JP2012202570A - Evaporator and cooling apparatus - Google Patents

Evaporator and cooling apparatus Download PDF

Info

Publication number
JP2012202570A
JP2012202570A JP2011065268A JP2011065268A JP2012202570A JP 2012202570 A JP2012202570 A JP 2012202570A JP 2011065268 A JP2011065268 A JP 2011065268A JP 2011065268 A JP2011065268 A JP 2011065268A JP 2012202570 A JP2012202570 A JP 2012202570A
Authority
JP
Japan
Prior art keywords
flow path
opening
evaporator
liquid
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011065268A
Other languages
Japanese (ja)
Other versions
JP5823713B2 (en
Inventor
Tomonao Takamatsu
伴直 高松
Katsumi Kuno
勝美 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011065268A priority Critical patent/JP5823713B2/en
Publication of JP2012202570A publication Critical patent/JP2012202570A/en
Application granted granted Critical
Publication of JP5823713B2 publication Critical patent/JP5823713B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an evaporator and a cooling apparatus capable of stably cooling a heat source body.SOLUTION: The evaporator includes a hollow container having a first opening for a liquid refrigerant to flow in and a second opening for a gaseous refrigerant to flow out, and having a first surface for transferring heat from a heat source; a porous body arranged abutting on the first surface in the container and permeating the liquid refrigerant; a passage plate arranged abutting on the porous body and having, in the abutment surface, first grooves opened to the first region side connected to the first opening, and second grooves opened to the second region side connected to the second opening; a first passage formed by the porous body and the first grooves and communicating with the first region while being isolated from the second region; and a second passage formed by the porous body and the second grooves and communicating with the second region while being isolated from the second region.

Description

本発明の実施形態は、蒸発器及び冷却装置に関する。   Embodiments described herein relate generally to an evaporator and a cooling device.

熱源体の冷却装置として用いられる循環型のヒートパイプは、蒸発器を有し、この蒸発器内に設けられる多孔質体の毛細管力により液状の冷媒を駆動する。多孔質体内に浸透する冷媒は熱源体の熱により蒸発し、蒸気化した冷媒がその潜熱を輸送することで熱源体を冷却する。   A circulation type heat pipe used as a cooling device for a heat source body has an evaporator, and drives a liquid refrigerant by a capillary force of a porous body provided in the evaporator. The refrigerant that permeates into the porous body is evaporated by the heat of the heat source body, and the vaporized refrigerant transports the latent heat to cool the heat source body.

特公平6−33972号公報Japanese Examined Patent Publication No. 6-33972

しかしながら、例えば熱源体の発熱量が大きく冷媒の蒸発量が多い場合には、多孔質体が乾燥し、毛細管力による冷媒の駆動ができず、その結果、熱源体の冷却効率が低下し安定的に冷却できないという課題があった。   However, for example, when the heat generation amount of the heat source body is large and the amount of evaporation of the refrigerant is large, the porous body dries and the refrigerant cannot be driven by capillary force. As a result, the cooling efficiency of the heat source body decreases and is stable. There was a problem that it could not be cooled.

そこで、本実施形態はこれら課題を解決するために、熱源体の冷却を安定的に行うことのできる蒸発器及び冷却装置を提供することを目的とする。   Therefore, in order to solve these problems, an object of the present embodiment is to provide an evaporator and a cooling device that can stably cool a heat source body.

実施形態の蒸発器は、液状の冷媒を流入する第1の開口と、気状の冷媒を流出する第2の開口とを有し、熱源からの熱を伝える第1の面を有する中空の容器と、前記容器内で前記第1の面に接して配置され、前記液状の冷媒を浸透させる多孔質体と、前記多孔質体に接して配置され、当該接面に、前記第1の開口と連接する第1の領域側に開口する第1の溝と、前記第2の開口と連接する第2の領域側に開口する第2の溝とを有する流路板と、前記多孔質体と前記第1の溝により形成され、前記第1の領域と連通し、前記第2の領域と隔離される第1の流路と、前記多孔質体と前記第2の溝により形成され、前記第2の領域と連通し、前記第2の領域と隔離される第二の流路とを備える。   An evaporator according to an embodiment has a first opening through which liquid refrigerant flows and a second opening through which gaseous refrigerant flows out, and a hollow container having a first surface for transferring heat from a heat source A porous body that is disposed in contact with the first surface in the container and allows the liquid refrigerant to permeate, and is disposed in contact with the porous body, and the first opening is disposed on the contact surface. A flow path plate having a first groove that opens to the side of the first region that is connected, and a second groove that opens to the side of the second region that is connected to the second opening, the porous body, and the Formed by a first groove, communicated with the first region, isolated from the second region, formed by the porous body and the second groove, and A second flow path that communicates with the second region and is isolated from the second region.

実施形態の冷却装置は、上記の蒸発器を備え、第3の開口と、第4の開口とを有し、前記気状の冷媒を放熱により前記液状の冷媒に凝縮する凝縮器と、前記蒸発器の第1の開口と前記凝縮器の第3の開口とを連通し、前記液状の冷媒を流動させる第1の管と、前記蒸発器の第2の開口と前記凝縮器の第4の開口とを連通し、前記気状の冷媒を流動させる第2の管とを備える。   The cooling device according to the embodiment includes the above-described evaporator, has a third opening and a fourth opening, and condenses the gaseous refrigerant into the liquid refrigerant by radiating heat, and the evaporation A first pipe for communicating the liquid refrigerant, a second opening for the evaporator, and a fourth opening for the condenser. And a second pipe through which the gaseous refrigerant flows.

第一の実施形態に係る冷却装置の構成図。The block diagram of the cooling device which concerns on 1st embodiment. 図1に示された蒸発器の分解図。FIG. 2 is an exploded view of the evaporator shown in FIG. 1. 図2に示された流路板の斜視図。The perspective view of the flow-path board shown by FIG. 図1に示された蒸発器の内部の構成図。The block diagram inside the evaporator shown by FIG. 図4に示された蒸発器のA-A断面図。FIG. 5 is a cross-sectional view of the evaporator shown in FIG. 図4に示された蒸発器のB-B断面図。BB sectional drawing of the evaporator shown by FIG. 図4に示された蒸発器のC-C断面図。CC sectional drawing of the evaporator shown by FIG. 図4に示された蒸発器の第一の変形例に係るA-A断面図。FIG. 5 is a cross-sectional view taken along line AA according to a first modification of the evaporator shown in FIG. 4. 図4に示された蒸発器の第二の変形例に係る流路板の上面図。The top view of the flow-path board which concerns on the 2nd modification of the evaporator shown by FIG. 第二の実施形態に係る冷却装置の構成図。The block diagram of the cooling device which concerns on 2nd embodiment. 図10に示された蒸発器の分解図。FIG. 11 is an exploded view of the evaporator shown in FIG. 10. 図10に示された蒸発器の内部の構成図。FIG. 11 is an internal configuration diagram of the evaporator shown in FIG. 10. 図11に示された流路板の斜視図。The perspective view of the flow-path board shown by FIG. 図12に示された蒸発器のD-D断面図。FIG. 13 is a DD cross-sectional view of the evaporator shown in FIG. 12. 図12に示された蒸発器のE-E断面図。EE sectional drawing of the evaporator shown by FIG.

以下、発明を実施するための実施形態について図面を用いて説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings.

(第一の実施形態)
図1は、第一の実施形態に係る冷却装置100の構成図である。図1において冷却装置100は、冷媒により熱源体を冷却する蒸発器10と、冷媒の熱を放出する凝縮器30と、蒸発器10と凝縮器30とを連通し冷媒が移動する液管40及び蒸気管50とを備えており、これらは環状に接続されている。冷却装置100には冷媒(例えば、水、不凍液、アルコール、代替フロン、アンモニアなど)が封入され、冷却装置100内をこの冷媒が液状と気状とに状態を変化しながら一方向に循環する。
(First embodiment)
FIG. 1 is a configuration diagram of a cooling device 100 according to the first embodiment. In FIG. 1, a cooling device 100 includes an evaporator 10 that cools a heat source with a refrigerant, a condenser 30 that releases heat of the refrigerant, a liquid pipe 40 through which the refrigerant moves through the evaporator 10 and the condenser 30, and A steam pipe 50 is provided, and these are connected in a ring shape. The cooling device 100 is filled with a refrigerant (for example, water, antifreeze, alcohol, alternative chlorofluorocarbon, ammonia, etc.), and the refrigerant circulates in the cooling device 100 in one direction while changing the state between liquid and gas.

この冷却装置100は、例えば電子機器内のCPUなどの熱源体(図示せず)を冷却するために用いることができる。すなわち、蒸発器10を熱源体に接触させて配置することで熱源体からの熱を吸収し、この熱を冷媒が凝縮器30まで輸送し、熱源体の冷却を行う。   The cooling device 100 can be used to cool a heat source body (not shown) such as a CPU in an electronic device, for example. That is, by arranging the evaporator 10 in contact with the heat source body, the heat from the heat source body is absorbed, and the refrigerant is transported to the condenser 30 to cool the heat source body.

以下、冷却装置100の構成について詳細に説明する。   Hereinafter, the configuration of the cooling device 100 will be described in detail.

蒸発器10は、熱源体に熱伝達可能に接触して配置することで、内部に有する液状の冷媒(以下、液状冷媒)の蒸発潜熱により熱源体の熱を吸収する装置である。蒸発器10は、薄型矩形状の容器から構成される。   The evaporator 10 is a device that absorbs the heat of the heat source body by the latent heat of evaporation of a liquid refrigerant (hereinafter, liquid refrigerant) that is disposed inside the heat source body in contact with the heat source body so that heat can be transferred. The evaporator 10 is composed of a thin rectangular container.

凝縮器30は、蒸発器10で発生する気状の冷媒(以下、気状冷媒)を冷却して、液状冷媒に凝縮する装置である。凝縮器30としては、放熱フィンが取り付けられたヒートシンクなどを用いる。また、ここでは必要に応じて、ヒートシンクの放熱性能を向上させるためにファンによる強制空冷や、液冷等を併用してもよい。この放熱フィンが熱伝達により気状冷媒の熱を奪い、気状冷媒を冷却することで再び液状冷媒へ凝縮する。この際の熱は、放熱フィンが放熱することにより装置外へ放出される。   The condenser 30 is a device that cools a gaseous refrigerant (hereinafter, gaseous refrigerant) generated in the evaporator 10 and condenses it into a liquid refrigerant. As the condenser 30, a heat sink or the like to which heat radiating fins are attached is used. Here, if necessary, forced air cooling by a fan, liquid cooling, or the like may be used in combination to improve the heat dissipation performance of the heat sink. The heat dissipating fins take the heat of the gaseous refrigerant by heat transfer and cool the gaseous refrigerant to condense again into the liquid refrigerant. The heat at this time is released to the outside of the apparatus by the heat radiation fins dissipating heat.

液管40は、蒸発器10と凝縮器30とに接続され、蒸発器10及び凝縮器30とを連通する。凝縮器30で液状にされた冷媒が、この液管40内を一方向に流れ蒸発器10まで移動する。   The liquid pipe 40 is connected to the evaporator 10 and the condenser 30, and communicates the evaporator 10 and the condenser 30. The refrigerant liquefied by the condenser 30 flows in one direction in the liquid pipe 40 and moves to the evaporator 10.

蒸気管50は、蒸発器10と凝縮器30とに接続することで、蒸発器10及び凝縮器30とを連通する。蒸発器10で気化した気状冷媒が、この蒸気管50を一方向に流れ凝縮器30まで移動する。   The steam pipe 50 communicates with the evaporator 10 and the condenser 30 by connecting to the evaporator 10 and the condenser 30. The gaseous refrigerant evaporated in the evaporator 10 flows in one direction through the vapor pipe 50 and moves to the condenser 30.

次に、図2乃至図7を参照して、蒸発器10の構成について詳細に説明する。   Next, the configuration of the evaporator 10 will be described in detail with reference to FIGS. 2 to 7.

図2は、蒸発器10の分解図である。蒸発器10は、熱源体からの熱を伝熱する伝熱板11と、毛細管力により液状溶媒を浸透させる多孔質板14と、複数の溝が形成される流路板15と、上蓋16とを備える。そして、図2に示すように、上蓋16と伝熱板11とで容器を形成し、その内部には多孔質板14及び流路板15が積層されている。この容器は、例えばアルミ、銅などの金属材料、または、これらら合金などの熱伝導性に優れる材料が好ましい。なお、以下の説明においては、上蓋側16を上方、伝熱板11側を下方と定義する。   FIG. 2 is an exploded view of the evaporator 10. The evaporator 10 includes a heat transfer plate 11 that transfers heat from a heat source body, a porous plate 14 that permeates the liquid solvent by capillary force, a flow path plate 15 in which a plurality of grooves are formed, an upper lid 16, Is provided. As shown in FIG. 2, a container is formed by the upper lid 16 and the heat transfer plate 11, and a porous plate 14 and a flow path plate 15 are laminated inside. The container is preferably made of a metal material such as aluminum or copper, or a material having excellent thermal conductivity such as an alloy thereof. In the following description, the upper lid side 16 is defined as the upper side, and the heat transfer plate 11 side is defined as the lower side.

伝熱板11は、熱源体と直接あるいはグリース等の熱接続部材を介して接し、熱源体からの熱を内部に伝える矩形状の伝熱面を底面に有する。この伝熱面の縁部には壁面(壁面A、B、C、D)が設けられている。また、伝熱板11の、壁面Aには、液管40と接続され、液状冷媒が流入する流入口12と、その壁面Aと対向する壁面Cには、蒸気管50と接続され、気状冷媒が蒸気管50へ流出する流出口13が形成されている。   The heat transfer plate 11 is in contact with the heat source body directly or through a heat connection member such as grease, and has a rectangular heat transfer surface on the bottom surface that transfers heat from the heat source body to the inside. Wall surfaces (wall surfaces A, B, C, D) are provided at the edges of the heat transfer surface. Further, the wall surface A of the heat transfer plate 11 is connected to the liquid pipe 40, the inlet 12 through which the liquid refrigerant flows, and the wall surface C opposite to the wall surface A are connected to the steam pipe 50, An outflow port 13 through which the refrigerant flows out to the vapor pipe 50 is formed.

多孔質板14は、毛細管力により液状溶媒を浸透させる矩形状の多孔質の部材(側面a、b、c、d)である。多孔質板14は、伝熱板11の伝熱面に平面部を接触させて、かつ上記の流入口12及び流出口13を有する壁面A、Cと直交する2つの壁面B、Dに、側面b、dをそれぞれ接触させて、伝熱板11の上方に配置する。   The porous plate 14 is a rectangular porous member (side surfaces a, b, c, d) that allows the liquid solvent to penetrate by capillary force. The porous plate 14 has a flat surface in contact with the heat transfer surface of the heat transfer plate 11 and side surfaces on two wall surfaces B and D perpendicular to the wall surfaces A and C having the inlet 12 and the outlet 13. b and d are brought into contact with each other and arranged above the heat transfer plate 11.

流路板15は、多孔質板14と同サイズの平面を有する矩形状の部材(側面e、f、g、h)である。図3は、図2における流路板15の下方側の面を示す斜視図である。図3に示すように、流路板15は、一方の面に、側面eから側面gの方向に延伸し、側面e側のみに開口を有する複数の溝17’と、側面gから側面eの方向に延伸し、側面g側のみに開口を有する複数の溝18’とを有する。この溝17’及び18’は流路板15の全面に渡って、平行にかつ交互に等間隔で形成されている。   The flow path plate 15 is a rectangular member (side surfaces e, f, g, h) having a plane of the same size as the porous plate 14. 3 is a perspective view showing a lower surface of the flow path plate 15 in FIG. As shown in FIG. 3, the flow path plate 15 has a plurality of grooves 17 ′ extending from one side surface in the direction from the side surface e to the side surface g and having an opening only on the side surface e side. And a plurality of grooves 18 ′ extending in the direction and having openings only on the side surface g side. The grooves 17 ′ and 18 ′ are formed in parallel and alternately at equal intervals over the entire surface of the flow path plate 15.

そして、流路板15を、溝17’及び18’が形成されている面を多孔質板14の上方の面に接触させ、かつ側面を揃えて配置する。この際、流路板15の上方の面と、伝熱板11の壁面の上方とは同一の高さにする。   Then, the flow path plate 15 is disposed such that the surface on which the grooves 17 ′ and 18 ′ are formed is in contact with the upper surface of the porous plate 14 and the side surfaces are aligned. At this time, the upper surface of the flow path plate 15 and the upper surface of the wall surface of the heat transfer plate 11 have the same height.

図4は、上蓋16を外した蒸発器30の内部の構成図である。伝熱板11内には、多孔質板14及び流路板15により、流入口12側の液状冷媒を蓄える液体空間19と、流出口13側の気状冷媒を蓄える気体空間20とが形成される。   FIG. 4 is a configuration diagram of the inside of the evaporator 30 with the top cover 16 removed. In the heat transfer plate 11, a liquid space 19 that stores liquid refrigerant on the inlet 12 side and a gas space 20 that stores gaseous refrigerant on the outlet 13 side are formed by the porous plate 14 and the flow path plate 15. The

ここで、図4におけるA-A、B-B、C-C断面図を図5乃至図7にそれぞれ示す。図5から図7に示すように、中央部(A‐A)では、流路板15の溝17’及び18’と、多孔質板14の平面とで囲まれる空間として、それぞれ液体流路17及び気体流路18とが形成され(図5)、液体空間19(B‐B)では、液体流路17の開口を有し、気体空間20とは隔離され(図6)、気体空間20(C‐C)では、気体流路18の開口を有し、液体空間19とは隔離されている(図7)。   Here, AA, BB, and CC sectional views in FIG. 4 are shown in FIGS. As shown in FIGS. 5 to 7, in the central portion (AA), the liquid flow path 17 is defined as a space surrounded by the grooves 17 ′ and 18 ′ of the flow path plate 15 and the plane of the porous plate 14. And the gas flow path 18 are formed (FIG. 5), the liquid space 19 (BB) has an opening of the liquid flow path 17 and is isolated from the gas space 20 (FIG. 6). CC) has an opening for the gas flow path 18 and is isolated from the liquid space 19 (FIG. 7).

上蓋16は、流路板15の上方の面及び伝熱板11の壁面の上方に接触させて配置することで、蒸発器10を概密閉する。これにより、上記の液体空間19と気体空間20とは、連通することなく隔離される。   The upper cover 16 substantially seals the evaporator 10 by being disposed in contact with the upper surface of the flow path plate 15 and the upper surface of the wall surface of the heat transfer plate 11. As a result, the liquid space 19 and the gas space 20 are isolated without communication.

なお、多孔質板14としては、熱源体の発熱量から想定される熱輸送量に対して必要な毛細管力を発生できる孔径を有する、焼結金属や炭素を固めたもの、ウレタン等の樹脂等の材質を用いることができる。また流路板15としては、溝を形成することのできる材質であればよいが、金属を用いる場合には、液体流路17内の液状冷媒の温度上昇を抑えるために、熱伝導率が比較的低いものが好ましい。   The porous plate 14 has a pore diameter capable of generating a capillary force necessary for the heat transport amount assumed from the calorific value of the heat source body, a sintered metal or a solidified carbon, a resin such as urethane, etc. The material can be used. The flow path plate 15 may be made of any material that can form a groove. However, when a metal is used, the heat conductivity is compared in order to suppress the temperature rise of the liquid refrigerant in the liquid flow path 17. Are preferred.

また、伝熱板11、多孔質板14、流路板15、上蓋16の接合は、それぞれの材質に合わせて接着やロウ付け等を用いてもよい。   Further, the heat transfer plate 11, the porous plate 14, the flow path plate 15, and the upper lid 16 may be joined by bonding, brazing, or the like in accordance with each material.

さらに、多孔質板14と流路板15の接触面は、液体流路17から隣接する気体流路18に直接液状冷媒が流れない程度に表面を平らにする必要がある。そのため、流路板15の材質としてシール材にも利用されるゴム系やシリコン系の材質を用いれば、上蓋16と伝熱板11と挟みこむことで、液体流路17から気体流路18への流れを抑制することが可能である。   Furthermore, the contact surface between the porous plate 14 and the flow channel plate 15 needs to be flattened so that the liquid refrigerant does not flow directly from the liquid flow channel 17 to the adjacent gas flow channel 18. Therefore, if a rubber-based or silicon-based material that is also used as a sealing material is used as the material of the flow path plate 15, the liquid flow path 17 to the gas flow path 18 is sandwiched between the upper lid 16 and the heat transfer plate 11. It is possible to suppress the flow of

以上のように構成された冷却装置100の動作について、以下に詳細に説明する。なお、凝縮器30の機能については前述の通りであるので、ここでは蒸発器10の機能について説明する。   The operation of the cooling device 100 configured as described above will be described in detail below. In addition, since the function of the condenser 30 is as above-mentioned, the function of the evaporator 10 is demonstrated here.

上述した蒸発器10においては、多孔質板14の側面a及び流路板15の側面eは、液体空間19に接している。このため、液体空間19の液状冷媒は、毛細管力により多孔質板14の内部に側面aから徐々に浸透していく。このとき、多孔質板14の内部には、液状冷媒が保持されている。   In the evaporator 10 described above, the side surface a of the porous plate 14 and the side surface e of the flow channel plate 15 are in contact with the liquid space 19. For this reason, the liquid refrigerant in the liquid space 19 gradually permeates from the side surface a into the porous plate 14 by capillary force. At this time, a liquid refrigerant is held inside the porous plate 14.

また、多孔質板14及び流路板15間に形成される液体流路17は、液体空間19側に開口を有しているため、この液体流路17内には液状冷媒が満たされている。なお、この液体流路17は、気体空間20側に開口していないので、液状冷媒が気体空間20に流入することはない。これにより、気体空間20に連通する蒸気管50内に液状冷媒が流入し、蒸気管50内での気状冷媒の流れを妨げることを防ぐ。   Further, since the liquid channel 17 formed between the porous plate 14 and the channel plate 15 has an opening on the liquid space 19 side, the liquid channel 17 is filled with a liquid refrigerant. . Since the liquid flow path 17 is not open to the gas space 20 side, the liquid refrigerant does not flow into the gas space 20. This prevents the liquid refrigerant from flowing into the vapor pipe 50 communicating with the gas space 20 and hindering the flow of the gaseous refrigerant in the vapor pipe 50.

ここで、熱源体が発熱すると、この熱源体に接触して配置されている蒸発器10の伝熱板11を介して多孔質板14に熱が伝わる。   Here, when the heat source body generates heat, heat is transferred to the porous plate 14 through the heat transfer plate 11 of the evaporator 10 disposed in contact with the heat source body.

この熱により、多孔質板14内の液状冷媒が加熱され、気体流路18の空間へ蒸発する。そして、蒸発により発生する気状冷媒が気体流路18を通って気体空間20へ移動する。   With this heat, the liquid refrigerant in the porous plate 14 is heated and evaporated into the space of the gas flow path 18. The gaseous refrigerant generated by evaporation moves to the gas space 20 through the gas flow path 18.

なお、この気体流路18は液体空間19側に開口していないので、気状冷媒が気体流路18内を逆流して液体空間19へ流入しない。これにより、液体空間19に連通する液管40内に気状冷媒が流入し、液管40内での液状冷媒の流れを妨げることを防ぐ。   Since the gas flow path 18 is not open to the liquid space 19 side, the gaseous refrigerant does not flow back into the gas flow path 18 and flow into the liquid space 19. This prevents the gaseous refrigerant from flowing into the liquid pipe 40 communicating with the liquid space 19 and hindering the flow of the liquid refrigerant in the liquid pipe 40.

したがって、蒸発器10は、液状冷媒から気状冷媒へ状態を変化させるため、この際の蒸発潜熱を熱源体から奪い、熱源体を冷却することができる。   Therefore, since the evaporator 10 changes the state from the liquid refrigerant to the gaseous refrigerant, the latent heat of vaporization at this time can be taken from the heat source body and the heat source body can be cooled.

また、液状冷媒の蒸発により気体空間20内の圧力は上昇するが、気体空間20と隔離されている液体空間19には、気体空間20内の気状冷媒が直接流れることがないので、液体空間19内の圧力は上昇しない。   Further, although the pressure in the gas space 20 increases due to the evaporation of the liquid refrigerant, the gaseous refrigerant in the gas space 20 does not flow directly into the liquid space 19 that is isolated from the gas space 20. The pressure in 19 does not increase.

したがって、気体空間20及び液体空間19間の圧力差により、気体空間20内の気状冷媒は、蒸発器10の流出口13を抜けて蒸気管50へ流れ、一方向に凝縮器30に至る。なお、凝縮器30に至った気状冷媒は液状冷媒へ凝縮され、液管40内を一方向に流れることで、再び液体空間19に至る。   Therefore, due to the pressure difference between the gas space 20 and the liquid space 19, the gaseous refrigerant in the gas space 20 passes through the outlet 13 of the evaporator 10 and flows to the vapor pipe 50 and reaches the condenser 30 in one direction. The gaseous refrigerant that reaches the condenser 30 is condensed into a liquid refrigerant and flows in the liquid pipe 40 in one direction, thereby reaching the liquid space 19 again.

ここで、蒸発器10の多孔質板14においては、乾燥による毛細管力の低下を防ぐために、液状冷媒の蒸発と同時に随時液状冷媒を内部に供給することが必要である。多孔質板14の側面aから供給される液状冷媒は徐々に多孔質板14の内部に浸透していくが、例えば熱源体からの発熱量が大きい場合には、液状冷媒の蒸発量も増加し、液状冷媒の浸透が蒸発に追いつかずに多孔質板14の一部が乾燥してしまうことがある。   Here, in the porous plate 14 of the evaporator 10, in order to prevent a decrease in capillary force due to drying, it is necessary to supply the liquid refrigerant to the inside at any time simultaneously with the evaporation of the liquid refrigerant. The liquid refrigerant supplied from the side surface a of the porous plate 14 gradually penetrates into the porous plate 14. However, for example, when the amount of heat generated from the heat source is large, the evaporation amount of the liquid refrigerant also increases. In some cases, the permeation of the liquid refrigerant does not catch up with evaporation and a part of the porous plate 14 is dried.

本実施形態の蒸発器30によれば、多孔質板14の上方に液体流路17を形成しているので、多孔質板14の側面aからの浸透に加え、液体流路17内の液状冷媒が多孔質板14内に浸透し、多孔質板14の内部に迅速に液状冷媒を供給することができる。これにより、液状冷媒の蒸発量が多い場合であっても、多孔質板14の乾燥を防ぎ、毛細管力の低下による冷却性能の低下を防ぐことができる。   According to the evaporator 30 of the present embodiment, since the liquid flow path 17 is formed above the porous plate 14, the liquid refrigerant in the liquid flow path 17 in addition to the permeation from the side surface a of the porous plate 14. Can penetrate into the porous plate 14, and the liquid refrigerant can be rapidly supplied into the porous plate 14. Thereby, even if it is a case where the evaporation amount of a liquid refrigerant is large, drying of the porous board 14 can be prevented and the fall of the cooling performance by the fall of capillary force can be prevented.

さらに、液体流路17は、多孔質体14を基準に熱源体に接触する伝熱板11の伝熱面とは逆側に設けられているため、伝熱面からの熱が直接液体流路17に伝わることがない。そのため、液体流路17内で液状冷媒が蒸発してしまうことによる気泡の発生を防ぐことができる。これにより、気泡が液体流路17内での液状冷媒の流れを妨げることがない。   Furthermore, since the liquid flow path 17 is provided on the opposite side to the heat transfer surface of the heat transfer plate 11 that contacts the heat source body with respect to the porous body 14, the heat from the heat transfer surface is directly transferred to the liquid flow path. 17 is not transmitted. Therefore, it is possible to prevent generation of bubbles due to evaporation of the liquid refrigerant in the liquid flow path 17. Thereby, bubbles do not hinder the flow of the liquid refrigerant in the liquid flow path 17.

すなわち、本実施形態の冷却装置100によれば、冷却性能を低下させることなく、熱源体の冷却を安定に行うことが可能となる。   That is, according to the cooling device 100 of the present embodiment, the heat source body can be stably cooled without degrading the cooling performance.

(第一の変形例)
次に、第一の実施形態における蒸発器10の第一の変形例を示し説明する。ここで、図8は、図4に示すA‐A断面図であり、気体流路及び液体流路の形状や伝熱板の形状の変形例を示している。
(First modification)
Next, a first modification of the evaporator 10 in the first embodiment will be shown and described. Here, FIG. 8 is a cross-sectional view taken along the line AA shown in FIG.

蒸発器10において、多孔質板14に保持される液状冷媒は、伝熱面から伝わる熱により蒸発し、気体流路18へ抜ける。このとき、一部の気状冷媒が液体流路17側に抜けていく可能性があり、この気状冷媒が、液体流路17の液状冷媒による冷却で液状冷媒に再凝縮したり、液体流路17内を逆流することで、液状冷媒の浸透を妨げてしまうことがある。したがって、気状冷媒はできるだけ気体流路18側に抜けさせることが望ましい。   In the evaporator 10, the liquid refrigerant held on the porous plate 14 evaporates due to the heat transmitted from the heat transfer surface and exits to the gas flow path 18. At this time, a part of the gaseous refrigerant may escape to the liquid flow path 17, and this gaseous refrigerant may be recondensed into the liquid refrigerant by cooling with the liquid refrigerant in the liquid flow path 17, or the liquid flow Backflow in the passage 17 may impede the penetration of the liquid refrigerant. Therefore, it is desirable to let the gaseous refrigerant escape to the gas flow path 18 side as much as possible.

そこで、図8に示すように、第一の変形例では、気体流路18の延伸方向に垂直な断面の開口部の幅を、液体流路17の延伸方向に垂直な断面の開口部の幅よりも広く形成する。あるいは、気体流路18の上記開口部の面積を、液体流路17の上記開口部の面積よりも大きく形成する。   Therefore, as shown in FIG. 8, in the first modification, the width of the opening in the cross section perpendicular to the extending direction of the gas flow path 18 is set to the width of the opening in the cross section perpendicular to the extending direction of the liquid flow path 17. Form wider than. Alternatively, the area of the opening of the gas channel 18 is formed larger than the area of the opening of the liquid channel 17.

また、伝熱板11の伝熱面の気体流路18の直下に位置する領域に凸部21を設ける。このとき同時に、この凸部21に合わせて多孔質体14に凹部を設ける。これにより、多孔質体14の気体流路18との接触面及び伝熱面間の距離が、多孔質体14の液体流路17との接触面及び伝熱面間の距離よりも短くなる。   Further, a convex portion 21 is provided in a region located immediately below the gas flow path 18 on the heat transfer surface of the heat transfer plate 11. At the same time, a concave portion is provided in the porous body 14 in accordance with the convex portion 21. Thereby, the distance between the contact surface of the porous body 14 with the gas flow path 18 and the heat transfer surface is shorter than the distance between the contact surface of the porous body 14 with the liquid flow path 17 and the heat transfer surface.

以上の構成により、液体流路17から抜ける気状冷媒の量に比べて、気体流路18の断面の開口部の幅が広く、多孔質板14との接触面積がより広い気体流路18から抜ける気状冷媒の量が多くなる。   With the above configuration, the width of the opening in the cross section of the gas flow path 18 is wider and the contact area with the porous plate 14 is wider than the amount of the gaseous refrigerant that escapes from the liquid flow path 17. The amount of gaseous refrigerant that escapes increases.

さらに、多孔質板14との接触面及び伝熱面間の距離が短いため熱伝導の速度が速くかつ熱量密度が高くなる、気体流路18の直下の多孔質体14から蒸発する気状冷媒の量が多くなり、その結果、気体流路18から抜ける気状冷媒の量が多くなる。   Furthermore, the distance between the contact surface with the porous plate 14 and the heat transfer surface is short, so that the heat conduction speed is high and the heat density is high, and the gaseous refrigerant evaporates from the porous body 14 immediately below the gas flow path 18. As a result, the amount of gaseous refrigerant that escapes from the gas flow path 18 increases.

本変形例の冷却装置100によれば、蒸発器10において、液状冷媒が蒸発する際、液体流路17から抜ける気状冷媒の量に比べて、気体流路18から抜ける気状冷媒の量を多くすることができるために、効率的に熱輸送を行うことが可能となる。また、液体流路17内の気状冷媒の逆流を抑制することが可能となる。   According to the cooling device 100 of the present modified example, when the liquid refrigerant evaporates in the evaporator 10, the amount of the gaseous refrigerant that escapes from the gas flow path 18 is smaller than the amount of the gaseous refrigerant that escapes from the liquid flow path 17. Since it can be increased, it becomes possible to efficiently carry out heat transport. Further, the back flow of the gaseous refrigerant in the liquid channel 17 can be suppressed.

なお、多孔質板14の材質として、ウレタンやゴム等の弾力性のある多孔質部材を用いて、伝熱板11に押し付けることで、多孔質板14に凹部を設けなくても、伝熱板11の凸部21に形状を適合させることができる。   In addition, even if it does not provide a recessed part in the porous board 14 by using the porous member with elasticity, such as urethane and rubber | gum, as a material of the porous board 14, it presses against the heat-transfer board 11, a heat-transfer board The shape can be adapted to the 11 convex portions 21.

また、液体流路17及び気体流路18の延伸方向の断面形状としては、図8に示す矩形状あるいは円形状に限定されるものではなく、液状冷媒あるいは気状冷媒を流すことのできる形状であればよい。   Further, the cross-sectional shape in the extending direction of the liquid flow path 17 and the gas flow path 18 is not limited to the rectangular shape or the circular shape shown in FIG. 8, but is a shape capable of flowing a liquid refrigerant or a gaseous refrigerant. I just need it.

(第二の変形例)
次に、第一の実施形態における蒸発器10の第二の変形例を示し説明する。ここで、図9は、本変形例における流路板15を示している。
(Second modification)
Next, a second modification of the evaporator 10 in the first embodiment will be shown and described. Here, FIG. 9 shows the flow path plate 15 in this modification.

第一の実施形態においては、溝17’及び18’が流路板15の全面に渡って、等間隔に形成されるものとして説明を行った。第二の変形例では、流路板15の溝17’及び18が熱源体との位置関係を考慮して形成される点で異なる。   In the first embodiment, it has been described that the grooves 17 ′ and 18 ′ are formed at equal intervals over the entire surface of the flow path plate 15. The second modification is different in that the grooves 17 'and 18 of the flow path plate 15 are formed in consideration of the positional relationship with the heat source body.

具体的には、蒸発器10が熱源体に接触して配置されるとき、熱源体の直上の位置において、熱源体の直上以外の場所よりも溝17’及び18’を密に形成する。ここでは、図9に示すように、溝17’及び18’の延伸方向の長さをそれぞれ変化させることで、熱源体の直下の位置において密に隣接するよう形成されている。   Specifically, when the evaporator 10 is disposed in contact with the heat source body, the grooves 17 ′ and 18 ′ are formed more densely at a position directly above the heat source body than at a place other than directly above the heat source body. Here, as shown in FIG. 9, the lengths of the grooves 17 ′ and 18 ′ in the extending direction are changed so that the grooves 17 ′ and 18 ′ are adjacent to each other at a position immediately below the heat source body.

上述した以外にも、熱源体の直上以外の場所よりも、直上の位置における各溝の間隔を狭く形成することや、各溝の延伸方向に垂直な幅を広くさせることも可能である。   In addition to the above, it is possible to narrow the interval between the grooves at a position directly above the position other than directly above the heat source body, or to increase the width perpendicular to the extending direction of the grooves.

これにより、流路板15の全面に渡って溝17’及び18’を形成する場合に比べ、より少ない溝で熱源体の効率的な冷却を行うことができる。   Thereby, compared with the case where the grooves 17 ′ and 18 ′ are formed over the entire surface of the flow path plate 15, the heat source body can be efficiently cooled with fewer grooves.

(第二の実施形態)
以下、図10乃至図14を参照して、本実施形態の冷却装置200について詳細に説明する。
(Second embodiment)
Hereinafter, the cooling device 200 of the present embodiment will be described in detail with reference to FIGS. 10 to 14.

図10は第二の実施形態に係る冷却装置200の構成図である。図10の冷却装置200は、蒸発器60と、凝縮器30と、これらを連通する液管40及び蒸気管50を備える。なお、ここでは、凝縮器30、液管40、蒸気管50は第一の実施形態の冷却装置100と同一の構成とし説明を省略する。   FIG. 10 is a configuration diagram of a cooling device 200 according to the second embodiment. The cooling device 200 of FIG. 10 includes an evaporator 60, a condenser 30, and a liquid pipe 40 and a vapor pipe 50 that communicate these. Here, the condenser 30, the liquid pipe 40, and the steam pipe 50 have the same configuration as the cooling device 100 of the first embodiment, and a description thereof is omitted.

図11は蒸発器60の分解図である。また、図12は、上蓋66をはずした蒸発器60の内部の構成図である。   FIG. 11 is an exploded view of the evaporator 60. FIG. 12 is an internal configuration diagram of the evaporator 60 with the upper lid 66 removed.

蒸発器60の伝熱板61は、底面に矩形状の伝熱面を有し、この伝熱面の縁部には壁面(壁面a、b、c、d)が設けられている。また、伝熱板61は、壁面Aには、液管40と接続され、液状冷媒が流入する流入口62と、その壁面Aと対向する壁面Cには、蒸気管50と接続され、気状冷媒が蒸気管50へ流出する流出口63とをそれぞれ有する。   The heat transfer plate 61 of the evaporator 60 has a rectangular heat transfer surface on the bottom surface, and wall surfaces (wall surfaces a, b, c, d) are provided at the edges of the heat transfer surface. Further, the heat transfer plate 61 is connected to the wall surface A with the liquid pipe 40, the inlet 62 through which the liquid refrigerant flows, and the wall surface C facing the wall surface A are connected to the steam pipe 50, Each has an outlet 63 through which the refrigerant flows out to the vapor pipe 50.

多孔質板64は、矩形状の多孔質の部材(側面a、b、c、d)である。多孔質板64は、伝熱板11の上方に、平面部を伝熱面に接触させて配置する。このとき、第一の実施形態とは異なり、壁面bと側面b、壁面dと側面dはそれぞれ離間している。   The porous plate 64 is a rectangular porous member (side surfaces a, b, c, d). The porous plate 64 is disposed above the heat transfer plate 11 so that the flat portion is in contact with the heat transfer surface. At this time, unlike the first embodiment, the wall surface b and the side surface b and the wall surface d and the side surface d are separated from each other.

図13は、図12における流路板65の下方側の面を示す斜視図である。   13 is a perspective view showing a lower surface of the flow path plate 65 in FIG.

流路板65は、多孔質板64と同サイズの平面を有する矩形状の部材(側面e、f、g、h)である。流路板65には、一方の面に、側面eから側面gの方向に延伸し、側面e側のみに開口を有する複数の溝67’と、側面gから側面eの方向に延伸し、側面g側のみに開口を有する複数の溝68’とを有する。また、図12に示すように、この溝67’には延伸方向に沿って複数の孔部22が形成されている。   The flow path plate 65 is a rectangular member (side surfaces e, f, g, h) having a plane of the same size as the porous plate 64. The flow path plate 65 has a plurality of grooves 67 ′ extending on one surface in the direction from the side surface e to the side surface g and having an opening only on the side surface e side, and extending in the direction from the side surface g to the side surface e. and a plurality of grooves 68 ′ having openings only on the g side. Further, as shown in FIG. 12, a plurality of holes 22 are formed in the groove 67 'along the extending direction.

そして、流路板65を、上記の溝67’及び68’が形成されている面を多孔質板64の上方の面に接触させ、かつ側面を揃えて配置する。この際、第一の実施形態とは異なり、流路板65の上方の面を伝熱板の壁面の高さよりも低く構成する。上蓋66は、伝熱板61の壁面の上方に接触させて配置する。   Then, the flow path plate 65 is disposed such that the surface on which the grooves 67 ′ and 68 ′ are formed is in contact with the upper surface of the porous plate 64 and the side surfaces are aligned. At this time, unlike the first embodiment, the upper surface of the flow path plate 65 is configured to be lower than the height of the wall surface of the heat transfer plate. The upper lid 66 is disposed in contact with the upper surface of the wall surface of the heat transfer plate 61.

ここで、図11におけるD-D、E-E断面図を図14及び図15にそれぞれ示す。このとき、図14に示すように、上記の溝67’及び68’と多孔質板64により、それぞれ液体流路67及び気体流路68が形成される。   Here, DD and EE sectional views in FIG. 11 are shown in FIGS. 14 and 15, respectively. At this time, as shown in FIG. 14, a liquid channel 67 and a gas channel 68 are formed by the grooves 67 ′ and 68 ′ and the porous plate 64, respectively.

また、図15に示すように、上蓋66、伝熱板61、多孔質板64及び流路板65との間であって、流出口63側近傍に壁部63を形成し、蒸発器60内の空間を、流入口62側の液体空間69と、流出口63側の気体空間70とに隔離する。   Further, as shown in FIG. 15, a wall 63 is formed between the upper lid 66, the heat transfer plate 61, the porous plate 64, and the flow path plate 65 in the vicinity of the outlet 63, Is separated into a liquid space 69 on the inlet 62 side and a gas space 70 on the outlet 63 side.

すなわち、液体空間69は、側面a及びeと壁面A間だけではなく、側面b及びfと壁面B間、側面d及びhと壁面D間、さらに流路板65の上方の面と上蓋66間に空間を有することになる。   That is, the liquid space 69 is not only between the side surfaces a and e and the wall surface A, but also between the side surfaces b and f and the wall surface B, between the side surfaces d and h and the wall surface D, and between the upper surface of the flow path plate 65 and the upper lid 66. Will have space.

以上の構成により、液体空間69と多孔質板64との接触面積を増すことができ、多孔質板64に液状冷媒を迅速に供給することが可能となる。また、液体流路67に対して、孔部22を通して液状冷媒を随時供給できるので、液体流路67内の液状冷媒が枯渇することを防ぐことができる。   With the above configuration, the contact area between the liquid space 69 and the porous plate 64 can be increased, and the liquid refrigerant can be quickly supplied to the porous plate 64. Further, since the liquid refrigerant can be supplied to the liquid channel 67 at any time through the hole 22, it is possible to prevent the liquid refrigerant in the liquid channel 67 from being depleted.

なお、液体空間69としては、側面a及びeと壁面A間と、流路板65の上方の面と上蓋66間に空間を有して、側面b及びfと壁面B、側面d及びhと壁面Dを接触させる構成とすることも可能である。   The liquid space 69 includes a space between the side surfaces a and e and the wall surface A, a space between the upper surface of the flow path plate 65 and the upper lid 66, and the side surfaces b and f, the wall surface B, and the side surfaces d and h. A configuration in which the wall surface D is brought into contact with each other is also possible.

本実施形態の冷却装置200によれば、冷却性能を低下させることなく、熱源体の冷却を安定的に行うことが可能となる。   According to the cooling device 200 of the present embodiment, it is possible to stably cool the heat source body without reducing the cooling performance.

これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、様々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同時に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   These embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention and are also included in the invention described in the claims and the equivalents thereof.

10、60・・・蒸発器
11、61・・・伝熱板
12、62・・・流入口
13、63・・・流出口
14、64・・・多孔質板
15、65・・・流路板
16、66・・・上蓋
17’、18’、67’、68’・・・溝
17、67・・・液体流路
18、68・・・気体流路
19、69・・・液体空間
20、70・・・気体空間
21・・・凸部
22・・・孔部
30・・・凝縮器
40・・・液管
50・・・蒸気管
63・・・壁部
100、200・・・冷却装置
10, 60 ... evaporator 11, 61 ... heat transfer plate 12, 62 ... inlet 13, 63 ... outlet 14, 64 ... porous plate 15, 65 ... flow path Plates 16, 66 ... upper lids 17 ', 18', 67 ', 68' ... grooves 17, 67 ... liquid channels 18, 68 ... gas channels 19, 69 ... liquid space 20 70 ... Gas space 21 ... Convex part 22 ... Hole 30 ... Condenser 40 ... Liquid pipe 50 ... Steam pipe 63 ... Wall part 100, 200 ... Cooling apparatus

Claims (7)

液状の冷媒を流入する第1の開口と、気状の冷媒を流出する第2の開口とを有し、熱源からの熱を伝える第1の面を有する中空の容器と、
前記容器内で前記第1の面に接して配置され、前記液状の冷媒を浸透させる多孔質体と、
前記多孔質体に接して配置され、当該接面に、前記第1の開口と連接する第1の領域側に開口する第1の溝と、前記第2の開口と連接する第2の領域側に開口する第2の溝とを有する流路板と、
前記多孔質体と前記第1の溝により形成され、前記第1の領域と連通し、前記第2の領域と隔離される第1の流路と、
前記多孔質体と前記第2の溝により形成され、前記第2の領域と連通し、前記第2の領域と隔離される第二の流路と、
を備える蒸発器。
A hollow container having a first opening through which liquid refrigerant flows and a second opening through which gaseous refrigerant flows out and having a first surface for transferring heat from a heat source;
A porous body disposed in contact with the first surface in the container and infiltrated with the liquid refrigerant;
A first groove that is disposed in contact with the porous body and opens on the first surface side that is connected to the first opening, and a second region side that is connected to the second opening. A flow path plate having a second groove opened to
A first flow path formed by the porous body and the first groove, in communication with the first region, and isolated from the second region;
A second flow path formed by the porous body and the second groove, communicating with the second region, and isolated from the second region;
With an evaporator.
前記第1の開口と前記第2の開口とは前記容器の第1の方向の両端部にそれぞれ設けられ、前記第1の流路と前記第2の流路とは前記第1の方向に略平行に延伸し、少なくとも1箇所で隣接する請求項1記載の蒸発器。   The first opening and the second opening are respectively provided at both ends in the first direction of the container, and the first flow path and the second flow path are substantially in the first direction. The evaporator according to claim 1, which extends in parallel and is adjacent at least at one point. 前記第2の流路の延伸方向に垂直な開口の幅が、前記第1の流路の延伸方向に垂直な開口の幅よりも広い請求項2記載の蒸発器。   The evaporator according to claim 2, wherein the width of the opening perpendicular to the extending direction of the second flow path is wider than the width of the opening perpendicular to the extending direction of the first flow path. 前記第2の流路の延伸方向に垂直な開口の断面積が、前記第1の流路の延伸方向に垂直な開口の断面積よりも大きい請求項2または3記載の蒸発器。   The evaporator according to claim 2 or 3, wherein a cross-sectional area of the opening perpendicular to the extending direction of the second flow path is larger than a cross-sectional area of the opening perpendicular to the extending direction of the first flow path. 前記第1の面は、前記第2の流路の直下に凸部を有し、
前記多孔質体の、前記第1の流路との接触面及び前記第1の面との接触面間の間隔が、前記多孔質体の、前記第2の流路との接触面及び前記第1の面との接触面間の間隔よりも広い請求項1乃至4いずれか1項に記載の蒸発器。
The first surface has a convex portion directly below the second flow path,
The spacing between the contact surface of the porous body with the first flow path and the contact surface with the first surface is such that the contact surface of the porous body with the second flow path The evaporator according to any one of claims 1 to 4, wherein the evaporator is wider than a distance between contact surfaces with one surface.
前記流路の間隔、延伸方向の長さ、延伸方向に垂直な幅の少なくとも1つが、前記熱源との位置関係によって異なる請求項2乃至5いずれか1項に記載の蒸発器。   The evaporator according to any one of claims 2 to 5, wherein at least one of an interval between the flow paths, a length in a stretching direction, and a width perpendicular to the stretching direction varies depending on a positional relationship with the heat source. 請求項1乃至6いずれか1項に記載の蒸発器を備え、
第3の開口と、第4の開口とを有し、前記気状の冷媒を放熱により前記液状の冷媒に凝縮する凝縮器と、
前記蒸発器の第1の開口と前記凝縮器の第3の開口とを連通し、前記液状の冷媒を流動させる第1の管と、
前記蒸発器の第2の開口と前記凝縮器の第4の開口とを連通し、前記気状の冷媒を流動させる第2の管と、
を備える冷却装置。
The evaporator according to any one of claims 1 to 6, comprising:
A condenser having a third opening and a fourth opening for condensing the gaseous refrigerant into the liquid refrigerant by heat radiation;
A first pipe that communicates the first opening of the evaporator and the third opening of the condenser and causes the liquid refrigerant to flow;
A second pipe that communicates the second opening of the evaporator and the fourth opening of the condenser and causes the gaseous refrigerant to flow;
A cooling device comprising:
JP2011065268A 2011-03-24 2011-03-24 Evaporator and cooling device Expired - Fee Related JP5823713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065268A JP5823713B2 (en) 2011-03-24 2011-03-24 Evaporator and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065268A JP5823713B2 (en) 2011-03-24 2011-03-24 Evaporator and cooling device

Publications (2)

Publication Number Publication Date
JP2012202570A true JP2012202570A (en) 2012-10-22
JP5823713B2 JP5823713B2 (en) 2015-11-25

Family

ID=47183769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065268A Expired - Fee Related JP5823713B2 (en) 2011-03-24 2011-03-24 Evaporator and cooling device

Country Status (1)

Country Link
JP (1) JP5823713B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172474A (en) * 2014-03-12 2015-10-01 株式会社豊田中央研究所 Self-excited vibration heat pipe
JP2016211842A (en) * 2015-05-12 2016-12-15 ベンテラー・アウトモビールテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Vehicle heat exchanger system
CN106409790A (en) * 2016-08-27 2017-02-15 电子科技大学 Powerful chip radiator
JP2018066510A (en) * 2016-10-19 2018-04-26 国立大学法人名古屋大学 Heat exchanger, vaporization body and apparatus
JP2018109497A (en) * 2016-12-28 2018-07-12 株式会社リコー Method of manufacturing wick, loop-type heat pipe, cooling device, electronic device, and porous rubber, and method of manufacturing wick for loop-type heat pipe
CN110351993A (en) * 2019-07-25 2019-10-18 何昊 A kind of liquid cooling plate based on phase transformation liquid cooling and the phase transformation liquid cooling heat radiation system using it
WO2019230911A1 (en) * 2018-05-30 2019-12-05 大日本印刷株式会社 Vapor chamber and electronic device
JP2020041727A (en) * 2018-09-07 2020-03-19 トヨタ自動車株式会社 Evaporator and method for producing the same, and loop type heat pipe having evaporator
JP2021503714A (en) * 2017-11-17 2021-02-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Capacitor system for high pressure processing system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296068A (en) * 1988-05-19 1989-11-29 Mitsubishi Electric Corp Cooling plate
JP2004028444A (en) * 2002-06-25 2004-01-29 Sony Corp Cooling device, electronic device, and manufacturing method of cooling device
US20070056714A1 (en) * 2005-09-15 2007-03-15 National Tsing Hua University Flat-plate heat pipe containing channels
JP2009152122A (en) * 2007-12-21 2009-07-09 Sharp Corp Micro fluid device, fuel cell, and manufacturing method of them
JP2010078259A (en) * 2008-09-26 2010-04-08 Fujikura Ltd Evaporator for micro loop heat pipe
JP2010107153A (en) * 2008-10-31 2010-05-13 Toshiba Corp Evaporator and circulation type cooling device using the same
JP2010245451A (en) * 2009-04-09 2010-10-28 Beijing Avc Technology Research Center Co Ltd Heat radiating unit for electronic apparatuses, and manufacturing method of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296068A (en) * 1988-05-19 1989-11-29 Mitsubishi Electric Corp Cooling plate
JP2004028444A (en) * 2002-06-25 2004-01-29 Sony Corp Cooling device, electronic device, and manufacturing method of cooling device
US20070056714A1 (en) * 2005-09-15 2007-03-15 National Tsing Hua University Flat-plate heat pipe containing channels
JP2009152122A (en) * 2007-12-21 2009-07-09 Sharp Corp Micro fluid device, fuel cell, and manufacturing method of them
JP2010078259A (en) * 2008-09-26 2010-04-08 Fujikura Ltd Evaporator for micro loop heat pipe
JP2010107153A (en) * 2008-10-31 2010-05-13 Toshiba Corp Evaporator and circulation type cooling device using the same
JP2010245451A (en) * 2009-04-09 2010-10-28 Beijing Avc Technology Research Center Co Ltd Heat radiating unit for electronic apparatuses, and manufacturing method of the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172474A (en) * 2014-03-12 2015-10-01 株式会社豊田中央研究所 Self-excited vibration heat pipe
JP2016211842A (en) * 2015-05-12 2016-12-15 ベンテラー・アウトモビールテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Vehicle heat exchanger system
CN106409790A (en) * 2016-08-27 2017-02-15 电子科技大学 Powerful chip radiator
JP2018066510A (en) * 2016-10-19 2018-04-26 国立大学法人名古屋大学 Heat exchanger, vaporization body and apparatus
WO2018073992A1 (en) * 2016-10-19 2018-04-26 国立大学法人名古屋大学 Heat exchanger, evaporating body, and device
JP2018109497A (en) * 2016-12-28 2018-07-12 株式会社リコー Method of manufacturing wick, loop-type heat pipe, cooling device, electronic device, and porous rubber, and method of manufacturing wick for loop-type heat pipe
JP2021503714A (en) * 2017-11-17 2021-02-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Capacitor system for high pressure processing system
US11610773B2 (en) 2017-11-17 2023-03-21 Applied Materials, Inc. Condenser system for high pressure processing system
WO2019230911A1 (en) * 2018-05-30 2019-12-05 大日本印刷株式会社 Vapor chamber and electronic device
CN112902717A (en) * 2018-05-30 2021-06-04 大日本印刷株式会社 Sheet for evaporation chamber, and electronic apparatus
CN112902717B (en) * 2018-05-30 2022-03-11 大日本印刷株式会社 Sheet for evaporation chamber, and electronic apparatus
JP2020041727A (en) * 2018-09-07 2020-03-19 トヨタ自動車株式会社 Evaporator and method for producing the same, and loop type heat pipe having evaporator
CN110351993A (en) * 2019-07-25 2019-10-18 何昊 A kind of liquid cooling plate based on phase transformation liquid cooling and the phase transformation liquid cooling heat radiation system using it

Also Published As

Publication number Publication date
JP5823713B2 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5823713B2 (en) Evaporator and cooling device
US20060181848A1 (en) Heat sink and heat sink assembly
US10212862B2 (en) Cooling apparatus and method
US7607470B2 (en) Synthetic jet heat pipe thermal management system
JP6597892B2 (en) Loop heat pipe, manufacturing method thereof, and electronic device
US9464849B2 (en) Cooling device using loop type heat pipe
US9797659B2 (en) Refrigerant heat dissipating apparatus
US20180177077A1 (en) Loop heat pipe and fabrication method therefor, and electronic device
JP2012132661A (en) Cooling device and electronic device
US20100126700A1 (en) Heat-radiating base plate and heat sink using the same
US20100155030A1 (en) Thermal module
JP4639850B2 (en) Cooling method and apparatus
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP4953075B2 (en) heatsink
JP2007263427A (en) Loop type heat pipe
JP2013007501A (en) Cooling device
CN110740612A (en) Vapor chamber
JP2004218887A (en) Cooling device of electronic element
US20050135061A1 (en) Heat sink, assembly, and method of making
JP2017083042A (en) Leaf-shaped heat pipe
JP5938865B2 (en) Loop heat pipe and electronic device
WO2016051569A1 (en) Evaporator, cooling device, and electronic device
US11280556B2 (en) Fast heat-sinking, current stabilization and pressure boosting device for condenser
JP2017048964A (en) Loop type thermos-siphon device
JP2022151214A (en) Cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140704

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140918

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151008

R151 Written notification of patent or utility model registration

Ref document number: 5823713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees