミングで各コアへ光ファイバを入射することにより任意のコア間のモード結合を一括して測定することが出来るため、ファイバの特性を短時間で効率よく評価することが可能となる。本測定に基づきクロストークの小さいマルチコアファイバを実現することが出来れば、光ファイバの空間多重伝送が可能となり、光通信システムの大容量化に大きく貢献することが出来る。   As described in detail above, by using N OTDR devices, the mode coupling coefficient between cores in a multi-core fiber can be evaluated in a simple manner. The present invention is particularly characterized in that the longitudinal distribution of mode coupling can be measured nondestructively, and can provide an important index for evaluating the performance of the manufactured fiber. Moreover, since the mode coupling between arbitrary cores can be collectively measured by injecting an optical fiber into each core at an appropriate timing, it is possible to efficiently evaluate the characteristics of the fiber in a short time. If a multi-core fiber with low crosstalk can be realized based on this measurement, spatial multiplexing transmission of the optical fiber becomes possible, which can greatly contribute to the increase in capacity of the optical communication system.

1 OTDR装置
2 単一コアファイバ
3 光コンバイナ
4 マルチコアファイバ
1 OTDR device 2 Single core fiber 3 Optical combiner 4 Multicore fiber

Claims (4)

N台のOTDR装置と、N本の単一コアファイバをN個のコアを有する1本のマルチコアファイバに結合する光コンバイナを備え、1台のOTDR装置から該光コンバイナを介してマルチコアファイバの1つのコアに光パルスを入射し、N個のコアに後方散乱される光を用いて入射コアと各コアとの間のモード結合係数を測定することを特徴とするモード結合の測定方法。   N OTDR devices and an optical combiner that couples N single-core fibers to one multi-core fiber having N cores, and one multi-core fiber from one OTDR device through the optical combiner. A mode coupling measurement method, comprising: measuring a mode coupling coefficient between an incident core and each core by using a light pulse incident on one core and backscattered light on N cores. マルチコアファイバの1つのコアに光パルスを入射し、各コアの入射端に戻る光を該光コンバイナを介してN本の単一コアファイバに分岐し、N台のOTDR装置を用いてそのパワーP1、2、・・・、Pを測定し、入射コアと他コアに対する散乱光パワーの比率P/P,P/P,・・・P/Pを求めることにより、入射コアから他コアへの結合係数の大きさおよびその長手方向の分布を測定することを特徴とする請求項1に記載のモード結合の測定方法。 A light pulse is incident on one core of a multi-core fiber, and the light returning to the incident end of each core is branched into N single-core fibers via the optical combiner, and the power P is obtained using N OTDR devices. 1, P 2, ···, measured P N, the ratio P 2 / P 1 of the scattered light power for incident core and another core, P 3 / P 1, by obtaining the ··· P N / P 1 2. The method of measuring mode coupling according to claim 1, wherein the magnitude of the coupling coefficient from the incident core to the other core and the distribution in the longitudinal direction thereof are measured. N台のOTDR装置を同期動作させることにより、任意のコア間でのモード結合係数の大きさとその長手方向の分布を一括して測定することを特徴とする請求項1に記載のモード結合の測定方法。   The mode coupling measurement according to claim 1, wherein the mode coupling coefficient between arbitrary cores and the distribution in the longitudinal direction thereof are collectively measured by synchronizing N OTDR devices. Method. N台のOTDR装置と、N本の単一コアファイバをN個のコアを有する1本のマルチコアファイバに結合する光コンバイナを備え、1台のOTDR装置から該光コンバイナを介してマルチコアファイバの1つのコアに光パルスを入射し、N個のコアに後方散乱される光を用いて入射コアと各コアとの間のモード結合係数を測定することを特徴とするモード結合測定装置。   N OTDR devices and an optical combiner that couples N single-core fibers to one multi-core fiber having N cores, and one multi-core fiber from one OTDR device through the optical combiner. A mode coupling measuring apparatus for measuring a mode coupling coefficient between an incident core and each core using light that is incident on one core and backscattered on N cores.
JP2011067754A 2011-03-25 2011-03-25 Mode coupling measuring method and measuring apparatus for multi-core optical fiber Active JP5685763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011067754A JP5685763B2 (en) 2011-03-25 2011-03-25 Mode coupling measuring method and measuring apparatus for multi-core optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011067754A JP5685763B2 (en) 2011-03-25 2011-03-25 Mode coupling measuring method and measuring apparatus for multi-core optical fiber

Publications (2)

Publication Number Publication Date
JP2012202827A true JP2012202827A (en) 2012-10-22
JP5685763B2 JP5685763B2 (en) 2015-03-18

Family

ID=47183996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011067754A Active JP5685763B2 (en) 2011-03-25 2011-03-25 Mode coupling measuring method and measuring apparatus for multi-core optical fiber

Country Status (1)

Country Link
JP (1) JP5685763B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517228B1 (en) * 2013-04-16 2014-06-11 日本電信電話株式会社 Method and system for evaluating crosstalk characteristics of multi-core optical fiber
JP2014153116A (en) * 2013-02-06 2014-08-25 Tohoku Univ Mode coupling measuring apparatus for multi-mode optical fiber
JP5801926B1 (en) * 2014-05-29 2015-10-28 日本電信電話株式会社 Crosstalk measuring apparatus and measuring method for optical fiber amplifier
JP2018021869A (en) * 2016-08-05 2018-02-08 住友電気工業株式会社 Optical fiber evaluation method and optical fiber evaluation device
CN107709954A (en) * 2016-02-26 2018-02-16 株式会社藤仓 The crosstalk assay method and measure device of multi-core fiber
WO2018207915A1 (en) * 2017-05-11 2018-11-15 住友電気工業株式会社 Nonlinearity measuring method and nonlinearity measuring device
KR102127897B1 (en) * 2019-01-21 2020-06-29 한국광기술원 Current Sensing System Having Multi-core Optical Fiber and Sensing Method Thereof
WO2023084679A1 (en) * 2021-11-11 2023-05-19 日本電信電話株式会社 Optical transmission path testing device and testing method
WO2023219019A1 (en) * 2022-05-10 2023-11-16 株式会社フジクラ Crosstalk measuring method, and crosstalk measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366347B1 (en) * 1998-08-27 2002-04-02 France Telecom Instrument for measuring the near-end crosstalk per unit length of multicore fibers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366347B1 (en) * 1998-08-27 2002-04-02 France Telecom Instrument for measuring the near-end crosstalk per unit length of multicore fibers

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153116A (en) * 2013-02-06 2014-08-25 Tohoku Univ Mode coupling measuring apparatus for multi-mode optical fiber
JP5517228B1 (en) * 2013-04-16 2014-06-11 日本電信電話株式会社 Method and system for evaluating crosstalk characteristics of multi-core optical fiber
JP5801926B1 (en) * 2014-05-29 2015-10-28 日本電信電話株式会社 Crosstalk measuring apparatus and measuring method for optical fiber amplifier
CN107709954B (en) * 2016-02-26 2019-11-05 株式会社藤仓 The crosstalk measuring method and measurement device of multi-core optical fiber
CN107709954A (en) * 2016-02-26 2018-02-16 株式会社藤仓 The crosstalk assay method and measure device of multi-core fiber
US10444113B2 (en) 2016-02-26 2019-10-15 Fujikura Ltd. Method of measuring crosstalk of multicore fiber and apparatus of measuring the same
CN109416438B (en) * 2016-08-05 2020-10-09 住友电气工业株式会社 Optical fiber evaluation method and optical fiber evaluation device
CN109416438A (en) * 2016-08-05 2019-03-01 住友电气工业株式会社 Optical fiber evaluation method and optical fiber evaluating apparatus
JP2018021869A (en) * 2016-08-05 2018-02-08 住友電気工業株式会社 Optical fiber evaluation method and optical fiber evaluation device
JPWO2018207915A1 (en) * 2017-05-11 2020-05-14 住友電気工業株式会社 Non-linearity measuring method and non-linearity measuring apparatus
CN110582694A (en) * 2017-05-11 2019-12-17 住友电气工业株式会社 Nonlinear measurement method and nonlinear measurement device
WO2018207915A1 (en) * 2017-05-11 2018-11-15 住友電気工業株式会社 Nonlinearity measuring method and nonlinearity measuring device
CN110582694B (en) * 2017-05-11 2022-05-06 住友电气工业株式会社 Nonlinear measurement method and nonlinear measurement device
JP7200932B2 (en) 2017-05-11 2023-01-10 住友電気工業株式会社 NONLINEARITY MEASUREMENT METHOD AND NONLINEARITY MEASUREMENT DEVICE
KR102127897B1 (en) * 2019-01-21 2020-06-29 한국광기술원 Current Sensing System Having Multi-core Optical Fiber and Sensing Method Thereof
WO2023084679A1 (en) * 2021-11-11 2023-05-19 日本電信電話株式会社 Optical transmission path testing device and testing method
WO2023219019A1 (en) * 2022-05-10 2023-11-16 株式会社フジクラ Crosstalk measuring method, and crosstalk measuring device

Also Published As

Publication number Publication date
JP5685763B2 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5685763B2 (en) Mode coupling measuring method and measuring apparatus for multi-core optical fiber
JP6132332B2 (en) Mode coupling measuring device for multimode optical fiber
Noda et al. Polarization-maintaining fibers and their applications
JP5948368B2 (en) Optical fiber characterization method
ITPD970025A1 (en) REFLECTOMETRIC INSTRUMENT FOR THE MEASUREMENT OF BIRIFRANGENCE DISTRIBUTED IN SINGLE-MODE FIBER OPTICS
US10845268B1 (en) Monitorable hollow core optical fiber
CN105371785B (en) A kind of curvature measurement method
CN202648830U (en) A distributed fiber sensing device based on Brillouin scattering
CN102721484A (en) Distributed optical fiber sensing device based on brillouin scattering
US11156529B2 (en) Nonlinearity measuring method and nonlinearity measuring device
JP2019105530A (en) Method and apparatus for testing mode delay time difference distribution
Li et al. Dual core optical fiber for distributed Brillouin fiber sensors
Luís et al. Evaluation of dynamic skew on spooled and deployed multicore fibers using O-band signals
Liu Characterization of Brillouin scattering spectrum in LEAF fiber
JP2022085974A (en) Optical characteristic measurement method and optical characteristic measurement device
Wang et al. Evaluation of splicing quality in few-mode optical fibers
Skorupski Low-loss connection of hybrid fibre optic systems with low sensitivity to wavelength
Wang et al. Investigation on the Dependence of Directional Torsion Measurement on Multimode Fiber Geometry
Alekhin et al. Application of the polarization reflectometry for estimating the distribution of mechanical stress in optical fiber
WO2023084679A1 (en) Optical transmission path testing device and testing method
WO2023012875A1 (en) Device, method, and system for calculating inter-core power coupling coefficient
Gao et al. Dispersion characteristics analysis of asymmetric multi-core fibers
Kamimura et al. Return Loss Measurement Procedure for Multicore Fiber Connectors
Nakazawa et al. Nondestructive measurement of mode couplings along a multi-core fiber using a multi-channel OTDR
Zimmermann et al. Optical time domain reflectometry for local strain measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141224

R150 Certificate of patent or registration of utility model

Ref document number: 5685763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250