JP2012197644A - Heat insulator - Google Patents

Heat insulator Download PDF

Info

Publication number
JP2012197644A
JP2012197644A JP2011063756A JP2011063756A JP2012197644A JP 2012197644 A JP2012197644 A JP 2012197644A JP 2011063756 A JP2011063756 A JP 2011063756A JP 2011063756 A JP2011063756 A JP 2011063756A JP 2012197644 A JP2012197644 A JP 2012197644A
Authority
JP
Japan
Prior art keywords
heat insulating
nonwoven fabric
thickness
ultrafine fiber
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011063756A
Other languages
Japanese (ja)
Inventor
Naoichi Sasaki
直一 佐々木
Hideji Tomita
秀司 冨田
Yasuo Imashiro
靖雄 今城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc filed Critical Nisshinbo Holdings Inc
Priority to JP2011063756A priority Critical patent/JP2012197644A/en
Publication of JP2012197644A publication Critical patent/JP2012197644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulator which is easily manufactured and adaptable to variety of applications, having a heat insulation layer achieving sufficient heat insulation performance even with a thin thickness.SOLUTION: A heat insulator includes a heat insulation layer and air flow blocking layers disposed on both sides thereof. The heat insulator is formed from organic ultrafine fiber nonwoven fabric having a thickness of larger than 50 μm. The organic ultrafine fiber has a diameter of 1 nm to 10 μm. The heat insulation layer has a thickness of 100 to 500 μm. The nonwoven fabric has a porosity of 65 to 95%. The organic ultrafine fiber nonwoven fabric is manufactured by electrolytic spinning method. The air flow blocking layer is formed of a resin layer having a thickness equal to or less than 50% of the total thickness of the heat insulator.

Description

本発明は、断熱材に関する。   The present invention relates to a heat insulating material.

従来、断熱材の構成材料としては、発泡ウレタン,発泡スチロール等の有機材料や、グラスウール等の無機材料が一般に用いられている。
これらの材料は、空気などの気体を含むことで構成材料より低い熱伝導率を有する断熱材として作用する。
Conventionally, organic materials such as urethane foam and styrene foam, and inorganic materials such as glass wool are generally used as the constituent material of the heat insulating material.
These materials act as a heat insulating material having a thermal conductivity lower than that of the constituent material by containing a gas such as air.

これらの材料では、構成されるセルや繊維等が熱伝導パス(ヒートブリッジ)となることが知られているが、特に、薄くした場合、この影響が顕著となって十分な断熱性能を発揮させることは難しかった。
また、空気だけの層や真空層を断熱層とした薄膜断熱材を作ろうとしても、その形状を保持することが難しく、また空気断熱層の場合は対流による伝熱が起こるという問題もあった。
In these materials, it is known that the cells, fibers, and the like that are formed serve as heat conduction paths (heat bridges). In particular, when the thickness is reduced, this effect becomes significant and sufficient heat insulating performance is exhibited. That was difficult.
In addition, it is difficult to maintain the shape of a thin-film heat insulating material that uses an air-only layer or a vacuum layer as a heat insulating layer, and heat transfer by convection occurs in the case of an air heat insulating layer. .

この点、特許文献1には、厚み3mmの薄型の断熱シートが開示されている。
しかし、この断熱シートは何層にも積層された複雑な構造となっているため、その製造工程が煩雑であることや、アルミ箔を必須としていることから、その用途に制限を受けるという問題があった。
In this regard, Patent Document 1 discloses a thin heat insulating sheet having a thickness of 3 mm.
However, since this heat insulating sheet has a complicated structure in which multiple layers are laminated, the manufacturing process is complicated, and since aluminum foil is essential, there is a problem that the use is limited. there were.

特表2006−527111号公報JP-T-2006-527111

本発明は、このような事情に鑑みてなされたものであり、簡便に製造することができ、広範な用途に適用できるとともに、薄膜化した場合でも十分な断熱性能を発揮する断熱層を有する断熱材を提供することを目的とする。   The present invention has been made in view of such circumstances, and can be easily manufactured, can be applied to a wide range of uses, and has a heat insulating layer having a heat insulating layer that exhibits sufficient heat insulating performance even when thinned. The purpose is to provide materials.

本発明者は、上記目的を達成するために鋭意検討を重ねた結果、所定の厚みを有する有機極細繊維不織布を断熱層として用いることで、薄膜化した場合でも十分な断熱性能を発揮する断熱材が得られることを見出し、本発明を完成させた。   As a result of intensive studies in order to achieve the above object, the present inventor uses an organic ultrafine fiber nonwoven fabric having a predetermined thickness as a heat insulating layer, so that a heat insulating material that exhibits sufficient heat insulating performance even when thinned. And the present invention was completed.

すなわち、本発明は、
1. 厚み50μm超の有機極細繊維不織布からなる断熱層を備えることを特徴とする断熱材、
2. 前記断熱層と、その両側に配置された気流遮断層とを有する1の断熱材、
3. 前記有機極細繊維の繊維径が、1nm〜10μmである1または2の断熱材、
4. 前記断熱層の厚みが、100〜500μmである1〜3のいずれかの断熱材、
5. 前記不織布の気孔率が、65〜95%である1〜4のいずれかの断熱材、
6. 前記気流遮断層が、樹脂層である2〜5のいずれかの断熱材、
7. 前記気流遮断層の厚みが、総厚みの50%以下である2〜6のいずれかの断熱材、
8. 前記有機極細繊維不織布が、電界紡糸法で得られたものである1〜7のいずれかの断熱材、
9. 断熱材用である有機極細繊維不織布、
10. 有機極細繊維不織布の両側に気流遮断層を配置し、前記不織布内の気流を遮断して断熱作用を発揮するように構成した断熱構造、
11. 前記断熱構造を有するデバイス、
12. 断熱層として有機極細繊維不織布を用いる断熱方法
を提供する。
That is, the present invention
1. A heat insulating material comprising a heat insulating layer made of an organic ultrafine fiber nonwoven fabric having a thickness of more than 50 μm,
2. 1 heat insulating material having the heat insulating layer and an airflow blocking layer disposed on both sides thereof;
3. 1 or 2 heat insulating material whose fiber diameter of the said organic ultrafine fiber is 1 nm-10 micrometers,
4). The heat insulating material according to any one of 1 to 3, wherein the heat insulating layer has a thickness of 100 to 500 μm,
5. The heat insulating material according to any one of 1 to 4, wherein the porosity of the nonwoven fabric is 65 to 95%,
6). The heat insulating material according to any one of 2 to 5, wherein the airflow blocking layer is a resin layer,
7). The heat insulating material according to any one of 2 to 6, wherein the airflow blocking layer has a thickness of 50% or less of the total thickness,
8). The heat insulating material according to any one of 1 to 7, wherein the organic ultrafine fiber nonwoven fabric is obtained by electrospinning.
9. Organic ultrafine fiber nonwoven fabric for insulation,
10. A heat insulating structure in which an air flow blocking layer is disposed on both sides of the organic ultrafine fiber nonwoven fabric, and is configured to block the air flow in the nonwoven fabric and exert a heat insulating action,
11. A device having the heat insulating structure;
12 Provided is a heat insulating method using an organic ultrafine fiber nonwoven fabric as a heat insulating layer.

本発明の断熱材は、有機極細繊維不織布を断熱層として用いており、有機材料を構成材料としているため無機材料に比べて熱伝導率が低くヒートブリッジの影響を低減できる。
また、極細繊維不織布は、多くの空気をその中に包むことができるため、薄くても低熱伝導率を示し、薄膜断熱材として好適に利用できる。断熱層を薄く形成できるため、これまで断熱材が必要であるのにかかわらず、厚みや大きさの制限によって使えなかったところまでをも断熱することが可能となる。
さらに、有機極細繊維を構成する樹脂を選ぶことで、フレキシブルな有機極細繊維不織布が得られ、これを用いてフレキシブル断熱材とすることで、より広範囲の用途に適用可能なものとなる。
Since the heat insulating material of the present invention uses an organic ultrafine fiber nonwoven fabric as a heat insulating layer and uses an organic material as a constituent material, the heat conductivity is lower than that of an inorganic material, and the influence of a heat bridge can be reduced.
In addition, since the ultrafine fiber nonwoven fabric can enclose a large amount of air therein, it exhibits low thermal conductivity even when it is thin, and can be suitably used as a thin film heat insulating material. Since the heat insulating layer can be formed thinly, it is possible to insulate even places that could not be used due to restrictions on thickness and size, regardless of the necessity of a heat insulating material.
Furthermore, by selecting a resin constituting the organic ultrafine fiber, a flexible organic ultrafine fiber nonwoven fabric can be obtained. By using this as a flexible heat insulating material, it can be applied to a wider range of applications.

以下、本発明についてさらに詳しく説明する。
本発明に係る断熱材は、厚み50μm超の有機極細繊維不織布からなる断熱層を備えるものである。
ここで、有機極細繊維不織布を構成する繊維の平均繊維径は特に限定されるものではないが、その上限値は10μm以下が好ましく、5μm以下がより好ましく、2μm以下がより一層好ましく、1μm以下がさらに好ましく、最適は一般にナノファイバーの領域とされる1μm未満である。
一方、その下限値は特に限定されるものではないが、通常1nm以上程度であり、50nm以上が好ましく、100nm以上がより好ましく、200nm以上がより一層好ましい。
Hereinafter, the present invention will be described in more detail.
The heat insulating material according to the present invention includes a heat insulating layer made of an organic ultrafine fiber nonwoven fabric having a thickness of more than 50 μm.
Here, the average fiber diameter of the fibers constituting the organic ultrafine fiber nonwoven fabric is not particularly limited, but the upper limit is preferably 10 μm or less, more preferably 5 μm or less, even more preferably 2 μm or less, and 1 μm or less. More preferably, the optimum is less than 1 μm, which is generally the area of nanofibers.
On the other hand, the lower limit is not particularly limited, but is usually about 1 nm or more, preferably 50 nm or more, more preferably 100 nm or more, and even more preferably 200 nm or more.

上記断熱層の厚みは、断熱作用を発揮させるという点から50μm超とされるが、より断熱効果を高めることを考慮すると、100μm以上が好ましく、200μm以上がより好ましい。
また、その上限は特に限定されるものではないが、本発明の断熱層が有する、薄膜化しても熱伝導率が低いという利点および断熱材の厚みを薄くすることを考慮すれば、500μm程度までの厚みで用いることが好ましく、400μm以下がより好ましく、300μm以下がより好ましい。
なお、断熱層は、1枚の有機極細繊維不織布で構成しても、2枚以上の有機極細繊維不織布を積層して構成してもよく、この場合、上記断熱層の厚みは積層体の総厚みを意味する。
The thickness of the heat insulation layer is more than 50 μm from the viewpoint of exerting a heat insulation effect, but is preferably 100 μm or more and more preferably 200 μm or more in consideration of further enhancing the heat insulation effect.
In addition, the upper limit is not particularly limited, but considering the advantage that the heat insulating layer of the present invention has a low thermal conductivity even if it is thinned and the thickness of the heat insulating material is reduced, it is up to about 500 μm. The thickness is preferably 400 μm or less, more preferably 300 μm or less.
The heat insulating layer may be composed of one organic microfiber nonwoven fabric or may be composed of two or more organic microfiber nonwoven fabrics laminated. In this case, the thickness of the heat insulating layer is the total thickness of the laminate. It means thickness.

本発明の有機極細繊維不織布の気孔率は、特に限定されるものではないが、不織布内部に包含される空気量を増大させ、断熱効果を高めることと、不織布に適度な強度を持たせることなどを考慮すると、65〜95%が好ましく、67〜90%がより好ましく、70〜90%がより一層好ましい。   The porosity of the organic ultrafine fiber nonwoven fabric of the present invention is not particularly limited, but the amount of air contained in the nonwoven fabric is increased, the heat insulation effect is increased, and the nonwoven fabric has an appropriate strength. Is considered, 65 to 95% is preferable, 67 to 90% is more preferable, and 70 to 90% is still more preferable.

有機極細繊維の原料ポリマーとしては、特に限定されるものではないが、広範な用途への適用を考慮すると、100℃以上の耐熱性を有するポリマーが好ましい。
具体例としては、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリアクリロニトリル系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂、ポリアクリル系樹脂、ポリエーテル系樹脂、ポリビニル系樹脂などが挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
これらの中でも、靱性が高く繰り返し曲げ耐性に優れ、フレキシブルな有機極細繊維不織布が得られるという点から、ポリウレタン系樹脂、ポリアミド系樹脂、ポリアクリロニトリル系樹脂が好適である。
Although it does not specifically limit as a raw material polymer of an organic microfiber, The polymer which has the heat resistance of 100 degreeC or more is preferable when the application to a wide use is considered.
Specific examples include polyester resins, polyamide resins, polyurethane resins, polyacrylonitrile resins, polyimide resins, polyamideimide resins, polyvinyl chloride resins, polyvinylidene chloride resins, polyethylene resins, polypropylene resins. , Polystyrene resins, polyacrylic resins, polyether resins, polyvinyl resins, and the like. These may be used alone or in combination of two or more.
Among these, polyurethane-based resins, polyamide-based resins, and polyacrylonitrile-based resins are preferable because they have high toughness, excellent repeated bending resistance, and a flexible organic ultrafine fiber nonwoven fabric can be obtained.

本発明で用いる有機極細繊維不織布は、上述したポリマーを適当な溶媒に溶かした溶液(組成物)を、電界紡糸法、スパンボンド法、メルトブロー法、フラッシュ紡糸法などの各種紡糸法により紡糸して得ることができる。
本発明においては、長繊維が得られ易く、繊維径をコントロールし易い電界紡糸法を用いることが好適である。
The organic ultrafine fiber nonwoven fabric used in the present invention is obtained by spinning a solution (composition) obtained by dissolving the above-described polymer in an appropriate solvent by various spinning methods such as an electrospinning method, a spunbond method, a melt blow method, and a flash spinning method. Obtainable.
In the present invention, it is preferable to use an electrospinning method in which long fibers are easily obtained and the fiber diameter is easily controlled.

電界紡糸法は、電界中で、帯電した電界紡糸用ドープ(樹脂溶液)を曳糸しつつ、その電荷の反発力によりドープを破裂させ、樹脂からなる極微細な繊維状物を形成する方法である。
電界紡糸を行う装置の基本的な構成は、電界紡糸用ドープを排出するノズルを兼ね、ドープに数千から数万ボルトの高電圧で印加する一方の電極と、その電極に対向する他方の電極とからなる。一方の電極から吐出あるいは振出されたドープは、対向する2つの電極間の電界中で高速ジェットおよびそれに引き続くジェットの折れ曲がりや膨張によって有機極細繊維になり、他方の電極表面上に堆積し、有機極細繊維不織布が得られる。
The electrospinning method is a method in which a dope is ruptured by the repulsive force of a charge while spinning a charged dope for electrospinning (resin solution) in an electric field to form a very fine fibrous material made of resin. is there.
The basic structure of the electrospinning apparatus is to serve as a nozzle for discharging the dope for electrospinning, one electrode for applying a high voltage of several thousand to several tens of thousands of volts to the dope, and the other electrode facing the electrode It consists of. The dope discharged or ejected from one electrode becomes an organic microfiber by bending or expansion of a high-speed jet and the subsequent jet in the electric field between two opposing electrodes, and is deposited on the surface of the other electrode. A fiber nonwoven fabric is obtained.

電界紡糸用ドープの調製に用いられる溶媒としては、上述したポリマーを溶解し得るものであれば特に限定されるものではなく、例えば、アセトン、メタノール、エタノール、プロパノール、イソプロパノール、トルエン、ベンゼン、シクロヘキサン、シクロヘキサノン、テトラヒドロフラン、ジメチルスルホキシド、1,4−ジオキサン、四塩化炭素、塩化メチレン、クロロホルム、ピリジン、トリクロロエタン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、アセトニトリル等や蟻酸、乳酸、酢酸等の有機酸が挙げられる。これらの溶媒は、1種単独で、または2種以上混合して用いることができる。   The solvent used for the preparation of the dope for electrospinning is not particularly limited as long as it can dissolve the above-described polymer. For example, acetone, methanol, ethanol, propanol, isopropanol, toluene, benzene, cyclohexane, Cyclohexanone, tetrahydrofuran, dimethyl sulfoxide, 1,4-dioxane, carbon tetrachloride, methylene chloride, chloroform, pyridine, trichloroethane, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, ethylene carbonate , Diethyl carbonate, propylene carbonate, acetonitrile and the like, and organic acids such as formic acid, lactic acid and acetic acid. These solvents can be used alone or in combination of two or more.

本発明の断熱材は、上記有機極細繊維不織布を断熱層として用いることに特徴を有しており、断熱層以外のその他の構成には特に制限はない。
すなわち、有機極細繊維不織布からなる断熱層を、使用する場所に配置した結果として、極細繊維不織布内と外部との空気の流れが遮断されて断熱作用が発揮される態様となればよい。
一例を挙げれば、上記有機極細繊維不織布からなる断熱層と、この両側面に位置する、当該断熱材を適用するデバイス等におけるその他の構成部材とが一体となって断熱構造を構成するような態様がある。この場合、断熱層の両側に位置する、上記その他の構成材料がそれぞれ気流遮断層として作用し、不織布内の空気の流れが遮断されて断熱作用が発揮される。
The heat insulating material of the present invention is characterized by using the above-mentioned organic ultrafine fiber nonwoven fabric as a heat insulating layer, and there are no particular limitations on other components other than the heat insulating layer.
In other words, as a result of disposing the heat insulating layer made of the organic ultrafine fiber nonwoven fabric at the place where it is used, the air flow between the inside and outside of the ultrafine fiber nonwoven fabric may be cut off so that the heat insulation effect is exhibited.
As an example, an aspect in which a heat insulating layer made of the above-mentioned organic ultrafine fiber nonwoven fabric and other components in a device to which the heat insulating material is applied, which are located on both side surfaces, constitutes a heat insulating structure. There is. In this case, the other constituent materials located on both sides of the heat insulating layer act as airflow blocking layers, respectively, and the air flow in the nonwoven fabric is blocked to exert a heat insulating effect.

一方、上記有機極細繊維不織布からなる断熱層と、その両側に配置された気流遮断層とを有する積層体を予め作製しておき、これを断熱材として用いてもよい。この場合は、断熱層の両側に気流遮断層が設けられており、この積層体において、極細繊維不織布内と外部との空気の流れが遮断されるため、これを断熱が必要な箇所に適宜配置すればよい。   On the other hand, a laminate having a heat insulating layer made of the organic ultrafine fiber nonwoven fabric and an airflow blocking layer disposed on both sides thereof may be prepared in advance and used as a heat insulating material. In this case, airflow blocking layers are provided on both sides of the heat insulating layer, and in this laminate, air flow between the inside and outside of the ultrafine fiber nonwoven fabric is blocked. do it.

上記気流遮断層の材質としては、断熱層と外部との空気の流れを遮断し得るものであれば特に限定されるものではなく、樹脂、ガラス、金属、セラミック等からなる層が挙げられるが、熱伝導率やフレキシブル性等を考慮すると、樹脂フィルム層を用いることが好ましい。
使用する樹脂の材質に特に限定はなく、例えば、熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エチル共重合体等のポリオレフィン系樹脂;ポリスチレン、ハイインパクトポリスチレン、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、メタクリル酸メチル−スチレン共重合体等のポリスチレン系樹脂;ポリカーボネート樹脂;塩化ビニル樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリアクリロニトリル、ポリメチルメタクリレートなどの(メタ)アクリル樹脂;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、PLA(ポリ乳酸)、ポリ−3−ヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート/アジペート等のポリエステル樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンサルファイド樹脂;ポリビニルアルコール樹脂;ポリグルコール酸;変性でんぷん;酢酸セルロース、三酢酸セルロース;キチン、キトサン;リグニンなど、熱硬化性樹脂としては、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂などが挙げられる。
これらの中でも、熱伝導率の低いものが好ましく、また、不織布中の空気層を保持し、材料自身の劣化を避けるという観点からガス透過率の低いものが好適である。更には断熱材として広範な用途への適用を考慮すると、可撓性を有しながら100℃以上の耐熱性を有する樹脂が好ましい。
そのような樹脂としては、例えば、PET、ポリアクリロニトリル、ポリプロピレン、ポリスチレンなどが挙げられる。
The material of the airflow blocking layer is not particularly limited as long as it can block the flow of air between the heat insulating layer and the outside, and examples include layers made of resin, glass, metal, ceramics, etc. In consideration of thermal conductivity, flexibility, etc., it is preferable to use a resin film layer.
The material of the resin used is not particularly limited. For example, as the thermoplastic resin, a polyolefin resin such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer; polystyrene, high impact polystyrene Polystyrene resins such as acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, methyl methacrylate-styrene copolymer; polycarbonate resin; vinyl chloride resin; polyamide resin; polyimide resin; (Meth) acrylic resins such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, PLA (polylactic acid), poly-3- Polyester resins such as loxybutyric acid, polycaprolactone, polybutylene succinate, polyethylene succinate / adipate; polyphenylene ether resin; modified polyphenylene ether resin; polyacetal resin; polysulfone resin; polyphenylene sulfide resin; polyvinyl alcohol resin; Examples of thermosetting resins such as cellulose acetate, cellulose triacetate; chitin, chitosan, and lignin include phenol resin, urea resin, melamine resin, unsaturated polyester resin, polyurethane resin, and epoxy resin.
Among these, those having low thermal conductivity are preferable, and those having low gas permeability are preferable from the viewpoint of maintaining an air layer in the nonwoven fabric and avoiding deterioration of the material itself. Furthermore, considering application to a wide range of uses as a heat insulating material, a resin having heat resistance of 100 ° C. or higher while having flexibility is preferable.
Examples of such a resin include PET, polyacrylonitrile, polypropylene, and polystyrene.

気流遮断層の厚みは特に限定されるものではないが、断熱材の熱伝導率の観点から、気流遮断層の総厚みが、断熱材の総厚みの50%以下であることが好ましく、40%以下であることがより好ましい。
気流遮断層を形成する方法は、単に不織布上に載置ないしは不織布を挟持するだけでも、接着剤により不織布に貼付しても、熱融着可能なものについては不織布に熱融着してもよく、特に限定されるものではない。
The thickness of the airflow blocking layer is not particularly limited, but from the viewpoint of the thermal conductivity of the heat insulating material, the total thickness of the airflow blocking layer is preferably 50% or less of the total thickness of the heat insulating material, and 40% The following is more preferable.
The airflow blocking layer can be formed by simply placing the nonwoven fabric on the nonwoven fabric, or sandwiching the nonwoven fabric, affixing it to the nonwoven fabric with an adhesive, or heat-sealing the nonwoven fabric if it can be heat-sealed. There is no particular limitation.

以上説明した断熱層や断熱構造は、断熱が必要な任意の場所に適宜設置して断熱材として好適に用いることができる。
この際、断熱対象物としては特に限定されるものではなく、建材、電気・電子デバイス、家電製品、衣類等任意であるが、小型や薄型のデバイスに適用することで、薄膜化できるという本発明の利点を最大限に生かすことができる。
このようなデバイスとしては、携帯電話やPCなどのモバイル製品が挙げられる。
The heat insulating layer and the heat insulating structure described above can be suitably installed in any place where heat insulation is necessary and can be suitably used as a heat insulating material.
At this time, the object to be insulated is not particularly limited, and any material such as building materials, electrical / electronic devices, home appliances, clothing, etc. can be applied to a small or thin device, and the present invention can be thinned. You can make the most of the benefits.
Such devices include mobile products such as mobile phones and PCs.

以下、製造例、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、繊維径、不織布の厚みおよび気孔率は、以下の手法により測定した。
(1)繊維径
電子顕微鏡(日本電子(株)、JSM−67010F)により観察し、任意の繊維50本の太さを測定し、平均を求めた。
(2)不織布の厚み
デジタルシックネスゲージ((株)テクロック製,SMD−565)を用いて、任意の10点を測定し、平均を求めた。
(3)気孔率
JIS L1096法に準拠し、寸法、質量および密度により算出した。
EXAMPLES Hereinafter, although a manufacture example, an Example, and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example. In addition, the fiber diameter, the thickness of the nonwoven fabric, and the porosity were measured by the following methods.
(1) Fiber diameter Observed with an electron microscope (JEOL Ltd., JSM-67010F), the thickness of 50 arbitrary fibers was measured, and the average was obtained.
(2) Thickness of non-woven fabric Using a digital thickness gauge (manufactured by TECLOCK Co., Ltd., SMD-565), arbitrary 10 points were measured and the average was obtained.
(3) Porosity Based on the JIS L1096 method, it calculated by the dimension, mass, and density.

[1]有機極細繊維不織布の製造
[製造例1]熱可塑性ポリウレタン(TPU)製極細繊維不織布(厚み100μm、繊維径200nm)
熱可塑性ポリウレタン(エラストランET867−D10、BASF製)20質量部と、N,N−ジメチルホルムアミド(DMF)80質量部とを室温(25℃)で溶解させて、熱可塑性ポリウレタン含有溶液(固形分25質量%)100質量部を得た。
この溶液(紡糸溶液)をシリンジに入れ、吐出先端内口径0.4mm、印加電圧30KV(室温下、大気圧)、吐出先端内口径から繊維状物質捕集電極までの距離15cmで電界紡糸を行い、TPU製極細繊維不織布を得た。
得られた不織布の厚みは100μm、平均繊維径は200nmであった。
[1] Production of organic ultrafine fiber nonwoven fabric [Production Example 1] Thermoplastic polyurethane (TPU) ultrafine fiber nonwoven fabric (thickness: 100 μm, fiber diameter: 200 nm)
20 parts by mass of thermoplastic polyurethane (Elastolan ET867-D10, manufactured by BASF) and 80 parts by mass of N, N-dimethylformamide (DMF) are dissolved at room temperature (25 ° C.) to obtain a thermoplastic polyurethane-containing solution (solid content 25 parts by mass) 100 parts by mass were obtained.
This solution (spinning solution) is put into a syringe, and electrospinning is performed at a discharge tip inner diameter of 0.4 mm, an applied voltage of 30 KV (room temperature, atmospheric pressure), and a distance of 15 cm from the discharge tip inner diameter to the fibrous material collecting electrode. A TPU ultrafine fiber nonwoven fabric was obtained.
The resulting nonwoven fabric had a thickness of 100 μm and an average fiber diameter of 200 nm.

[製造例2]ポリアクリロニトリル(PAN)製極細繊維不織布(厚み50μm、繊維径400nm)
ポリアクリロニトリル(バレックス1000S、三井化学(株)製)10質量部と、DMF40質量部とを室温(25℃)で溶解させて、ポリアクリロニトリル含有溶液(固形分20質量%)50質量部を得た。
この溶液(紡糸溶液)をシリンジに入れ、吐出先端内口径0.4mm、印加電圧30KV(室温下、大気圧)、吐出先端内口径から繊維状物質捕集電極までの距離15cmで電界紡糸を行い、PAN製極細繊維不織布を得た。
得られた不織布の厚みは50μm、平均繊維径は400nmであった。
[Production Example 2] Polyacrylonitrile (PAN) ultrafine fiber nonwoven fabric (thickness 50 μm, fiber diameter 400 nm)
10 parts by mass of polyacrylonitrile (Valex 1000S, manufactured by Mitsui Chemicals) and 40 parts by mass of DMF were dissolved at room temperature (25 ° C.) to obtain 50 parts by mass of a polyacrylonitrile-containing solution (solid content 20% by mass). .
This solution (spinning solution) is put into a syringe, and electrospinning is performed at a discharge tip inner diameter of 0.4 mm, an applied voltage of 30 KV (room temperature, atmospheric pressure), and a distance of 15 cm from the discharge tip inner diameter to the fibrous material collecting electrode. A PAN ultrafine fiber nonwoven fabric was obtained.
The resulting nonwoven fabric had a thickness of 50 μm and an average fiber diameter of 400 nm.

[製造例3]TPU製極細繊維不織布(厚み100μm、繊維径2μm)
熱可塑性ポリウレタン(エラストランET680−10、BASF製)25質量部と、DMF75質量部とを室温(25℃)で溶解させて、熱可塑性ポリウレタン含有溶液(固形分25質量%)100質量部を得た。
この溶液(紡糸溶液)をシリンジに入れ、吐出先端内口径0.4mm、印加電圧30KV(室温下、大気圧)、吐出先端内口径から繊維状物質捕集電極までの距離15cmで電界紡糸を行い、TPU製極細繊維不織布を得た。
得られた不織布の厚みは100μm、平均繊維径は2μmであった。
[Production Example 3] TPU ultrafine fiber nonwoven fabric (thickness 100 μm, fiber diameter 2 μm)
25 parts by mass of thermoplastic polyurethane (Elastolan ET680-10, manufactured by BASF) and 75 parts by mass of DMF are dissolved at room temperature (25 ° C.) to obtain 100 parts by mass of a thermoplastic polyurethane-containing solution (solid content: 25% by mass). It was.
This solution (spinning solution) is put into a syringe, and electrospinning is performed at a discharge tip inner diameter of 0.4 mm, an applied voltage of 30 KV (room temperature, atmospheric pressure), and a distance of 15 cm from the discharge tip inner diameter to the fibrous material collecting electrode. A TPU ultrafine fiber nonwoven fabric was obtained.
The resulting nonwoven fabric had a thickness of 100 μm and an average fiber diameter of 2 μm.

[製造例4]TPU製極細繊維不織布(厚み50μm、繊維径500nm)
熱可塑性ポリウレタン(エラストランET867−D10、BASF製)22質量部と、DMF78質量部とを室温(25℃)で溶解させて、熱可塑性ポリウレタン含有溶液(固形分22質量%)100質量部を得た。
この溶液(紡糸溶液)をシリンジに入れ、吐出先端内口径0.4mm、印加電圧30KV(室温下、大気圧)、吐出先端内口径から繊維状物質捕集電極までの距離15cmで電界紡糸を行い、TPU製極細繊維不織布を得た。
得られた不織布の厚みは50μm、平均繊維径は500nmであった。
[Production Example 4] TPU ultrafine fiber nonwoven fabric (thickness 50 μm, fiber diameter 500 nm)
22 parts by mass of thermoplastic polyurethane (Elastolan ET867-D10, manufactured by BASF) and 78 parts by mass of DMF are dissolved at room temperature (25 ° C.) to obtain 100 parts by mass of a thermoplastic polyurethane-containing solution (solid content 22% by mass). It was.
This solution (spinning solution) is put into a syringe, and electrospinning is performed at a discharge tip inner diameter of 0.4 mm, an applied voltage of 30 KV (room temperature, atmospheric pressure), and a distance of 15 cm from the discharge tip inner diameter to the fibrous material collecting electrode. A TPU ultrafine fiber nonwoven fabric was obtained.
The resulting nonwoven fabric had a thickness of 50 μm and an average fiber diameter of 500 nm.

[2]断熱材の作製
[実施例1]
製造例1で得られたTPU製極細繊維不織布(厚み100μm、繊維径200nm)を2枚積層したものを断熱層(厚み200μm)とし、この断熱層を厚み20μmのPETフィルム(東洋紡績(株)製、以下PETフィルムは全て同社製)で挟み込んで断熱材を作製した。
[2] Production of heat insulating material [Example 1]
A laminate of two TPU ultrafine fiber nonwoven fabrics (thickness 100 μm, fiber diameter 200 nm) obtained in Production Example 1 was used as a heat insulating layer (thickness 200 μm), and this heat insulating layer was a PET film (Toyobo Co., Ltd.) having a thickness of 20 μm. And the following PET films are all manufactured by the same company) to produce a heat insulating material.

[実施例2]
PETフィルムの厚みを50μmに変更した以外は、実施例1と同様にして断熱材を作製した。
[Example 2]
A heat insulating material was produced in the same manner as in Example 1 except that the thickness of the PET film was changed to 50 μm.

[実施例3]
製造例2で得られたPAN製極細繊維不織布(厚み50μm、繊維径400nm)を3枚積層したものを断熱層(厚み150μm)とし、この断熱層を厚み50μmのPETフィルムで挟み込んで断熱材を作製した。
[Example 3]
A heat insulating layer (thickness 150 μm) is formed by laminating three PAN-made non-woven fiber nonwoven fabrics (thickness 50 μm, fiber diameter 400 nm) obtained in Production Example 2, and the heat insulating material is sandwiched between PET films having a thickness of 50 μm. Produced.

[実施例4]
製造例2で得られたPAN製極細繊維不織布を6枚積層したものを断熱層(厚み300μm)とした以外は、実施例3と同様にして断熱材を作製した。
[Example 4]
A heat insulating material was produced in the same manner as in Example 3 except that a laminate of 6 PAN ultrafine fiber nonwoven fabrics obtained in Production Example 2 was used as the heat insulating layer (thickness 300 μm).

[実施例5]
製造例3で得られたTPU製極細繊維シート(厚み100μm、繊維径2μm)を2枚積層したものを断熱層(厚み200μm)とし、この断熱層を、厚み50μmのPETフィルムで挟み込んで断熱材を作製した。
[Example 5]
A heat insulating layer (thickness: 200 μm) is formed by laminating two TPU ultrafine fiber sheets (thickness: 100 μm, fiber diameter: 2 μm) obtained in Production Example 3, and this heat insulating layer is sandwiched between PET films with a thickness of 50 μm. Was made.

[比較例1]
厚み100μmのPETフィルムを2枚重ね合わせて断熱材とした。
[Comparative Example 1]
Two PET films having a thickness of 100 μm were overlapped to form a heat insulating material.

[比較例2]
厚み25μmのPETフィルムを100mm角の袋状に形成し、この中に空気2mlを充填して封止し、厚み200μmの空気断熱層を有する断熱材を作製した。
[Comparative Example 2]
A PET film having a thickness of 25 μm was formed into a 100 mm square bag shape, filled with 2 ml of air, and sealed to produce a heat insulating material having an air heat insulating layer having a thickness of 200 μm.

[比較例3]
製造例4で得られたTPU製極細繊維シート(厚み50μm、繊維径500nm)を断熱層(厚み50μm)とし、この断熱層を、厚み20μmのPETフィルムで挟み込んで断熱材を作製した。
[Comparative Example 3]
The TPU ultrafine fiber sheet (thickness 50 μm, fiber diameter 500 nm) obtained in Production Example 4 was used as a heat insulating layer (thickness 50 μm), and this heat insulating layer was sandwiched between 20 μm thick PET films to prepare a heat insulating material.

[比較例4]
PETフィルムの厚みを50μmに変更した以外は、比較例3と同様にして断熱材を作製した。
[Comparative Example 4]
A heat insulating material was produced in the same manner as in Comparative Example 3 except that the thickness of the PET film was changed to 50 μm.

上記各実施例および比較例で作製した断熱材について、熱伝導率および繰り返し曲げ耐性を下記手法によって測定、評価した。結果を表1に示す。また、用いた極細繊維不織布の気孔率を測定した結果を併せて表1に示す。
〔熱伝導率〕
熱伝導率計(京都電子(株)製、QTM−500)を用いて測定した。
〔繰り返し曲げ耐性〕
曲率半径5mmで繰り返し10回折り曲げ、その後、熱伝導率を上記方法にて測定した。処理前後で値の変化を算出し、5%未満を○、それ以上を×で評価した。
About the heat insulating material produced by each said Example and comparative example, thermal conductivity and repeated bending tolerance were measured and evaluated by the following method. The results are shown in Table 1. The results of measuring the porosity of the used ultrafine fiber nonwoven fabric are also shown in Table 1.
〔Thermal conductivity〕
It measured using the thermal conductivity meter (Kyoto Electronics Co., Ltd. product, QTM-500).
[Repeated bending resistance]
The sample was repeatedly bent 10 times with a curvature radius of 5 mm, and then the thermal conductivity was measured by the above method. The change in value was calculated before and after the treatment, and less than 5% was evaluated as ◯, and more than that was evaluated as ×.

Figure 2012197644
Figure 2012197644

表1に示されるように、各実施例で得られた断熱材は、比較例の断熱材よりも熱伝導率が低く、断熱性能に優れていることがわかる。特に、実施例1〜4のナノファイバー不織布を断熱層とする断熱材は、熱伝導率が0.06(W/(m・k))以下という優れた断熱性能を発揮するものであることがわかる。
また、各実施例で得られた断熱材は、熱伝導率について十分な曲げ耐性を有しており、フレキシブルな断熱材として、広範囲な用途に用いることができる。
As shown in Table 1, it can be seen that the heat insulating material obtained in each example has lower thermal conductivity than the heat insulating material of the comparative example and is excellent in heat insulating performance. In particular, the heat insulating material using the nanofiber nonwoven fabric of Examples 1 to 4 as a heat insulating layer exhibits excellent heat insulating performance with a thermal conductivity of 0.06 (W / (m · k)) or less. Recognize.
Moreover, the heat insulating material obtained by each Example has sufficient bending tolerance about heat conductivity, and can be used for a wide range of uses as a flexible heat insulating material.

Claims (12)

厚み50μm超の有機極細繊維不織布からなる断熱層を備えることを特徴とする断熱材。   A heat insulating material comprising a heat insulating layer made of an organic ultrafine fiber nonwoven fabric having a thickness of more than 50 μm. 前記断熱層と、その両側に配置された気流遮断層とを有する請求項1記載の断熱材。   The heat insulating material of Claim 1 which has the said heat insulation layer and the airflow interruption layer arrange | positioned at the both sides. 前記有機極細繊維の繊維径が、1nm〜10μmである請求項1または2記載の断熱材。   The heat insulating material according to claim 1 or 2, wherein the organic ultrafine fiber has a fiber diameter of 1 nm to 10 µm. 前記断熱層の厚みが、100〜500μmである請求項1〜3のいずれか1項記載の断熱材。   The heat insulating material according to claim 1, wherein the heat insulating layer has a thickness of 100 to 500 μm. 前記不織布の気孔率が、65〜95%である請求項1〜4のいずれか1項記載の断熱材。   The porosity of the said nonwoven fabric is 65 to 95%, The heat insulating material of any one of Claims 1-4. 前記気流遮断層が、樹脂層である請求項2〜5のいずれか1項記載の断熱材。   The heat insulating material according to any one of claims 2 to 5, wherein the airflow blocking layer is a resin layer. 前記気流遮断層の厚みが、総厚みの50%以下である請求項2〜6のいずれか1項記載の断熱材。   The heat insulating material according to any one of claims 2 to 6, wherein a thickness of the airflow blocking layer is 50% or less of a total thickness. 前記有機極細繊維不織布が、電界紡糸法で得られたものである請求項1〜7のいずれか1項記載の断熱材。   The heat insulating material according to any one of claims 1 to 7, wherein the organic ultrafine fiber nonwoven fabric is obtained by an electrospinning method. 断熱材用である有機極細繊維不織布。   Organic ultrafine fiber nonwoven fabric for insulation. 有機極細繊維不織布の両側に気流遮断層を配置し、前記不織布内の気流を遮断して断熱作用を発揮するように構成した断熱構造。   A heat insulating structure in which an airflow blocking layer is disposed on both sides of an organic ultrafine fiber nonwoven fabric so that the airflow in the nonwoven fabric is blocked to exert a heat insulating effect. 前記断熱構造を有するデバイス。   A device having the heat insulating structure. 断熱層として有機極細繊維不織布を用いる断熱方法。   A heat insulation method using an organic ultrafine fiber nonwoven fabric as a heat insulation layer.
JP2011063756A 2011-03-23 2011-03-23 Heat insulator Pending JP2012197644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063756A JP2012197644A (en) 2011-03-23 2011-03-23 Heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063756A JP2012197644A (en) 2011-03-23 2011-03-23 Heat insulator

Publications (1)

Publication Number Publication Date
JP2012197644A true JP2012197644A (en) 2012-10-18

Family

ID=47180133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063756A Pending JP2012197644A (en) 2011-03-23 2011-03-23 Heat insulator

Country Status (1)

Country Link
JP (1) JP2012197644A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143780A1 (en) * 2015-03-10 2016-09-15 株式会社 東芝 Insulation, core material, refrigerator, and insulation manufacturing method
JP2016166660A (en) * 2015-03-10 2016-09-15 株式会社東芝 Vacuum heat insulation panel core material, vacuum heat insulation panel and refrigerator
JP2016173150A (en) * 2015-03-17 2016-09-29 株式会社東芝 Vacuum heat insulation panel for refrigerator and method for recycling refrigerator
JP2016173114A (en) * 2015-03-16 2016-09-29 株式会社東芝 Heat insulation material, core material, and refrigerator
JP2016173149A (en) * 2015-03-17 2016-09-29 株式会社東芝 Method for manufacturing vacuum heat insulation panel, vacuum heat insulation panel, core material, and refrigerator
US10099447B2 (en) 2015-03-17 2018-10-16 Kabushiki Kaisha Toshiba Structural body and core
JP2019143809A (en) * 2019-04-18 2019-08-29 株式会社東芝 Vacuum heat insulation panel, core material and refrigerator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094582A (en) * 2001-09-20 2003-04-03 Kagawa Prefecture Board made of flame retardant polyester fiber and its manufacturing method
JP2004122568A (en) * 2002-10-02 2004-04-22 Asahi Kasei Fibers Corp Coated structure, its manufacturing method and heat-shrinkable composite sheet
JP2005036897A (en) * 2003-07-15 2005-02-10 Fuji Electric Holdings Co Ltd Vacuum heat insulating material and its manufacturing method
WO2006004012A1 (en) * 2004-07-01 2006-01-12 Asahi Kasei Kabushiki Kaisha Cellulose nonwoven fabric
JP2010053980A (en) * 2008-08-28 2010-03-11 Hitachi Appliances Inc Vacuum heat insulation material, heat insulation box using the same and refrigerator
JP2010115919A (en) * 2008-10-14 2010-05-27 Teijin Techno Products Ltd Composite structure and separator for electronic component including the same
JP2010215872A (en) * 2009-03-19 2010-09-30 Toray Ind Inc Cellulose porous body and method for producing the same
JP2011032613A (en) * 2009-08-04 2011-02-17 Gunze Ltd Method for producing ultrafine fiber nonwoven fabric, and ultrafine fiber nonwoven fabric

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094582A (en) * 2001-09-20 2003-04-03 Kagawa Prefecture Board made of flame retardant polyester fiber and its manufacturing method
JP2004122568A (en) * 2002-10-02 2004-04-22 Asahi Kasei Fibers Corp Coated structure, its manufacturing method and heat-shrinkable composite sheet
JP2005036897A (en) * 2003-07-15 2005-02-10 Fuji Electric Holdings Co Ltd Vacuum heat insulating material and its manufacturing method
WO2006004012A1 (en) * 2004-07-01 2006-01-12 Asahi Kasei Kabushiki Kaisha Cellulose nonwoven fabric
JP2010053980A (en) * 2008-08-28 2010-03-11 Hitachi Appliances Inc Vacuum heat insulation material, heat insulation box using the same and refrigerator
JP2010115919A (en) * 2008-10-14 2010-05-27 Teijin Techno Products Ltd Composite structure and separator for electronic component including the same
JP2010215872A (en) * 2009-03-19 2010-09-30 Toray Ind Inc Cellulose porous body and method for producing the same
JP2011032613A (en) * 2009-08-04 2011-02-17 Gunze Ltd Method for producing ultrafine fiber nonwoven fabric, and ultrafine fiber nonwoven fabric

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190092602A (en) * 2015-03-10 2019-08-07 도시바 라이프스타일 가부시키가이샤 Vacuum insulated panel, core material, refrigerator, method for producing vacuum insulated panel, and method for recycling refrigerator
WO2016143779A1 (en) * 2015-03-10 2016-09-15 株式会社 東芝 Vacuum insulated panel, core material, refrigerator, method for producing vacuum insulated panel, and method for recycling refrigerator
JP2016166660A (en) * 2015-03-10 2016-09-15 株式会社東芝 Vacuum heat insulation panel core material, vacuum heat insulation panel and refrigerator
CN105972389A (en) * 2015-03-10 2016-09-28 株式会社东芝 Vacuum insulated panel, core material, and refrigerator
KR102279401B1 (en) 2015-03-10 2021-07-20 도시바 라이프스타일 가부시키가이샤 Vacuum insulated panel, core material, refrigerator, method for producing vacuum insulated panel, and method for recycling refrigerator
WO2016143780A1 (en) * 2015-03-10 2016-09-15 株式会社 東芝 Insulation, core material, refrigerator, and insulation manufacturing method
CN107429873A (en) * 2015-03-10 2017-12-01 株式会社东芝 Vacuum insulation panel, core, refrigerator, the manufacture method of vacuum insulation panel, the recycling method of refrigerator
CN107429872A (en) * 2015-03-10 2017-12-01 东芝生活电器株式会社 Heat-insulating material, core, the manufacture method of refrigerator and heat-insulating material
JP2016173114A (en) * 2015-03-16 2016-09-29 株式会社東芝 Heat insulation material, core material, and refrigerator
JP2016173149A (en) * 2015-03-17 2016-09-29 株式会社東芝 Method for manufacturing vacuum heat insulation panel, vacuum heat insulation panel, core material, and refrigerator
US10099447B2 (en) 2015-03-17 2018-10-16 Kabushiki Kaisha Toshiba Structural body and core
US10906266B2 (en) 2015-03-17 2021-02-02 Kabushiki Kaisha Toshiba Structural body and core
JP2016173150A (en) * 2015-03-17 2016-09-29 株式会社東芝 Vacuum heat insulation panel for refrigerator and method for recycling refrigerator
JP2019143809A (en) * 2019-04-18 2019-08-29 株式会社東芝 Vacuum heat insulation panel, core material and refrigerator

Similar Documents

Publication Publication Date Title
JP2012197644A (en) Heat insulator
JP5615988B1 (en) Piezoelectric laminate
JP6269922B2 (en) Fiber sheet and fiber product using the same
JP6172924B2 (en) Manufacturing method of nonwoven fabric substrate for air filter or mask
KR102279401B1 (en) Vacuum insulated panel, core material, refrigerator, method for producing vacuum insulated panel, and method for recycling refrigerator
KR101310523B1 (en) Porous sheet and method for manufacturing the same
JP2012224946A (en) Method for manufacturing filter using nanofiber
JP2012209235A (en) Secondary battery fibrous separation film and manufacturing method for the same
WO2015165272A1 (en) Melt electrostatic spinning method and nanofiber prepared using same
JP2012219384A (en) Method for producing nanofiber composite, nanofiber composite and separator
JP6467217B2 (en) Piezoelectric vibration sensor
TW201630648A (en) Electrically charged nonwoven fabric, filtration material using same, and method for producing electrically charged nonwoven fabric
KR20150047760A (en) Hybrid Heat Insulation Sheet and Manufacturing Method thereof
KR20140110404A (en) Core for Heat Insulating Material, Method for Manufacturing the Same and Slim Type Heat Insulating Material Using the Same
KR101601170B1 (en) Heat Insulation Sheet, Method for Manufacturing the Same and Heat Insulating Panel using the same
WO2015005420A1 (en) Piezoelectric sheet, manufacturing method of said sheet, and piezoelectric laminate
KR20150047759A (en) Hybrid Heat Insulation Sheet and Manufacturing Method thereof
JP2014227629A (en) Manufacturing installation of microfilament bulk materials
KR101619225B1 (en) Heat insulation sheet, method for manufacturing the same and heat insulating panel
JP6417557B2 (en) Method for manufacturing piezoelectric element
US20150004422A1 (en) Nano fiber composite sheet and method of manufacturing the same
JP6508630B2 (en) Equipment for manufacturing laminated nonwoven fabric
JP6150921B2 (en) Adhesive spraying method
KR20160054437A (en) Hybrid Heat Insulation Sheet, Method for Manufacturing the Same and Heat Insulating Panel
JP2017225968A (en) Air filter medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151215