JP2012202265A - Exhaust gas recirculation device of internal combustion engine - Google Patents

Exhaust gas recirculation device of internal combustion engine Download PDF

Info

Publication number
JP2012202265A
JP2012202265A JP2011066065A JP2011066065A JP2012202265A JP 2012202265 A JP2012202265 A JP 2012202265A JP 2011066065 A JP2011066065 A JP 2011066065A JP 2011066065 A JP2011066065 A JP 2011066065A JP 2012202265 A JP2012202265 A JP 2012202265A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
pipe
foreign matter
gas recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011066065A
Other languages
Japanese (ja)
Inventor
Yasuharu Nakayama
康治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011066065A priority Critical patent/JP2012202265A/en
Publication of JP2012202265A publication Critical patent/JP2012202265A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas recirculation device of an internal combustion engine at low cost, capable of striking a balance between the prevention of main components from degradation caused by condensed water and the securement of an exhaust purification performance.SOLUTION: An exhaust gas recirculation device of the internal combustion engine is installed in an engine 10 having a DPF unit 45 in a midstream of an exhaust pipe 42 forming an exhaust gas passage 42w. The device includes an LPL-EGR pipe 71 for circulating exhaust gas purified by the DPF unit 45 from the exhaust gas passage 42w side to an intake passage 32w side, a foreign matter capturing filter 80 arranged adjacent to an upstream end 71u of the LPL-EGR pipe 71 so as to prevent entering of foreign matters into the pipe 71 and protruded from an inner wall surface 51a of a cylindrical case part 51 of the DPF unit 45 into the exhaust gas passage 42w, and a water absorbing member 86 provided in the exhaust gas passage 42w and adjacent to the foreign matter capturing filter 80.

Description

本発明は、内燃機関の排気還流装置に関し、特に排気再循環経路中に異物捕集フィルタを設けた内燃機関の排気還流装置に関する。   The present invention relates to an exhaust gas recirculation device for an internal combustion engine, and more particularly to an exhaust gas recirculation device for an internal combustion engine provided with a foreign matter collecting filter in an exhaust gas recirculation path.

車両用のエンジン(内燃機関)においては、NOx(窒素酸化物)の低減に効果的な排気再循環(以下、EGR(Exhaust Gas Recirculation)ともいう)を行うべく、排気還流装置を装備するものが多くなっている。また、高温の排気ガスの一部を吸気側に還流させるHPL(High Pressure Loop)−EGR方式に対して、ターボ過給機の排気タービンや排気後処理装置を通過した後の排気ガスをターボ過給機のコンプレッサより上流側に還流させることで低温かつ大量の排気再循環を可能にしたLPL(Low Pressure Loop)−EGR方式の排気還流装置が普及してきている。   Some vehicle engines (internal combustion engines) are equipped with an exhaust gas recirculation device in order to perform exhaust gas recirculation (hereinafter also referred to as EGR (Exhaust Gas Recirculation)) effective in reducing NOx (nitrogen oxides). It is increasing. Also, in contrast to the HPL (High Pressure Loop) -EGR system that recirculates a portion of the hot exhaust gas to the intake side, the exhaust gas after passing through the exhaust turbine and exhaust aftertreatment device of the turbocharger is turbocharged. An LPL (Low Pressure Loop) -EGR type exhaust gas recirculation device has become widespread, which enables a low temperature and large amount of exhaust gas recirculation by recirculation to the upstream side of the compressor of the feeder.

このLPL−EGR方式の排気還流装置では、排気ガスを吸気通路側に還流させる排気管中にスパッタ(溶接時の飛散物)や排気浄化装置からの脱落片等の異物が生じ得るため、そのような異物がターボ過給機のコンプレッサに入ってダメージを与えたりすることがないよう、排気還流経路中に異物捕集フィルタが設けられているのが一般的である。   In this LPL-EGR type exhaust gas recirculation device, foreign matter such as spatter (spatters at the time of welding) and dropping pieces from the exhaust gas purification device may be generated in the exhaust pipe for recirculating the exhaust gas to the intake passage side. In general, a foreign matter collecting filter is provided in the exhaust gas recirculation path so that no foreign matter enters the compressor of the turbocharger and causes damage.

異物捕集フィルタを備えたLPL−EGRシステムとしては、例えばEGRガスの流れ方向に対して傾斜する複数の傾斜面およびこれらを接続する略水平面を有するようにジグザグに折られた異物捕集フィルタを、LPL−EGR回路の低圧側排気還流通路中に配置し、還流排気ガスを通す異物捕集フィルタの傾斜面に凝縮水が付着し易くても、その傾斜面上から凝縮水が容易に流下し得るようにしたものが知られている(例えば、特許文献1参照)。   As an LPL-EGR system equipped with a foreign matter collecting filter, for example, a foreign matter collecting filter folded in a zigzag so as to have a plurality of inclined surfaces inclined with respect to the flow direction of EGR gas and a substantially horizontal plane connecting them. Even if condensate tends to adhere to the inclined surface of the foreign matter collecting filter that is placed in the low-pressure side exhaust recirculation passage of the LPL-EGR circuit and allows the recirculated exhaust gas to pass through, the condensed water easily flows down from the inclined surface. What was made to obtain is known (for example, refer patent document 1).

また、低圧側排気還流通路中で発生する凝縮水を外部に排出する排出通路の途中に逆止弁とその逆止弁を通して排出される凝縮水を貯留可能なトラッパとを設ける一方、ターボ過給機のコンプレッサより下流側の過給空気圧をそのトラッパ内に選択的に導入可能な開閉弁を設けることで、トラッパ内の凝縮水を外部に排出するときのみ開閉弁を開弁させてトラッパの内圧により逆止弁を閉弁させ、凝縮水のEGR通路への逆流を抑えつつ、EGR通路内で発生した凝縮水を安定的に排出させるようにしたものが知られている(例えば、特許文献2参照)。   In addition, a check valve and a trapper capable of storing condensed water discharged through the check valve are provided in the middle of the discharge passage for discharging condensed water generated in the low pressure side exhaust recirculation passage to the outside. By providing an on-off valve that can selectively introduce supercharging air pressure downstream from the compressor of the machine into the trapper, the on-off valve is opened only when condensed water in the trapper is discharged to the outside. Is known in which the check valve is closed and the condensed water generated in the EGR passage is stably discharged while suppressing the backflow of the condensed water to the EGR passage (for example, Patent Document 2). reference).

さらに、EGRクーラでの冷却によって還流排気ガスから生じた凝縮水が生じ、その凝縮水が流下するときに触媒に接触して触媒の劣化や目詰まりが発生することを抑制すべく、凝縮水の流下時に凝縮水を触媒を避けるように迂回させる迂回通路を設定したものも知られている(例えば、特許文献3参照)。   Furthermore, in order to prevent condensed water generated from the recirculated exhaust gas from being cooled by the EGR cooler and contacting the catalyst when the condensed water flows down, the condensed water is prevented from being deteriorated or clogged. There is also known one in which a bypass path is set to bypass the condensed water so as to avoid the catalyst when flowing down (see, for example, Patent Document 3).

その他に、ターボ過給機のコンプレッサのケーシングに主通路とそこから分岐して再び主通路に合流する副通路とを形成し、その副通路内に水分を捕捉するよう吸着材を配置する一方、その吸着材に捕捉させた水分を副通路内に流れるガスにより蒸発させることで、吸着剤を乾燥させるようにしたものが知られている(例えば、特許文献4参照)。   In addition, a main passage and a sub-passage branching from the main passage and joining the main passage again are formed in the compressor casing of the turbocharger, and the adsorbent is disposed so as to capture moisture in the sub-passage, It is known that the adsorbent is dried by evaporating the moisture trapped in the adsorbent with a gas flowing in the sub-passage (see, for example, Patent Document 4).

特開2010−151091号公報JP 2010-151091 A 特開2008−280945号公報JP 2008-280945 A 特開2003−065162号公報JP 2003-0665162 A 特開2009−264339号公報JP 2009-264339 A

しかしながら、異物捕集フィルタに付着する凝縮水を流下し易くしたりEGRクーラより排気還流方向下流側に凝縮水を捕集する捕集器や吸着材を設けたりする従来の内燃機関の排気還流装置にあっては、エンジンの運転中にEGRクーラ付近で発生した凝縮水がEGRバルブの閉弁時あるいはエンジン負荷の低下時に一気に排気通路側に流れてしまい、その流下側に配置されたDPF(Diesel particulate filter)基材等といった排気浄化ユニットの主要部が急激な熱変化によって亀裂を生じ易くなり、排気浄化ユニットが早期に劣化してしまう可能性があった。   However, a conventional exhaust gas recirculation device for an internal combustion engine that makes it easy to flow down the condensed water adhering to the foreign matter collecting filter, or a collector or adsorbent that collects the condensed water downstream from the EGR cooler in the exhaust gas recirculation direction. In this case, the condensed water generated in the vicinity of the EGR cooler during the operation of the engine flows into the exhaust passage side at a time when the EGR valve is closed or when the engine load is reduced, and the DPF (Diesel) arranged on the downstream side of the exhaust passage The main part of the exhaust purification unit, such as a particulate filter) base material, etc., is prone to cracks due to a sudden heat change, and the exhaust purification unit may deteriorate early.

これに対し、DPF基材を迂回する凝縮水の流下通路を設定するものでは、上述の亀裂等の問題を防止できるものの、構造が複雑化してコスト高になるばかりか、還流排気ガスの一部がDPF基材等をバイパスすることから排気浄化ユニットの性能を十分に発揮できなかった。   On the other hand, in the case of setting a flow path for condensed water that bypasses the DPF base material, the above-mentioned problems such as cracks can be prevented, but not only the structure is complicated and the cost is increased, but also part of the recirculated exhaust gas. However, since it bypasses the DPF base material and the like, the performance of the exhaust purification unit could not be sufficiently exhibited.

また、EGR通路の前後差圧を差圧センサにより検出してEGR流量制御を行う場合、異物捕集フィルタに凝縮水が付着して水膜が形成され、その異物捕集フィルタによって排気還流通路が閉塞されたり圧力損失が大きくなったりすると、EGR流量が低下しているにもかかわらず大量のEGR流量(排気還流量)であると誤判定されてしまうことになってシステム全体のEGR流量が不足してしまい、NOx低減効果が十分に得られなくなってしまう可能性があった。   Further, when the EGR flow rate control is performed by detecting the differential pressure across the EGR passage with a differential pressure sensor, condensed water adheres to the foreign matter collecting filter to form a water film, and the foreign matter collecting filter forms the exhaust gas recirculation passage. If it is blocked or the pressure loss increases, the EGR flow rate will be erroneously judged to be a large amount of EGR flow (exhaust gas recirculation amount) even though the EGR flow rate is reduced, and the EGR flow rate of the entire system will be insufficient. As a result, the NOx reduction effect may not be sufficiently obtained.

さらに、EGRクーラより排気還流方向下流側に凝縮水を吸着する吸着材を設ける場合には、吸着剤に吸着された凝縮水が蒸発し難い運転状態が続くと、吸着剤の吸着性能を良好に維持することができず、酸性の凝縮水が吸気管内に入ることでターボ過給機のコンプレッサやそれより下流側の吸気系の主要金属部品が腐食し易くなる可能性があった。   Furthermore, when an adsorbent that adsorbs condensed water is provided downstream of the EGR cooler in the exhaust gas recirculation direction, if the condensed water adsorbed by the adsorbent is difficult to evaporate, the adsorbent adsorption performance is improved. It could not be maintained, and acidic condensed water could enter the intake pipe, which could easily corrode the turbocharger compressor and the main metal parts of the intake system downstream.

すなわち、従来の内燃機関の排気還流装置にあっては、凝縮水による主要部品の劣化の防止と排気浄化性能の確保とを両立させることが困難であった。   That is, in the conventional exhaust gas recirculation device for an internal combustion engine, it has been difficult to achieve both prevention of deterioration of main parts due to condensed water and ensuring of exhaust purification performance.

そこで、本発明は、凝縮水による主要部品の劣化の防止と排気浄化性能の確保とを両立させることができる低コストの内燃機関の排気還流装置を提供するものである。   Therefore, the present invention provides a low-cost exhaust gas recirculation device for an internal combustion engine that can simultaneously prevent deterioration of main parts due to condensed water and ensure exhaust purification performance.

本発明に係る内燃機関の排気還流装置は、上記課題解決のため、(1)排気ガス通路を形成する排気管の途中に排気浄化ユニットを有する内燃機関に装備される内燃機関の排気還流装置であって、前記排気浄化ユニットにより浄化された排気ガスを前記排気ガス通路側から前記内燃機関の吸気通路側に還流させる排気還流管と、前記排気還流管内への異物の侵入を阻止するよう前記排気還流管の上流端部の近傍に配置され、前記排気管の内壁面から前記排気ガス通路内に突出する異物捕集フィルタと、前記排気ガス通路内に前記異物捕集フィルタに隣接して設けられた吸水材と、を備えたものである。   In order to solve the above problems, an exhaust gas recirculation apparatus for an internal combustion engine according to the present invention is (1) an exhaust gas recirculation apparatus for an internal combustion engine equipped in an internal combustion engine having an exhaust gas purification unit in the middle of an exhaust pipe forming an exhaust gas passage. An exhaust gas recirculation pipe for recirculating the exhaust gas purified by the exhaust gas purification unit from the exhaust gas passage side to the intake air passage side of the internal combustion engine; and the exhaust gas to prevent foreign matter from entering the exhaust gas recirculation pipe A foreign matter collecting filter disposed in the vicinity of the upstream end of the reflux pipe and projecting from the inner wall surface of the exhaust pipe into the exhaust gas passage, and provided in the exhaust gas passage adjacent to the foreign matter collection filter. A water absorbing material.

この発明では、排気還流管内の凝縮水が異物捕集フィルタ側に流下し、その一部が異物捕集フィルタを通過することなく異物捕集フィルタに付着したとしても、その凝縮水は、吸水材に吸着されるか高温の排気ガス中で加熱されて迅速に蒸発することになり、異物捕集フィルタに水膜が形成されることが有効に抑制される。また、吸水材が排気管内の高温の排気ガスに常時さらされることで、吸水材からの凝縮水の蒸発が促進され、吸水材の吸水性能が良好に維持される。したがって、排気還流管内の通路が凝縮水の付着した異物捕集フィルタによって閉塞されることが確実に防止されるとともに、装置の構造の複雑化やコスト高が回避でき、凝縮水による主要部品の劣化の防止と排気浄化性能の確保とを両立させることができる低コストの排気還流装置となる。なお、ここにいう吸水材は、異物捕集フィルタの異物捕集面部に付着した凝縮水が水膜を形成することを抑制するよう、その異物捕集面部から凝縮水を離脱させて排気ガス通路内に排出できるものであれば、その配置や材質、形状等が特に限定されるものではない。   In this invention, even if the condensed water in the exhaust gas recirculation pipe flows down to the foreign matter collecting filter side and part of the condensed water adheres to the foreign matter collecting filter without passing through the foreign matter collecting filter, Or heated in high-temperature exhaust gas to evaporate quickly, and the formation of a water film on the foreign matter collecting filter is effectively suppressed. Further, since the water absorbing material is constantly exposed to the high-temperature exhaust gas in the exhaust pipe, evaporation of condensed water from the water absorbing material is promoted, and the water absorbing performance of the water absorbing material is maintained well. Therefore, the passage in the exhaust gas recirculation pipe is surely prevented from being blocked by a foreign matter collecting filter with condensed water attached, and the construction of the apparatus and the high cost can be avoided. It becomes a low-cost exhaust gas recirculation device that can achieve both prevention of exhaust gas and ensuring exhaust gas purification performance. The water-absorbing material referred to here is an exhaust gas passage by separating condensed water from the foreign matter collecting surface portion so as to prevent the condensed water adhering to the foreign matter collecting surface portion of the foreign matter collecting filter from forming a water film. As long as it can be discharged into the inside, the arrangement, material, shape and the like are not particularly limited.

本発明に係る内燃機関の排気還流装置においては、(2)前記排気浄化ユニットが、前記排気管の途中に配置された筒状ケース部を有し、前記排気還流管が、前記排気浄化ユニットの一部を通過した排気ガスを前記排気ガス通路側から前記吸気通路側に還流させ、前記異物捕集フィルタが、前記排気還流管の上流端部の近傍で、前記排気浄化ユニットの前記一部より下流側の前記筒状ケース部の内壁面から前記排気ガス通路内に突出した突出部を有し、前記吸水材が、前記異物捕集フィルタの前記突出部に保持されていることが好ましい。   In the exhaust gas recirculation apparatus for an internal combustion engine according to the present invention, (2) the exhaust gas purification unit has a cylindrical case portion disposed in the middle of the exhaust pipe, and the exhaust gas recirculation pipe is connected to the exhaust gas purification unit. Exhaust gas that has passed through a part is recirculated from the exhaust gas passage side to the intake passage side, and the foreign matter collecting filter is located near the upstream end of the exhaust gas recirculation pipe from the part of the exhaust purification unit. It is preferable that a projecting portion projecting into the exhaust gas passage from the inner wall surface of the cylindrical case portion on the downstream side is provided, and the water absorbing material is held by the projecting portion of the foreign matter collecting filter.

この構成により、異物捕集フィルタが広い面積で筒状ケース部内を通る排気ガスにさらされるようにできるとともに、筒状ケース部内の排気ガスの流れの方向に対して交差するガス通過面(異物捕集面)を容易に形成できることになり、しかも、熱容量が大きい筒状ケース部から異物捕集フィルタおよび吸水材への十分な伝熱が可能となる。   With this configuration, the foreign matter collecting filter can be exposed to the exhaust gas passing through the cylindrical case portion with a large area, and the gas passage surface (foreign matter capturing portion) intersects the direction of the exhaust gas flow in the cylindrical case portion. (Collecting surface) can be easily formed, and sufficient heat transfer from the cylindrical case portion having a large heat capacity to the foreign matter collecting filter and the water absorbing material becomes possible.

上記(2)に記載の構成を有する場合、(3)前記排気還流管の途中に設置され前記吸気管側に還流する排気ガスを冷却する排気冷却器をさらに備え、前記排気還流管の上流端部が、前記排気冷却器内で発生する凝縮水を前記異物捕集フィルタを通して前記排気浄化ユニットの前記一部より下流側の前記排気ガス通路内に排出するように、前記排気冷却器の入口部から前記一部より下流側の前記筒状ケース部の内壁面側に向かって下降していることが好ましい。この構成により、排気還流管内で排気ガスが冷却されることにより生じる酸性の凝縮水が、排気冷却器の入口部から排気浄化ユニットの一部より下流側の筒状ケース部の内壁面側に向かって流下し易くなるとともに吸気通路側に流入し難くなり、吸気系部品が腐食し難くなる。   In the case of having the configuration described in (2) above, (3) an exhaust cooler that cools exhaust gas that is installed in the middle of the exhaust gas recirculation pipe and recirculates to the intake pipe side, and that has an upstream end of the exhaust gas recirculation pipe An outlet portion of the exhaust cooler so that the condensed water generated in the exhaust cooler is discharged into the exhaust gas passage downstream of the part of the exhaust purification unit through the foreign matter collecting filter. It is preferable that it descends toward the inner wall surface side of the cylindrical case part downstream from the part. With this configuration, acidic condensed water generated by cooling the exhaust gas in the exhaust gas recirculation pipe is directed from the inlet portion of the exhaust cooler toward the inner wall surface side of the cylindrical case portion downstream of the exhaust purification unit. As a result, it becomes difficult to flow down and flow into the intake passage side, and the intake system parts are hardly corroded.

上記(2)または(3)に記載の構成を有する場合、(4)前記吸水材が、前記異物捕集フィルタと前記排気浄化ユニットの前記一部との間に位置していることが好ましい。この構成により、排気還流管内の凝縮水が異物捕集フィルタ側に流下したときに、異物捕集フィルタを通過した凝縮水が排気ガスの通過によって高温となる排気浄化ユニットの前記一部に接触することが確実に抑制され、排気浄化ユニットの一部が急激な熱変化によって亀裂を生じたり早期に劣化したりすることが確実に防止できることになる。   When it has the structure as described in said (2) or (3), it is preferable that (4) the said water absorbing material is located between the said foreign material collection filter and the said one part of the said exhaust gas purification unit. With this configuration, when the condensed water in the exhaust gas recirculation pipe flows down to the foreign matter collecting filter, the condensed water that has passed through the foreign matter collecting filter comes into contact with the part of the exhaust purification unit that becomes high temperature due to the passage of the exhaust gas. Therefore, it is possible to reliably prevent a part of the exhaust purification unit from being cracked or rapidly deteriorated due to a rapid thermal change.

上記(2)ないし(4)のいずれかの構成を有する場合、(5)前記吸水材が、一面側で前記排気浄化ユニットの前記一部に対向し、他面側で前記異物捕集フィルタに隣接する板状体をなしていることが好ましい。これにより、吸水材は、比較的面積の広いその一面側で排気ガス通路内を通る排気ガスに十分にさらされて水を蒸発させながら、他面側では凝縮水を効率よく吸水できることになる。   In the case of having any one of the above configurations (2) to (4), (5) the water absorbing material faces the part of the exhaust gas purification unit on one side and the foreign matter collecting filter on the other side. It is preferable to form an adjacent plate-like body. As a result, the water absorbing material can sufficiently absorb condensed water on the other surface side while sufficiently exposing the water absorbing material to the exhaust gas passing through the exhaust gas passage on the one surface side having a relatively large area and evaporating water.

上記(5)の構成を有する場合、(6)前記異物捕集フィルタが、前記筒状ケース部の内壁面から前記排気ガス通路内に離間する位置で前記吸水材により閉塞された閉塞部と、該閉塞部と前記筒状ケース部の内壁面との間で略筒状をなす異物捕集面部と、を有するものであっても好ましい。この場合、異物捕集フィルタが排気還流管に流入する排気ガスを広いガス通過面積で通過させることになり、しかも、異物捕集フィルタの異物捕集面積が十分に確保できることになる。
上記(2)ないし(6)のいずれかの構成を有する場合、(7)前記排気浄化ユニットの前記一部が、前記筒状ケース部内を通る排気ガスを浄化可能な排気浄化フィルタ部であることが好ましい。この場合、粒子状物質等が除去された排気ガスが吸気通路側に還流することになるから、吸気系主要部品に粒子状物質等が堆積することが防止される。
When having the configuration of (5) above, (6) a blocking portion closed by the water absorbing material at a position where the foreign matter collecting filter is separated from the inner wall surface of the cylindrical case portion into the exhaust gas passage; It is also preferable to have a foreign matter collecting surface portion that has a substantially cylindrical shape between the closed portion and the inner wall surface of the cylindrical case portion. In this case, the foreign matter collecting filter allows the exhaust gas flowing into the exhaust gas recirculation pipe to pass through a wide gas passage area, and the foreign matter collecting area of the foreign matter collecting filter can be sufficiently secured.
In the case of having any one of the constitutions (2) to (6), (7) the part of the exhaust purification unit is an exhaust purification filter part capable of purifying exhaust gas passing through the cylindrical case part. Is preferred. In this case, since the exhaust gas from which the particulate matter and the like have been removed is recirculated to the intake passage side, the particulate matter and the like are prevented from accumulating on the main components of the intake system.

本発明に係る内燃機関の排気還流装置においては、(8)前記内燃機関には、前記排気ガス通路中を流れる排気ガスのエネルギによって回転する排気タービンおよび該排気タービンに連結されて前記吸気通路中の吸入空気を圧縮する吸入空気コンプレッサを有するターボ過給機が装着されており、前記排気還流管が、前記内燃機関の前記吸気通路を形成する吸気管のうち前記吸入空気コンプレッサより上流側の吸気管に接続されていることが好ましい。この構成により、凝縮水の発生量が多くなる低圧EGR回路における排気還流管の入口部で、異物捕集フィルタへの水膜形成を有効に抑制することができるとともに、排気還流管内の通路の閉塞を防止して所要の低圧EGR量を確保することができる。   In the exhaust gas recirculation apparatus for an internal combustion engine according to the present invention, (8) the internal combustion engine includes an exhaust turbine that is rotated by energy of exhaust gas flowing through the exhaust gas passage, and the exhaust turbine connected to the exhaust turbine. A turbocharger having an intake air compressor for compressing the intake air is mounted, and the exhaust gas recirculation pipe is an intake air upstream of the intake air compressor in the intake pipe forming the intake passage of the internal combustion engine. It is preferably connected to a tube. With this configuration, it is possible to effectively suppress the formation of a water film on the foreign matter collecting filter at the inlet portion of the exhaust gas recirculation pipe in the low pressure EGR circuit in which the amount of condensed water generated increases, and the passage in the exhaust gas recirculation pipe is blocked. The required low pressure EGR amount can be secured.

本発明によれば、排気還流管内の凝縮水が異物捕集フィルタ側に流下し、その一部が異物捕集フィルタを通過することなく異物捕集フィルタに付着したとしても、その凝縮水が排気ガス通路内の吸水材に吸着されるか高温の排気ガス中で加熱されて迅速に蒸発するようにしているので、異物捕集フィルタに水膜が形成されることを有効に抑制することができ、しかも、吸水材を排気管内の高温の排気ガスに常時さらすことで、吸水材からの凝縮水の蒸発を促進させ、吸水材の吸水性能が良好に維持されるようにしているので、排気還流管内の通路が凝縮水の付着した異物捕集フィルタによって閉塞されることを確実に防止するとともに、装置の構造の複雑化やコスト高を回避することができる。その結果、凝縮水による主要部品の劣化の防止と排気浄化性能の確保とを両立させることができる低コストの内燃機関の排気還流装置を提供することができる。   According to the present invention, even if the condensed water in the exhaust gas recirculation pipe flows down to the foreign matter collecting filter side and part of the condensed water adheres to the foreign matter collecting filter without passing through the foreign matter collecting filter, the condensed water is exhausted. Since it is adsorbed by the water-absorbing material in the gas passage or heated in the high-temperature exhaust gas and rapidly evaporated, it is possible to effectively suppress the formation of a water film on the foreign matter collecting filter. Moreover, by constantly exposing the water absorbing material to the high-temperature exhaust gas in the exhaust pipe, the condensed water from the water absorbing material is accelerated and the water absorbing performance of the water absorbing material is maintained well. It is possible to reliably prevent the passage in the pipe from being blocked by the foreign matter collecting filter to which condensed water adheres, and to avoid the complicated structure and high cost of the apparatus. As a result, it is possible to provide a low-cost exhaust gas recirculation device for an internal combustion engine that can achieve both prevention of deterioration of main parts due to condensed water and ensuring of exhaust purification performance.

本発明の一実施形態に係る内燃機関の排気還流装置の全体の概略構成図である。1 is an overall schematic configuration diagram of an exhaust gas recirculation device for an internal combustion engine according to an embodiment of the present invention. 本発明の一実施形態に係る内燃機関の排気還流装置の要部概略断面図である。It is a principal part schematic sectional drawing of the exhaust gas recirculation apparatus of the internal combustion engine which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内燃機関の排気還流装置の要部周辺の構成図である。It is a block diagram of the principal part periphery of the exhaust gas recirculation apparatus of the internal combustion engine which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内燃機関の排気還流装置における異物捕集フィルタの概略の外観斜視図である。1 is a schematic external perspective view of a foreign matter collecting filter in an exhaust gas recirculation device for an internal combustion engine according to an embodiment of the present invention. 本発明の一実施形態に係る内燃機関の排気還流装置における異物捕集フィルタおよび吸水材の取付け部断面図である。FIG. 3 is a cross-sectional view of the attachment portion of the foreign matter collecting filter and the water absorbing material in the exhaust gas recirculation device for an internal combustion engine according to the embodiment of the present invention. 本発明の一実施形態に係る内燃機関の排気還流装置における異物捕集フィルタおよび吸水材の変形態様の説明図である。It is explanatory drawing of the deformation | transformation aspect of the foreign material collection filter and water absorbing material in the exhaust gas recirculation apparatus of the internal combustion engine which concerns on one Embodiment of this invention.

以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(一実施形態)
図1〜図5は、本発明に係る内燃機関の排気還流装置の一実施形態を示している。
(One embodiment)
1 to 5 show an embodiment of an exhaust gas recirculation device for an internal combustion engine according to the present invention.

この実施形態は、本発明を多気筒内燃機関である直列4気筒のディーゼルエンジン10(以下、単にエンジン10という)に適用したものである。   In this embodiment, the present invention is applied to an in-line four-cylinder diesel engine 10 (hereinafter simply referred to as the engine 10) which is a multi-cylinder internal combustion engine.

図1に示すように、本実施形態のエンジン10は、その本体ブロック10Mに複数の気筒11を有しており、このエンジン10には、各気筒11内の燃焼室(詳細を図示していない)に燃料を噴射するコモンレール型の燃料噴射装置12と、燃焼室に空気を吸入させる吸気装置13と、燃焼室からの排気ガスを排気させる排気装置14と、排気装置14内の排気エネルギを利用して吸気装置13内で吸入空気を圧縮し燃焼室に空気を過給するターボ過給機15と、このターボ過給機15より上流側の高圧側の排気ガスの一部を吸気側に還流させ再循環させる高圧側の排気還流装置であるHPL−EGR装置16と、このターボ過給機15より下流側の低圧側の排気ガスの一部を吸気側に還流させ再循環させる低圧側の排気還流装置であるLPL−EGR装置17と、が装備されている。   As shown in FIG. 1, the engine 10 of the present embodiment has a plurality of cylinders 11 in a main body block 10M. The engine 10 includes combustion chambers (details are not shown) in each cylinder 11. A common rail fuel injection device 12 for injecting fuel into the combustion chamber, an intake device 13 for inhaling air into the combustion chamber, an exhaust device 14 for exhausting exhaust gas from the combustion chamber, and exhaust energy in the exhaust device 14 Then, the turbocharger 15 that compresses the intake air in the intake device 13 and supercharges the air into the combustion chamber, and returns a part of the high-pressure side exhaust gas upstream from the turbocharger 15 to the intake side. HPL-EGR device 16 which is a high-pressure side exhaust gas recirculation device to be recirculated and a low-pressure side exhaust gas which recirculates and recirculates a part of the low-pressure side exhaust gas downstream from turbocharger 15 to the intake side. LP as a reflux device And -EGR device 17, is equipped with.

燃料噴射装置12は、図外の燃料タンクから燃料を汲み上げて高圧の燃圧(燃料圧力)に加圧し吐出するサプライポンプ21と、そのサプライポンプ21からの燃料が導入されるコモンレール22と、このコモンレール22を通して供給される燃料を図示しないECU(電子制御ユニット)からの噴射指令信号に対応するタイミングおよび開度(デューティー比)で燃焼室内に噴射する燃料噴射弁23とを含んで構成されている。なお、サプライポンプ21は、例えばエンジン10の回転動力により駆動され、コモンレール22はサプライポンプ21から供給された高圧燃料を均等に保ちながら複数の燃料噴射弁23に分配・供給する。燃料噴射弁23は、公知のニードル弁で構成され、噴射指令信号によりその開弁時間を制御されることによりその噴射指令信号に応じた燃料噴射量の燃料(例えば軽油)を燃焼室内に噴射・供給することができる。   The fuel injection device 12 includes a supply pump 21 that pumps fuel from a fuel tank (not shown), pressurizes the fuel to a high fuel pressure (fuel pressure), and discharges the fuel, a common rail 22 into which fuel from the supply pump 21 is introduced, and the common rail And a fuel injection valve 23 that injects the fuel supplied through the cylinder 22 into the combustion chamber at a timing and opening degree (duty ratio) corresponding to an injection command signal from an ECU (electronic control unit) (not shown). The supply pump 21 is driven by, for example, the rotational power of the engine 10, and the common rail 22 distributes and supplies the high-pressure fuel supplied from the supply pump 21 to the plurality of fuel injection valves 23 while keeping it even. The fuel injection valve 23 is constituted by a known needle valve, and by controlling the valve opening time by an injection command signal, fuel (for example, light oil) corresponding to the injection command signal is injected into the combustion chamber. Can be supplied.

吸気装置13には、吸気マニホールド31と、それより上流側の吸気管32と、吸気管32の最上流部でフィルタにより吸入空気を清浄化するエアクリーナ33と、ターボ過給機15より下流側の吸気管部32b内で吸入空気コンプレッサ15aによる圧縮・過給により昇温した吸入空気を冷却するインタークーラ34と、新気の吸入流量を検出するエアフローメータ35と、エンジン10内への吸気量を調整するスロットルバルブ36と、吸気温度を検出する吸気温度センサ37と、吸気マニホールド31の入口付近でエンジン10の過給圧を検出する吸気管内圧力センサ38とが、それぞれ装着されている。   The intake device 13 includes an intake manifold 31, an intake pipe 32 upstream of the intake manifold 31, an air cleaner 33 that cleans intake air by a filter at the most upstream portion of the intake pipe 32, and a downstream side of the turbocharger 15. An intercooler 34 that cools the intake air heated by compression / supercharging by the intake air compressor 15a in the intake pipe portion 32b, an air flow meter 35 that detects the intake flow rate of fresh air, and an intake air amount into the engine 10 A throttle valve 36 for adjustment, an intake air temperature sensor 37 for detecting the intake air temperature, and an intake pipe pressure sensor 38 for detecting the boost pressure of the engine 10 near the inlet of the intake manifold 31 are mounted.

排気装置14は、排気マニホールド41と、それより下流側の排気管42と、アイドル時や軽負荷時に排気温度を上げることができるとともにLPL−EGR装置17の背圧を制御することができる排気絞り弁43と、ターボ過給機15より下流側の排気管42に装着された公知の酸化触媒コンバータ44およびDPFユニット45からなる排気後処理装置46と、を含んで構成されている。   The exhaust device 14 has an exhaust manifold 41, an exhaust pipe 42 downstream from the exhaust manifold 41, and an exhaust throttle that can increase the exhaust temperature during idling or light load and can control the back pressure of the LPL-EGR device 17. A valve 43 and an exhaust aftertreatment device 46 including a known oxidation catalytic converter 44 and a DPF unit 45 mounted on an exhaust pipe 42 downstream of the turbocharger 15 are configured.

ターボ過給機15は、互いに回転方向一体に結合された吸入空気コンプレッサ15aおよび排気タービン15bを有し、排気エネルギにより排気タービン15bを回転させるとともに吸入空気コンプレッサ15aを回転させることで、この吸入空気コンプレッサ15aにより吸入空気を圧縮してエンジン10内に正圧の空気を供給することができる。   The turbocharger 15 includes an intake air compressor 15a and an exhaust turbine 15b that are integrally coupled to each other in the rotational direction. The intake air compressor 15a is rotated by rotating the exhaust turbine 15b and exhaust air compressor 15a by exhaust energy. The intake air can be compressed by the compressor 15 a to supply positive pressure air into the engine 10.

HPL−EGR装置16は、排気マニホールド41および吸気管32の間に介装されたHPL−EGRパイプ61と、このHPL−EGRパイプ61の途中に装着されて排気ガスの還流量を調整することができるHPL−EGRバルブ62と、HPL−EGRパイプ61内を通る排気ガスをその途中で冷却することができるHPL−EGRクーラ63と、を有している。HPL−EGRパイプ61は、エンジン10内の燃焼室をバイパスして、排気管42内の排気通路のうち排気タービン15bより上流側の部分(上流側の排気管部42aの内部)または排気マニホールド41内の排気通路と、吸気管32内の吸気通路32wのうち吸入空気コンプレッサ15aより下流側の部分(下流側の吸気管部32bの内部)とを連通させる高圧側排気還流通路P1を形成する高圧側通路形成部材となっている。また、HPL−EGRバルブ62は、高圧側排気還流通路P1を開通させる開弁状態と、この高圧側排気還流通路P1の開通を制限する、例えば高圧側排気還流通路P1を遮断する閉弁状態とに切替え可能になっている。HPL−EGRクーラ63は、詳細を図示しないが、高圧側排気還流通路P1の一部を形成するケース部内にEGRガスに接触する冷却水管部を設けて、その冷却水管部内に導入される冷却用流体(例えば、エンジン冷却水)とケース部内を通る高圧側の還流排気ガスとの間における熱交換によって、高圧側の還流排気ガスを冷却できるようになっている。そして、高圧側排気還流通路P1は、HPL−EGR装置16内における高圧側の排気再循環経路の主要部をなしている。   The HPL-EGR device 16 is mounted between the HPL-EGR pipe 61 and the HPL-EGR pipe 61 interposed between the exhaust manifold 41 and the intake pipe 32, and adjusts the recirculation amount of the exhaust gas. An HPL-EGR valve 62 that can be used, and an HPL-EGR cooler 63 that can cool the exhaust gas passing through the HPL-EGR pipe 61 on the way. The HPL-EGR pipe 61 bypasses the combustion chamber in the engine 10, and a part of the exhaust passage in the exhaust pipe 42 upstream of the exhaust turbine 15 b (inside the exhaust pipe part 42 a on the upstream side) or the exhaust manifold 41. The high-pressure side exhaust recirculation passage P1 that connects the exhaust passage inside and the portion of the intake passage 32w in the intake pipe 32 downstream of the intake air compressor 15a (inside the intake pipe portion 32b on the downstream side) is formed. It is a side passage forming member. Further, the HPL-EGR valve 62 is in an open state in which the high pressure side exhaust gas recirculation passage P1 is opened, and in a closed state in which the opening of the high pressure side exhaust gas recirculation passage P1 is restricted, for example, the high pressure side exhaust gas recirculation passage P1 is shut off. It is possible to switch to. Although not shown in detail, the HPL-EGR cooler 63 is provided with a cooling water pipe portion that contacts the EGR gas in a case portion that forms a part of the high-pressure side exhaust gas recirculation passage P1, and is used for cooling that is introduced into the cooling water pipe portion. The high-pressure side recirculated exhaust gas can be cooled by heat exchange between the fluid (for example, engine cooling water) and the high-pressure recirculated exhaust gas passing through the case portion. The high-pressure side exhaust gas recirculation passage P <b> 1 forms a main part of the high-pressure side exhaust gas recirculation path in the HPL-EGR device 16.

LPL−EGR装置17は、排気管42および吸気管32の間に介装されたLPL−EGRパイプ71と、このLPL−EGRパイプ71の途中に装着されて排気ガスの還流量を調整することができるLPL−EGRバルブ72と、LPL−EGRパイプ71内を通る排気ガスをその途中で冷却することができる排気冷却器としてのLPL−EGRクーラ73と、下流側の排気管42内の排気通路のうちDPFユニット45より下流側の排気通路部分でその通路断面積を絞るように開度を縮小させることができる前述の排気絞り弁43とを有している。   The LPL-EGR device 17 is installed in the middle of the LPL-EGR pipe 71 interposed between the exhaust pipe 42 and the intake pipe 32 and adjusts the recirculation amount of the exhaust gas. An LPL-EGR valve 72 that can be used, an LPL-EGR cooler 73 that serves as an exhaust cooler that can cool the exhaust gas that passes through the LPL-EGR pipe 71, and an exhaust passage in the exhaust pipe 42 on the downstream side. Of these, the exhaust throttle valve 43 that can reduce the opening degree so as to reduce the cross-sectional area of the passage in the exhaust passage portion downstream of the DPF unit 45 is provided.

LPL−EGRパイプ71は、エンジン10内の燃焼室をバイパスして、排気管42内の排気ガス通路42wのうち排気タービン15bより下流側の部分(下流側の排気管部42bの内部)と吸気管32内の吸気通路32wのうち吸入空気コンプレッサ15aより上流側の部分(上流側の吸気管部32aの内部)とを連通させる低圧側排気還流通路P2(低圧側の排気再循環経路)を形成し、酸化触媒コンバータ44およびDPFユニット45により浄化された排気ガスを排気ガス通路42w側から吸気通路32w側に還流させる排気還流管を構成している。また、LPL−EGRバルブ72は、低圧側排気還流通路P2を開通させる開弁状態と、この低圧側排気還流通路P2の開通を制限する、例えば低圧側排気還流通路P2を遮断する閉弁状態とに切替え可能になっている。さらに、LPL−EGRクーラ73は、低圧側排気還流通路P2の一部を形成するケース部73aと、そのケース部73a内を通るEGRガスに接触するとともに冷却用流体通路を形成する冷却水管部73bとを有しており、冷却水管部73b内に導入される冷却用流体(例えば、エンジン冷却水)とケース部73a内を通る還流排気ガスとの間における熱交換によって、低圧側の還流排気ガスを冷却できるようになっている。そして、低圧側排気還流通路P2は、吸気管32内の吸気通路32wのうちLPL−EGRパイプ71が吸気管32に接続する接続位置jより下流側の部分と共に、LPL−EGR装置17内における低圧側の排気再循環経路を構成している。   The LPL-EGR pipe 71 bypasses the combustion chamber in the engine 10, and a portion of the exhaust gas passage 42 w in the exhaust pipe 42 downstream of the exhaust turbine 15 b (inside the exhaust pipe portion 42 b on the downstream side) and the intake air A low-pressure side exhaust recirculation passage P2 (low-pressure side exhaust recirculation path) that communicates with a portion upstream of the intake air compressor 15a (inside the upstream intake pipe portion 32a) in the intake passage 32w in the pipe 32 is formed. The exhaust gas recirculation pipe is configured to recirculate the exhaust gas purified by the oxidation catalyst converter 44 and the DPF unit 45 from the exhaust gas passage 42w side to the intake passage 32w side. The LPL-EGR valve 72 is in an open state in which the low pressure side exhaust gas recirculation passage P2 is opened, and in a closed state in which the opening of the low pressure side exhaust gas recirculation passage P2 is restricted, for example, the low pressure side exhaust gas recirculation passage P2 is shut off. It is possible to switch to. Furthermore, the LPL-EGR cooler 73 includes a case portion 73a that forms part of the low-pressure side exhaust recirculation passage P2, and a cooling water pipe portion 73b that contacts the EGR gas passing through the case portion 73a and forms a cooling fluid passage. And the low-pressure side recirculated exhaust gas by heat exchange between the cooling fluid (for example, engine cooling water) introduced into the cooling water pipe portion 73b and the recirculated exhaust gas passing through the case portion 73a. Can be cooled. The low-pressure side exhaust recirculation passage P2 is a low-pressure in the LPL-EGR device 17 together with a portion of the intake passage 32w in the intake pipe 32 downstream of the connection position j where the LPL-EGR pipe 71 is connected to the intake pipe 32. Side exhaust gas recirculation path.

一方、酸化触媒コンバータ44およびDPFユニット45は、エンジン10の排気管42の途中に配置され内部を通る排気ガスを浄化する排気浄化ユニットとなっている。すなわち、酸化触媒コンバータ44は、例えば炭化水素(HC)と一酸化炭素(CO)を二酸化炭素(CO)と水(HO)に変化させることができる酸化性能を有している。また、DPFユニット45は、例えば多孔質セラミックスで構成されたハニカム構造のもので、エンジン10の排気ガス中に含まれる粒子状物質(PM)を捕集するとともにその捕集により堆積するPMを燃焼させる再生処理ができるようになっている。 On the other hand, the oxidation catalyst converter 44 and the DPF unit 45 are disposed in the middle of the exhaust pipe 42 of the engine 10 and serve as an exhaust purification unit that purifies exhaust gas passing through the inside. That is, the oxidation catalytic converter 44 has an oxidation performance that can change, for example, hydrocarbon (HC) and carbon monoxide (CO) into carbon dioxide (CO 2 ) and water (H 2 O). The DPF unit 45 has a honeycomb structure made of, for example, porous ceramics. The DPF unit 45 collects particulate matter (PM) contained in the exhaust gas of the engine 10 and burns PM deposited by the collection. The playback process can be performed.

図2、図3に示すように、DPFユニット45は、排気管42の途中に配置され、排気ガス通路42wを特定通路区間で拡張させる筒状ケース部51と、筒状ケース部51内の特定の通路区間を通る排気ガス中のPMを捕集して排気ガスを浄化する主要部として筒状ケース部51内に収納されたPM捕集フィルタ部52(排気浄化ユニットの一部、排気浄化フィルタ部)と、を有している。   As shown in FIGS. 2 and 3, the DPF unit 45 is disposed in the middle of the exhaust pipe 42, and has a cylindrical case portion 51 that extends the exhaust gas passage 42 w in a specific passage section, and a specific portion in the cylindrical case portion 51. As a main part for collecting PM in exhaust gas passing through the passage section and purifying exhaust gas, a PM collection filter unit 52 (part of the exhaust purification unit, exhaust purification filter) housed in the cylindrical case part 51 Part).

このDPFユニット45の筒状ケース部51は、PM捕集フィルタ部52の下流側に、排気ガス通路42wの拡張された特定の通路区間のうちPM捕集フィルタ部52より下流側で通路断面積を減少させるよう、PM捕集フィルタ部52の周囲の筒状壁面51bに対して縮径方向(径が縮小する方向)に傾斜し交差する内壁面51a(傾斜内壁面)を有している。   The cylindrical case portion 51 of the DPF unit 45 has a passage cross-sectional area on the downstream side of the PM collection filter portion 52 on the downstream side of the PM collection filter portion 52 in the extended specific passage section of the exhaust gas passage 42w. The inner wall surface 51a (inclined inner wall surface) that inclines and intersects with the cylindrical wall surface 51b around the PM collection filter portion 52 in the direction of diameter reduction (direction in which the diameter decreases) is reduced.

また、PM捕集フィルタ部52より下流側の筒状ケース部51の内部には、PM捕集フィルタ部52に対応して拡張された排気ガス通路42wの特定の通路区間の下流側部分である排気ガス分配室53が画成されており、排気ガス通路42wのうち排気ガス分配室53より下流側の排気ガス通路部分42wxがこの排気ガス分配室53から例えば車両後方側である図2中の手前側に延びるとともに、低圧側排気還流通路P2が排気ガス分配室53から例えば鉛直方向上方側である図2中の上方側に延びつつ湾曲している。   In addition, the inside of the cylindrical case portion 51 on the downstream side of the PM collection filter portion 52 is a downstream portion of a specific passage section of the exhaust gas passage 42 w extended corresponding to the PM collection filter portion 52. An exhaust gas distribution chamber 53 is defined, and an exhaust gas passage portion 42wx downstream of the exhaust gas distribution chamber 53 in the exhaust gas passage 42w is, for example, on the vehicle rear side from the exhaust gas distribution chamber 53 in FIG. While extending to the near side, the low pressure side exhaust recirculation passage P2 is curved while extending from the exhaust gas distribution chamber 53 to the upper side in FIG.

一方、低圧側排気還流通路P2を形成するLPL−EGRパイプ71の上流端部71uの近傍には、排気管42の一部を構成する筒状ケース部51の内壁面51aから排気ガス通路42w内に突出する凸面状の異物捕集フィルタ80が設けられている。   On the other hand, in the vicinity of the upstream end 71u of the LPL-EGR pipe 71 that forms the low-pressure side exhaust recirculation passage P2, the inside wall surface 51a of the cylindrical case portion 51 that constitutes a part of the exhaust pipe 42 enters the exhaust gas passage 42w. A convex-shaped foreign matter collecting filter 80 is provided.

この異物捕集フィルタ80は、DPFユニット45のハニカム状のPM捕集フィルタ部52よりも十分に網目の細かい金属メッシュ(金属線からなる網、多孔を有する椀状体でもよい)で構成されており、排気管42中に存在するスパッタ(溶接時の飛散物)、PM捕集フィルタ部52からの脱落片、あるいはPM捕集フィルタ部52より上流側から排気ガスと共に移動してくる異物が生じたときにその異物を捕捉し、そのような異物がターボ過給機15の吸入空気コンプレッサ15aに入ってダメージを与えたりすることを防止するようになっている。   The foreign matter collecting filter 80 is formed of a metal mesh (a net made of metal wire, or a porous body having a porosity) that is sufficiently finer than the honeycomb-shaped PM collecting filter portion 52 of the DPF unit 45. In addition, spatter (spattering during welding) existing in the exhaust pipe 42, falling pieces from the PM collection filter 52, or foreign matters moving with the exhaust gas from the upstream side of the PM collection filter 52 are generated. The foreign matter is captured at the time, and such foreign matter is prevented from entering the intake air compressor 15a of the turbocharger 15 and causing damage.

図2に示すように、異物捕集フィルタ80は、LPL−EGRパイプ71の上流端部71uの近傍で、DPFユニット45のPM捕集フィルタ部52より下流側の筒状ケース部51の内壁面51aから排気ガス通路42wの一部である排気ガス分配室53内に突出している。   As shown in FIG. 2, the foreign matter collecting filter 80 is an inner wall surface of the cylindrical case portion 51 on the downstream side of the PM collecting filter portion 52 of the DPF unit 45 in the vicinity of the upstream end portion 71 u of the LPL-EGR pipe 71. 51a protrudes into the exhaust gas distribution chamber 53 which is a part of the exhaust gas passage 42w.

また、図3に示すように、LPL−EGRパイプ71の上流端部71uは、DPFユニット45の筒状ケース部51に形成された開口周辺部51pに保持された環状挿入部71iと、その環状挿入部71iに隣接するとともに筒状ケース部51に気密的に固着・保持されたフランジ部71fと、を有している。   As shown in FIG. 3, the upstream end 71u of the LPL-EGR pipe 71 includes an annular insertion portion 71i held by an opening peripheral portion 51p formed in the cylindrical case portion 51 of the DPF unit 45, and its annular shape. A flange portion 71f adjacent to the insertion portion 71i and hermetically fixed and held to the cylindrical case portion 51.

図4に示すように、異物捕集フィルタ80は、筒状ケース部51の開口周辺部51pとLPL−EGRパイプ71のフランジ部71fとの間に挟持された環状外周縁部81と、筒状ケース部51の開口周辺部51pとLPL−EGRパイプ71の環状挿入部71iとの間に挟持された短筒状部82と、短筒状部82から排気ガス通路42w内に略円錐状に突出する錐面状フィルタ部83(突出部、異物捕集面部)と、錐面状フィルタ部83に支持された略円板状の先端部84と、を有している。   As shown in FIG. 4, the foreign matter collecting filter 80 includes an annular outer peripheral edge 81 sandwiched between an opening peripheral part 51 p of the cylindrical case part 51 and a flange part 71 f of the LPL-EGR pipe 71, and a cylindrical shape. A short cylindrical portion 82 sandwiched between the opening peripheral portion 51p of the case portion 51 and the annular insertion portion 71i of the LPL-EGR pipe 71, and a substantially conical shape protruding from the short cylindrical portion 82 into the exhaust gas passage 42w. And a conical surface filter portion 83 (protrusion portion, foreign matter collecting surface portion) and a substantially disc-shaped tip portion 84 supported by the conical surface filter portion 83.

環状外周縁部81および短筒状部82のうち少なくとも一方は、予めLPL−EGRパイプ71の上流端部71uに溶接され、その状態で、LPL−EGRパイプ71の上流端部71uがDPFユニット45の筒状ケース部51に連結されるとき、図2および図3に示すように挟持された状態に保持されるようになっている。   At least one of the annular outer peripheral edge portion 81 and the short cylindrical portion 82 is previously welded to the upstream end portion 71u of the LPL-EGR pipe 71, and in this state, the upstream end portion 71u of the LPL-EGR pipe 71 is connected to the DPF unit 45. When being connected to the cylindrical case portion 51, it is held in a sandwiched state as shown in FIGS.

ところで、本実施形態のエンジン10においては、HPL−EGR装置16によって形成される高圧側排気還流通路P1内の還流排気ガスに対して、LPL−EGR装置17によって形成される低圧側排気還流通路P2内の還流排気ガスの方が低圧・低温となることに加えて、低圧側排気還流通路P2中のその低圧・低温の還流排気ガスがLPL−EGRクーラ73により冷却されることから、LPL−EGRクーラ73内で酸性の凝縮水が発生し易くなる。   By the way, in the engine 10 of the present embodiment, the low pressure side exhaust gas recirculation passage P2 formed by the LPL-EGR device 17 with respect to the recirculation exhaust gas in the high pressure side exhaust gas recirculation passage P1 formed by the HPL-EGR device 16. The recirculated exhaust gas in the low-pressure side and the low-temperature side of the recirculated exhaust gas is cooled by the LPL-EGR cooler 73 in the low-pressure side exhaust recirculation passage P2, so that the LPL-EGR Acidic condensed water is easily generated in the cooler 73.

そこで、LPL−EGRパイプ71の上流端部71uは、LPL−EGRクーラ73内で発生する凝縮水を異物捕集フィルタ80を通してDPFユニット45のPM捕集フィルタ部52より下流側の排気ガス通路42w内に排出するように、LPL−EGRクーラ73の入口部73eからPM捕集フィルタ部52より下流側の筒状ケース部51の内壁面51a側に向かって下降するように、少なくとも鉛直方向の上下に延びている。   Therefore, the upstream end 71u of the LPL-EGR pipe 71 passes through the foreign matter collection filter 80 through the foreign matter collection filter 80 and the exhaust gas passage 42w on the downstream side of the PM collection filter 52 of the DPF unit 45 through the LPL-EGR pipe 71. At least vertically in the vertical direction so as to descend from the inlet portion 73e of the LPL-EGR cooler 73 toward the inner wall surface 51a side of the cylindrical case portion 51 downstream of the PM collection filter portion 52 so as to be discharged into the interior. It extends to.

より具体的には、図2および図3に示すように、LPL−EGRパイプ71の上流端部71uは、フランジ部71fの近傍から鉛直方向上方側に向かって湾曲しており、この上流端部71uに連結するLPL−EGRパイプ71の残部は、両端フランジ部や蛇腹状の起伏を持つ他の複数の管状部材71j、71k、およびLPL−EGRクーラ73の一部等により構成されている。   More specifically, as shown in FIGS. 2 and 3, the upstream end portion 71u of the LPL-EGR pipe 71 is curved from the vicinity of the flange portion 71f toward the upper side in the vertical direction. The remaining part of the LPL-EGR pipe 71 connected to 71u is composed of flange portions at both ends, a plurality of other tubular members 71j, 71k having bellows-like undulations, a part of the LPL-EGR cooler 73, and the like.

一方、異物捕集フィルタ80は、金属製で網目が細かいため、異物捕集フィルタ80の表面に表面張力により水膜が張り易い。   On the other hand, since the foreign matter collecting filter 80 is made of metal and has a fine mesh, a water film is easily attached to the surface of the foreign matter collecting filter 80 due to surface tension.

そこで、異物捕集フィルタ80の先端側には、排気ガス通路42w内で錐面状フィルタ部83および先端部84のうち少なくとも一方に隣接するように、略円板状のまたは皿状の吸水材86が配置されている。   Therefore, a substantially disc-shaped or dish-shaped water absorbing material is disposed on the front end side of the foreign matter collecting filter 80 so as to be adjacent to at least one of the conical filter portion 83 and the front end portion 84 in the exhaust gas passage 42w. 86 is arranged.

この吸水材86は、排気ガス通路42w内で排気ガス中にさらされるように異物捕集フィルタ80に隣接して設けられており、詳細な支持構造は図示しないが、錐面状フィルタ部83および先端部84のうち少なくとも一方によって保持されている。   The water absorbing material 86 is provided adjacent to the foreign matter collecting filter 80 so as to be exposed to the exhaust gas in the exhaust gas passage 42w. Although a detailed support structure is not shown, the conical surface filter portion 83 and It is held by at least one of the tip portions 84.

また、LPL−EGRクーラ73内で発生する凝縮水がLPL−EGRパイプ71の上流端部71uから異物捕集フィルタ80を通してDPFユニット45のPM捕集フィルタ部52より下流側の排気ガス通路42w内に排出されるとき、吸水材86は、異物捕集フィルタ80を通過せずに錐面状フィルタ部83および先端部84に付着して異物捕集フィルタ80上に残留しようとする凝縮水を、錐面状フィルタ部83および先端部84から離脱させるよう排気ガス通路42w側に吸い出して、吸着・保持する機能を有している。   Further, the condensed water generated in the LPL-EGR cooler 73 passes from the upstream end 71u of the LPL-EGR pipe 71 through the foreign matter collecting filter 80 into the exhaust gas passage 42w downstream of the PM collecting filter 52 of the DPF unit 45. When the water absorbent 86 is discharged, the water absorbing material 86 adheres to the conical filter portion 83 and the tip end portion 84 without passing through the foreign matter collecting filter 80, and condensate water that tends to remain on the foreign matter collecting filter 80. It has a function of sucking out to the exhaust gas passage 42w side so as to be separated from the conical surface filter portion 83 and the tip end portion 84, and adsorbing and holding it.

吸水材86は、例えば吸水性の素材によって形成されるか、あるいは、非吸水性の素材によって形成されるが吸水性を発揮できる多孔質体として形成されたものである。   The water-absorbing material 86 is formed of, for example, a water-absorbing material or a non-water-absorbing material, but formed as a porous body that can exhibit water absorption.

勿論、吸水材86は、異物捕集フィルタ80の異物捕集面部である錐面状フィルタ部83に付着した凝縮水が水膜を形成することを抑制するよう、その錐面状フィルタ部83から凝縮水を離脱させて排気ガス通路42w内に排出できるものであれば、その配置や材質、形状等が特に限定されるものではないが、耐熱性を有するのが好ましい。さらに、吸水材86は、酸性の凝縮水に対する中和機能を併有するものであるのが好ましく、複数種類の素材で構成されたものであってもよい。   Of course, the water absorbing material 86 is removed from the conical surface filter portion 83 so as to suppress the condensed water adhering to the conical surface filter portion 83 which is the foreign matter collecting surface portion of the foreign matter collecting filter 80 from forming a water film. As long as the condensed water can be removed and discharged into the exhaust gas passage 42w, its arrangement, material, shape and the like are not particularly limited, but preferably have heat resistance. Further, the water absorbing material 86 preferably has a function of neutralizing acidic condensed water, and may be composed of a plurality of types of materials.

また、吸水材86は、異物捕集フィルタ80とDPFユニット45のPM捕集フィルタ部52との間に位置しており、この吸水材86が、その一面86a側でDPFユニット45のPM捕集フィルタ部52に対向し、その他面86b側で異物捕集フィルタ80の錐面状フィルタ部83および先端部84に隣接する板状体をなしている。   Further, the water absorbing material 86 is located between the foreign matter collecting filter 80 and the PM collecting filter portion 52 of the DPF unit 45, and this water absorbing material 86 is on the one surface 86a side of the PM collecting of the DPF unit 45. It forms a plate-like body facing the filter portion 52 and adjacent to the conical surface filter portion 83 and the tip end portion 84 of the foreign matter collecting filter 80 on the other surface 86b side.

図5に概略断面図で示すように、異物捕集フィルタ80の先端部84は、筒状ケース部51の内壁面から排気ガス通路42w内に離間する位置で吸水材86により閉塞された閉塞部となっており、異物捕集フィルタ80の錐面状フィルタ部83が、その先端部84と筒状ケース部51の内壁面51aとの間で略筒状をなす異物捕集面部を構成している。   As shown in a schematic cross-sectional view in FIG. 5, the tip end portion 84 of the foreign matter collecting filter 80 is closed by a water absorbing material 86 at a position spaced from the inner wall surface of the cylindrical case portion 51 into the exhaust gas passage 42 w. The conical surface filter portion 83 of the foreign matter collecting filter 80 constitutes a foreign matter collecting surface portion having a substantially cylindrical shape between the tip end portion 84 and the inner wall surface 51a of the cylindrical case portion 51. Yes.

なお、エンジン10は、図示しないECU(電子制御ユニット)により各種センサ群のセンサ情報に基づいて運転制御されるようになっており、例えばサプライポンプ21の吐出制御(例えば、その電磁スピル弁の制御)、燃料噴射弁23による燃料噴射量制御、スロットルバルブ36の開度制御、HPL−EGRバルブ62やLPL−EGRバルブ72の開度(EGR率)制御、排気絞り弁43の開度制御の開閉制御等が実行されるようになっている。ここにいう各種センサ群とは、例えば図1に示す公知のエアフローメータ35、吸気温度センサ37、吸気管内圧力センサ38、排気酸素濃度センサ47、排気温度センサ48a、48b、排気温度センサ49、DPF前後差圧センサ91、低圧EGR差圧センサ92等に加え、図示しないアクセル開度センサ、スロットル開度センサ、クランク角センサ、水温センサ、車速センサ等である。また、排気絞り弁43に代えて、あるいは排気絞り弁43と併せて、上流側の吸気管部32a内に低圧EGR用吸気絞り弁93を設けることもできる。   The operation of the engine 10 is controlled by an ECU (electronic control unit) (not shown) based on sensor information of various sensor groups. For example, discharge control of the supply pump 21 (for example, control of the electromagnetic spill valve) ), Fuel injection amount control by the fuel injection valve 23, opening degree control of the throttle valve 36, opening degree (EGR rate) control of the HPL-EGR valve 62 and LPL-EGR valve 72, and opening degree control of the exhaust throttle valve 43 Control and the like are executed. The various sensor groups referred to here include, for example, the known air flow meter 35, intake temperature sensor 37, intake pipe pressure sensor 38, exhaust oxygen concentration sensor 47, exhaust temperature sensors 48a and 48b, exhaust temperature sensor 49, DPF shown in FIG. In addition to the front-rear differential pressure sensor 91, the low pressure EGR differential pressure sensor 92, and the like, there are an accelerator opening sensor, a throttle opening sensor, a crank angle sensor, a water temperature sensor, a vehicle speed sensor, and the like (not shown). Further, instead of the exhaust throttle valve 43 or in combination with the exhaust throttle valve 43, a low pressure EGR intake throttle valve 93 may be provided in the upstream intake pipe portion 32a.

次に、作用について説明する。   Next, the operation will be described.

上述のように構成された本実施形態の内燃機関の排気還流装置においては、エンジン10の運転中、LPL−EGRクーラ73の付近では還流排気ガスが冷却されることによって酸性の凝縮水が発生することから、LPL−EGRバルブ72が閉弁されるかエンジン10の負荷が低下すると、LPL−EGRパイプ71内の凝縮水が一気に排気ガス通路42w側に流れてしまうことが生じ得る。   In the exhaust gas recirculation apparatus of the internal combustion engine of the present embodiment configured as described above, acidic condensed water is generated by cooling the recirculated exhaust gas in the vicinity of the LPL-EGR cooler 73 during the operation of the engine 10. Therefore, when the LPL-EGR valve 72 is closed or the load of the engine 10 is reduced, the condensed water in the LPL-EGR pipe 71 may flow to the exhaust gas passage 42w side at once.

このとき、LPL−EGRパイプ71内の凝縮水は異物捕集フィルタ80側に流下し、その一部が異物捕集フィルタ80を通過することなく異物捕集フィルタ80に付着することになる。   At this time, the condensed water in the LPL-EGR pipe 71 flows down to the foreign matter collecting filter 80, and a part thereof adheres to the foreign matter collecting filter 80 without passing through the foreign matter collecting filter 80.

しかし、異物捕集フィルタ80は、LPL−EGRパイプ71の上流端部71uの近傍で筒状ケース部51の内壁面51aから排気ガス通路42w内に突出し、異物捕集フィルタ80の錐面状フィルタ部83が排気ガス通路42w内の排気ガスの流れの方向に対して交差することから、錐面状フィルタ部83が水膜を形成することが有効に抑制される。しかも、異物捕集フィルタ80および吸水材86がそれぞれ比較的広い面積で排気ガス通路42w内を通る高温の排気ガス流中に常時さらされるだけでなく、吸水材86によって錐面状フィルタ部83から凝縮水が離脱するよう吸水されることから、異物捕集フィルタ80に付着した凝縮水は、吸水材86に吸着されるか高温の排気ガス中で加熱されて迅速に蒸発することになる。さらに、排気ガス通路42w内の高温の排気ガス中で吸水材86に吸着された水が排気ガス通路42w内に効率よく蒸発することになるので、吸水材86の吸水性能が良好に維持され、錐面状フィルタ部83が水膜を形成することがより有効に抑制されることになる。   However, the foreign matter collecting filter 80 protrudes from the inner wall surface 51a of the cylindrical case portion 51 into the exhaust gas passage 42w in the vicinity of the upstream end portion 71u of the LPL-EGR pipe 71, and the conical surface filter of the foreign matter collecting filter 80. Since the portion 83 intersects the direction of the exhaust gas flow in the exhaust gas passage 42w, the conical surface filter portion 83 is effectively suppressed from forming a water film. In addition, the foreign matter collecting filter 80 and the water absorbing material 86 are not only constantly exposed to the high-temperature exhaust gas flow passing through the exhaust gas passage 42 w in a relatively wide area, but also from the conical surface filter portion 83 by the water absorbing material 86. Since the condensed water is absorbed so as to be separated, the condensed water adhering to the foreign matter collecting filter 80 is adsorbed by the water absorbing material 86 or heated in the high-temperature exhaust gas and quickly evaporated. Furthermore, since the water adsorbed on the water absorbing material 86 in the high temperature exhaust gas in the exhaust gas passage 42w is efficiently evaporated in the exhaust gas passage 42w, the water absorbing performance of the water absorbing material 86 is maintained well, The conical surface filter portion 83 is more effectively suppressed from forming a water film.

したがって、たとえLPL−EGRバルブ72の開度が小さいためにLPL−EGR装置17によって形成される低圧側排気還流通路P2内に還流排気ガスが流れないかその流量が少ないときであっても、異物捕集フィルタ80の異物捕集面を形成する錐面状フィルタ部83が水膜を形成し難くなり、LPL−EGRパイプ71内の通路の閉塞が防止されることで、所要の低圧EGR量が確保されることになる。   Therefore, even if the recirculated exhaust gas does not flow in the low pressure side exhaust recirculation passage P2 formed by the LPL-EGR device 17 because the opening of the LPL-EGR valve 72 is small or the flow rate is small, the foreign matter The conical surface filter portion 83 that forms the foreign matter collection surface of the collection filter 80 is less likely to form a water film, and the passage in the LPL-EGR pipe 71 is prevented from being blocked, so that the required low pressure EGR amount is reduced. Will be secured.

加えて、異物捕集フィルタ80は、環状外周縁部81および短筒状部82で熱容量の大きい筒状ケース部51に常時接触しているので、熱容量が大きい筒状ケース部51から異物捕集フィルタ80および吸水材86への十分な伝熱が可能となり、低圧側排気還流通路P2内に還流排気ガスが流れないときであっても、異物捕集フィルタ80への筒状ケース部51側からの良好な伝熱が可能になり、この点からも、異物捕集フィルタ80が水膜を形成し難くなる。   In addition, since the foreign matter collecting filter 80 is always in contact with the cylindrical case portion 51 having a large heat capacity at the annular outer peripheral edge portion 81 and the short tubular portion 82, the foreign matter collecting filter 80 has a large heat capacity. Sufficient heat transfer to the filter 80 and the water absorbing material 86 becomes possible, and even when the recirculated exhaust gas does not flow into the low pressure side exhaust recirculation passage P2, the cylindrical case portion 51 side to the foreign matter collecting filter 80 is provided. In this respect, the foreign matter collecting filter 80 is difficult to form a water film.

すなわち、異物捕集フィルタ80の異物捕集面部と吸水材86とを排気ガス通路42w内に配置するだけの簡素な構成により、LPL−EGRパイプ71内の排気還流通路が凝縮水の付着した異物捕集フィルタ80によって閉塞されることが確実に防止でき、排気還流装置の構造の複雑化やコスト高が回避できるとともに、凝縮水による主要部品の劣化の防止と排気浄化性能の確保とを両立させることができる低コストの排気還流装置を提供することができる。   That is, the exhaust gas recirculation passage in the LPL-EGR pipe 71 has a foreign substance to which condensed water adheres by a simple configuration in which the foreign matter collection surface portion of the foreign matter collection filter 80 and the water absorbing material 86 are disposed in the exhaust gas passage 42w. It is possible to reliably prevent clogging by the collection filter 80, avoid the complicated structure and high cost of the exhaust gas recirculation device, and achieve both prevention of deterioration of main parts due to condensed water and ensuring of exhaust purification performance. It is possible to provide a low-cost exhaust gas recirculation device.

また、本実施形態では、LPL−EGRパイプ71の上流端部71u側が、LPL−EGRクーラ73内で発生する凝縮水を異物捕集フィルタ80を通してDPFユニット45のPM捕集フィルタ部52より下流側の排気ガス通路42w内に排出するように傾斜し下降しているので、LPL−EGRパイプ71内で排気ガスが冷却されることで生じる酸性の凝縮水が、LPL−EGRクーラ73の入口部73eからDPFユニット45のPM捕集フィルタ部52より下流側に流下し易くなるとともに吸気通路32w側に流入し難くなる。したがって、吸気系の金属部品(バルブ類や吸入空気コンプレッサ15aの部品等)が腐食し難くなる。   Further, in the present embodiment, the upstream end 71 u side of the LPL-EGR pipe 71 is downstream of the PM collection filter portion 52 of the DPF unit 45 through the foreign matter collection filter 80 for the condensed water generated in the LPL-EGR cooler 73. Since the exhaust gas is cooled in the LPL-EGR pipe 71, the acidic condensate generated by cooling the exhaust gas in the LPL-EGR pipe 71 becomes the inlet portion 73e of the LPL-EGR cooler 73. From the PM collection filter portion 52 of the DPF unit 45 to the downstream side, and more difficult to flow into the intake passage 32w side. Accordingly, the metal parts of the intake system (valves, parts of the intake air compressor 15a, etc.) are not easily corroded.

さらに、吸水材86が、異物捕集フィルタ80とDPFユニット45のPM捕集フィルタ部52との間に位置しているので、PM捕集フィルタ部52に指向する凝縮水やその飛沫の流れが吸水材86によって遮断されることになり、LPL−EGRパイプ71内の凝縮水が異物捕集フィルタ80側に流下したときに、異物捕集フィルタ80を通過した凝縮水がPM捕集フィルタ部52に接触することが確実に抑制される。したがって、PM捕集フィルタ部52が急激な熱変化によって亀裂を生じたり早期に劣化したりすることが確実に防止できる。なお、PM捕集フィルタ部52を通過した後の排気ガスが吸気側に還流することから、吸気系主要部品に粒子状物質等が堆積することも確実に防止できることになる。   Further, since the water absorbing material 86 is located between the foreign matter collecting filter 80 and the PM collecting filter portion 52 of the DPF unit 45, the condensed water directed to the PM collecting filter portion 52 and the flow of the droplets thereof are flown. When the condensed water in the LPL-EGR pipe 71 flows down to the foreign matter collecting filter 80 side, the condensed water that has passed through the foreign matter collecting filter 80 will be blocked by the water absorbing material 86. It is suppressed reliably that it contacts. Therefore, it is possible to reliably prevent the PM collection filter unit 52 from being cracked or rapidly deteriorated due to a rapid thermal change. In addition, since the exhaust gas after passing through the PM trapping filter part 52 recirculates to the intake side, it is possible to reliably prevent particulate matter and the like from accumulating on the main parts of the intake system.

加えて、本実施形態では、異物捕集フィルタ80が、DPFユニット45の筒状ケース部51の内壁面51aから排気ガス通路42w内に離間する位置で吸水材86により閉塞された先端部84と、その先端部84と筒状ケース部51の内壁面51aとの間で略筒状をなす錐面状フィルタ部83とを有するので、異物捕集フィルタ80がLPL−EGRパイプ71内に流入する還流排気ガスを広いガス通過面積で通過させることになり、しかも、異物捕集フィルタ80の異物捕集面積が十分に確保できることになる。   In addition, in the present embodiment, the foreign matter collecting filter 80 includes a distal end portion 84 that is blocked by the water absorbing material 86 at a position that is separated from the inner wall surface 51a of the cylindrical case portion 51 of the DPF unit 45 into the exhaust gas passage 42w. The foreign matter collecting filter 80 flows into the LPL-EGR pipe 71 because it has the conical surface filter portion 83 having a substantially cylindrical shape between the tip end portion 84 and the inner wall surface 51 a of the cylindrical case portion 51. The recirculated exhaust gas is allowed to pass through a wide gas passage area, and the foreign matter collection area of the foreign matter collection filter 80 can be sufficiently secured.

また、吸水材86は、比較的面積の広いその一面側86aでは排気ガス通路42w内を通る高温の排気ガスに十分にさらされて水を蒸発させ、その他面86b側では異物捕集フィルタ80の錐面状フィルタ部83および先端部84に付着した凝縮水を効率よく吸水できるので、吸水材86を簡素にしながらも、錐面状フィルタ部83における水膜の形成を確実に防止できることになる。   Further, the water absorbing material 86 is sufficiently exposed to the high-temperature exhaust gas passing through the exhaust gas passage 42w on one surface side 86a of a relatively large area to evaporate water, and on the other surface 86b side, the foreign matter collecting filter 80 is provided. Since the condensed water adhering to the conical surface filter portion 83 and the tip portion 84 can be efficiently absorbed, formation of a water film in the conical surface filter portion 83 can be reliably prevented while simplifying the water absorbing material 86.

このように、本実施形態においては、LPL−EGRパイプ71内の凝縮水が異物捕集フィルタ80側に流下し、その一部が異物捕集フィルタ80を通過することなく異物捕集フィルタ80に付着したとしても、その凝縮水が排気ガス通路42w内の吸水材86に吸着されるか高温の排気ガス中で加熱されて迅速に蒸発するようにしているので、異物捕集フィルタ80に水膜が形成されることを有効に抑制することができ、しかも、吸水材86を排気管42内の高温の排気ガスに常時さらすことで、吸水材86からの凝縮水の蒸発を促進させ、吸水材86の吸水性能が良好に維持されるようにしているので、LPL−EGRパイプ71内の排気還流通路P2が凝縮水の付着した異物捕集フィルタ80によって閉塞されることを確実に防止するとともに、排気還流装置の構造の複雑化やコスト高を回避することができる。その結果、凝縮水による主要部品の劣化の防止と排気浄化性能の確保とを両立させることができる低コストの内燃機関の排気還流装置を提供することができるものである。   Thus, in the present embodiment, the condensed water in the LPL-EGR pipe 71 flows down to the foreign matter collecting filter 80 side, and a part of the condensed water flows into the foreign matter collecting filter 80 without passing through the foreign matter collecting filter 80. Even if it adheres, the condensed water is adsorbed by the water absorbing material 86 in the exhaust gas passage 42w or heated in the high temperature exhaust gas so as to evaporate quickly. Can be effectively suppressed, and by constantly exposing the water absorbing material 86 to the high-temperature exhaust gas in the exhaust pipe 42, evaporation of condensed water from the water absorbing material 86 is promoted, and the water absorbing material Since the water absorption performance of 86 is maintained well, the exhaust gas recirculation passage P2 in the LPL-EGR pipe 71 is surely prevented from being blocked by the foreign matter collecting filter 80 to which condensed water adheres. Both can be prevented from being complicated and costly structure of the exhaust gas recirculation device. As a result, it is possible to provide a low-cost exhaust gas recirculation device for an internal combustion engine that can achieve both prevention of deterioration of main parts due to condensed water and ensuring of exhaust purification performance.

なお、上述の一実施形態においては、略円板状の吸水材86が異物捕集フィルタ80の錐面状フィルタ部83の中心軸線に対し略直交する板状をなしていたが、図6(a)に例示するように、略円板状の吸水材86が異物捕集フィルタ80の錐面状フィルタ部83の中心軸線に対し略直交する位置から外れるよう傾斜していてもよい。また、異物捕集フィルタ80が上流側からの排気ガスの流れに対し交差する角度および範囲を上述の一実施形態とは異なるように吸水材86の形状等を変化させることができ、異物捕集フィルタ80における水膜形成の抑制作用を強めたり、LPL−EGRパイプ71への排気ガスの流入を容易化したりすることもできる。さらに、図6(b)に示すように、吸水材86が異物捕集フィルタ80の形状に応じて平坦でなく湾曲した板状体として構成されてもよいし、複数の面や傾きを有するように分割されてもよい。   In the above-described embodiment, the substantially disc-shaped water absorbing material 86 has a plate shape substantially orthogonal to the central axis of the conical surface filter portion 83 of the foreign matter collecting filter 80. As illustrated in a), the substantially disc-shaped water absorbing material 86 may be inclined so as to deviate from a position substantially orthogonal to the central axis of the conical surface filter portion 83 of the foreign matter collecting filter 80. In addition, the shape and the like of the water absorbing material 86 can be changed so that the angle and range at which the foreign matter collecting filter 80 intersects the flow of exhaust gas from the upstream side are different from those of the above-described embodiment. It is also possible to strengthen the water film formation suppressing action in the filter 80 or to facilitate the inflow of exhaust gas into the LPL-EGR pipe 71. Further, as shown in FIG. 6B, the water absorbing material 86 may be configured as a flat plate that is not flat depending on the shape of the foreign matter collecting filter 80, or has a plurality of surfaces and inclinations. It may be divided into

さらに、異物捕集フィルタ80の環状外周縁部81がDPFユニット45の筒状ケース部51とLPL−EGRパイプ71のフランジ部71fとの間に配置されたガスケットとしても機能するようにしてもよい。   Furthermore, the annular outer peripheral edge 81 of the foreign matter collecting filter 80 may function as a gasket disposed between the cylindrical case 51 of the DPF unit 45 and the flange 71f of the LPL-EGR pipe 71. .

異物捕集フィルタ80の排気ガス通路42w内への突出形状が略円錐形状、半球面状、略円錐台形状等に限定されるものでないことはいうまでない。   Needless to say, the shape of the foreign matter collecting filter 80 protruding into the exhaust gas passage 42w is not limited to a substantially conical shape, a hemispherical shape, a substantially truncated cone shape, or the like.

以上説明したように、本発明に係る内燃機関の排気還流装置は、排気還流管内の凝縮水が異物捕集フィルタ側に流下し、その一部が異物捕集フィルタを通過することなく異物捕集フィルタに付着したとしても、その凝縮水が排気ガス通路内の吸水材に吸着されるか高温の排気ガス中で加熱されて迅速に蒸発するようにしているので、異物捕集フィルタに水膜が形成されることを有効に抑制することができ、しかも、吸水材を排気管内の高温の排気ガスに常時さらすことで、吸水材からの凝縮水の蒸発を促進させ、吸水材の吸水性能が良好に維持されるようにしているので、排気還流管内の通路が凝縮水の付着した異物捕集フィルタによって閉塞されることを確実に防止するとともに、装置の構造の複雑化やコスト高を回避することができ、その結果、凝縮水による主要部品の劣化の防止と排気浄化性能の確保とを両立させることができる低コストの内燃機関の排気還流装置を提供することができるという効果を奏するものであり、排気再循環経路中に異物捕集フィルタを設けた内燃機関の排気還流装置全般に有用である。   As described above, in the exhaust gas recirculation device for an internal combustion engine according to the present invention, the condensed water in the exhaust gas recirculation pipe flows down to the foreign material collecting filter, and a part of the condensed water is collected without passing through the foreign material collecting filter. Even if it adheres to the filter, the condensed water is adsorbed by the water-absorbing material in the exhaust gas passage or heated in the high-temperature exhaust gas so that it evaporates quickly. It is possible to effectively suppress the formation, and by constantly exposing the water absorbing material to the high temperature exhaust gas in the exhaust pipe, the evaporation of condensed water from the water absorbing material is promoted, and the water absorbing performance of the water absorbing material is good. Therefore, it is possible to reliably prevent the passage in the exhaust gas recirculation pipe from being blocked by a foreign matter collecting filter with condensed water attached, and to avoid the complexity and cost of the apparatus. You can As a result, there is an effect that it is possible to provide an exhaust gas recirculation device for a low-cost internal combustion engine capable of achieving both prevention of deterioration of main parts due to condensed water and ensuring of exhaust purification performance, and exhaust gas recirculation. This is useful for exhaust gas recirculation devices for internal combustion engines that are provided with a foreign matter collecting filter in the path.

10 エンジン(ディーゼルエンジン、内燃機関)
15 ターボ過給機
15a 吸入空気コンプレッサ
15b 排気タービン
16 HPL−EGR装置(高圧側の排気還流装置)
17 LPL−EGR装置(低圧側の排気還流装置)
32 吸気管
32w 吸気通路
42 排気管
42w 排気ガス通路
43 排気絞り弁
44 酸化触媒コンバータ
45 DPFユニット(排気浄化ユニット)
51 筒状ケース部
51a 内壁面(傾斜内壁面)
51b 筒状壁面(排気浄化フィルタ部の周囲の壁面)
51p 開口周辺部
52 PM捕集フィルタ部(排気浄化ユニットの一部、排気浄化フィルタ部)
71 LPL−EGRパイプ(排気還流管)
71f フランジ部
71i 環状挿入部
71u 上流端部
72 LPL−EGRバルブ
73 LPL−EGRクーラ(排気冷却器)
73a ケース部
73b 冷却水管部
73e 入口部
80 異物捕集フィルタ
81 環状外周縁部(環状基端部)
82 短筒状部(環状基端部)
83 錐面状フィルタ部(異物捕集面部)
84 先端部(突出部)
86 吸水材
P1 高圧側排気還流通路
P2 低圧側排気還流通路
10 engine (diesel engine, internal combustion engine)
15 Turbocharger 15a Intake air compressor 15b Exhaust turbine 16 HPL-EGR device (exhaust gas recirculation device on the high pressure side)
17 LPL-EGR device (exhaust gas recirculation device on the low pressure side)
32 Intake pipe 32w Intake passage 42 Exhaust pipe 42w Exhaust gas passage 43 Exhaust throttle valve 44 Oxidation catalytic converter 45 DPF unit (exhaust purification unit)
51 Cylindrical case part 51a Inner wall surface (inclined inner wall surface)
51b Tubular wall surface (wall surface around the exhaust purification filter section)
51p Opening peripheral part 52 PM collection filter part (a part of exhaust purification unit, exhaust purification filter part)
71 LPL-EGR pipe (exhaust gas recirculation pipe)
71f Flange part 71i Annular insertion part 71u Upstream end part 72 LPL-EGR valve 73 LPL-EGR cooler (exhaust cooler)
73a Case part 73b Cooling water pipe part 73e Inlet part 80 Foreign material collection filter 81 Annular outer peripheral edge part (annular base end part)
82 Short cylinder (annular base end)
83 Conical surface filter part (foreign matter collecting surface part)
84 Tip (projection)
86 Water absorption material P1 High pressure side exhaust recirculation passage P2 Low pressure side exhaust recirculation passage

Claims (8)

排気ガス通路を形成する排気管の途中に排気浄化ユニットを有する内燃機関に装備される内燃機関の排気還流装置であって、
前記排気浄化ユニットにより浄化された排気ガスを前記排気ガス通路側から前記内燃機関の吸気通路側に還流させる排気還流管と、
前記排気還流管内への異物の侵入を阻止するよう前記排気還流管の上流端部の近傍に配置され、前記排気管の内壁面から前記排気ガス通路内に突出する異物捕集フィルタと、
前記排気ガス通路内に前記異物捕集フィルタに隣接して設けられた吸水材と、を備えたことを特徴とする内燃機関の排気還流装置。
An exhaust gas recirculation device for an internal combustion engine equipped in an internal combustion engine having an exhaust purification unit in the middle of an exhaust pipe forming an exhaust gas passage,
An exhaust gas recirculation pipe for recirculating the exhaust gas purified by the exhaust gas purification unit from the exhaust gas passage side to the intake passage side of the internal combustion engine;
A foreign matter collecting filter disposed in the vicinity of the upstream end of the exhaust gas recirculation pipe so as to prevent foreign substances from entering the exhaust gas recirculation pipe, and protruding from the inner wall surface of the exhaust pipe into the exhaust gas passage;
An exhaust gas recirculation device for an internal combustion engine, comprising: a water absorbing material provided adjacent to the foreign matter collecting filter in the exhaust gas passage.
前記排気浄化ユニットが、前記排気管の途中に配置された筒状ケース部を有し、前記排気還流管が、前記排気浄化ユニットの一部を通過した排気ガスを前記排気ガス通路側から前記吸気通路側に還流させ、前記異物捕集フィルタが、前記排気還流管の上流端部の近傍で、前記排気浄化ユニットの前記一部より下流側の前記筒状ケース部の内壁面から前記排気ガス通路内に突出した突出部を有し、前記吸水材が、前記異物捕集フィルタの前記突出部に保持されていることを特徴とする請求項1に記載の内燃機関の排気還流装置。   The exhaust purification unit has a cylindrical case portion disposed in the middle of the exhaust pipe, and the exhaust recirculation pipe allows the exhaust gas that has passed through a part of the exhaust purification unit to be taken into the intake gas from the exhaust gas passage side. The exhaust gas passage is circulated from the inner wall surface of the cylindrical case portion downstream of the part of the exhaust purification unit in the vicinity of the upstream end portion of the exhaust gas recirculation pipe. 2. The exhaust gas recirculation device for an internal combustion engine according to claim 1, further comprising a projecting portion projecting inside, wherein the water absorbing material is held by the projecting portion of the foreign matter collecting filter. 前記排気還流管の途中に設置され前記吸気管側に還流する排気ガスを冷却する排気冷却器をさらに備え、前記排気還流管の上流端部が、前記排気冷却器内で発生する凝縮水を前記異物捕集フィルタを通して前記排気浄化ユニットの前記一部より下流側の前記排気ガス通路内に排出するように、前記排気冷却器の入口部から前記一部より下流側の前記筒状ケース部の内壁面側に向かって下降していることを特徴とする請求項2に記載の内燃機関の排気還流装置。   An exhaust cooler that cools the exhaust gas that is installed in the middle of the exhaust gas recirculation pipe and cools back to the intake pipe side is provided, and an upstream end of the exhaust gas recirculation pipe supplies the condensed water generated in the exhaust cooler. The inside of the cylindrical case part downstream from the part from the inlet part of the exhaust cooler so as to be discharged into the exhaust gas passage downstream from the part of the exhaust purification unit through a foreign matter collecting filter. The exhaust gas recirculation device for an internal combustion engine according to claim 2, wherein the exhaust gas recirculation device is lowered toward the wall surface. 前記吸水材が、前記異物捕集フィルタと前記排気浄化ユニットの前記一部との間に位置していることを特徴とする請求項2または請求項3に記載の内燃機関の排気還流装置。   The exhaust gas recirculation device for an internal combustion engine according to claim 2 or 3, wherein the water absorbing material is located between the foreign matter collecting filter and the part of the exhaust gas purification unit. 前記吸水材が、一面側で前記排気浄化ユニットの前記一部に対向し、他面側で前記異物捕集フィルタに隣接する板状体をなしていることを特徴とする請求項2ないし請求項4のうちいずれか1の請求項に記載の内燃機関の排気還流装置。   The water-absorbing material has a plate-like body that faces the part of the exhaust purification unit on one side and is adjacent to the foreign matter collecting filter on the other side. The exhaust gas recirculation device for an internal combustion engine according to any one of claims 4 to 4. 前記異物捕集フィルタが、前記筒状ケース部の内壁面から前記排気ガス通路内に離間する位置で前記吸水材により閉塞された閉塞部と、該閉塞部と前記筒状ケース部の内壁面との間で略筒状をなす異物捕集面部と、を有することを特徴とする請求項5に記載の内燃機関の排気還流装置。   A closed portion closed by the water-absorbing material at a position where the foreign matter collecting filter is separated from the inner wall surface of the cylindrical case portion into the exhaust gas passage; and the closed portion and the inner wall surface of the cylindrical case portion The exhaust gas recirculation device for an internal combustion engine according to claim 5, further comprising a foreign matter collecting surface portion having a substantially cylindrical shape therebetween. 前記排気浄化ユニットの前記一部が、前記筒状ケース部内を通る排気ガスを浄化可能な排気浄化フィルタ部であることを特徴とする請求項2ないし請求項6のうちいずれか1の請求項に記載の内燃機関の排気還流装置。   The claim according to any one of claims 2 to 6, wherein the part of the exhaust purification unit is an exhaust purification filter part capable of purifying exhaust gas passing through the cylindrical case part. An exhaust gas recirculation device for an internal combustion engine as described. 前記内燃機関には、前記排気ガス通路中を流れる排気ガスのエネルギによって回転する排気タービンおよび該排気タービンに連結されて前記吸気通路中の吸入空気を圧縮する吸入空気コンプレッサを有するターボ過給機が装着されており、前記排気還流管が、前記内燃機関の前記吸気通路を形成する吸気管のうち前記吸入空気コンプレッサより上流側の吸気管に接続されていることを特徴とする請求項1ないし請求項7のうちいずれか1の請求項に記載の内燃機関の排気還流装置。   The internal combustion engine includes a turbocharger having an exhaust turbine that is rotated by energy of exhaust gas flowing in the exhaust gas passage, and an intake air compressor that is connected to the exhaust turbine and compresses intake air in the intake passage. The exhaust gas recirculation pipe is mounted and connected to an intake pipe upstream of the intake air compressor in the intake pipe forming the intake passage of the internal combustion engine. The exhaust gas recirculation device for an internal combustion engine according to any one of claims 7 to 10.
JP2011066065A 2011-03-24 2011-03-24 Exhaust gas recirculation device of internal combustion engine Pending JP2012202265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011066065A JP2012202265A (en) 2011-03-24 2011-03-24 Exhaust gas recirculation device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011066065A JP2012202265A (en) 2011-03-24 2011-03-24 Exhaust gas recirculation device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012202265A true JP2012202265A (en) 2012-10-22

Family

ID=47183530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011066065A Pending JP2012202265A (en) 2011-03-24 2011-03-24 Exhaust gas recirculation device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2012202265A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256912A (en) * 2012-06-13 2013-12-26 Fuji Heavy Ind Ltd Filter device of exhaust reflux device
JP2014088776A (en) * 2012-10-29 2014-05-15 Honda Motor Co Ltd Exhaust circulation device of internal combustion engine
JP2015218632A (en) * 2014-05-15 2015-12-07 三菱自動車工業株式会社 Internal combustion engine intake system
JP2017503179A (en) * 2014-01-17 2017-01-26 センサータ テクノロジーズ インコーポレーテッド Differential pressure sensor with dual output using double-sided capacitance detector
JP2017040212A (en) * 2015-08-20 2017-02-23 日産自動車株式会社 engine
JP2017137769A (en) * 2016-02-01 2017-08-10 株式会社デンソー Exhaust gas recirculation system
JP2018031432A (en) * 2016-08-25 2018-03-01 株式会社富士通ゼネラル solenoid valve
JP2018200034A (en) * 2017-05-29 2018-12-20 株式会社豊田自動織機 Low pressure EGR device of internal combustion engine
WO2020059648A1 (en) * 2018-09-21 2020-03-26 いすゞ自動車株式会社 Condensate drainage mechanism and gasket for condensate drainage mechanism

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248421A (en) * 2000-03-01 2001-09-14 Hideo Kawamura Disel particulate filtering device
JP2007146774A (en) * 2005-11-29 2007-06-14 Nissan Diesel Motor Co Ltd Egr system
JP2010151091A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Foreign matter collecting device
JP2010156242A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Foreign material catching device
JP2010185413A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Foreign matter collecting device with cooler
JP2010242662A (en) * 2009-04-08 2010-10-28 Toyota Motor Corp Foreign matter collection device for low pressure egr passage
JP2011027033A (en) * 2009-07-27 2011-02-10 Denso Corp Exhaust gas recirculation device
JP2011032984A (en) * 2009-08-05 2011-02-17 Denso Corp Exhaust recirculation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248421A (en) * 2000-03-01 2001-09-14 Hideo Kawamura Disel particulate filtering device
JP2007146774A (en) * 2005-11-29 2007-06-14 Nissan Diesel Motor Co Ltd Egr system
JP2010151091A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Foreign matter collecting device
JP2010156242A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Foreign material catching device
JP2010185413A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Foreign matter collecting device with cooler
JP2010242662A (en) * 2009-04-08 2010-10-28 Toyota Motor Corp Foreign matter collection device for low pressure egr passage
JP2011027033A (en) * 2009-07-27 2011-02-10 Denso Corp Exhaust gas recirculation device
JP2011032984A (en) * 2009-08-05 2011-02-17 Denso Corp Exhaust recirculation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256912A (en) * 2012-06-13 2013-12-26 Fuji Heavy Ind Ltd Filter device of exhaust reflux device
JP2014088776A (en) * 2012-10-29 2014-05-15 Honda Motor Co Ltd Exhaust circulation device of internal combustion engine
JP2017503179A (en) * 2014-01-17 2017-01-26 センサータ テクノロジーズ インコーポレーテッド Differential pressure sensor with dual output using double-sided capacitance detector
JP2015218632A (en) * 2014-05-15 2015-12-07 三菱自動車工業株式会社 Internal combustion engine intake system
JP2017040212A (en) * 2015-08-20 2017-02-23 日産自動車株式会社 engine
JP2017137769A (en) * 2016-02-01 2017-08-10 株式会社デンソー Exhaust gas recirculation system
JP2018031432A (en) * 2016-08-25 2018-03-01 株式会社富士通ゼネラル solenoid valve
JP2018200034A (en) * 2017-05-29 2018-12-20 株式会社豊田自動織機 Low pressure EGR device of internal combustion engine
WO2020059648A1 (en) * 2018-09-21 2020-03-26 いすゞ自動車株式会社 Condensate drainage mechanism and gasket for condensate drainage mechanism

Similar Documents

Publication Publication Date Title
JP2012202265A (en) Exhaust gas recirculation device of internal combustion engine
JP2012149558A (en) Exhaust gas recirculation system of internal combustion engine
JP5958398B2 (en) Exhaust gas recirculation device for internal combustion engine
JP6314400B2 (en) Condensate separator
US20060288692A1 (en) Exhaust treatment system
WO2006109850A1 (en) Exhaust purifier for internal combustion engine
JP5742452B2 (en) Exhaust gas recirculation device for internal combustion engine
US20170204813A1 (en) Engine exhaust gas recirculation system with at least one exhaust recirculation treatment device
JP4349166B2 (en) Intake passage of engine with EGR device
US20070068141A1 (en) Exhaust treatment system
JP2009275673A (en) Egr system and controlling method of egr system
JP2020509284A (en) Two-stage internal combustion engine aftertreatment system using exhaust gas intercooling and a charger driven air blast device
JP6263928B2 (en) Condensate separator
JP5825707B2 (en) EGR device
JP6252076B2 (en) Condensate separator
JP2011208575A (en) Exhaust gas recirculation device
JP5625970B2 (en) Exhaust gas recirculation device for internal combustion engine
US20110017064A1 (en) Soot filter having oblique corrugated layers
US20150377194A1 (en) Internal-combustion-engine supercharger
JP5709053B2 (en) Structure for preventing moisture from gas sensor in internal combustion engine
JP2014005763A (en) Intake system structure of internal combustion engine
JP2010138783A (en) Post processing apparatus for internal combustion engine, exhaust gas purification apparatus, and exhaust gas purifying method using the same
JP2010156272A (en) Egr device and egr filter of internal combustion engine
JP2010196569A (en) Exhaust emission control system and exhaust emission control method
JP2006214311A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804