JP2012202079A - Earthquake-proof slit member and building using the same - Google Patents

Earthquake-proof slit member and building using the same Download PDF

Info

Publication number
JP2012202079A
JP2012202079A JP2011066413A JP2011066413A JP2012202079A JP 2012202079 A JP2012202079 A JP 2012202079A JP 2011066413 A JP2011066413 A JP 2011066413A JP 2011066413 A JP2011066413 A JP 2011066413A JP 2012202079 A JP2012202079 A JP 2012202079A
Authority
JP
Japan
Prior art keywords
earthquake
structural
slit material
building
compressive stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011066413A
Other languages
Japanese (ja)
Inventor
Makoto Machida
誠 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2011066413A priority Critical patent/JP2012202079A/en
Publication of JP2012202079A publication Critical patent/JP2012202079A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin foam earthquake-proof slit member capable of improving its structural resistance by avoiding a non-structural wall from damaging a structural part even when a quake greater than a design value occurs, and of facilitating mounting work in a concrete form.SOLUTION: An earthquake-proof slit member 6a to be disposed in a clearance (earthquake-proof joint) 5 between a non-structural wall 4 and a structural part (column) 2 of a reinforced-concrete building is formed of a low-expansion-ratio resin foam having a critical compression stress as great as or approximate to the allowable compression stress of a concrete to be used for the building. The earthquake-proof slit member 6a is formed preferably of the low-expansion-ratio resin foam having the critical compression stress of 10-40 N/mm, and more preferably of a polystyrene low-expansion-ratio resin foam having an expansion ratio of five or smaller.

Description

本発明は、耐震スリット材とその耐震スリット材を非構造壁と構造部との接合部に配置した建築物に関する。   The present invention relates to an earthquake-resistant slit material and a building in which the earthquake-resistant slit material is arranged at a joint portion between a non-structural wall and a structural portion.

ラーメン構造の鉄筋コンクリート造建築物において、柱などの構造部は地震時に変形するように設計されている。そして、構造部の変形が妨げられないよう、垂壁や腰壁や袖壁などの非構造壁と柱などの構造部の間には、隙間(耐震目地)が設けられ、両者は縁切りされた状態とされている。具体的には、地震時に建築物に生じる1/100の層間変形角に追従できるだけの隙間(耐震目地)が非構造壁と構造部との接合部に設けられている。   In a reinforced concrete structure with a ramen structure, structural parts such as columns are designed to be deformed during an earthquake. In order not to prevent the deformation of the structural part, a gap (seismic joint) was provided between the non-structural wall such as the vertical wall, the waist wall and the sleeve wall and the structural part such as the pillar, and both were cut off. It is in a state. Specifically, a gap (seismic joint) that can follow an interlayer deformation angle of 1/100 generated in a building during an earthquake is provided at the joint between the non-structural wall and the structural portion.

従来は、特許文献1あるいは特許文献2に記載されるように、非構造壁と構造部との間に形成される隙間に発泡樹脂材からなる耐震スリット材を配置することで、縁切りを確保しながら、目地隙間の通気、雨水の漏水を遮断するようにしており、一般に、耐震スリット材には、発泡倍率は50〜80程度である高倍率の発泡樹脂材が用いられている。   Conventionally, as described in Patent Document 1 or Patent Document 2, by arranging an earthquake-resistant slit material made of a foamed resin material in a gap formed between a non-structural wall and a structural portion, edge cutting is ensured. However, ventilation of joint gaps and leakage of rainwater are blocked, and generally, a high-magnification foamed resin material having a foaming ratio of about 50 to 80 is used for the earthquake-resistant slit material.

特開2002−13311号公報JP 2002-13311 A 特開2006−207297号公報JP 2006-207297 A

前記したように、従来、耐震スリット材として用いられている発泡樹脂は、発泡倍率が50〜80程度である柔軟性に富む高倍率の発泡樹脂である。その理由は、構造部の層間変形可動性を確保するためには耐震スリット材は柔軟性に富む方が好ましいと考えられていたことによる。しかし、高倍率の発泡樹脂は耐圧縮性に乏しく、設計値を超える揺れが建造物に生じたときに、耐震スリット材が座屈して、腰壁、垂れ壁、袖壁などである非構造壁の角部が構造部に衝接して脆性破壊を引き起こす恐れがある。また、柱などの構造部を損傷させる恐れもある。さらに、施工時に、耐震スリット材はコンクリート型枠内に取り付けられ、所定幅の地震目地が形成されるようにしてコンクリートが打設されるが、柔軟性に富む材料であることから型枠への取り付けに手間が掛かっており、また、耐圧縮性が低いことから、コンクリート打設時の側圧に耐える強度を確保するために適宜の材料によって表面を補強することが必要となっている。   As described above, the foamed resin conventionally used as an earthquake-resistant slit material is a highly flexible foamed resin having a foaming ratio of about 50 to 80 and rich in flexibility. The reason is that it was considered that the earthquake-resistant slit material should be rich in flexibility in order to ensure the interlaminar deformation mobility of the structure portion. However, high-magnification foamed resin is poor in compression resistance, and when a vibration exceeding the design value occurs in the building, the earthquake-resistant slit material buckles, and it is a non-structural wall such as a waist wall, drooping wall, sleeve wall, etc. There is a risk that the corners of the butt will contact the structure and cause brittle fracture. There is also a risk of damaging structural parts such as pillars. Furthermore, at the time of construction, the seismic slit material is installed in the concrete formwork, and concrete is placed so that an earthquake joint with a predetermined width is formed. Since it takes time and effort to attach, and the compression resistance is low, it is necessary to reinforce the surface with an appropriate material in order to ensure the strength to withstand the side pressure when placing concrete.

本発明は、上記のような事情に鑑みてなされたものであり、設計値を超えた揺れが生じた場合でも、非構造壁が構造部を損傷するのを回避して構造耐力を向上させることができ、かつ型枠内への取り付け作業も容易化できる発泡樹脂の耐震スリット材、およびその耐震スリット材を非構造壁と構造部との接合部に配置した鉄筋コンクリート造の建築物を提供することを課題とする。   The present invention has been made in view of the circumstances as described above, and improves structural strength by avoiding damage to the structural portion of the non-structural wall even when a swing exceeding the design value occurs. A foamed resin earthquake-resistant slit material that can be installed in a mold and can be easily installed, and a reinforced concrete structure in which the earthquake-resistant slit material is arranged at the joint between a non-structural wall and a structural part Is an issue.

本発明による耐震スリット材の第1の態様は、鉄筋コンクリート造の建築物の非構造壁と構造部との接合部に配置される耐震スリット材であって、該耐震スリット材は当該建築物に使用されるコンクリートの許容圧縮応力と同程度かそれに近い限界圧縮応力を持つ発泡樹脂からなることを特徴とする。   A first aspect of the earthquake-resistant slit material according to the present invention is an earthquake-resistant slit material arranged at a joint portion between a non-structural wall and a structural portion of a reinforced concrete structure, and the earthquake-resistant slit material is used for the building. It is characterized by being made of a foamed resin having a limit compressive stress that is similar to or close to the allowable compressive stress of the concrete to be produced.

本発明による耐震スリット材は、鉄筋コンクリート造の建築物の非構造壁と構造部との接合部に配置される耐震スリット材であって、限界圧縮応力が10〜40N/mmの範囲にある低倍率発泡樹脂からなることが好ましい。 The aseismic slit material according to the present invention is an aseismic slit material disposed at a joint between a non-structural wall and a structural part of a reinforced concrete structure, and has a low limit compressive stress in the range of 10 to 40 N / mm 2. It is preferable to consist of a magnification foam resin.

本発明による耐震スリット材は、鉄筋コンクリート造の建築物の非構造壁と構造部との接合部に配置される耐震スリット材であって、発泡倍率が5倍以下のポリスチレン系の低倍率発泡樹脂からなることが好ましい。   The earthquake-resistant slit material according to the present invention is an earthquake-resistant slit material arranged at a joint portion between a non-structural wall and a structural portion of a reinforced concrete structure, and is made of a polystyrene-based low-magnification foamed resin having a foaming ratio of 5 times or less. It is preferable to become.

また、本発明による建築物は、鉄筋コンクリート造の建築物であって、非構造壁と構造部との接合部の少なくとも一所に上記したいずれかの態様の耐震スリット材が配置されていることを特徴とする。   Further, the building according to the present invention is a reinforced concrete building, and the earthquake-resistant slit material according to any one of the aspects described above is disposed at least at one of the joint portions between the non-structural wall and the structural portion. Features.

なお、本発明において、「限界圧縮応力」とは、当該発泡樹脂が緩衝性能を発揮できる範囲の圧縮応力の最大値をいい、限界圧縮応力を超えた圧縮応力が当該発泡樹脂に作用すると、発泡樹脂に大きな圧縮応力を加えてもひずみが僅かしか変化しない(言いかえると、僅かなひずみ増加に対し応力が急激に増大する)塑性変形を示す。   In the present invention, the “limit compressive stress” refers to the maximum value of the compressive stress in a range where the foamed resin can exhibit buffering performance. When compressive stress exceeding the limit compressive stress acts on the foamed resin, Even when a large compressive stress is applied to the resin, the strain changes only slightly (in other words, the stress rapidly increases with a slight increase in strain).

一般に、発泡樹脂は、3%ひずみ圧縮応力(降伏点)までは弾性体としての性状を示し、応力がそれ以上となると発泡体中の気泡が潰れるため、発泡樹脂に小さな圧縮応力を加えてもひずみが大きく変化する塑性変形を示す。そして、限界圧縮応力値は、気泡の潰れがほぼ終了する時の値であり、この値を超えると、大きな圧縮応力を加えてもひずみが僅かしか変化しない(言いかえると、僅かなひずみ増加に対し応力が急激に増大する)。したがって、発泡樹脂が緩衝性能を発揮できる範囲は、3%ひずみ圧縮応力(降伏点)以上、限界圧縮応力値以下と定義できる。低倍率発泡樹脂は高倍率発泡樹脂と比較して限界圧縮応力値が大きい。   Generally, a foamed resin exhibits properties as an elastic body up to 3% strain compressive stress (yield point). When the stress exceeds that, bubbles in the foam collapse, so even if a small compressive stress is applied to the foamed resin. It shows plastic deformation whose strain changes greatly. The critical compressive stress value is a value at the time when the collapse of the bubble is almost finished, and if this value is exceeded, the strain changes only slightly even when a large compressive stress is applied (in other words, the strain increases slightly). The stress increases rapidly). Therefore, the range in which the foamed resin can exhibit the buffer performance can be defined as 3% strain compressive stress (yield point) or more and not more than the limit compressive stress value. The low-magnification foamed resin has a larger limit compressive stress value than the high-magnification foamed resin.

コンクリート非構造部の角部が、地震時の層間変形により構造部と接触した場合、接触面が部分的になると角部に集中応力が生じるため、当該部分が破損する。コンクリートの許容圧縮応力より降伏点が小さく、同応力と同程度である限界圧縮応力の低倍率発泡樹脂を耐震スリット材として用いることにより、耐震スリット材が変形することによりコンクリートに伝わる集中応力を分散できる。   When the corner portion of the concrete non-structure portion comes into contact with the structure portion due to interlayer deformation at the time of an earthquake, when the contact surface becomes partial, concentrated stress is generated at the corner portion, so that the portion is damaged. Dispersion of concentrated stress transmitted to the concrete due to deformation of the earthquake-resistant slit material by using low-magnification foam resin with a critical compressive stress that is smaller than the allowable compressive stress of concrete and the same level as the stress. it can.

また、低倍率発泡樹脂は自立性も備えている。したがって、このような低倍率発泡樹脂を耐震スリット材として用いた場合、地震の揺れによって耐震スリット材に圧縮応力が作用しても、それが限界圧縮応力以下であれば、耐震スリット材は応力分散材としての挙動を示し、非構造壁が構造部を損傷するのを回避する。   The low-magnification foamed resin also has self-supporting properties. Therefore, when such low-magnification foamed resin is used as an earthquake-resistant slit material, even if compressive stress acts on the earthquake-resistant slit material due to an earthquake shake, the earthquake-resistant slit material is stress-distributed if it is below the limit compressive stress. It behaves as a material and avoids unstructured walls from damaging the structure.

一方、非構造壁は建築物の構造耐力に寄与するようには設計されていないが、層間変形角を確保できれば、非構造壁は、柱などの構造部の変形時に、構造部の形状を維持させようとする変形力の反力壁として機能することができる。換言すれば、非構造壁は、構造部の耐力を向上させる(変形を抑制できる)ものとなる。すなわち、耐震スリット材が応力分散材としての挙動を示す範囲においては、非構造壁が構造部を損傷することなく、構造耐力を向上させる。しかし、耐震スリット材の限界圧縮応力が、当該建築物に使用されるコンクリートの許容圧縮応力を超える場合には、耐震スリット材が緩衝性能を発揮できる能力を残しコンクリートの許容圧縮応力を伝えるため、構造部の層間変形角を確保せず構造部を破壊する恐れがある。一方、耐震スリット材の限界圧縮応力がコンクリートの許容圧縮応力値よりも小さくなるほど、形状維持力を構造体に伝えることなく、構造部に非構造部角部の集中応力を伝えコンクリートを破壊してしまう。したがって、耐震スリット材を構成する発泡樹脂の限界圧縮応力が、当該建築物のコンクリートの許容圧縮応力と同程度かそれに近い値であることによって、耐震スリット材は所期の目的を達成することができる。   On the other hand, non-structural walls are not designed to contribute to the structural strength of buildings, but if the inter-layer deformation angle can be secured, the non-structural walls maintain the shape of the structural parts when the structural parts such as columns are deformed. It can function as a reaction force wall of the deformation force to be caused. In other words, the non-structural wall improves the proof stress of the structural portion (deformation can be suppressed). That is, in the range where the seismic slit material exhibits the behavior as a stress dispersion material, the structural strength is improved without the non-structural wall damaging the structural portion. However, if the critical compressive stress of the seismic slit material exceeds the allowable compressive stress of the concrete used for the building, in order to convey the allowable compressive stress of the concrete, leaving the ability of the seismic slit material to exhibit buffer performance, There is a risk of destroying the structure without securing the interlayer deformation angle of the structure. On the other hand, as the critical compressive stress of the seismic slit material becomes smaller than the allowable compressive stress value of concrete, the concentrated stress at the corners of the non-structured part is transmitted to the structural part without breaking the concrete without transmitting the shape maintenance force to the structure. End up. Therefore, the seismic slit material can achieve its intended purpose because the critical compressive stress of the foamed resin composing the seismic slit material is the same as or close to the allowable compressive stress of the concrete of the building. it can.

一般に、鉄筋コンクリート造の建築物で用いられるコンクリートの許容圧縮応力は10〜40N/mmの範囲である。したがって、本発明によるに耐震スリット材の一態様では、耐震スリット材は、限界圧縮応力が10〜40N/mmの範囲にある低倍率発泡樹脂から構成される。また、他の態様では、そのような限界圧縮応力値を持つ材料として、発泡倍率が5倍以下のポリスチレン系の発泡樹脂から構成される。 Generally, the allowable compressive stress of concrete used in a reinforced concrete building is in the range of 10-40 N / mm 2 . Therefore, according to the present invention, in one aspect of the earthquake-resistant slit material, the earthquake-resistant slit material is composed of a low-magnification foamed resin having a limit compressive stress in the range of 10 to 40 N / mm 2 . In another aspect, the material having such a limit compressive stress value is made of a polystyrene-based foamed resin having a foaming ratio of 5 times or less.

上記のような物性値を持つ低倍率発泡樹脂は自立性と高い耐圧縮性を備える。そのために、コンクリート型枠などに対して釘打ちなどにより容易に固定することが可能となる。結果として、本発明による耐震スリット材を用いることにより、鉄筋コンクリート造の建築物の非構造壁と構造部との接合部に耐震スリット材を配置する作業がきわめて容易となり、施工性が向上する。   The low-magnification foamed resin having the above physical properties has self-supporting properties and high compression resistance. Therefore, it can be easily fixed to a concrete form or the like by nailing or the like. As a result, by using the earthquake-resistant slit material according to the present invention, the operation of arranging the earthquake-resistant slit material at the joint portion between the non-structural wall and the structure portion of the reinforced concrete structure is extremely easy and the workability is improved.

好ましくは、耐震スリット材は一部に耐火材を備える。耐火材は耐震スリット材の表面およびまたは裏面に貼り合わされていてもよく、横断およびまたは縦断する方向に埋め込まれていてもよい。耐火材としては、熱膨張性黒鉛を含有したブチルゴムシート(積水化学工業社製 商品名:フィブロック)のような材料を例として挙げることができる。   Preferably, the seismic slit material is partially provided with a refractory material. The refractory material may be bonded to the front surface and / or the back surface of the seismic slit material, and may be embedded in the transverse and / or longitudinal direction. Examples of the refractory material include materials such as a butyl rubber sheet (trade name: Fibrok manufactured by Sekisui Chemical Co., Ltd.) containing thermally expandable graphite.

本発明によれば、設計値を超えた揺れが生じた場合でも、非構造壁が構造部を損傷するのを回避して構造耐力を向上させることができる低倍率発泡樹脂製の耐震スリット材、およびその耐震スリット材を非構造壁と構造部との接合部に配置した鉄筋コンクリート造の建築物が得られる。また、型枠内への取り付け作業も容易化でき、それにより施工性を向上させることのできる耐震スリット材が得られる。   According to the present invention, even when a vibration exceeding the design value occurs, an earthquake-resistant slit material made of low-magnification foamed resin that can improve the structural strength by avoiding damage to the structural portion of the non-structural wall, And the building of a reinforced concrete structure which arrange | positioned the earthquake-resistant slit material in the junction part of a non-structure wall and a structure part is obtained. Moreover, the installation work in a formwork can also be simplified and the seismic slit material which can improve workability by it is obtained.

鉄筋コンクリート造の建築物における非構造壁と構造部との関係を示す模式図。The schematic diagram which shows the relationship between the non-structural wall and structure part in a reinforced concrete structure building. 図1に示す建築物が揺れた場合の一状態を示す第1の模式図。The 1st schematic diagram which shows one state when the building shown in FIG. 1 shakes. 図1に示す建築物が揺れた場合の一状態を示す第2の模式図。The 2nd schematic diagram which shows one state when the building shown in FIG. 1 shakes. ポリスチレン系発泡樹脂の発泡倍率とひずみ−応力の関係を示すグラフ。The graph which shows the foaming ratio of a polystyrene-type foaming resin, and the relationship of distortion-stress.

以下、本発明を実施の形態により説明する。   Hereinafter, the present invention will be described with reference to embodiments.

図1は、ラーメン構造による鉄筋コンクリート造の建築物における非構造壁と構造部との関係の一例を模式的に示している。図の建築物は、床、柱、梁のための鉄筋構造体がラーメン構造に組み立てられ、コンクリートが打設されて、構造部としての床1と柱2と梁3とが形成されている。梁3には垂壁4が吊り下げ状に取り付けてあり、この垂壁4は非構造壁の一例を構成する。非構造壁としては、他に腰壁や袖壁が設けられる。   FIG. 1 schematically shows an example of the relationship between a non-structural wall and a structural part in a reinforced concrete structure with a rigid frame structure. In the building shown in the figure, a reinforcing bar structure for floors, columns, and beams is assembled into a ramen structure, and concrete is cast to form a floor 1, a column 2, and a beam 3 as a structural portion. A hanging wall 4 is attached to the beam 3 in a suspended manner, and the hanging wall 4 constitutes an example of a non-structural wall. Other non-structural walls include a waist wall and a sleeve wall.

このようなラーメン構造の鉄筋コンクリート造建築物では、柱2などの構造部は地震時に変形するように設計されており、その変形を垂壁4である非構造壁が妨げないように、垂壁4(非構造壁)と床1および柱2である構造部の間には、隙間(耐震目地)5が設けられ、両者は縁切りされた状態とされている。通常、柱2と垂壁4の間の隙間(耐震目地)5は、地震時に建築物に生じる1/100の層間変形角に追従できるだけの大きさとされている。   In such a reinforced concrete building with a ramen structure, the structural part such as the pillar 2 is designed to be deformed at the time of an earthquake, and the vertical wall 4 is not disturbed by the non-structural wall which is the vertical wall 4. A gap (seismic joint) 5 is provided between the (non-structural wall) and the structural portion which is the floor 1 and the pillar 2, and both are cut off. Usually, the gap (seismic joint) 5 between the pillar 2 and the vertical wall 4 is set to a size that can follow the 1/100 interlayer deformation angle generated in a building during an earthquake.

この隙間5は、通常、目地材6によりを塞がれており、該目地材は耐震スリット材6と呼ばれている。図示のものにおいて、垂壁4と床1との間の隙間も耐震スリット材6が埋められている。耐震スリット材6には、従来は、発泡倍率が50〜80程度の高倍率発泡樹脂が用いられている。   The gap 5 is normally closed by a joint material 6, and the joint material is called an earthquake-resistant slit material 6. In the illustrated one, the earthquake-resistant slit material 6 is also buried in the gap between the vertical wall 4 and the floor 1. Conventionally, a high-magnification foamed resin having a foaming ratio of about 50 to 80 is used for the earthquake-resistant slit material 6.

地震により、図2に矢印Pに示すように、水平方向の揺れ(移動)が建築物に生じたとする。揺れによる水平方向の移動が設計値である1/100の層間変形角の範囲であれば、垂壁4と柱2が衝接することはない。しかし、設計値を超える揺れが生じると、高倍率発泡樹脂は、垂壁4と柱2に生じる変形力に影響を与えることなく限界圧縮応力に達し、図2に示すように、垂壁4の下角部およびその近傍が柱2に、直接衝接した状態となる。それにより、垂壁4の下角部4aおよびその近傍と柱2の双方に破壊が生じる。そこで、本発明では、耐震スリット材6として、高い緩衝性を備えた低倍率の発泡樹脂を用いることで、垂壁4と柱2が直接接触するのを回避し、破壊が生じないようにする。   It is assumed that a horizontal shaking (movement) occurs in the building as shown by an arrow P in FIG. 2 due to the earthquake. If the horizontal movement due to shaking is in the range of the 1/100 interlayer deformation angle which is the design value, the vertical wall 4 and the column 2 do not collide. However, when the vibration exceeding the design value occurs, the high-magnification foamed resin reaches the limit compressive stress without affecting the deformation force generated in the vertical wall 4 and the column 2, and as shown in FIG. The lower corner portion and the vicinity thereof are in direct contact with the pillar 2. Thereby, the lower corner 4a of the vertical wall 4 and the vicinity thereof and the pillar 2 are broken. Therefore, in the present invention, by using a low-magnification foamed resin having a high shock-absorbing property as the earthquake-resistant slit material 6, the direct contact between the vertical wall 4 and the column 2 is avoided, and the breakage does not occur. .

図3は、本発明による耐震スリット材6aを採用したときでの、図2に示したと同じ大きさの揺れが生じたときの状態を示している。耐震スリット材6aとして高い緩衝性を備えた低倍率の発泡樹脂を用いると、揺れが発生したときに、耐震スリット材6aは垂壁4とともに柱2に押し付けられるが、その押し付け力が当該発泡樹脂の緩衝性能を発揮できる範囲内、すなわち限界圧縮応力の範囲内であれば、耐震スリット材6aは圧縮変形しながら、垂壁4の持つ形状維持力で柱2を支えるようになる。そのときに、垂壁4もわずかに変形するが、低倍率の発泡樹脂である耐震スリット材6aが応力分散材として機能することで、破損することはない。   FIG. 3 shows a state in which the same magnitude of vibration as shown in FIG. 2 occurs when the earthquake-resistant slit material 6a according to the present invention is employed. When a low-magnification foamed resin having a high shock-absorbing property is used as the earthquake-resistant slit material 6a, the earthquake-resistant slit material 6a is pressed against the pillar 2 together with the hanging wall 4 when the vibration occurs. If it is within the range in which the buffer performance can be exhibited, that is, within the range of the limit compression stress, the seismic slit material 6a supports the column 2 with the shape maintaining force of the vertical wall 4 while compressively deforming. At that time, the hanging wall 4 is also slightly deformed, but the seismic slit material 6a, which is a low-magnification foamed resin, functions as a stress dispersion material and is not damaged.

すなわち、耐震スリット材6aは、垂壁4と柱2に発生する隙間での圧縮変形はするもののコンクリート許容圧縮応力に到らないので、応力分散材として効果的に機能し、垂壁4の下角部4aおよびその近傍が柱2に直接に衝接するのを回避でき、結果として、下角部4aおよびその近傍の破壊および構造体である柱2が損傷するのを回避できる。   That is, the seismic slit material 6a compresses and deforms in the gap generated between the vertical wall 4 and the column 2 but does not reach the allowable compressive stress of concrete. It is possible to avoid the portion 4a and the vicinity thereof from directly contacting the pillar 2, and as a result, it is possible to avoid the destruction of the lower corner portion 4a and the vicinity thereof and the damage of the pillar 2 as a structure.

また、図示しないが、耐震スリット材6aに熱膨張性黒鉛を含有したブチルゴムシート(積水化学工業社製 商品名:フィブロック)のような耐火材を貼り貼り合わせることで、火災時での耐震スリット材6aの延焼および前記隙間(耐震目地)5を通しての飛び火を回避することができる。   In addition, although not shown, the earthquake-resistant slit material 6a is bonded with a refractory material such as a butyl rubber sheet (product name: Fibro) manufactured by Sekisui Chemical Co., Ltd. that contains thermally expandable graphite. It is possible to avoid the spread of the material 6a and the sparks through the gap (earthquake resistant joint) 5.

ところで、一般の鉄筋コンクリート造の建築物で用いられるコンクリートの許容圧縮応力は、10〜40N/mmの範囲である。したがって、耐震スリット材6aを限界圧縮応力が10〜40N/mmの範囲にある低倍率発泡樹脂から構成することが好ましい。 By the way, the allowable compressive stress of concrete used in a general reinforced concrete building is in the range of 10 to 40 N / mm 2 . Therefore, it is preferable that the aseismic slit material 6a is made of a low-magnification foamed resin having a limit compressive stress in the range of 10 to 40 N / mm 2 .

そのような値の限界圧縮応力を持つ低倍率発泡樹脂としては、発泡倍率が5倍以下のポリスチレン系の低倍率発泡樹脂が挙げられる。図4は、ポリスチレン系発泡樹脂の発泡倍率とひずみ−応力の関係を示すグラフである。一般に、発泡樹脂は歪みが3%程度以下の範囲では弾性体としての性状を示す。そして、発泡倍率が高いほど限界圧縮応力は低い値を示す。図4および下記の表1に示すように、ポリスチレン系発泡樹脂の場合、発泡倍率10倍では限界圧縮応力は7N/mm程度あり、5倍では10N/mm程度、発泡倍率1.7倍では限界圧縮応力は40N/mm程度となる。したがって、耐震スリット材6aとして、発泡倍率が5倍以下のポリスチレン系の低倍率発泡樹脂を用いることが好ましい。 Examples of the low-magnification foamed resin having such a critical compression stress include polystyrene-based low-magnification foamed resins having a foaming ratio of 5 times or less. FIG. 4 is a graph showing the relationship between the expansion ratio of the polystyrene-based foamed resin and the strain-stress. In general, the foamed resin exhibits properties as an elastic body within a strain range of about 3% or less. And the critical compression stress shows a low value, so that a foaming ratio is high. As shown in FIG. 4 and Table 1 below, in the case of polystyrene foam resin, critical compressive stress in expansion ratio 10 times is about 7N / mm 2, 10N / mm 2 approximately in five times, the expansion ratio 1.7 times Then, the critical compressive stress is about 40 N / mm 2 . Therefore, it is preferable to use a polystyrene-based low-magnification foamed resin having a foaming ratio of 5 times or less as the earthquake-resistant slit material 6a.

Figure 2012202079
Figure 2012202079

1…構造部としての床、
2…構造部としての柱、
3…構造部としての梁、
4…非構造壁としての垂壁、
5…隙間(耐震目地)、
6,6a…目地材(耐震スリット材)
1 ... Floor as a structural part,
2 ... Pillar as a structural part,
3 ... Beam as a structural part,
4 ... Vertical wall as an unstructured wall,
5 ... Gap (earthquake resistant joint),
6, 6a ... Joint material (seismic slit material)

Claims (5)

鉄筋コンクリート造の建築物の非構造壁と構造部との接合部に配置される耐震スリット材であって、該耐震スリット材は当該建築物に使用されるコンクリートの許容圧縮応力と同程度かそれに近い限界圧縮応力を持つ低倍率発泡樹脂からなることを特徴とする耐震スリット材。   A seismic slit material arranged at the joint between a non-structural wall and a structural part of a reinforced concrete building, the seismic slit material being at or near the allowable compressive stress of the concrete used in the building An earthquake-resistant slit material characterized by comprising a low-magnification foamed resin having a limit compressive stress. 鉄筋コンクリート造の建築物の非構造壁と構造部との接合部に配置される耐震スリット材であって、限界圧縮応力が10〜40N/mmの範囲にある低倍率発泡樹脂からなることを特徴とする請求項1に記載の耐震スリット材。 A seismic slit material arranged at a joint between a non-structural wall and a structural part of a reinforced concrete building, characterized by comprising a low-magnification foamed resin having a limit compressive stress in the range of 10 to 40 N / mm 2. The earthquake-resistant slit material according to claim 1. 鉄筋コンクリート造の建築物の非構造壁と構造部との接合部に配置される耐震スリット材であって、発泡倍率が5倍以下のポリスチレン系の低倍率発泡樹脂からなることを特徴とする請求項1または2に記載の耐震スリット材。   An earthquake-resistant slit material disposed at a joint between a non-structural wall and a structural part of a reinforced concrete building, wherein the foaming ratio is made of a polystyrene-based low-magnification resin having a foaming ratio of 5 times or less. The earthquake-resistant slit material according to 1 or 2. 一部に耐火材を備えることを特徴とする請求項1ないし3のいずれか一項に記載の耐震スリット材。   The quakeproof slit material according to any one of claims 1 to 3, wherein a refractory material is provided in part. 鉄筋コンクリート造の建築物であって、非構造壁と構造部との接合部の少なくとも一所に請求項1ないし4のいずれか一項に記載の耐震スリット材が配置されていることを特徴とする建築物。   It is a reinforced concrete building, and the earthquake-resistant slit material according to any one of claims 1 to 4 is arranged at least at one of the joint portions between the non-structural wall and the structural portion. Building.
JP2011066413A 2011-03-24 2011-03-24 Earthquake-proof slit member and building using the same Withdrawn JP2012202079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011066413A JP2012202079A (en) 2011-03-24 2011-03-24 Earthquake-proof slit member and building using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011066413A JP2012202079A (en) 2011-03-24 2011-03-24 Earthquake-proof slit member and building using the same

Publications (1)

Publication Number Publication Date
JP2012202079A true JP2012202079A (en) 2012-10-22

Family

ID=47183368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011066413A Withdrawn JP2012202079A (en) 2011-03-24 2011-03-24 Earthquake-proof slit member and building using the same

Country Status (1)

Country Link
JP (1) JP2012202079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069801A (en) * 2014-09-26 2016-05-09 株式会社竹中工務店 Wall panel mounting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069801A (en) * 2014-09-26 2016-05-09 株式会社竹中工務店 Wall panel mounting structure

Similar Documents

Publication Publication Date Title
JP2007046235A (en) Vibration control panel and building
JP4355302B2 (en) Floating floor vibration control structure
JP2008025113A (en) Aseismic control structure
JP5596990B2 (en) Bearing wall structure of wooden building
JP2007297819A (en) Earthquake resistant reinforcing body
JP2010216611A (en) Seismic response control metallic plate
JP2012202079A (en) Earthquake-proof slit member and building using the same
KR101294289B1 (en) Buckling restrained brace of dry type, and manufacturing method for the same
JP2007255128A (en) Wall face structure of building and earthquake control panel used in wall face structure
JP2006037581A (en) Earthquake resisting stud
JP2019049171A (en) Base-isolation structure
JP2010024656A (en) Joint damper and structure of joint portion
JP6216644B2 (en) Wall pillar structure and building
JP4758683B2 (en) Reinforcement structure of unit building
JP5566737B2 (en) Vibration suppression brace
JP2010255340A (en) Damping structure and vibration absorbing member for use in the same
JP4938444B2 (en) Building seismic reinforcement and building
JP6397192B2 (en) Supplemental forced vibration device
JP2014070439A (en) Concrete filling steel-pipe column
JP5953174B2 (en) Vibration suppression suspension structure
JP2016079669A (en) Reinforcement metal fitting for internal corner of wooden framework
JP2012077512A (en) Load bearing glass wall sash
JP2010127002A (en) Vibration control member
JP4863855B2 (en) Damper device and structure
JP3114495U (en) Reinforcement method for walls and floors of structures such as reinforced concrete

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603