JP2012201510A - Method for producing manganese carbonate - Google Patents
Method for producing manganese carbonate Download PDFInfo
- Publication number
- JP2012201510A JP2012201510A JP2011064465A JP2011064465A JP2012201510A JP 2012201510 A JP2012201510 A JP 2012201510A JP 2011064465 A JP2011064465 A JP 2011064465A JP 2011064465 A JP2011064465 A JP 2011064465A JP 2012201510 A JP2012201510 A JP 2012201510A
- Authority
- JP
- Japan
- Prior art keywords
- manganese
- washing
- manganese carbonate
- hydroxide
- carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、炭酸マンガンの製造方法に関し、特に、マンガン溶液からの炭酸マンガンの製造方法に関する。 The present invention relates to a method for producing manganese carbonate, and more particularly to a method for producing manganese carbonate from a manganese solution.
近年、電子機器やリチウムイオン二次電池のような電池材料に加えて合金その他様々な材料においてマンガンの使用が盛んに行われてきている。これらの機器・電池・材料等においては、マンガンだけでなく他の金属成分が組み合されて使用されている。このため、機器・電池等に使用されていたマンガンをリサイクルするにあたっては、これらの金属成分からマンガンのみを分離することが必要である。 In recent years, manganese has been actively used in alloys and other various materials in addition to battery materials such as electronic devices and lithium ion secondary batteries. In these devices, batteries, materials, etc., not only manganese but also other metal components are used in combination. For this reason, when recycling manganese used in equipment and batteries, it is necessary to separate only manganese from these metal components.
マンガンの分離のための手法の一つとして酸性抽出剤を用いる方法があり、特開2008−231522号公報(特許文献1)に示されているように一般的に用いられている。しかしながら、酸性抽出剤を使用すると、抽出剤から水相に金属成分を取り出すために酸と接触させる必要がある。抽出剤に含まれるマンガンの多くを水相に移すためには、抽出剤に接触する水相を強酸性に変えておかなければならない。このように抽出工程を通じて得られたマンガン水溶液は強酸性である。 As one of the methods for separating manganese, there is a method using an acidic extractant, which is generally used as disclosed in Japanese Patent Application Laid-Open No. 2008-231522 (Patent Document 1). However, when an acidic extractant is used, it must be contacted with an acid to extract the metal component from the extractant into the aqueous phase. In order to transfer most of the manganese contained in the extractant to the aqueous phase, the aqueous phase in contact with the extractant must be changed to strongly acidic. Thus, the manganese aqueous solution obtained through the extraction process is strongly acidic.
このようにして得られた酸性マンガン溶液から酸化マンガンか炭酸マンガンを得ようとするためにpH調整を実施する場合、例えば苛性ソーダや苛性カリのような水酸化物を用いると水相のナトリウムやカリウムイオン濃度が上昇し、目的の炭酸マンガン中に不純物が混入しやすくなると考えるのが一般的である。そこで考えられた手法が、特開2011−016668号公報(特許文献2)に示されている中和剤としてアンモニアを使用する方法である。しかしながら、アンモニアを使用するとその処理のために製造コストの増加を引き起こす。そこで、より安価に高純度なマンガン化合物を得る手法が求められてきた。 When pH adjustment is performed in order to obtain manganese oxide or manganese carbonate from the acidic manganese solution thus obtained, for example, when hydroxide such as caustic soda or caustic potash is used, aqueous phase sodium or potassium ions Generally, it is considered that the concentration is increased and impurities are easily mixed into the target manganese carbonate. The method considered there is a method of using ammonia as a neutralizing agent disclosed in JP2011-016668A (Patent Document 2). However, the use of ammonia causes an increase in manufacturing costs due to its treatment. Therefore, a method for obtaining a high-purity manganese compound at a lower cost has been demanded.
マンガン溶液から炭酸マンガンを安価に得ようとする場合、pH調整剤・炭酸供給剤として炭酸ナトリウムを用いて、炭酸マンガンの沈殿を生成させろ過により分離することが最も簡単な方法である。次に考えられる方法が、炭酸化反応が起こるpH領域までpHを上げる目的で苛性ソーダや苛性カリを用い、その後に炭酸塩により炭酸化する方法も考えられる。しかしながら、これらの方法では炭酸化時に液中に含まれるナトリウム成分が炭酸マンガンに混入する恐れがある。 In order to obtain manganese carbonate from a manganese solution at a low cost, the simplest method is to form a precipitate of manganese carbonate using sodium carbonate as a pH adjuster / carbonic acid supply agent and to separate it by filtration. As a next conceivable method, a method of using caustic soda or caustic potash for the purpose of raising the pH to the pH range where the carbonation reaction occurs, and then carbonating with carbonate is also conceivable. However, in these methods, there is a possibility that a sodium component contained in the solution is mixed with manganese carbonate during carbonation.
特に前述のように抽出工程から得られた逆抽出液のように酸濃度が高い場合は、pH調整によって溶液に多くのナトリウムが増えてしまうため、さらにナトリウム分が炭酸マンガン中に混入しやすい条件になってしまう。こういったナトリウムの混入を取り除くために多量の洗浄水を使用すると、炭酸マンガンをろ液に流出させてしまうし、洗浄を続けても炭酸マンガンの内部に含まれているナトリウム分は減少しない。 Especially when the acid concentration is high as in the back extract obtained from the extraction process as described above, the amount of sodium in the solution increases due to pH adjustment. Become. If a large amount of washing water is used to remove such contamination of sodium, manganese carbonate flows out into the filtrate, and even if washing is continued, the sodium content contained in the manganese carbonate is not reduced.
そこで、本発明は、ナトリウム等の不純物の混入を抑制でき、高純度の炭酸マンガンをより簡単且つ安価に得ることが可能な炭酸マンガンの製造方法を提供する。 Therefore, the present invention provides a method for producing manganese carbonate that can suppress the mixing of impurities such as sodium and can obtain high-purity manganese carbonate more easily and inexpensively.
上記課題を解決するために本発明者が鋭意検討した結果、マンガン溶液のpHを適正な範囲に調整して水酸化マンガンを生成させ、洗浄後、得られた水酸化マンガンに対して炭酸ガスを吹き込むことで、マンガン溶液中のナトリウム濃度を有意に低下させ、高純度の炭酸マンガンを簡単且つ安価に得ることができることを見いだした。 As a result of intensive studies by the inventor to solve the above problems, the pH of the manganese solution is adjusted to an appropriate range to produce manganese hydroxide, and after washing, carbon dioxide gas is added to the obtained manganese hydroxide. It was found that by blowing, the concentration of sodium in the manganese solution was significantly reduced, and high-purity manganese carbonate could be obtained easily and inexpensively.
かかる知見を基礎として完成した本発明は一側面において、マンガン溶液にアルカリ剤を添加してpH調整し、水酸化マンガンを作製する水酸化工程と、得られた水酸化マンガンを純水中で洗浄する洗浄工程と、洗浄後の水酸化マンガンに炭酸ガスを吹き込む炭酸化工程とを備える炭酸マンガンの製造方法である。 In one aspect, the present invention completed based on such knowledge, in one aspect, an alkaline agent is added to the manganese solution to adjust the pH to produce manganese hydroxide, and the obtained manganese hydroxide is washed in pure water. And a carbonation step of blowing carbon dioxide into the washed manganese hydroxide.
本発明の炭酸マンガンの製造方法は一実施態様において、水酸化工程が、マンガン溶液のpHを9以上に調整することを含む。 In one embodiment of the method for producing manganese carbonate of the present invention, the hydroxylation step includes adjusting the pH of the manganese solution to 9 or more.
本発明の炭酸マンガンの製造方法は別の一実施態様において、洗浄工程は、洗浄後の水酸化マンガン中のナトリウム濃度が100massppm以下となるように洗浄することを含む。 In another embodiment of the method for producing manganese carbonate of the present invention, the washing step includes washing so that the sodium concentration in the manganese hydroxide after washing becomes 100 massppm or less.
本発明の炭酸マンガンの製造方法は別の一実施態様において、アルカリ剤が水酸化ナトリウムである。 In another embodiment of the method for producing manganese carbonate of the present invention, the alkaline agent is sodium hydroxide.
本発明によれば、ナトリウム等の不純物の混入を抑制でき、高純度の炭酸マンガンをより簡単且つ安価に得ることが可能な炭酸マンガンの製造方法が提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of manganese carbonate which can suppress mixing of impurities, such as sodium, and can obtain highly purified manganese carbonate more simply and cheaply can be provided.
本発明の実施の形態に係る炭酸マンガンの製造方法において、原料とするマンガン溶液のマンガン濃度は任意のものを使用できる。始めにマンガン溶液にアルカリ剤を加え、液中に水酸化物でマンガンが沈殿するまでpHを上げる。pH調整に使用されるアルカリ剤としては、苛性ソーダ、苛性カリ等が利用可能である。水酸化マンガンを高効率で得るために、pH調整は、マンガン溶液のpHを9以上、好ましくはpHを9.0〜9.5に調整するのが望ましい。 In the method for producing manganese carbonate according to the embodiment of the present invention, the manganese concentration of the manganese solution used as a raw material can be any. First, an alkaline agent is added to the manganese solution, and the pH is raised until manganese precipitates in the solution with hydroxide. Caustic soda, caustic potash, etc. can be used as the alkaline agent used for pH adjustment. In order to obtain manganese hydroxide with high efficiency, it is desirable to adjust the pH of the manganese solution to 9 or more, preferably to 9.0 to 9.5.
水酸化マンガンを生成させた後は、ろ過などにより、得られた水酸化マンガンと液側中に溶解するナトリウム分とを固液分離する。固液分離は通常はろ過で行う。さらに純水による洗浄を行い、ナトリウム分を取り除く操作を繰り返す。洗浄回数に特に制限はないが、水酸化マンガンを含むスラリー中のナトリウム濃度を100質量ppm以下に低減するように洗浄することが好ましい。これにより、最終的に得られる炭酸マンガンの不純物(ナトリウム)濃度を低減でき、高純度の炭酸マンガンが得られる。以下に制限されないが、洗浄工程は、例えば4回以上洗浄を繰り返すことにより、水酸化マンガンを含むスラリー中のナトリウム濃度を100質量ppm以下に低減できる。なお、マンガンの酸化を抑えたい場合は、デカンテーションを利用して空気との接触による酸化を防ぐことが好ましい。 After producing the manganese hydroxide, the obtained manganese hydroxide and the sodium content dissolved in the liquid side are subjected to solid-liquid separation by filtration or the like. Solid-liquid separation is usually performed by filtration. Repeat the washing with pure water to remove sodium. Although there is no restriction | limiting in particular in the frequency | count of washing | cleaning, It is preferable to wash | clean so that the sodium concentration in the slurry containing manganese hydroxide may be reduced to 100 mass ppm or less. Thereby, the impurity (sodium) density | concentration of manganese carbonate finally obtained can be reduced and highly purified manganese carbonate is obtained. Although it does not restrict | limit below, the washing | cleaning process can reduce the sodium concentration in the slurry containing manganese hydroxide to 100 mass ppm or less by repeating washing | cleaning 4 times or more, for example. In addition, when it is desired to suppress the oxidation of manganese, it is preferable to prevent oxidation due to contact with air using decantation.
洗浄後の水酸化マンガンのスラリーに炭酸ガスを吹き込み、炭酸マンガンを生成させる。炭酸ガスを使用することにより、従来の製造工程に比べてナトリウム等の不純物の混入を抑制でき、より簡単且つ安価に高濃度の炭酸マンガンを製造することができる。 Carbon dioxide gas is blown into the washed manganese hydroxide slurry to produce manganese carbonate. By using carbon dioxide gas, contamination of impurities such as sodium can be suppressed as compared with the conventional production process, and high-concentration manganese carbonate can be produced more easily and inexpensively.
炭酸ガスの吹き込み量としては、水酸化マンガン水溶液1〜100g/L、1Lに対して炭酸ガス(二酸化炭素)10〜1000ml/分、好ましくは50〜200ml/分で1〜1200分間とすることができる。反応後、ろ過等により得られた炭酸マンガンを固液分離し、得られた炭酸マンガンを乾燥させることにより、炭酸マンガンが製造できる。 The amount of carbon dioxide blown is from 1 to 100 g / L of a manganese hydroxide aqueous solution, 10 to 1000 ml / min of carbon dioxide (carbon dioxide) per 1 L, and preferably from 1 to 1200 min at 50 to 200 ml / min. it can. After the reaction, manganese carbonate obtained by filtration or the like is subjected to solid-liquid separation, and the resulting manganese carbonate can be dried to produce manganese carbonate.
このように本発明の実施の形態に係るマンガンの製造方法によれば、以下の効果を得られる。
(1)ナトリウム濃度の低い炭酸マンガンを容易に得られる。
(2)抽出後液からのマンガンの回収に当たり、酸性が強い液中から炭酸マンガンの生成においてもナトリウム等の不純物が少ない炭酸マンガンを容易に得られる。
Thus, according to the method for producing manganese according to the embodiment of the present invention, the following effects can be obtained.
(1) Manganese carbonate having a low sodium concentration can be easily obtained.
(2) When recovering manganese from the solution after extraction, manganese carbonate with few impurities such as sodium can be easily obtained from the highly acidic solution in the production of manganese carbonate.
以下に本発明の実施例を示すが、以下の実施例に本発明が限定されることを意図するものではない。 Examples of the present invention are shown below, but the present invention is not intended to be limited to the following examples.
(実施例1)
図1に示す処理フローに沿って、炭酸マンガンを製造した。まず、マンガン水溶液(pH4.8、マンガン濃度50g/L、200ml)に、25%−NaOHを45ml添加した。このマンガン液スラリーをろ過により固液分離した。ろ液のpHは9、Na濃度は24.26g/Lであった。ろ別したMnスラリーは純水中にリパルプして、Naを洗浄した。洗浄操作は4回繰り返した。洗浄液のNa濃度は1回目から順に12.35g/L、0.109g/L、0.017g/L、0.008g/Lであった。4回洗浄後のスラリーを一部乾燥して得られた粉末のNa品位を測定したところ96massppmであった。
Example 1
Manganese carbonate was produced along the processing flow shown in FIG. First, 45 ml of 25% NaOH was added to an aqueous manganese solution (pH 4.8, manganese concentration 50 g / L, 200 ml). The manganese liquid slurry was separated into solid and liquid by filtration. The pH of the filtrate was 9, and the Na concentration was 24.26 g / L. The filtered Mn slurry was repulped into pure water to wash Na. The washing operation was repeated 4 times. The Na concentration of the cleaning solution was 12.35 g / L, 0.109 g / L, 0.017 g / L, and 0.008 g / L in order from the first time. When the Na quality of the powder obtained by partially drying the slurry after washing four times was measured, it was 96 mass ppm.
4回洗浄後のスラリーを再度純水中にリパルプして、二酸化炭素を100ml/分の条件で120分間吹き込んだ。二酸化炭素吹込み後に殿物をろ過して殿物を液相より分離した。殿物は、乾燥後、XRD分析を行ったところ、殿物は主に炭酸マンガンであることが分かった。得られた沈殿物のXRDパターンを図2に示す。
炭酸マンガン中のナトリウム不純物品位を測定したところ70massppmであった。
The slurry after washing four times was repulped into pure water again, and carbon dioxide was blown in for 120 minutes under the condition of 100 ml / min. After blowing carbon dioxide, the residue was filtered to separate the residue from the liquid phase. When the porridge was dried and subjected to XRD analysis, it was found that the porridge was mainly manganese carbonate. The XRD pattern of the obtained precipitate is shown in FIG.
It was 70 massppm when the sodium impurity quality in manganese carbonate was measured.
(比較例1)
マンガン水溶液(pH6、マンガン濃度35g/L)を1L用意し、100g/L−炭酸ソーダ溶液を1L加えた。添加後のpHは10.5であった。このマンガン液スラリーをろ過により固液分離した。次に純水中にリパルプすることで、Naの洗浄を行った。洗浄操作を6回繰り返し、洗浄液のNa濃度を測定したところ0.005mg/Lであった。
炭酸マンガン中のナトリウム不純物濃度を測定したところ3500massppmであった。
(Comparative Example 1)
1 L of manganese aqueous solution (pH 6, manganese concentration 35 g / L) was prepared, and 1 L of 100 g / L-sodium carbonate solution was added. The pH after the addition was 10.5. The manganese liquid slurry was separated into solid and liquid by filtration. Next, Na was washed by repulping in pure water. The washing operation was repeated 6 times, and the Na concentration of the washing solution was measured and found to be 0.005 mg / L.
When the sodium impurity concentration in manganese carbonate was measured, it was 3500 massppm.
Claims (4)
得られた水酸化マンガンを純水中で洗浄する洗浄工程と、
洗浄後の水酸化マンガンに炭酸ガスを吹き込む炭酸化工程と
を備える炭酸マンガンの製造方法。 A hydroxylation step of adjusting the pH by adding an alkali agent to the manganese solution to produce manganese hydroxide;
A washing step of washing the obtained manganese hydroxide in pure water;
A method for producing manganese carbonate comprising: a carbonation step of blowing carbon dioxide into manganese hydroxide after washing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011064465A JP2012201510A (en) | 2011-03-23 | 2011-03-23 | Method for producing manganese carbonate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011064465A JP2012201510A (en) | 2011-03-23 | 2011-03-23 | Method for producing manganese carbonate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012201510A true JP2012201510A (en) | 2012-10-22 |
Family
ID=47182876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011064465A Withdrawn JP2012201510A (en) | 2011-03-23 | 2011-03-23 | Method for producing manganese carbonate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012201510A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101541616B1 (en) | 2013-12-26 | 2015-08-04 | 주식회사 포스코 | Method for removing magnesium impurities in a manganese compound manufacturing process |
KR101568023B1 (en) | 2013-12-26 | 2015-11-11 | 주식회사 포스코 | Method for removing magnesium during collecting process of manganese compound |
-
2011
- 2011-03-23 JP JP2011064465A patent/JP2012201510A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101541616B1 (en) | 2013-12-26 | 2015-08-04 | 주식회사 포스코 | Method for removing magnesium impurities in a manganese compound manufacturing process |
KR101568023B1 (en) | 2013-12-26 | 2015-11-11 | 주식회사 포스코 | Method for removing magnesium during collecting process of manganese compound |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10056656B2 (en) | Manufacturing method of high purity lithium phosphate from the waste liquid of the exhausted lithium-ion battery | |
JP5791917B2 (en) | Lithium recovery method | |
KR101344158B1 (en) | Method for preparing manganese sulfate monohydrate | |
WO2013118300A1 (en) | Method for recovering lithium | |
WO2010131664A1 (en) | High purity lithium carbonate and method for producing same | |
JP2011168461A (en) | Method for producing high-concentration lithium liquid from lithium-containing liquid and method for producing lithium carbonate | |
JP2008279552A (en) | Method of recovering rare earth element | |
JP2011011961A (en) | Preparation method of lithium carbonate from lithium-ion secondary battery recovered material | |
JP2013095951A (en) | Method for recovering lithium | |
KR102707582B1 (en) | Method for producing lithium hydroxide | |
JP6986997B2 (en) | Lithium carbonate manufacturing method and lithium carbonate | |
WO2015057189A1 (en) | Recovery of high purity lead oxide from lead acid battery paste | |
JP5179095B2 (en) | Method for producing high-purity aluminum hydroxide and high-purity aluminum hydroxide obtained by the method | |
JP6143417B2 (en) | Method for producing tungsten | |
WO2011120273A1 (en) | Method for preparing manganese sulfate monohydrate | |
KR101266437B1 (en) | Method of preparing manganese sulfate with high purity | |
CN110407237B (en) | Method for jointly preparing electric vehicle-grade lithium carbonate and lithium hydroxide monohydrate | |
CN102167369B (en) | Method for reducing content of NaCl in LiCl | |
JP2012201510A (en) | Method for producing manganese carbonate | |
JP2004300490A (en) | Method of recovering cobalt | |
CN103572317A (en) | Method for refining electrolytic manganese dioxide product | |
CN103880630A (en) | Method for preparing high-purity lead acetate and nanometer lead powder from waste lead paste | |
JP2012201540A (en) | Method for producing manganese carbonate | |
CN101792862B (en) | Method for recovering metal through purified flue gas of scrap nickel-hydrogen battery | |
JP5106488B2 (en) | Manufacturing method of manganese carbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140603 |