JP2012201575A - Co removing device and fuel reforming system provided with the same - Google Patents

Co removing device and fuel reforming system provided with the same Download PDF

Info

Publication number
JP2012201575A
JP2012201575A JP2011069855A JP2011069855A JP2012201575A JP 2012201575 A JP2012201575 A JP 2012201575A JP 2011069855 A JP2011069855 A JP 2011069855A JP 2011069855 A JP2011069855 A JP 2011069855A JP 2012201575 A JP2012201575 A JP 2012201575A
Authority
JP
Japan
Prior art keywords
heat
catalyst
temperature
cooling
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011069855A
Other languages
Japanese (ja)
Inventor
Norihisa Kamiya
規寿 神家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011069855A priority Critical patent/JP2012201575A/en
Publication of JP2012201575A publication Critical patent/JP2012201575A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve good response to the change of a heat generation region due to local heat generation and the change of power generation load, and to improve reliability of control.SOLUTION: A thermal control tube 4 in which a heat medium causing a gas-liquid phase change is encapsulated is disposed in such a way that it vertically penetrates a reaction vessel 1. An electric heater 5 is disposed at the bottom of the thermal control tube 4, and a heat radiator 6 and a cooling fan 7 for sending cold air to the heat radiator 6 are disposed on the top of the thermal control tube 4. A first temperature sensor 8 is provided to the lower part of the thermal control tube 4, a second temperature sensor 9 to an upper part, and a controller 10 is connected to the first and second temperature sensors 8, 9. The controller 10 is also connected to the electric heater 5 and the cooling fan 7, and on the basis of the temperatures of the heat medium measured with the first and second temperature sensors 8, 9, the electric heater 5 and the cooling fan 7 are operated to maintain the temperature of the catalyst within a preset range.

Description

本発明は、原燃料を改質して得られる水素を主成分とする改質ガス中のCOを、反応容器内に充填した触媒により反応させてCO濃度を低減するCO除去装置、および、それを備えた燃料改質システムに関する。   The present invention relates to a CO removal device for reducing CO concentration by reacting CO in a reformed gas mainly composed of hydrogen obtained by reforming raw fuel with a catalyst filled in a reaction vessel, and The present invention relates to a fuel reforming system including

CO除去装置では、CОをメタン化する反応に際して触媒によりある程度の温度に昇温させる必要がある反面、昇温しすぎると、メタン化反応が発熱反応であることから、反応速度が増加することで熱暴走に至る危険性があり、触媒層の温度を、熱暴走に至らない温度以下に抑えるように厳密に制御する必要があった。
そこで、従来では、触媒を充填した反応容器に隣接させて、その反応容器を冷却するために燃焼用空気などの冷却用流体を通流する冷却用流体通流部を設け、そこに燃焼用空気を流して冷却するように構成している。(特許文献1)
In the CO removal device, it is necessary to raise the temperature to a certain level with a catalyst during the methanation reaction of CO. However, if the temperature is raised too much, the methanation reaction is exothermic and the reaction rate increases. There is a risk of thermal runaway, and it has been necessary to strictly control the temperature of the catalyst layer so as to keep it below the temperature at which thermal runaway does not occur.
Therefore, conventionally, a cooling fluid flow passage portion for passing a cooling fluid such as combustion air is provided adjacent to the reaction vessel filled with the catalyst to cool the reaction vessel, and the combustion air is provided there. It is configured to flow and cool. (Patent Document 1)

特許第4063430号公報Japanese Patent No. 4063430

しかしながら、触媒層では、発電負荷の変化によって反応域、すなわち、発熱域が変化する。このような発熱域の変化に対応させようとすると、触媒層に対して所望箇所を冷却できるように、燃焼用空気の通路を多数分岐させ、昇温した箇所に集中して燃焼用空気を供給するようにしなければならないなど、その制御構成が複雑化するとともに、迅速に燃焼用空気を供給することが難しく信頼性が低下する不都合があった。   However, in the catalyst layer, the reaction zone, that is, the heat generation zone changes due to the change in the power generation load. In order to cope with such a change in the heat generation region, a large number of combustion air passages are branched so that the desired portion can be cooled with respect to the catalyst layer, and the combustion air is supplied to the heated portion in a concentrated manner. As a result, the control configuration becomes complicated, and it is difficult to supply the combustion air quickly, resulting in a decrease in reliability.

本発明は、このような事情に鑑みてなされたものであって、請求項1に係る発明は、局部的な発熱や発電負荷の変化による発熱域の変化に良好に対応できるとともに、制御の信頼性を向上できるようにすることを目的とする。   The present invention has been made in view of such circumstances, and the invention according to claim 1 can satisfactorily cope with changes in the heat generation area due to local heat generation or changes in the power generation load, and is reliable in control. The purpose is to improve the performance.

請求項1に係る発明は、上述のような目的を達成するために、
原燃料を改質して得られる水素を主成分とする改質ガス中のCOを、反応容器内に充填した触媒により反応させてCO濃度を低減するCO除去装置において、
管内で相変化する熱媒体を封入し前記反応容器内の触媒に熱媒体の熱を伝達するように設けた熱制御管と、
前記熱制御管内の熱媒体を加熱して熱媒体を気化する加熱手段と、
前記熱制御管内の熱媒体を冷却して気体状の熱媒体を液化する冷却手段と、
前記触媒の温度を測定する触媒温度測定手段と、
前記触媒温度測定手段で測定された前記触媒の温度に基づいて、前記触媒の温度が設定範囲内に維持されるように前記加熱手段または前記冷却手段の作動を制御する触媒温度制御手段と、
を備えたことを特徴としている。
In order to achieve the above-described object, the invention according to claim 1
In a CO removal apparatus for reducing CO concentration by reacting CO in a reformed gas mainly composed of hydrogen obtained by reforming raw fuel with a catalyst filled in a reaction vessel,
A heat control pipe provided to enclose a heat medium that changes phase in the pipe and to transmit heat of the heat medium to the catalyst in the reaction vessel;
Heating means for heating the heat medium in the heat control pipe to vaporize the heat medium;
Cooling means for cooling the heat medium in the heat control tube to liquefy the gaseous heat medium;
A catalyst temperature measuring means for measuring the temperature of the catalyst;
Catalyst temperature control means for controlling the operation of the heating means or the cooling means so that the temperature of the catalyst is maintained within a set range based on the temperature of the catalyst measured by the catalyst temperature measuring means;
It is characterized by having.

(作用・効果)
請求項1に係る発明のCO除去装置の構成によれば、起動時で触媒の温度が低いときには加熱手段で熱媒体を加熱して気化し、触媒への伝熱により熱媒体が凝縮して凝縮潜熱を与えて触媒の温度を上昇させ、触媒を設定範囲内の温度に維持することができる。一方、反応が進んで触媒の温度が設定範囲を超えて発熱すると、冷却手段により熱制御管内の気体状の熱媒体を液化し、反応容器の発熱域に近接した熱媒体が蒸発し、気化潜熱によって発熱域の触媒を冷却し、触媒を設定範囲内の温度に維持することができる。
したがって、局部的な発熱であっても、また、発電負荷の変化により発熱域が変化しても、その発熱域に近接した熱媒体が蒸発し、気化潜熱によって発熱域の触媒を冷却し、熱制御管内で熱媒体が自由に移動して必要量の熱媒体が自ずと発熱域に集まって行くことになり、局部的な発熱や発電負荷の変化による発熱域の変化に良好に対応でき、熱暴走を回避することができる。
また、反応容器内の触媒の温度制御は、熱制御管内の熱媒体を気化するか液化するかによって行うから、熱制御管の下部に対して加熱手段を設けるとともに上部に対して冷却手段を設け、それらの加熱手段および冷却手段を制御しさえすれば良く、反応容器の全体にわたるように伝熱部材を設けるといったことが不要で、構成を簡単にできるとともに制御の信頼性を向上できる。
(Action / Effect)
According to the configuration of the CO removal apparatus of the invention according to claim 1, when the temperature of the catalyst is low at the start-up, the heat medium is heated and vaporized by the heating means, and the heat medium is condensed and condensed by heat transfer to the catalyst. Latent heat can be applied to increase the temperature of the catalyst and maintain the catalyst at a temperature within a set range. On the other hand, when the reaction proceeds and the temperature of the catalyst exceeds the set range and generates heat, the cooling medium liquefies the gaseous heat medium in the heat control tube, evaporates the heat medium close to the heat generation area of the reaction vessel, and vaporizes latent heat. Can cool the catalyst in the heat generating region and maintain the catalyst at a temperature within the set range.
Therefore, even if the heat is generated locally or the heat generation area changes due to a change in the power generation load, the heat medium near the heat generation area evaporates, and the catalyst in the heat generation area is cooled by the latent heat of vaporization. The heat medium moves freely in the control pipe, and the required amount of heat medium naturally gathers in the heat generation area, which can respond well to local heat generation and changes in the heat generation area due to changes in power generation load, and thermal runaway Can be avoided.
In addition, since the temperature of the catalyst in the reaction vessel is controlled depending on whether the heat medium in the heat control tube is vaporized or liquefied, a heating unit is provided in the lower part of the heat control tube and a cooling unit is provided in the upper part. It is only necessary to control the heating means and the cooling means, and it is not necessary to provide a heat transfer member over the entire reaction vessel, and the configuration can be simplified and the control reliability can be improved.

請求項2に係る発明は、
前記加熱手段が、電気ヒータ、燃焼排気ガスによる熱交換手段、通電により熱を発生する熱電変換素子のうちの少なくともひとつを用いるものであり、
前記冷却手段が、燃料電池冷却水による冷却水熱交換手段、燃料電池冷却用2次冷却水による2次冷却水熱交換手段、改質装置に供給する改質原燃料による改質原燃料熱交換手段、水蒸気改質用の水による改質水熱交換手段、燃料電池から排出される未反応燃料を燃焼させる空気による燃焼空気熱交換手段、部分燃焼と水蒸気改質を組み合わせた改質器で使用される触媒燃焼用空気による触媒燃焼用空気熱交換手段、改質装置の周囲空気への放熱による周囲空気熱交換手段のうちの少なくともひとつを用いるものであることを特徴とする請求項1に記載のCO除去装置である。
The invention according to claim 2
The heating means uses at least one of an electric heater, a heat exchange means by combustion exhaust gas, and a thermoelectric conversion element that generates heat by energization,
The cooling means is a cooling water heat exchange means using fuel cell cooling water, a secondary cooling water heat exchange means using fuel cell cooling secondary cooling water, and a reforming raw fuel heat exchange using reforming raw fuel supplied to the reformer. Used in reforming water heat exchange means using water for steam reforming, combustion air heat exchange means using air for burning unreacted fuel discharged from the fuel cell, and reformer combining partial combustion and steam reforming The at least one of the catalytic combustion air heat exchange means by the catalytic combustion air and the ambient air heat exchange means by heat radiation to the ambient air of the reformer is used. This is a CO removal apparatus.

(作用・効果)
請求項2に係る発明のCO除去装置の構成によれば、加熱手段および冷却手段それぞれを熱制御管の下部や上部に設ければ良いから、CO除去装置の設置場所や用途など、状況に応じ、加熱手段および冷却手段それぞれとして、上述の複数種の内から適宜好適なものを選択して用いることができ、装置を安価に構成できて経済的である。
(Action / Effect)
According to the configuration of the CO removal apparatus of the invention according to claim 2, since the heating means and the cooling means may be provided at the lower part and the upper part of the heat control pipe, depending on the situation such as the installation place and application of the CO removal apparatus. As each of the heating means and the cooling means, a suitable one can be selected and used from the above-mentioned plural types, and the apparatus can be constructed at low cost, which is economical.

請求項3に係る発明は、
前記熱媒体が、CO除去反応が進行する温度域に達すると、液相から気相に相変化する水、電解質液、熱媒油のうちの少なくともひとつから選ばれるものであることを特徴とする請求項1または2に記載のCO除去装置である。
The invention according to claim 3
The heat medium is selected from at least one of water, an electrolyte solution, and a heat transfer oil that changes phase from a liquid phase to a gas phase when reaching a temperature range in which a CO removal reaction proceeds. It is a CO removal apparatus of Claim 1 or 2.

(作用・効果)
請求項3に係る発明のCO除去装置の構成によれば、熱媒体として、上述のように入手が容易で、CO除去反応が進行する温度域に圧力調整などで容易に対処できるものを選択して用いることができ、装置を安価に構成できて経済的である。
(Action / Effect)
According to the configuration of the CO removal apparatus of the invention according to claim 3, the heat medium that is easily available as described above and that can easily cope with the temperature range where the CO removal reaction proceeds by adjusting the pressure is selected. It is economical because the apparatus can be constructed at low cost.

請求項4に係る発明は、
前記熱制御管を、加熱専用熱制御管と、冷却専用熱制御管とに分担して設置してあることを特徴とする請求項1から3の何れかに記載のCO除去装置である。
The invention according to claim 4
4. The CO removing apparatus according to claim 1, wherein the heat control pipe is divided into a heating dedicated heat control pipe and a cooling dedicated heat control pipe. 5.

(作用・効果)
請求項4に係る発明のCO除去装置の構成によれば、熱媒体の封入圧力を加熱専用熱制御管と冷却専用熱制御管とで個別に調整するなど、加熱制御および冷却制御それぞれに適した構成のものを使用でき、簡単な構成でありながら制御の信頼性を一層向上できる。
(Action / Effect)
According to the configuration of the CO removing device of the invention according to claim 4, the heat medium sealing pressure is individually adjusted between the heating-only heat control pipe and the cooling-only heat control pipe. The thing of a structure can be used and the reliability of control can be improved further although it is a simple structure.

請求項5に係る発明は、
前記反応容器に改質ガスを供給する改質ガス供給管に熱交換器とドレン排出器を設置し、前記反応容器に供給される改質ガス中の水の露点を30〜60℃に調整することを特徴とする請求項1から4の何れかに記載のCO除去装置である。
改質ガス中の水の露点が30℃未満になると、大きな冷却設備が必要で高価になり、一方、水の露点が60℃を越えると、水蒸気量が増加して平衡反応的に不利になりCO除去率が低下するからである。
The invention according to claim 5
A heat exchanger and a drain discharger are installed in the reformed gas supply pipe for supplying the reformed gas to the reaction vessel, and the dew point of water in the reformed gas supplied to the reaction vessel is adjusted to 30 to 60 ° C. The CO removing device according to any one of claims 1 to 4, wherein the device is a CO removing device.
If the dew point of water in the reformed gas is less than 30 ° C, a large cooling facility is required and expensive. On the other hand, if the dew point of water exceeds 60 ° C, the amount of water vapor increases and the equilibrium reaction becomes disadvantageous. This is because the CO removal rate decreases.

(作用・効果)
請求項5に係る発明のCO除去装置の構成によれば、反応容器に供給される改質ガス中の共存水蒸気をドレン排出器によって除去し、COメタン化反応(CO+3H=CH+HO)の逆行を抑えることができる。
したがって、CO除去を促進でき、かつ、冷却設備を大型化せずに済んで経済的であるとともにCO除去率を向上できる。
(Action / Effect)
According to the configuration of the CO removing apparatus of the invention according to claim 5, the coexisting water vapor in the reformed gas supplied to the reaction vessel is removed by the drain discharger, and the CO methanation reaction (CO + 3H 2 = CH 4 + H 2 O). ) Can be suppressed.
Therefore, CO removal can be promoted, and the cooling facility can be saved without increasing the size, and it is economical and the CO removal rate can be improved.

請求項6に係る発明は、
請求項1から5の何れかに記載のCO除去装置と、改質反応済みの燃料ガス中のCOを水素に変換するCO変成器とを平板積層型に構成してあることを特徴とする燃料改質システムである。
The invention according to claim 6
6. A fuel comprising the CO removing device according to any one of claims 1 to 5 and a CO converter for converting CO in the reformed fuel gas into hydrogen in a flat plate stack type. It is a reforming system.

(作用・効果)
請求項6に係る発明の燃料改質システムの構成によれば、CO除去装置とCO変成器とを平板積層型に構成するから、燃料改質システムをコンパクトに構成できる。
(Action / Effect)
According to the configuration of the fuel reforming system of the invention according to claim 6, since the CO removing device and the CO transformer are configured in a flat plate stack type, the fuel reforming system can be configured in a compact manner.

請求項7に係る発明は、
請求項1から5の何れかに記載のCO除去装置を備えて構成してあることを特徴とする燃料改質システムである。
The invention according to claim 7 provides:
A fuel reforming system comprising the CO removing device according to any one of claims 1 to 5.

(作用・効果)
請求項7に係る発明の燃料改質システムの構成によれば、CO除去装置におけるCO除去率を向上できて改質ガス中のCO濃度を低減できる。例えば、この燃料改質システムを備えて固体高分子形燃料電池を構成すれば、発電効率を向上できる。
(Action / Effect)
According to the configuration of the fuel reforming system of the invention according to claim 7, the CO removal rate in the CO removing device can be improved and the CO concentration in the reformed gas can be reduced. For example, if a solid polymer fuel cell is configured with this fuel reforming system, the power generation efficiency can be improved.

以上の説明から明らかなように、請求項1に係る発明のCO除去装置の構成によれば、起動時で触媒の温度が低いときには加熱手段で熱媒体を加熱して気化し、触媒への伝熱により熱媒体が凝縮して凝縮潜熱を与えて触媒の温度を上昇させ、触媒を設定範囲内の温度に維持することができる。一方、反応が進んで触媒の温度が設定範囲を超えて発熱すると、冷却手段により熱制御管内の気体状の熱媒体を液化し、反応容器の発熱域に近接した熱媒体が蒸発し、気化潜熱によって発熱域の触媒を冷却し、触媒を設定範囲内の温度に維持することができる。
したがって、局部的な発熱であっても、また、発電負荷の変化により発熱域が変化しても、その発熱域に近接した熱媒体が蒸発し、気化潜熱によって発熱域の触媒を冷却し、熱制御管内で熱媒体が自由に移動して必要量の熱媒体が自ずと発熱域に集まって行くことになり、局部的な発熱や発電負荷の変化による発熱域の変化に良好に対応でき、熱暴走を回避することができる。
また、反応容器内の触媒の温度制御は、熱制御管内の熱媒体を気化するか液化するかによって行うから、熱制御管の下部に対して加熱手段を設けるとともに上部に対して冷却手段を設け、それらの加熱手段および冷却手段を制御しさえすれば良く、反応容器の全体にわたるように伝熱部材を設けるといったことが不要で、構成を簡単にできるとともに制御の信頼性を向上できる。
As is clear from the above description, according to the configuration of the CO removal apparatus of the invention according to claim 1, when the temperature of the catalyst is low at the time of startup, the heating medium is heated and vaporized by the heating means, and transmitted to the catalyst. The heat medium is condensed by heat and gives latent heat of condensation to increase the temperature of the catalyst, and the catalyst can be maintained at a temperature within a set range. On the other hand, when the reaction proceeds and the temperature of the catalyst exceeds the set range and generates heat, the cooling medium liquefies the gaseous heat medium in the heat control tube, evaporates the heat medium close to the heat generation area of the reaction vessel, and vaporizes latent heat. Can cool the catalyst in the heat generating region and maintain the catalyst at a temperature within the set range.
Therefore, even if the heat is generated locally or the heat generation area changes due to a change in the power generation load, the heat medium near the heat generation area evaporates, and the catalyst in the heat generation area is cooled by the latent heat of vaporization. The heat medium moves freely in the control pipe, and the required amount of heat medium naturally gathers in the heat generation area, which can respond well to local heat generation and changes in the heat generation area due to changes in power generation load, and thermal runaway Can be avoided.
In addition, since the temperature of the catalyst in the reaction vessel is controlled depending on whether the heat medium in the heat control tube is vaporized or liquefied, a heating unit is provided in the lower part of the heat control tube and a cooling unit is provided in the upper part. It is only necessary to control the heating means and the cooling means, and it is not necessary to provide a heat transfer member over the entire reaction vessel, and the configuration can be simplified and the control reliability can be improved.

本発明に係る実施例1のCO除去装置の概略構成を示す全体概略断面図である。1 is an overall schematic cross-sectional view showing a schematic configuration of a CO removing apparatus according to Embodiment 1 of the present invention. 本発明に係る実施例2のCO除去装置の概略構成を示す全体概略断面図である。It is a whole schematic sectional drawing which shows schematic structure of the CO removal apparatus of Example 2 which concerns on this invention. 本発明に係る実施例3のCO除去装置の概略構成を示す全体概略断面図である。It is a whole schematic sectional drawing which shows schematic structure of the CO removal apparatus of Example 3 which concerns on this invention. 本発明に係る実施例4の燃料改質システムの断面図である。It is sectional drawing of the fuel reforming system of Example 4 which concerns on this invention.

次に、本発明の実施例を図面に基づいて詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る実施例1のCO除去装置の概略構成を示す全体概略断面図であり、触媒を充填した反応容器1の下部に、炭化水素、メタノールなどの原燃料を改質して得られる水素を主成分とする改質ガスを供給する改質ガス供給管2が設けられ、一方、反応容器1の上部に、CO除去ガスを取出すCO除去ガス取出管3が設けられ、改質ガス中のCOを触媒により水素と反応させることによりメタン化してCO濃度を低減するCO除去装置が構成されている。   FIG. 1 is an overall schematic cross-sectional view showing a schematic configuration of a CO removing apparatus according to a first embodiment of the present invention, in which raw fuels such as hydrocarbons and methanol are reformed in a lower part of a reaction vessel 1 filled with a catalyst. A reformed gas supply pipe 2 for supplying a reformed gas containing hydrogen as a main component is provided. On the other hand, a CO removal gas extraction pipe 3 for taking out the CO removal gas is provided at the upper part of the reaction vessel 1. A CO removal device is configured to reduce CO concentration by methanation by reacting CO in a gas with hydrogen using a catalyst.

反応容器1を上下に貫通して、気液相変化する熱媒体を封入した熱制御管4が設けられ、反応容器内の触媒に熱媒体の熱を伝達するように構成されている。熱制御管4の下部には、起動時に熱媒体を加熱して熱媒体を気化するための加熱手段としての電気ヒータ5が付設されている。熱制御管4の上部には、放熱器6とその放熱器6に冷風を送る冷却ファン7とが設けられている。この放熱器6と冷却ファン7とによって、熱媒体を冷却して気体状の熱媒体を液化する冷却手段が構成されている。   A heat control pipe 4 penetrating the reaction vessel 1 up and down and enclosing a heat medium that changes in a gas-liquid phase is provided, and configured to transmit heat of the heat medium to a catalyst in the reaction vessel. An electric heater 5 is attached to the lower part of the heat control tube 4 as a heating means for heating the heat medium and vaporizing the heat medium at the time of activation. A heat radiator 6 and a cooling fan 7 that sends cold air to the heat radiator 6 are provided on the upper portion of the heat control pipe 4. The radiator 6 and the cooling fan 7 constitute cooling means for cooling the heat medium and liquefying the gaseous heat medium.

熱制御管4の下方側の下端から所定高さ上方箇所に第1の温度センサ8が設けられ、一方、熱制御管4の上方側の上端から所定高さ下方箇所に第2の温度センサ9が設けられ、熱制御管4内の熱媒体の温度を測定することで実質的に反応容器1内の触媒の温度を測定する触媒温度測定手段が構成されている。
第1および第2の温度センサ8,9に、触媒温度制御手段としてのコントローラ10が接続され、そのコントローラ10と電気ヒータ5および冷却ファン7が接続されている。
A first temperature sensor 8 is provided at a predetermined height above the lower end on the lower side of the heat control pipe 4, while a second temperature sensor 9 is provided at a position below the predetermined height from the upper end on the upper side of the heat control pipe 4. And a catalyst temperature measuring means for measuring the temperature of the catalyst in the reaction vessel 1 substantially by measuring the temperature of the heat medium in the heat control pipe 4 is configured.
A controller 10 as catalyst temperature control means is connected to the first and second temperature sensors 8 and 9, and the controller 10, the electric heater 5, and the cooling fan 7 are connected.

上記構成により、第1の温度センサ8で測定した温度が熱媒体の液相温度状態であるときには電気ヒータ5を作動することにより熱媒体を加熱して反応容器1内の触媒にその温度を高くするように伝熱し、一方、第2の温度センサ9で測定した温度が熱媒体の気相温度状態であるときには冷却ファン7を起動することにより熱媒体を冷却して反応容器1内の触媒にその温度を低くするように伝熱し、触媒の温度を設定範囲内に維持するようになっている。   With the above configuration, when the temperature measured by the first temperature sensor 8 is the liquid phase temperature state of the heating medium, the heating medium is heated by operating the electric heater 5 to increase the temperature of the catalyst in the reaction vessel 1. On the other hand, when the temperature measured by the second temperature sensor 9 is the gas phase temperature state of the heat medium, the heat medium is cooled by starting the cooling fan 7 to be used as the catalyst in the reaction vessel 1. Heat is transferred to lower the temperature, and the temperature of the catalyst is maintained within a set range.

図2は、本発明に係る実施例2のCO除去装置の概略構成を示す全体概略断面図であり、実施例1と異なるところは次の通りである。
すなわち、熱制御管21が、加熱専用熱制御管22と、冷却専用熱制御管23とに分担して設置されている。他の構成は実施例1と同じであり、同一図番を付してその説明は省略する。
FIG. 2 is an overall schematic cross-sectional view showing a schematic configuration of the CO removing apparatus according to the second embodiment of the present invention. The differences from the first embodiment are as follows.
That is, the heat control pipe 21 is installed in a shared manner between the heating-only heat control pipe 22 and the cooling-only heat control pipe 23. Other configurations are the same as those of the first embodiment, and the same reference numerals are given and description thereof is omitted.

この実施例2によれば、加熱専用熱制御管22および冷却専用熱制御管23それぞれ内に封入する熱媒体の圧力を変えることができるなど、加熱制御および冷却制御それぞれに適した構成のものを使用でき、簡単な構成でありながら制御の信頼性を一層向上できる。   According to the second embodiment, it is possible to change the pressure of the heat medium sealed in each of the heating-only heat control pipe 22 and the cooling-only heat control pipe 23. The reliability of control can be further improved while being usable and having a simple configuration.

図3は、本発明に係る実施例3のCO除去装置の概略構成を示す全体概略断面図であり、実施例1と異なるところは次の通りである。
すなわち、反応容器1に改質ガスを供給する改質ガス供給管2に、熱交換器としての凝縮器31とドレン排出器32とが設置され、かつ、反応容器1に供給される改質ガス中の水の露点を30〜60℃に調整するように構成されている。他の構成は実施例1と同じであり、同一図番を付してその説明は省略する。
FIG. 3 is an overall schematic cross-sectional view showing a schematic configuration of the CO removing apparatus according to the third embodiment of the present invention. The differences from the first embodiment are as follows.
That is, a reformer gas supplied to the reaction vessel 1 is provided with a condenser 31 and a drain discharger 32 as heat exchangers in the reformed gas supply pipe 2 that supplies the reformed gas to the reaction vessel 1. It is comprised so that the dew point of the inside water may be adjusted to 30-60 degreeC. Other configurations are the same as those of the first embodiment, and the same reference numerals are given and description thereof is omitted.

この実施例3によれば、反応容器1に供給される改質ガス中の共存水蒸気をドレン排出器32によって除去し、COメタン化反応(CO+3H=CH+HO)の逆行を抑えることができる。
また、水の露点を30℃〜60℃に調整するから冷却設備を大型化せずに済んで経済的であるとともにCO除去率を向上できる。
According to the third embodiment, the coexisting water vapor in the reformed gas supplied to the reaction vessel 1 is removed by the drain discharger 32, and the reverse of the CO methanation reaction (CO + 3H 2 = CH 4 + H 2 O) is suppressed. Can do.
Moreover, since the dew point of water is adjusted to 30 ° C. to 60 ° C., it is not necessary to increase the size of the cooling facility, which is economical and the CO removal rate can be improved.

図4は、本発明に係る実施例4の燃料改質システムの断面図であり、CO除去装置とCO変成器とを平板積層型に構成したものであり、次に詳述する。
すなわち、双空間具備容器で構成される水蒸気生成部41とそれを加熱する燃焼排ガス通流部42、第1の断熱材43、双空間具備容器で構成される燃焼反応部44と改質反応器45、単空間具備容器で構成される保温用改質ガス通流部46、第2の断熱材47、双空間具備容器で構成される被改質ガス通流部48と上流側改質ガス通流部49、第3の断熱材50、双空間具備容器で構成される脱硫器51と原燃料通流部52、双空間具備容器で構成される下流側改質ガス通流部53と第1のCO変成器54、双空間具備容器で構成される第2のCO変成器55と燃焼排ガス通流部42を経た低温の燃焼排ガスを流す燃焼排ガス通流部56、双空間具備容器で構成される第3のCO変成器57と第4のCO変成器58、第4の断熱材59、および、双空間具備容器の半分を利用した反応容器としてのCO選択酸化器60が積層されて燃料改質システムが構成されている。図中61は、
FIG. 4 is a cross-sectional view of a fuel reforming system according to a fourth embodiment of the present invention, in which a CO removing device and a CO transformer are configured in a flat plate stack type, which will be described in detail below.
That is, the water vapor generating part 41 composed of a double space equipped container, the combustion exhaust gas flow part 42 for heating it, the first heat insulating material 43, the combustion reaction part 44 composed of a double space equipped container, and a reforming reactor 45, the temperature-reforming reformed gas flow portion 46 constituted by a single space-equipped container, a second heat insulating material 47, a to-be-reformed gas flow portion 48 constituted by a double-spaced equipped vessel, and an upstream side reformed gas flow The flow part 49, the third heat insulating material 50, the desulfurizer 51 and raw fuel flow part 52 composed of a twin space equipped container, the downstream reformed gas flow part 53 composed of a double space equipped container and the first The CO converter 54, the second CO converter 55 composed of a double space equipped container, the combustion exhaust gas flow part 56 for flowing low-temperature combustion exhaust gas through the combustion exhaust gas flow part 42, and the double space equipped container The third CO transformer 57 and the fourth CO transformer 58, the fourth heat insulating material 59, Beauty, CO selective oxidizer 60 as a reaction vessel using a half of the bi-space equipped container is stacked fuel reformer system is configured. In the figure, 61 is

上記CO選択酸化器60に、上下に貫通するとともに図面上奥行き方向に数本並んで熱制御管4が設けられ、その熱制御管4の下部に電気ヒータ5が、そして上部に放熱器6がそれぞれ付設されている。   The CO selective oxidizer 60 is vertically penetrated and several heat control pipes 4 are arranged in the depth direction in the drawing, the electric heater 5 is provided below the heat control pipe 4, and the radiator 6 is provided above. Each is attached.

熱制御管4の下部で熱媒体を加熱する加熱手段としては、上述実施例のような電気ヒータ5に限らず、例えば、燃焼排気ガスによる熱交換手段や、通電により熱を発生する熱電変換素子などが適用できる。
また、熱制御管4の下部で熱媒体を冷却する冷却手段としては、上述実施例のような放熱器6による冷却構成に限らず、燃料電池冷却水による冷却水熱交換手段、燃料電池冷却用2次冷却水による2次冷却水熱交換手段、改質装置に供給する改質原燃料による改質原燃料熱交換手段、水蒸気改質用の水による改質水熱交換手段、燃料電池から排出される未反応燃料を燃焼させるために供給する空気による燃焼空気熱交換手段、部分燃焼と水蒸気改質を組み合わせた改質器で使用するために供給する触媒燃焼用空気による触媒燃焼用空気熱交換手段、改質装置の周囲空気への放熱による周囲空気熱交換手段などが適用できる。
The heating means for heating the heat medium at the lower part of the heat control pipe 4 is not limited to the electric heater 5 as in the above-described embodiment. For example, a heat exchange means using combustion exhaust gas, or a thermoelectric conversion element that generates heat when energized. Etc. are applicable.
Further, the cooling means for cooling the heat medium at the lower part of the heat control pipe 4 is not limited to the cooling configuration by the radiator 6 as in the above-described embodiment, but the cooling water heat exchange means by the fuel cell cooling water, for cooling the fuel cell Secondary cooling water heat exchanging means by secondary cooling water, reforming raw fuel heat exchanging means by reforming raw fuel supplied to reformer, reforming water heat exchanging means by water for steam reforming, discharged from fuel cell Combustion air heat exchange means by air supplied to burn the unreacted fuel to be burned, catalytic combustion air heat exchange by catalytic combustion air supplied for use in a reformer that combines partial combustion and steam reforming Means, ambient air heat exchange means by heat radiation to the ambient air of the reformer can be applied.

熱制御管4に封入する熱媒体としては、CO除去反応が進行する温度域に達すると、液相から気相に相変化するものであれば良く、水、電解質液、熱媒油(代替フロン)などが適用できる。   The heat medium sealed in the heat control tube 4 may be any heat medium that changes from the liquid phase to the gas phase when reaching the temperature range where the CO removal reaction proceeds. Water, electrolyte solution, heat transfer oil (alternative chlorofluorocarbon) ) Etc. are applicable.

上記実施例4では、CO選択酸化器60を備えた平板積層型の燃料改質システムを示したが、本発明のCO除去装置としては、COをメタン化反応あるいは選択酸化反応のいずれでCO濃度を低減するものでも良く、また、燃料改質システムとしては、いずれかのタイプのCO除去装置を備えるものであれば良い。   In the fourth embodiment, the flat plate stack type fuel reforming system provided with the CO selective oxidizer 60 is shown. However, as the CO removing apparatus of the present invention, the CO concentration is determined by either the methanation reaction or the selective oxidation reaction. In addition, any fuel reforming system may be used as long as it has any type of CO removing device.

1…反応容器
2…改質ガス供給管
4…熱制御管
5…電気ヒータ(加熱手段)
6…放熱器(冷却手段)
7…冷却ファン(冷却手段)
8…第1の温度センサ(触媒温度測定手段)
9…第2の温度センサ(触媒温度測定手段)
10…コントローラ(触媒温度制御手段)
21…熱制御管
22…加熱専用熱制御管
23…冷却専用熱制御管
54…第1のCO変成器
55…第2のCO変成器
57…第3のCO変成器
58…第4のCO変成器
60…CO選択酸化器(反応容器)
DESCRIPTION OF SYMBOLS 1 ... Reaction container 2 ... Reformed gas supply pipe 4 ... Thermal control pipe 5 ... Electric heater (heating means)
6 ... Radiator (cooling means)
7. Cooling fan (cooling means)
8: First temperature sensor (catalyst temperature measuring means)
9: Second temperature sensor (catalyst temperature measuring means)
10 ... Controller (Catalyst temperature control means)
DESCRIPTION OF SYMBOLS 21 ... Thermal control pipe 22 ... Heating exclusive control pipe 23 ... Cooling exclusive thermal control pipe 54 ... 1st CO converter 55 ... 2nd CO converter 57 ... 3rd CO converter 58 ... 4th CO conversion 60 ... CO selective oxidizer (reaction vessel)

Claims (7)

原燃料を改質して得られる水素を主成分とする改質ガス中のCOを、反応容器内に充填した触媒により反応させてCO濃度を低減するCO除去装置において、
管内で相変化する熱媒体を封入し前記反応容器内の触媒に熱媒体の熱を伝達するように設けた熱制御管と、
前記熱制御管内の熱媒体を加熱して熱媒体を気化する加熱手段と、
前記熱制御管内の熱媒体を冷却して気体状の熱媒体を液化する冷却手段と、
前記触媒の温度を測定する触媒温度測定手段と、
前記触媒温度測定手段で測定された前記触媒の温度に基づいて、前記触媒の温度が設定範囲内に維持されるように前記加熱手段または前記冷却手段の作動を制御する触媒温度制御手段と、
を備えたことを特徴とするCO除去装置。
In a CO removal apparatus for reducing CO concentration by reacting CO in a reformed gas mainly composed of hydrogen obtained by reforming raw fuel with a catalyst filled in a reaction vessel,
A heat control pipe provided to enclose a heat medium that changes phase in the pipe and to transmit heat of the heat medium to the catalyst in the reaction vessel;
Heating means for heating the heat medium in the heat control pipe to vaporize the heat medium;
Cooling means for cooling the heat medium in the heat control tube to liquefy the gaseous heat medium;
A catalyst temperature measuring means for measuring the temperature of the catalyst;
Catalyst temperature control means for controlling the operation of the heating means or the cooling means so that the temperature of the catalyst is maintained within a set range based on the temperature of the catalyst measured by the catalyst temperature measuring means;
A CO removal apparatus comprising:
前記加熱手段が、電気ヒータ、燃焼排気ガスによる熱交換手段、通電により熱を発生する熱電変換素子のうちの少なくともひとつを用いるものであり、
前記冷却手段が、燃料電池冷却水による冷却水熱交換手段、燃料電池冷却用2次冷却水による2次冷却水熱交換手段、改質装置に供給する改質原燃料による改質原燃料熱交換手段、水蒸気改質用の水による改質水熱交換手段、燃料電池から排出される未反応燃料を燃焼させる空気による燃焼空気熱交換手段、部分燃焼と水蒸気改質を組み合わせた改質器で使用される触媒燃焼用空気による触媒燃焼用空気熱交換手段、改質装置の周囲空気への放熱による周囲空気熱交換手段のうちの少なくともひとつを用いるものであることを特徴とする請求項1に記載のCO除去装置。
The heating means uses at least one of an electric heater, a heat exchange means by combustion exhaust gas, and a thermoelectric conversion element that generates heat by energization,
The cooling means is a cooling water heat exchange means using fuel cell cooling water, a secondary cooling water heat exchange means using fuel cell cooling secondary cooling water, and a reforming raw fuel heat exchange using reforming raw fuel supplied to the reformer. Used in reforming water heat exchange means using water for steam reforming, combustion air heat exchange means using air for burning unreacted fuel discharged from the fuel cell, and reformer combining partial combustion and steam reforming The at least one of the catalytic combustion air heat exchange means by the catalytic combustion air and the ambient air heat exchange means by heat radiation to the ambient air of the reformer is used. CO removal device.
前記熱媒体が、CO除去反応が進行する温度域に達すると、液相から気相に相変化する水、電解質液、熱媒油のうちの少なくともひとつから選ばれるものであることを特徴とする請求項1または2に記載のCO除去装置。 The heat medium is selected from at least one of water, an electrolyte solution, and a heat transfer oil that changes phase from a liquid phase to a gas phase when reaching a temperature range in which a CO removal reaction proceeds. The CO removal apparatus according to claim 1 or 2. 前記熱制御管を、加熱専用熱制御管と、冷却専用熱制御管とに分担して設置してあることを特徴とする請求項1から3の何れかに記載のCO除去装置。 The CO removal apparatus according to any one of claims 1 to 3, wherein the heat control pipe is divided into a heat dedicated heat control pipe and a cooling dedicated heat control pipe. 前記反応容器に改質ガスを供給する改質ガス供給管に熱交換器とドレン排出器を設置し、前記反応容器に供給される改質ガス中の水の露点を30〜60℃に調整することを特徴とする請求項1から4の何れかに記載のCO除去装置。 A heat exchanger and a drain discharger are installed in the reformed gas supply pipe for supplying the reformed gas to the reaction vessel, and the dew point of water in the reformed gas supplied to the reaction vessel is adjusted to 30 to 60 ° C. The CO removal apparatus according to any one of claims 1 to 4, wherein 請求項1から5の何れかに記載のCO除去装置と、改質反応済みの燃料ガス中のCOを水素に変換するCO変成器とを平板積層型に構成してあることを特徴とする燃料改質システム。 6. A fuel comprising the CO removing device according to any one of claims 1 to 5 and a CO converter for converting CO in the reformed fuel gas into hydrogen in a flat plate stack type. Reforming system. 請求項1から5の何れかに記載のCO除去装置を備えて構成してあることを特徴とする燃料改質システム。 A fuel reforming system comprising the CO removing device according to any one of claims 1 to 5.
JP2011069855A 2011-03-28 2011-03-28 Co removing device and fuel reforming system provided with the same Withdrawn JP2012201575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011069855A JP2012201575A (en) 2011-03-28 2011-03-28 Co removing device and fuel reforming system provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069855A JP2012201575A (en) 2011-03-28 2011-03-28 Co removing device and fuel reforming system provided with the same

Publications (1)

Publication Number Publication Date
JP2012201575A true JP2012201575A (en) 2012-10-22

Family

ID=47182930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069855A Withdrawn JP2012201575A (en) 2011-03-28 2011-03-28 Co removing device and fuel reforming system provided with the same

Country Status (1)

Country Link
JP (1) JP2012201575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417300A (en) * 2019-08-28 2019-11-05 四川荣创新能动力系统有限公司 Tramcar afterheat generating system, fuel cell tramcar and working method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417300A (en) * 2019-08-28 2019-11-05 四川荣创新能动力系统有限公司 Tramcar afterheat generating system, fuel cell tramcar and working method

Similar Documents

Publication Publication Date Title
JP2004501759A (en) System for improved hydrogen generation by steam reforming of hydrocarbons and integrated chemical reactor for producing hydrogen from hydrocarbons
JP5998043B2 (en) Engine combined system
JP5020002B2 (en) Hydrogen generator and fuel cell system
JP6541729B2 (en) Fuel reformer
JP2008303128A (en) Fuel reforming apparatus
JP2005100821A (en) High temperature type fuel cell system
RU2443040C2 (en) Fuel elements system
JP5103236B2 (en) Reformer
JP2004006093A (en) Fuel treating equipment and fuel cell power generation system
JP5087445B2 (en) Hydrogen production apparatus and method for stopping the same
JP6706742B2 (en) Fuel cell system
JP2012201575A (en) Co removing device and fuel reforming system provided with the same
WO2011081094A1 (en) Reforming unit and fuel cell system
JP5618451B2 (en) Liquid fuel processing device for fuel cell power generation system
JP5078426B2 (en) Carbon monoxide remover and hydrogen production equipment
JP2018195377A (en) Fuel battery and composite power generation system
JP2007254227A (en) Reforming apparatus
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP5041666B2 (en) Fuel cell power generation system
JPH0881202A (en) Methanol reformer for fuel cell
JP5140361B2 (en) Fuel cell reformer
JP2008204782A (en) Solid oxide fuel cell system
JP2012201574A (en) Co removing device and fuel reforming system provided with the same
JP5331596B2 (en) Fuel cell system
JP2004018284A (en) Catalyst apparatus and fuel cell system using this

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603