JP2012197489A - High strength aluminum alloy sheet for secondary battery large-scaled rectangular can excellent in laser weldability and method for producing the same - Google Patents
High strength aluminum alloy sheet for secondary battery large-scaled rectangular can excellent in laser weldability and method for producing the same Download PDFInfo
- Publication number
- JP2012197489A JP2012197489A JP2011062760A JP2011062760A JP2012197489A JP 2012197489 A JP2012197489 A JP 2012197489A JP 2011062760 A JP2011062760 A JP 2011062760A JP 2011062760 A JP2011062760 A JP 2011062760A JP 2012197489 A JP2012197489 A JP 2012197489A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- mass
- alloy plate
- secondary battery
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 125
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000003466 welding Methods 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000010409 ironing Methods 0.000 claims abstract description 19
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 238000000137 annealing Methods 0.000 claims description 24
- 238000005098 hot rolling Methods 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 13
- 238000005097 cold rolling Methods 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000000265 homogenisation Methods 0.000 claims description 6
- 230000000630 rising effect Effects 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 230000035515 penetration Effects 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 13
- 229910001416 lithium ion Inorganic materials 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 229910002551 Fe-Mn Inorganic materials 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000011362 coarse particle Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Laser Beam Processing (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
本発明は、例えばリチウムイオン二次電池などの二次電池用外装缶の素材として用いられるレーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板及びその製造方法に関するものである。 The present invention relates to a high-strength aluminum alloy plate for a secondary battery large-sized square can excellent in laser weldability used as a material for an outer can for a secondary battery such as a lithium ion secondary battery, and a method for producing the same.
リチウムイオン二次電池は携帯電話やPC(パーソナルコンピュータ)等のモバイル製品の電源として多用されている。
これらのモバイル製品で用いられるリチウムイオン二次電池では、例えば、一側方が開放された角型金属管の開放部を蓋部材で閉塞した角型電池缶が用いられる(例えば、特許文献1参照。)。そして、比較的大型の缶でも、横断面の寸法が短幅W≦10mm、長幅L≦50mm程度であり、高さH≦60mmとされている。このようなモバイル用のリチウムイオン二次電池の電池缶は、充放電サイクル中の発熱による膨れや外部衝撃から内部電極材を保護するため、高い強度を有することが必要であり、JIS規定のH12〜H16調質材で板厚t:0.40〜0.60mm程度のアルミニウム合金板が使用されている。
Lithium ion secondary batteries are widely used as power sources for mobile products such as mobile phones and PCs (personal computers).
In lithium ion secondary batteries used in these mobile products, for example, a rectangular battery can in which an open part of a rectangular metal tube whose one side is open is closed with a lid member is used (see, for example, Patent Document 1). .) Even in a relatively large can, the dimensions of the cross section are about a short width W ≦ 10 mm, a long width L ≦ 50 mm, and a height H ≦ 60 mm. The battery can of such a mobile lithium ion secondary battery needs to have high strength in order to protect the internal electrode material from swelling and external impact due to heat generation during the charge / discharge cycle. An aluminum alloy plate having a thickness of about 0.40 to 0.60 mm is used as a tempered material of H16.
一方、近年、リチウムイオン二次電池は、大型輸送機器や電気自動車など、大容量を必要とする箇所で使用されることが多くなっている。この場合、リチウムイオン二次電池は、複数のセルを並列したユニット単位で使用され、積載荷重をできるだけ小さくするため、1セルあたりの電池容量(出力密度:W/kg、エネルギー密度:Wh/kg)を少しでも大きくする工夫がなされている。 On the other hand, in recent years, lithium ion secondary batteries are increasingly used in places that require a large capacity, such as large transport equipment and electric vehicles. In this case, the lithium ion secondary battery is used in units of a plurality of cells arranged in parallel, and the battery capacity per cell (output density: W / kg, energy density: Wh / kg) in order to minimize the loading load. ) Has been devised to increase as much as possible.
特に、内燃機関を主動力とし、補助動力として二次電池を使用するハイブリッド車(HV)やプラグインハイブリッド車(PHV)、あるいは二次電池のみでモーターを回転させて動力を得る電気自動車(EV)においては、二次電池の積載荷重が小さいことが望ましく、1セル当りの電池容量が極めて重要となる。
このため、車載用のリチウムイオン二次電池は、モバイル機器で用いられるよりも大型の角型電池缶、すなわち、横断面の寸法が短幅W≧10mm、長幅L≧70mm以上であり、高さH≧60mmの角型電池缶を用いることで1セル当りの電池容量を大きくし、これを一台当りに複数個搭載するようにしている。
In particular, a hybrid vehicle (HV) or a plug-in hybrid vehicle (PHV) that uses an internal combustion engine as a main power and uses a secondary battery as auxiliary power, or an electric vehicle (EV) that obtains power by rotating a motor only with a secondary battery. ), The load capacity of the secondary battery is preferably small, and the battery capacity per cell is extremely important.
For this reason, the lithium ion secondary battery for in-vehicle use is a large square battery can larger than that used in mobile devices, that is, the cross-sectional dimensions are short width W ≧ 10 mm, long width L ≧ 70 mm or more. The battery capacity per cell is increased by using square battery cans of H ≧ 60 mm, and a plurality of them are mounted per unit.
ところで、リチウムイオン二次電池で用いられる角型金属缶は、多段絞り−しごき加工を用いて製造されるのが一般的である。ここで、高さHが60mm以上の大型金属缶を製造する場合には、プレス機のストロークが金属缶高さの3倍以上もある大型のトランスファープレスを使用する必要があり、モバイル用途の金属缶を製造する場合に比べて極めて厳しい深絞り加工が行われる。 By the way, a rectangular metal can used in a lithium ion secondary battery is generally manufactured using a multistage drawing-ironing process. Here, when manufacturing a large metal can having a height H of 60 mm or more, it is necessary to use a large transfer press in which the stroke of the press machine is more than three times the height of the metal can. Extremely severe deep drawing is performed as compared to manufacturing cans.
しかも、車載用の角型金属缶の場合、充放電サイクルに対して十分な耐膨れ性を有することが要求されるだけでなく、自動車の衝突を想定した外部衝撃から電極材を保護し得ることも求められる。このため、金属缶の素材としては、より高い強度を有することが必要であり、板厚tが0.6〜1.6mmのアルミニウム合金素材板が使用されている。しかし、このような厚板状のアルミニウム合金素材板は、深絞り加工に際して、割れやそれに伴う破断が非常に発生し易く、これによって電池缶の不良率が高くなってしまう。 In addition, in the case of a rectangular metal can for in-vehicle use, not only is it required to have sufficient swell resistance to charge / discharge cycles, but it can also protect the electrode material from external impacts assuming an automobile collision. Is also required. For this reason, as a raw material of a metal can, it is required to have higher strength, and an aluminum alloy material plate having a plate thickness t of 0.6 to 1.6 mm is used. However, such a thick plate-like aluminum alloy material plate is very susceptible to cracking and accompanying breakage during deep drawing, which increases the defective rate of battery cans.
また、このような電池缶では、例えばJIS1050、3003などのアルミニウム合金によって構成された蓋部材と、電池缶とがレーザ溶接法によって接合される。ここで、特に、車載用の電池缶では、前述のような強い外部衝撃から電極材を保護することが要求されるため、金属缶と蓋部材との接合強度が高いこと、すなわちレーザ溶接において深い溶け込みが生じていることが必要であり、また、ブローホールや溶融スパッタ等の溶接欠陥が少ないことが好ましい。特に、溶融スパッタの一部が周囲に飛び跳ね、金属片が電池缶の内部に混入した場合、正極と負極が短絡し、リチウムイオン二次電池の内圧が異常に増加することも想定されるため、これを抑制することが極めて重要となる。 In such a battery can, for example, a lid member made of an aluminum alloy such as JIS1050 or 3003 and the battery can are joined by a laser welding method. Here, in particular, in-vehicle battery cans are required to protect the electrode material from the strong external impact as described above. Therefore, the bonding strength between the metal can and the lid member is high, that is, deep in laser welding. It is necessary that melting has occurred, and it is preferable that welding defects such as blow holes and melt sputtering are small. In particular, when a part of the melt spatter jumps around and a metal piece is mixed inside the battery can, the positive electrode and the negative electrode are short-circuited, and the internal pressure of the lithium ion secondary battery is also expected to increase abnormally. It is extremely important to suppress this.
本発明は、これらの課題を解決するためになされたものであり、引張強さが高く、プレス成形性及びレーザ溶接性に優れ、多段絞り−しごき加工を用いて、比較的大型の電池用角型缶に容易に成形することができるレーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板材及びその製造方法を提供することを目的とする。 The present invention has been made to solve these problems, has high tensile strength, is excellent in press formability and laser weldability, and uses a multistage drawing-ironing process to form a relatively large corner for a battery. It is an object of the present invention to provide a high-strength aluminum alloy sheet for a secondary battery large-sized square can that can be easily formed into a mold can and excellent in laser weldability, and a method for producing the same.
本発明者らが、引張強さが高く、プレス成形性及びレーザ溶接性に優れたアルミニウム合金板を得るべく、検討を重ねた結果、アルミニウム合金板の組成及び機械的性質(引張強さ、伸び)を規定することにより、これらの要求を満たすアルミニウム合金板が得られるとの知見を得るに至った。本発明は、かかる知見に基づいて成されたものであって、以下の構成を有する。 As a result of repeated investigations by the present inventors to obtain an aluminum alloy plate having high tensile strength and excellent press formability and laser weldability, the composition and mechanical properties of the aluminum alloy plate (tensile strength, elongation) ) Has led to the knowledge that an aluminum alloy sheet satisfying these requirements can be obtained. The present invention has been made based on such findings and has the following configuration.
本発明のレーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板は、被接合部材とレーザ溶接法によって溶接されるレーザ溶接用高強度アルミニウム合金板であって、Mn、Cu、Mg、Si、Feを下記の含有量で含有し、残部がAlと不可避的不純物からなり、
Mn:0.90〜1.30質量%、Cu:0.30〜0.80質量%、Mg:0.20〜0.80質量%、Si:0.01〜0.20質量%、Fe:0.05〜0.50質量%、引張強さが150〜230MPa、伸びが20%以上であることを特徴とする。
A high-strength aluminum alloy plate for a secondary battery large square can excellent in laser weldability of the present invention is a high-strength aluminum alloy plate for laser welding welded to a member to be joined by a laser welding method, and includes Mn, Cu, Mg, Si, Fe is contained in the following content, the balance consists of Al and inevitable impurities,
Mn: 0.90 to 1.30% by mass, Cu: 0.30 to 0.80% by mass, Mg: 0.20 to 0.80% by mass, Si: 0.01 to 0.20% by mass, Fe: 0.05 to 0.50 mass%, tensile strength is 150 to 230 MPa, and elongation is 20% or more.
また、本発明において、多段絞り−しごき加工によって、横断面における短幅Wが10mm以上、長幅Lが70mm以上、高さHが60mm以上の電池用角型缶に成形し得ることを特徴とする。
また、本発明において、被接合部材とのレーザ溶接で優れたレーザ溶接性が得られることを特徴とする。
Further, in the present invention, the battery can be formed into a square can for a battery having a short width W of 10 mm or more, a long width L of 70 mm or more, and a height H of 60 mm or more by multistage drawing-ironing. To do.
Further, the present invention is characterized in that excellent laser weldability can be obtained by laser welding with a member to be joined.
また、本発明のレーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板の製造方法は、被接合部材とレーザ溶接法によって溶接されるレーザ溶接用高強度アルミニウム合金板の製造方法であって、Mn、Cu、Mg、Si、Feを下記の含有量で含有し、残部がAlと不可避的不純物からなるアルミニウム合金鋳塊に、均質化処理、熱間圧延、冷間圧延、最終焼鈍を順次行うことでレーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板を製造するに際し、Mn:0.90〜1.30質量%、Cu:0.30〜0.80質量%、Mg:0.20〜0.80質量%、Si:0.01〜0.20質量%、Fe:0.05〜0.50質量%、熱間圧延での圧延板の巻取り温度を360℃以下とし、最終焼鈍を、冷間圧延で得られた圧延板を昇温速度10〜250℃/秒で400〜550℃に昇温した後、この温度で5〜60秒保持し、その後、冷却速度20〜200℃/秒で冷却することで行うことを特徴とする。 The method for producing a high-strength aluminum alloy plate for a secondary battery large square can excellent in laser weldability of the present invention is a method for producing a high-strength aluminum alloy plate for laser welding that is welded to a member to be joined by a laser welding method. In the aluminum alloy ingot containing Mn, Cu, Mg, Si, Fe in the following content, the balance being Al and inevitable impurities, homogenization treatment, hot rolling, cold rolling, final When manufacturing a high-strength aluminum alloy sheet for a secondary battery large square can excellent in laser weldability by performing annealing sequentially, Mn: 0.90 to 1.30% by mass, Cu: 0.30 to 0.80 % By mass, Mg: 0.20 to 0.80% by mass, Si: 0.01 to 0.20% by mass, Fe: 0.05 to 0.50% by mass, winding temperature of rolled sheet in hot rolling At 360 ° C or lower, and the final annealing is performed under cold pressure. After the temperature of the rolled sheet obtained in step 1 is increased to 400 to 550 ° C. at a temperature increase rate of 10 to 250 ° C./second, the temperature is maintained at this temperature for 5 to 60 seconds, and then cooled at a cooling rate of 20 to 200 ° C./second. It is characterized by that.
本発明によれば、レーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板は、Mn、Cu、Mg、Si、Feを所定の含有量で含有し、引張強さ及び伸びが所定の範囲に規定されていることにより、引張強さが高く、また、良好なプレス成形性及びレーザ溶接性を得ることができる。
このため、このレーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板は、多段絞り−しごき加工を用いて、比較的大型の電池用角型缶に容易に成形することができる。そして、成形された角型缶は、機械的強度に優れ、また、レーザ溶接法によって電池の蓋部材と高い溶接強度で溶接することができる。このため、車載用の大型リチウムイオン二次電池の角型缶として好適に用いることができる。
According to the present invention, a high-strength aluminum alloy plate for a secondary battery large-sized square can excellent in laser weldability contains Mn, Cu, Mg, Si, Fe at a predetermined content, and has a tensile strength and elongation. By being defined within the predetermined range, the tensile strength is high, and good press formability and laser weldability can be obtained.
For this reason, the high-strength aluminum alloy plate for a secondary battery large square can excellent in laser weldability can be easily formed into a relatively large battery square can by using multistage drawing and ironing. . The molded rectangular can is excellent in mechanical strength and can be welded to the battery lid member with a high welding strength by a laser welding method. For this reason, it can use suitably as a square can of the large sized lithium ion secondary battery for vehicle mounting.
また、本発明によれば、Mn、Cu、Mg、Si、Feを所定の有量で含有するアルミニウム合金鋳塊に、均質化処理、熱間圧延、冷間圧延、最終焼鈍を順次行うことでレーザ溶接用高強度アルミニウム合金板を製造するに際し、熱間圧延での圧延板の巻取り温度、及び、最終焼鈍の条件を所定の範囲に設定するため、前述のような引張強さが高く、また、プレス成形性及びレーザ溶接性に優れたレーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板を容易に得ることができる。 In addition, according to the present invention, the aluminum alloy ingot containing Mn, Cu, Mg, Si, and Fe in a predetermined amount is sequentially subjected to homogenization treatment, hot rolling, cold rolling, and final annealing. When manufacturing a high-strength aluminum alloy sheet for laser welding, in order to set the coiling temperature of the rolled sheet in hot rolling and the conditions for final annealing within a predetermined range, the tensile strength as described above is high, Moreover, the high intensity | strength aluminum alloy plate for secondary battery large square cans which is excellent in laser weldability excellent in press moldability and laser weldability can be obtained easily.
次に、本発明の具体的な実施形態について図面を参照しながら説明する。
<レーザ溶接用高強度アルミニウム合金板>
まず、本発明のレーザ溶接用高強度アルミニウム合金板の実施形態について説明する。
図1は、本発明のレーザ溶接用高強度アルミニウム合金板から成形された電池用角型缶を適用した電池缶の一例を示す概略分解斜視図、図2は、図1に示す電池用角型缶の横断面図である。
なお、以下の説明では、電池用角型缶2において、高さ方向に直交する面に沿った断面を「横断面」と言い、この横断面における外形の短幅を「W」、長幅を「L」とし、横断面と直交する方向の長さが「高さH」となる。
Next, specific embodiments of the present invention will be described with reference to the drawings.
<High-strength aluminum alloy plate for laser welding>
First, an embodiment of the high-strength aluminum alloy plate for laser welding of the present invention will be described.
FIG. 1 is a schematic exploded perspective view showing an example of a battery can to which a battery square can formed from a high-strength aluminum alloy plate for laser welding according to the present invention is applied. FIG. 2 is a battery square shown in FIG. It is a cross-sectional view of a can.
In the following description, in the battery square can 2, a cross section along a plane orthogonal to the height direction is referred to as a “cross section”, the short width of the outer shape in this cross section is “W”, and the long width is The length in the direction orthogonal to the cross section is “height H”.
本発明のレーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板(以下、単に「アルミニウム合金板」と言う。)は、被接合部材とレーザ溶接法によって溶接されるものであり、Mn、Cu、Mg、Si、Feを下記の含有量で含有し、残部がAlと不可避的不純物からなっている。
Mn:0.90〜1.30質量%、Cu:0.30〜0.80質量%、Mg:0.20〜0.80質量%、Si:0.01〜0.20質量%、Fe:0.05〜0.50質量%。また、この実施形態のアルミニウム合金板は、引張強さが150〜230MPa、伸びが20%以上とされている。
これにより、本実施形態のアルミニウム合金板は、高い引張強さが得られ、また、優れたプレス成形性及びレーザ溶接性を得ることができる。
The high-strength aluminum alloy plate (hereinafter simply referred to as “aluminum alloy plate”) for a secondary battery large square can excellent in laser weldability of the present invention is welded to a member to be joined by a laser welding method. , Mn, Cu, Mg, Si, and Fe are contained in the following contents, and the balance is made of Al and inevitable impurities.
Mn: 0.90 to 1.30% by mass, Cu: 0.30 to 0.80% by mass, Mg: 0.20 to 0.80% by mass, Si: 0.01 to 0.20% by mass, Fe: 0.05-0.50 mass%. Moreover, the aluminum alloy plate of this embodiment has a tensile strength of 150 to 230 MPa and an elongation of 20% or more.
Thereby, the aluminum alloy plate of this embodiment can obtain high tensile strength, and can obtain excellent press formability and laser weldability.
本実施形態のアルミニウム合金板は、必要に応じて所望の形状に成形され、被接合部材とレーザ溶接法によって溶接される。
アルミニウム合金板を成形する場合、その形状は特に限定されないが、図1に示す構造のリチウムイオン二次電池等の電池用角型缶2に成形するのが好適である。
図1、2に示す電池用角型缶2は、横断面が長方形状をなす有底筒状に成形され、開放された一端を閉塞する蓋部材3によって電池缶1が構成される。本実施形態の角型缶2は、多段絞り−しごき加工によって成形されており、横断面における短幅Wが10mm以上、長幅Lが70mm以上であり、高さHが60mm以上の大型サイズとされている。また、蓋部材3は、角型缶2にレーザ溶接法により溶接されている。
The aluminum alloy plate of this embodiment is formed into a desired shape as necessary, and is welded to the member to be joined by a laser welding method.
When the aluminum alloy plate is formed, the shape is not particularly limited, but it is preferable to form the aluminum alloy plate into a battery square can 2 such as a lithium ion secondary battery having the structure shown in FIG.
1 and 2 is formed into a bottomed cylindrical shape having a rectangular cross section, and the battery can 1 is constituted by a
ここで、本発明のアルミニウム合金板は、良好なプレス成形性を有するため、多段絞り−しごき加工を用いて、本実施形態のような大型の角型缶2に容易に成形することができる。また、成形された角型缶2は、素材となるアルミニウム合金板の引張強さ及びレーザ溶接性が優れることにより、高い機械的強度が得られ、また、蓋部材3を、レーザ溶接法によって高い溶接強度で溶接することができる。このため、車載用の大型リチウムイオン二次電池の角型缶として好適に用いることができる。
Here, since the aluminum alloy plate of the present invention has good press formability, it can be easily formed into a large square can 2 as in the present embodiment using multistage drawing-ironing. Further, the molded square can 2 has high mechanical strength due to the excellent tensile strength and laser weldability of the aluminum alloy plate as the material, and the
以上の効果は、アルミニウム合金板に含まれる各成分の含有量及びその機械的性質(引張強度、伸び)が所定の範囲に規定されていることによって得られるものである。
以下、アルミニウム合金板の各成分及びその含有量、機械的性質について説明する。
「Mn:0.90〜1.30質量%」
Mnの添加は、アルミニウム合金板の引張強さを高めるとともに、結晶粒を微細化し、アルミニウム合金板のプレス成形性を向上させる効果がある。
Mn含有量が0.90質量%未満の場合には、これらの効果が不十分となる。一方、Mn含有量が1.40質量%を超えると、圧延用スラブ鋳造時に粗大なAl−Fe−Mn系晶出物が生成し易くなり、これらが混入することによって、アルミニウム合金板のプレス成形性が著しく低下する。このため、本発明では、Mn含有量を0.90〜1.40質量%に規定する。なお、引張強さ及びプレス成形性をより改善する点から、Mn含有量は0.95〜1.30質量%の範囲が好ましい。
The above effects can be obtained when the content of each component contained in the aluminum alloy plate and its mechanical properties (tensile strength, elongation) are defined within a predetermined range.
Hereinafter, each component of the aluminum alloy plate, its content, and mechanical properties will be described.
“Mn: 0.90 to 1.30% by mass”
The addition of Mn has the effect of increasing the tensile strength of the aluminum alloy plate, miniaturizing the crystal grains, and improving the press formability of the aluminum alloy plate.
When the Mn content is less than 0.90% by mass, these effects are insufficient. On the other hand, if the Mn content exceeds 1.40% by mass, a coarse Al-Fe-Mn-based crystallized product is easily generated during casting of a slab for rolling, and these are mixed, thereby press forming an aluminum alloy plate. Remarkably deteriorates. For this reason, in this invention, Mn content is prescribed | regulated to 0.90-1.40 mass%. In addition, from the point which improves tensile strength and press moldability more, the range of 0.95-1.30 mass% is preferable for Mn content.
「Cu:0.30〜0.80質量%」
Cuの添加は、アルミニウム合金板の引張強さを高めるとともに、レーザ溶接に際する溶融金属の溶け込みを深くする作用がある。これにより、例えば該アルミニウム合金板で電池の角型缶を構成した場合、角型缶の機械的強度及び角型缶と蓋部材との溶接強度が向上し、耐圧強度に優れた電池缶を得ることができる。
Cu含有量が0.30質量%未満の場合には、これらの効果が不十分となる。一方、Cu含有量が0.80質量%を超えると、アルミニウム合金板のプレス成形性とレーザ溶接性が顕著に低下する。このため、本発明では、Cu含有量を0.30〜0.80質量%に規定する。なお、引張強さ、レーザ溶接性及びプレス成形性をより改善する点から、Cu含有量は、0.35〜0.70質量%であるのが好ましい。
“Cu: 0.30 to 0.80 mass%”
The addition of Cu has the effect of increasing the tensile strength of the aluminum alloy plate and deepening the penetration of the molten metal during laser welding. Thereby, for example, when a battery square can is constituted by the aluminum alloy plate, the mechanical strength of the square can and the welding strength between the square can and the lid member are improved, and a battery can excellent in pressure strength is obtained. be able to.
When the Cu content is less than 0.30% by mass, these effects are insufficient. On the other hand, if the Cu content exceeds 0.80% by mass, the press formability and laser weldability of the aluminum alloy plate are significantly reduced. For this reason, in this invention, Cu content is prescribed | regulated to 0.30-0.80 mass%. In addition, it is preferable that Cu content is 0.35-0.70 mass% from the point which improves tensile strength, laser weldability, and press moldability more.
「Mg:0.20〜0.80質量%」
Mgの添加は、アルミニウム合金板の耐圧強度を高めるとともに、レーザ溶接に際する溶融金属の溶け込みを深くする作用がある。これにより、例えば該アルミニウム合金板で電池の角型缶を構成した場合、角型缶の機械的強度及び角型缶と蓋部材との溶接強度が向上し、耐圧強度に優れた電池を得ることができる。
Mg含有量が0.20質量%未満の場合には、これらの効果が不十分となる。また、Mg含有量が0.80質量%を越えると、アルミニウム合金板の引張強さと電池の耐圧強度は向上するが、アルミニウム合金板のプレス成形性が低下する。さらに、アルミニウム合金板と被接合部材とをレーザ溶接するに際し、ブローホールと溶融スパッタ発生がともに多くなる。このため、本発明ではMg含有量を0.20〜0.80質量%に規定する。なお、引張強さ、レーザ溶接性及びプレス成形性をより改善する点から、Mg含有量は、0.25〜0.65質量%であることが好ましい。
“Mg: 0.20 to 0.80 mass%”
The addition of Mg has the effect of increasing the pressure resistance of the aluminum alloy plate and deepening the penetration of the molten metal during laser welding. Thereby, for example, when a square can of a battery is constituted by the aluminum alloy plate, the mechanical strength of the square can and the welding strength between the square can and the lid member are improved, and a battery having excellent pressure strength is obtained. Can do.
When the Mg content is less than 0.20% by mass, these effects are insufficient. On the other hand, if the Mg content exceeds 0.80% by mass, the tensile strength of the aluminum alloy plate and the pressure resistance of the battery are improved, but the press formability of the aluminum alloy plate is lowered. Furthermore, when laser welding the aluminum alloy plate and the member to be joined, both blow holes and melt spatter are generated. For this reason, in this invention, Mg content is prescribed | regulated to 0.20-0.80 mass%. In addition, it is preferable that Mg content is 0.25-0.65 mass% from the point which improves tensile strength, laser weldability, and press moldability more.
「Si:0.01〜0.20質量%」
Siは不可避不純物として存在し、アルミニウム合金板の強度を若干高める効果があるが、レーザ溶接において溶け込み深さが一定でなくなるなど、溶接安定性に悪影響を及ぼす。このため、Si含有量は0.20質量%以下であることが必要であり、0.15質量%以下であるのが好ましく、0.10質量%未満であるのがより好ましい。但し、Si含有量を0.01質量%未満とするには、入手が困難な高純度地金を使用する必要があり、アルミニウム合金板がコスト高になる。このため、Si含有量の下限は0.01質量%に規定する。
“Si: 0.01 to 0.20 mass%”
Si exists as an unavoidable impurity and has the effect of slightly increasing the strength of the aluminum alloy plate, but adversely affects welding stability, such as the penetration depth becoming non-uniform in laser welding. For this reason, Si content needs to be 0.20 mass% or less, it is preferable that it is 0.15 mass% or less, and it is more preferable that it is less than 0.10 mass%. However, in order to make the Si content less than 0.01% by mass, it is necessary to use a high-purity metal that is difficult to obtain, and the aluminum alloy plate becomes expensive. For this reason, the minimum of Si content is prescribed | regulated to 0.01 mass%.
「Fe:0.05〜0.50質量%」
Feは、Siと同様に不可避不純物として存在し、アルミニウム合金板の強度を若干高める効果があるが、Fe含有量が大きくなると、アルミニウム合金板にAl−Fe−Mn系の晶出物粒子が粗大に分布するようになる。このAl−Fe−Mn系晶出物粒子は、特に粗大粒子である場合、アルミニウム合金板のプレス成形に際して、破断の直接原因にはならないが、き裂の進展経路となり易い。このため、良好なプレス成形性を得るには、アルミニウム合金板に分布するAl−Fe−Mn系晶出物粒子について、その大きさと分布状態を適切に管理する必要がある。
“Fe: 0.05 to 0.50 mass%”
Fe is present as an inevitable impurity like Si, and has the effect of slightly increasing the strength of the aluminum alloy plate. However, when the Fe content increases, Al—Fe—Mn-based crystallized particles are coarse on the aluminum alloy plate. To become distributed. When the Al—Fe—Mn crystallized particles are particularly coarse particles, they do not directly cause breakage during press forming of an aluminum alloy plate, but they tend to be a crack propagation path. For this reason, in order to obtain good press formability, it is necessary to appropriately manage the size and distribution state of Al—Fe—Mn crystallized particles distributed on the aluminum alloy plate.
このため、本発明では、Fe含有量を0.50質量%未満に規制する。これにより、Al−Fe−Mn系粗大粒子の晶出が抑えられ、良好なプレス成形性を得ることができる。なお。Fe含有量のより好ましい範囲は0.30質量%以下である。但し、Fe含有量を0.05質量%未満とするには、入手が困難な高純度地金を使用する必要があり、アルミニウム合金板がコスト高になる。さらに、Fe含有量を極めて少なくすると、アルミニウム合金の鋳造性が悪化し、鋳塊に割れを生じるなどの問題が発生する。このため、Fe含有量の下限は0.05質量%に規定する。 For this reason, in this invention, Fe content is controlled to less than 0.50 mass%. Thereby, crystallization of the Al—Fe—Mn coarse particles can be suppressed, and good press formability can be obtained. Note that. A more preferable range of the Fe content is 0.30% by mass or less. However, in order to make the Fe content less than 0.05% by mass, it is necessary to use a highly pure metal that is difficult to obtain, and the aluminum alloy plate becomes expensive. Furthermore, if the Fe content is extremely low, the castability of the aluminum alloy deteriorates, and problems such as cracking of the ingot occur. For this reason, the minimum of Fe content is prescribed | regulated to 0.05 mass%.
次に、アルミニウム合金板の引張強さ及び伸びについて説明する。
ここで、本明細書中において、「引張強さ」及び「伸び」とは、それぞれJIS Z2201に規定される引張試験方法に準じて測定される「引張強さ」及び「伸び」である。
「引張強さ:150〜230MPa」
アルミニウム合金板の引張強さは、アルミニウム合金板のプレス成形性と得られる成形体(角型缶等)の機械的強度に影響する。本実施形態においてアルミニウム合金板の引張強さは150MPa以上230MPa以下であることが好ましい。
アルミニウム合金板の引張強さが150MPa未満であると、例えば該アルミニウム合金板によって電池の角型缶を構成した場合に、電池内部の電極材を外部衝撃から保護する機能が十分に得られない。一方、引張強さが230MPaを超える場合には、例えばトランスファープレスを使用する多段絞り加工によって角型缶を成形したとき、成形過程で割れが発生し易く、不良率が著しく増加する。アルミニウム合金板の引張強さが前記範囲であることにより、電池の充放電サイクルに対して十分な耐膨れ性が得られ、且つ、外部衝撃に十分耐え得る電池用の角型缶を生産性良く得ることができる。
Next, the tensile strength and elongation of the aluminum alloy plate will be described.
Here, in this specification, “tensile strength” and “elongation” are “tensile strength” and “elongation” measured according to the tensile test method defined in JIS Z2201, respectively.
“Tensile strength: 150 to 230 MPa”
The tensile strength of the aluminum alloy plate affects the press formability of the aluminum alloy plate and the mechanical strength of the resulting molded body (such as a square can). In this embodiment, the tensile strength of the aluminum alloy plate is preferably 150 MPa or more and 230 MPa or less.
When the tensile strength of the aluminum alloy plate is less than 150 MPa, for example, when a square can of the battery is constituted by the aluminum alloy plate, the function of protecting the electrode material inside the battery from external impact cannot be obtained sufficiently. On the other hand, when the tensile strength exceeds 230 MPa, for example, when a rectangular can is formed by multi-stage drawing using a transfer press, cracks are likely to occur during the forming process, and the defect rate is significantly increased. When the tensile strength of the aluminum alloy plate is within the above range, sufficient swelling resistance to the charge / discharge cycle of the battery can be obtained, and a rectangular can for the battery that can sufficiently withstand external impact is produced with high productivity. Obtainable.
「伸び:20%以上」
本実施形態のアルミニウム合金板の伸びは、該アルミニウム合金板を多段絞り−しごき加工等によって成形する際のプレス成形性に影響する。
アルミニウム合金板は、伸びが20%以上であることにより、肉厚tが0.6〜1.6mmと比較的厚い場合でも、多段絞り−しごき加工で良好な成形性が得られ、高さH≧60mm以上の大型角型缶に確実に成形することができる。
ここで、JIS3003合金等の汎用アルミニウム合金板であっても、高さH≧60mmの角型缶に成形することは十分可能である。しかし、引張強さが150〜230MPaの高強度アルミニウム合金板の場合、多段絞り−しごき加工が非常に難しく、この加工を可能にするには伸びが20%以上であることが必要である。すなわち、アルミニウム合金板は、伸びが20%以上であることにより、高強度でありながら、多段絞り−しごき加工による大型角型缶2への成形が可能となる。
“Elongation: 20% or more”
The elongation of the aluminum alloy plate of the present embodiment affects the press formability when the aluminum alloy plate is formed by multistage drawing-ironing or the like.
Since the aluminum alloy sheet has an elongation of 20% or more, even when the wall thickness t is relatively thick, 0.6 to 1.6 mm, good formability can be obtained by multistage drawing-ironing, and the height H It can be reliably formed into a large square can of ≧ 60 mm or more.
Here, even a general-purpose aluminum alloy plate such as JIS3003 alloy can be sufficiently formed into a square can having a height H ≧ 60 mm. However, in the case of a high-strength aluminum alloy plate having a tensile strength of 150 to 230 MPa, the multistage drawing-ironing process is very difficult, and the elongation needs to be 20% or more to enable this process. That is, since the aluminum alloy plate has an elongation of 20% or more, it can be formed into a large square can 2 by multistage drawing-ironing processing while having high strength.
<レーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板の製造方法>
次に、このアルミニウム合金板の製造方法(本発明のアルミニウム合金板の製造方法)について説明する。
このアルミニウム合金板の製造方法は、アルミニウム合金鋳塊の均質化処理工程[1]と、熱間圧延工程[2]と、冷間圧延工程[3]と、最終焼鈍工程[4]とを有している。以下、各工程について順次説明する。
<Manufacturing Method of High Strength Aluminum Alloy Plate for Secondary Battery Large Square Can with Excellent Laser Weldability>
Next, the manufacturing method of this aluminum alloy plate (the manufacturing method of the aluminum alloy plate of this invention) is demonstrated.
This method for producing an aluminum alloy sheet includes an aluminum alloy ingot homogenization treatment step [1], a hot rolling step [2], a cold rolling step [3], and a final annealing step [4]. is doing. Hereinafter, each process will be described sequentially.
[1]均質化処理工程
まず、目的とするアルミニウム合金板の組成に対応するアルミニウム合金鋳塊を、処理温度まで昇温し、この温度で一定時間保持する。これにより、アルミニウム合金鋳塊の偏析等の不均一な組織が除去され、得られるアルミニウム合金板の特性及び品質が安定化する。
処理時間及び処理温度は、特に限定されないが、通常480℃〜590℃、60分〜12時間とされる。
[1] Homogenization treatment step First, the aluminum alloy ingot corresponding to the composition of the target aluminum alloy plate is heated to the treatment temperature and held at this temperature for a certain period of time. Thereby, non-uniform structures such as segregation of the aluminum alloy ingot are removed, and the characteristics and quality of the obtained aluminum alloy plate are stabilized.
The treatment time and treatment temperature are not particularly limited, but are usually 480 ° C to 590 ° C and 60 minutes to 12 hours.
[2]熱間圧延工程
次に、均質化処理が施されたアルミニウム合金鋳塊を、再結晶温度以上に加熱しつつ、一対の圧延ロール間を通過させることで圧延し、得られた圧延板を巻取りコイルに巻取る。
また、本発明では、圧延板を巻取る際の圧延板の温度を360℃以下に規定する。これにより、圧延板で繊維状組織が強く発達し、後工程[4]で行う最終焼鈍で、均一且つ微細な結晶粒組織を容易に得ることができる。
なお、この圧延工程を繰り返し行う場合には、各回全てにおいて、圧延板を360℃以下の温度で巻取ることが好ましい。これにより、圧延板の繊維状組織をより強く発達させることができる。
[2] Hot rolling step Next, the aluminum alloy ingot subjected to the homogenization treatment is rolled by passing between a pair of rolling rolls while being heated to a recrystallization temperature or higher, and the obtained rolled plate Is wound on a winding coil.
Moreover, in this invention, the temperature of the rolled sheet at the time of winding up a rolled sheet is prescribed | regulated to 360 degrees C or less. Thereby, the fibrous structure is strongly developed on the rolled sheet, and a uniform and fine crystal grain structure can be easily obtained by the final annealing performed in the post-process [4].
In addition, when performing this rolling process repeatedly, it is preferable to wind up a rolled sheet at the temperature of 360 degrees C or less in all times. Thereby, the fibrous structure of a rolled sheet can be developed more strongly.
[3]冷間圧延工程
次に、熱間圧延工程で得られた圧延板を、冷間圧延し、得られた圧延板を巻取りコイルに巻取る。これにより、圧延板の平坦度および硬度が所望の値に調整される。
ここで、この冷間圧延工程での加工度は、20〜85%であることが好ましい。冷間圧延工程での加工度が20%未満の場合に、得られるアルミニウム合金板の引張強さが不足し、該アルミニウム合金板によって電池の角型缶を構成したとき十分な耐圧強度が得られない可能性がある。また、加工度が90%を超えると、アルミニウム合金板の引張強さが高くなり過ぎ、そのプレス成形性が低下する。これにより、このアルミニウム合金板を多段絞り−しごき加工によって角型缶に成形した場合に、得られた角型缶が破断し易い可能性がある。
[3] Cold rolling step Next, the rolled plate obtained in the hot rolling step is cold-rolled, and the obtained rolled plate is wound on a winding coil. Thereby, the flatness and hardness of the rolled sheet are adjusted to desired values.
Here, the degree of processing in this cold rolling step is preferably 20 to 85%. When the degree of work in the cold rolling process is less than 20%, the tensile strength of the obtained aluminum alloy plate is insufficient, and when the rectangular can of the battery is constituted by the aluminum alloy plate, sufficient pressure strength is obtained. There is no possibility. On the other hand, when the workability exceeds 90%, the tensile strength of the aluminum alloy plate becomes too high, and the press formability is lowered. Thereby, when this aluminum alloy plate is formed into a square can by multistage drawing and ironing, the obtained square can may be easily broken.
[4]最終焼鈍工程
次に、冷間圧延工程によって得られた圧延板を、再結晶温度以上(焼鈍温度)に昇温し、この温度で一定時間保持した後、冷却することでアルミニウム合金板を得る。
この最終焼鈍は、アルミニウム合金板を再結晶温度以上に加熱した後冷却することで再結晶化させる処理であり、これによって圧延板の加工歪が緩和され、引張強さとプレス成形性が両立する。
[4] Final annealing step Next, the rolled sheet obtained by the cold rolling step is heated to a temperature higher than the recrystallization temperature (annealing temperature), held at this temperature for a certain period of time, and then cooled, thereby cooling the aluminum alloy plate. Get.
This final annealing is a process in which the aluminum alloy sheet is heated to a temperature higher than the recrystallization temperature and then cooled to recrystallize, whereby the processing strain of the rolled sheet is alleviated, and the tensile strength and press formability are compatible.
ここで、引張強さ及びプレス成形性に優れたアルミニウム合金板を得るには、この再結晶化した結晶粒が微細且つ均一であることが好ましく、本発明では、このような点から最終焼純工程の条件を下記のように規定する。
昇温速度:10〜250℃/秒、加熱温度:400〜550℃、保持時間:5〜60秒、冷却速度:20〜200℃/秒。
Here, in order to obtain an aluminum alloy sheet excellent in tensile strength and press formability, it is preferable that the recrystallized crystal grains are fine and uniform. The process conditions are defined as follows.
Temperature rising rate: 10 to 250 ° C./second, heating temperature: 400 to 550 ° C., holding time: 5 to 60 seconds, cooling rate: 20 to 200 ° C./second.
昇温速度が10℃/秒より遅い場合、この昇温過程で冷間圧延時に導入された蓄積エネルギーが解放されるため、再結晶核生成率が低下して焼鈍後の結晶粒径が大きくなる。その結果、得られるアルミニウム合金板の引張強さとプレス成形性が低下する。一方、昇温速度を250℃/秒より速くしても、それ以上の効果はほとんど得られず、却って高価な加熱設備が必要となってアルミニウム合金板の生産コストが増加する。 When the rate of temperature increase is slower than 10 ° C./second, accumulated energy introduced during cold rolling is released during this temperature increase process, so the recrystallization nucleation rate decreases and the crystal grain size after annealing increases. . As a result, the tensile strength and press formability of the resulting aluminum alloy plate are reduced. On the other hand, even if the rate of temperature rise is higher than 250 ° C./second, no further effect is obtained, and expensive heating equipment is required instead, and the production cost of the aluminum alloy plate increases.
焼鈍時の加熱温度が400℃より低いと、再結晶化が終了するまでの時間が長くなるため、アルミニウム合金板の製造効率が低下してしまう。また、得られるアルミニウム合金板に、細長く、粗大な結晶粒が生じる。逆に、焼鈍温度が550℃より高くなると、局部溶融が発生して伸びが低くなり、得られるアルミニウム合金板のプレス成形性が低下する。 When the heating temperature at the time of annealing is lower than 400 ° C., the time until the recrystallization is completed becomes long, so that the production efficiency of the aluminum alloy plate is lowered. In addition, elongated and coarse crystal grains are generated in the obtained aluminum alloy plate. On the other hand, when the annealing temperature is higher than 550 ° C., local melting occurs and elongation becomes low, and the press formability of the obtained aluminum alloy plate is lowered.
保持時間が5秒より短いと、再結晶化が完全に完了せず、微細な結晶粒が得られない。逆に、保持時間が60秒より長いと、結晶粒が成長してしまう。これにより、いずれの場合も、得られるアルミニウム合金板の引張強さが低くなる。
また、冷却速度が20℃/秒より遅いと、冷却中にCuとMgがAlと金属間化合物を形成して析出してしまい、得られるアルミニウム合金板の強度の低下をもたらす。また、冷却速度を200℃/秒より速くしても、それ以上の効果はほとんど得られず、却って高価な冷却設備が必要なり、生産コストが増加する。
このように、冷間圧延後の最終焼鈍工程の昇温速度、焼鈍温度、保持時間および冷却速度を上記範囲とすることで、強度が高くプレス成形性に優れたアルミニウム合金板を製造できる。
When the holding time is shorter than 5 seconds, recrystallization is not completely completed, and fine crystal grains cannot be obtained. On the contrary, if the holding time is longer than 60 seconds, crystal grains grow. Thereby, in any case, the tensile strength of the obtained aluminum alloy sheet becomes low.
On the other hand, when the cooling rate is lower than 20 ° C./second, Cu and Mg form an intermetallic compound with Al during cooling, resulting in a decrease in strength of the resulting aluminum alloy plate. Further, even if the cooling rate is faster than 200 ° C./second, no further effect can be obtained. On the contrary, expensive cooling equipment is required, and the production cost increases.
Thus, the aluminum alloy plate which is high in strength and excellent in press formability can be manufactured by setting the temperature rising rate, annealing temperature, holding time and cooling rate in the final annealing step after cold rolling within the above ranges.
以上のようにして製造されたレーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板は、引張強さが高く、また、プレス成形性及びレーザ溶接性に優れている。
このため、例えば多段絞り−しごき加工を用いて、大型の電池用角型缶に容易に成形することができる。また、上述のアルミニウム合金板から成形された角型缶は、アルミニウム合金板の引張強さ及びレーザ溶接性が優れることにより、高い機械的強度が得られ、また、蓋部材を、レーザ溶接法によって高い溶接強度で溶接できる。このため、車載用の大型リチウムイオン二次電池の角型缶として好適に用いることができる。
The high-strength aluminum alloy plate for secondary battery large square cans manufactured as described above and having excellent laser weldability has high tensile strength and is excellent in press formability and laser weldability.
For this reason, it can be easily formed into a large battery square can using, for example, multistage drawing-ironing. In addition, the square can formed from the above-described aluminum alloy plate has high mechanical strength due to the excellent tensile strength and laser weldability of the aluminum alloy plate, and the lid member can be formed by laser welding. Can be welded with high welding strength. For this reason, it can use suitably as a square can of the large sized lithium ion secondary battery for vehicle mounting.
以上、本発明のアルミニウム合金板及びその製造方法の各実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の範囲を逸脱しない範囲で適宜変更することができる。 As mentioned above, although each embodiment of the aluminum alloy plate and its manufacturing method of this invention was described, this invention is not limited to these, In the range which does not deviate from the scope of the present invention, it can change suitably.
以下に、本発明の具体的実施例について説明するが、本願発明はこれらの実施例に限定されるものではない。
「実施例1〜実施例5」
Mn、Cu、Mg、Si、Feを表1に示す如く含有するアルミニウム合金鋳塊を用意した。そして、このアルミニウム合金鋳塊に、580℃で6時間保持する均質化処理を行い、その後、熱間圧延を施した。この熱間圧延工程での巻取りコイルの測定温度を表1に示す。
続いて、熱間圧延工程で得られた圧延板に、冷間圧延を施すことによって板厚1.6mmの圧延板を得た。
次に、この圧延板に最終焼純を行った。最終焼鈍の条件は下記の通りである。
昇温速度:120℃/秒、焼鈍温度:450℃、焼鈍温度での保持時間:30秒、冷却速度:150℃/秒。以上の工程により、アルミニウム合金板を得た。
Specific examples of the present invention will be described below, but the present invention is not limited to these examples.
"Example 1 to Example 5"
An aluminum alloy ingot containing Mn, Cu, Mg, Si, and Fe as shown in Table 1 was prepared. And this aluminum alloy ingot was homogenized by holding at 580 ° C. for 6 hours, and then subjected to hot rolling. Table 1 shows the measurement temperature of the winding coil in this hot rolling process.
Subsequently, the rolled plate obtained in the hot rolling step was cold-rolled to obtain a rolled plate having a thickness of 1.6 mm.
Next, final rolling was performed on the rolled plate. The conditions for final annealing are as follows.
Temperature rising rate: 120 ° C./second, annealing temperature: 450 ° C., holding time at annealing temperature: 30 seconds, cooling rate: 150 ° C./second. The aluminum alloy plate was obtained by the above process.
「実施例6、実施例7」
最終焼鈍の条件を表2に示すように変更した以外は、前記実施例1と同様にしてアルミニウム合金板を得た。
“Example 6 and Example 7”
An aluminum alloy plate was obtained in the same manner as in Example 1 except that the final annealing conditions were changed as shown in Table 2.
「比較例1〜比較例6」
表1に示すように、アルミニウム合金に含まれる成分の少なくともいずれかの含有量を、所定範囲外とする以外は、前記実施例1と同様にしてアルミニウム合金板を得た。
「比較例7」
表1に示すように、熱間圧延に際して、圧延板の巻取り温度を所定範囲外とする以外は、前記実施冷1と同様にしてアルミニウム合金板を得た。
「比較例8〜比較例11」
表2に示すように、最終焼鈍の条件を所定範囲外とする以外は、前記実施例1と同様にしてアルミニウム合金板を得た。
“Comparative Examples 1 to 6”
As shown in Table 1, an aluminum alloy plate was obtained in the same manner as in Example 1 except that the content of at least one of the components contained in the aluminum alloy was outside the predetermined range.
“Comparative Example 7”
As shown in Table 1, during hot rolling, an aluminum alloy plate was obtained in the same manner as in Example 1 except that the rolling temperature of the rolled plate was outside the predetermined range.
“Comparative Example 8 to Comparative Example 11”
As shown in Table 2, an aluminum alloy plate was obtained in the same manner as in Example 1 except that the final annealing condition was outside the predetermined range.
<評価>
各実施例及び各比較例で作製したアルミニウム合金板について、プレス成形性及びレーザ溶接性を評価した。評価の条件は以下に示したとおりである。
(1)プレス成形性
板厚1.6mmの各アルミニウム合金板を、多段絞り−しごき加工によって、缶の肉厚t:1.3mm、横断面における短幅W:37.5mm、長幅L:150mm、高さH:120mmの角型缶に成形した。そして、その成形に際するプレス成形性を、以下の基準に従い評価した。なお、加工に用いたプレス機は10段の金型を有するトランスファープレスである。
○:多段絞り−しごき加工で問題なく成形できた場合
△:角型缶は成形できたが、肌荒れや微小クラックの発生がある場合
×1〜×10:多段絞りの工程で割れが発生して成形できなかった場合であり、右の数字は、割れが発生した際のトランスファープレスの段数を示す。
また、実施例1で作製したアルミニウム合金板を、多段絞り−しごき加工によって、表3に示す寸法で角型缶に成形し、その成形に際するプレス成形性を同様にして評価した。
なお、表3中に示す体積VとL/W比の評価であるが、体積Vとしてできるだけ大きなものを電池缶として作製したいが、L/W比が大きくなると成形が困難になる傾向となる。
<Evaluation>
About the aluminum alloy plate produced by each Example and each comparative example, press-formability and laser weldability were evaluated. The evaluation conditions are as shown below.
(1) Press formability Each aluminum alloy plate having a plate thickness of 1.6 mm is subjected to multi-stage drawing-ironing processing to can thickness t: 1.3 mm, short width W in cross section: 37.5 mm, long width L: It was molded into a rectangular can of 150 mm and height H: 120 mm. And the press formability in the case of the shaping | molding was evaluated according to the following references | standards. The press used for processing is a transfer press having a 10-stage mold.
○: When the multistage drawing-ironing process can be formed without any problem. △: The square can was formed, but rough skin and microcracks are generated. X1 to x10: Cracks are generated during the multistage drawing process. This is a case where molding was not possible, and the number on the right indicates the number of stages of the transfer press when cracking occurred.
Moreover, the aluminum alloy plate produced in Example 1 was formed into a square can with the dimensions shown in Table 3 by multistage drawing-ironing, and the press formability during the forming was similarly evaluated.
In addition, although it is evaluation of the volume V and L / W ratio which are shown in Table 3, it would like to produce as large a battery can as the volume V as a battery can, but when L / W ratio becomes large, it will become a tendency for shaping | molding to become difficult.
(2)レーザ溶接性
レーザ溶接性は、前述のプレス成形性の評価において、アルミニウム合金板材から成形した各角型缶を用いて評価した。
各角型缶の開放側に、JIS規定A3003−O材よりなるアルミニウムの蓋部材(板厚1.0mm)を、最大出力2kwのYb−ファイバーレーザ溶接機を用いて溶接し、電池缶を得た。溶接条件は以下の通りである。
発振方式:CW発振、ファイバー径:φ0.1、Arガス流量:20(l/min)、出力:850W、溶接速度:166(mm/sec)。
得られた電池缶の溶接部について、溶融スパッタ、溶け込み深さ及びブローホール数を以下のようにして調べた。
(2) Laser weldability Laser weldability was evaluated using each square can formed from an aluminum alloy sheet in the above-described evaluation of press formability.
An aluminum lid member (plate thickness: 1.0 mm) made of JIS standard A3003-O material is welded to the open side of each square can using a Yb-fiber laser welding machine with a maximum output of 2 kw to obtain a battery can. It was. The welding conditions are as follows.
Oscillation method: CW oscillation, fiber diameter: φ0.1, Ar gas flow rate: 20 (l / min), output: 850 W, welding speed: 166 (mm / sec).
About the weld part of the obtained battery can, the fusion | melting sputter | spatter, the penetration depth, and the number of blow holes were investigated as follows.
a.溶融スパッタ
各電池缶外周面について、溶接ビードから±1.0mmの範囲をCCDカメラによって観察し、50μm以上の溶融スパッタの発生数を全て計測した。単位長さ100mmを基準として、スパッタの発生数が0〜10個であるものは○、10〜50個であるものは△、50個以上の場合は×として評価した。
b.溶け込み深さの評価
図3に示すように、各電池缶1を切断線bに沿って縦に切断し(4等分し)、断面において観察される溶接部4の最大溶け込み深さを測定した。なお、ここでは各電池缶1の断面位置6カ所(蓋部材の幅方向一側縁に3カ所ずつ、合計6カ所)で観察し、各最大溶け込み深さを観察位置6カ所の平均値で評価した。
この溶け込み深さは溶接部4の接合強度の指標となり、この値が大きい程、溶接部4の接合強度が高く、耐圧性能に優れることを意味する。
一方、壁厚さに対して溶け込み深さが浅い場合には、必要な耐圧強度が得られない。但し、溶け込み深さが必要以上に大きくなると、溶融金属が角型缶2の肉厚を貫通し、内部の電極部材に損傷を与える恐れがある。また、深い溶け込みを得るためには高出力で大きな入熱量が必要で、特に上述の溶融スパッタの発生が多くなり不適である。
具体的には、缶の肉厚tに対して40〜80%程度の溶け込み深さが好ましい。よって肉厚1.3mmの電池缶に対しては、520μm(40%)〜1040μm(80%)に制御する事が望ましい。なお、図3に符号Sで溶接機ノズル先端位置を示す。
a. Melt Sputter On the outer peripheral surface of each battery can, the range of ± 1.0 mm from the weld bead was observed with a CCD camera, and all the occurrences of melt sputter of 50 μm or more were measured. On the basis of a unit length of 100 mm, the case where the number of sputters generated was 0-10, the case where it was 10-50, was evaluated as Δ, and the case where it was 50 or more was evaluated as x.
b. 3. Evaluation of penetration depth As shown in FIG. 3, each battery can 1 was cut vertically along the cutting line b (divided into four equal parts), and the maximum penetration depth of the weld 4 observed in the cross section was measured. . Here, the battery cans 1 were observed at six cross-sectional positions (three on one side edge of the lid member in the width direction, a total of six positions), and the maximum penetration depth was evaluated by the average value of the six observation positions. did.
The penetration depth becomes an index of the joint strength of the welded portion 4, and the larger the value, the higher the joint strength of the welded portion 4 and the better the pressure resistance performance.
On the other hand, when the penetration depth is shallow with respect to the wall thickness, the required compressive strength cannot be obtained. However, if the penetration depth becomes larger than necessary, the molten metal may penetrate the thickness of the square can 2 and damage the internal electrode member. Further, in order to obtain deep penetration, a high output and a large amount of heat input are required.
Specifically, a penetration depth of about 40 to 80% is preferable with respect to the thickness t of the can. Therefore, it is desirable to control the battery can with a thickness of 1.3 mm to 520 μm (40%) to 1040 μm (80%). In addition, the welding machine nozzle front-end | tip position is shown by the code | symbol S in FIG.
c.幅100μm以上のブローホール数
蓋部材及び電池缶の溶接ビードと逆側を山状にして折り曲げ、溶接部全長をCCDカメラを使用し観察した。そして、溶接部に存在する幅100μm以上のブローホールの発生数を計測した。
ブローホールは溶接欠陥の一種であり、ブローホールの発生箇所は蓋部材と電池缶とが未接合の状態にある。そして、特に幅100μm以上の大型ブローホールは接合強度を低下させるため、その発生数は溶接部の接合強度の指標となる。すなわち、この幅100μ以上のブローホールの発生数が少ない程、溶接部の接合強度が高いことを意味する。単位長さ100mmを基準として、幅100mm以上のブローホールが0〜10個であるものは○、10個以上ある物は×として評価した。
以上の評価結果を表1〜表3に示す。
c. The number of blowholes with a width of 100 μm or more The lid member and the battery can were bent on the opposite side to the weld bead, and the entire welded portion was observed using a CCD camera. Then, the number of blowholes having a width of 100 μm or more existing in the welded portion was measured.
A blowhole is a kind of welding defect, and the lid hole and the battery can are not joined at the place where the blowhole is generated. In particular, large blow holes with a width of 100 μm or more reduce the bonding strength, and the number of occurrences is an indicator of the bonding strength of the weld. That is, the smaller the number of blow holes with a width of 100 μm or more, the higher the joint strength of the welded portion. On the basis of a unit length of 100 mm, 0 to 10 blowholes having a width of 100 mm or more were evaluated as ◯, and 10 or more blowholes were evaluated as ×.
The above evaluation results are shown in Tables 1 to 3.
表1〜表3に示すように、各元素の含有量が所定の範囲(Si:0.01〜0.20質量%、Fe:0.05〜0.50質量%、Cu:0.30〜0.80質量%、Mn:0.90〜1.30質量%、Mg:0.20〜0.80質量%)にある試料は、150〜230MPaの高い引張強度と20%以上の伸びを有する優れたレーザ溶接用高強度アルミニウム合金板であることが判明した。また、そのような特性を有するレーザ溶接用高強度アルミニウム合金板を製造する際の条件として、熱間圧延巻取温度360℃以下、最終焼鈍における昇温速度10〜250℃/秒、400〜500℃加熱、保持時間5〜60秒、冷却速度20〜200℃の範囲として作製したアルミニウム合金板(実施例1〜7)は、適正な引張強度と十分な伸びを有している。
このため、成形する角型缶の寸法に関わらず、良好なプレス成形性を得ることができた(表3参照)。具体的には、肉厚1.3mm、長幅150mm、180mmのサイズにおいて、高さ60〜160mm、短幅26.5〜50mmの範囲のサイズの角型缶を支障なくプレス成形−しごき成形により製造できた。
As shown in Tables 1 to 3, the content of each element is within a predetermined range (Si: 0.01 to 0.20 mass%, Fe: 0.05 to 0.50 mass%, Cu: 0.30 0.80 mass%, Mn: 0.90 to 1.30 mass%, Mg: 0.20 to 0.80 mass%) has a high tensile strength of 150 to 230 MPa and an elongation of 20% or more. It was found to be an excellent high-strength aluminum alloy plate for laser welding. Moreover, as conditions for producing a high-strength aluminum alloy plate for laser welding having such characteristics, a hot rolling coiling temperature of 360 ° C. or lower, a temperature increase rate in final annealing of 10 to 250 ° C./second, 400 to 500 The aluminum alloy plates (Examples 1 to 7) produced with heating at 0 ° C., holding time of 5 to 60 seconds, and cooling rate of 20 to 200 ° C. have appropriate tensile strength and sufficient elongation.
For this reason, good press formability could be obtained regardless of the dimensions of the square can to be molded (see Table 3). Specifically, in a size with a thickness of 1.3 mm, a long width of 150 mm, and a width of 180 mm, a rectangular can having a height in the range of 60 to 160 mm and a short width of 26.5 to 50 mm can be formed without any problem by press molding and ironing. I was able to manufacture it.
また、蓋部材とのレーザ溶接において溶融スパッタの数を少なく、ブローホールの発生を抑制でき、また、充分な溶け込み深さを得ることができた。
なお、得られた結果において、溶け込み深さについては、缶の肉厚の40〜80%程度であることが好ましい。溶け込み深さが大きいほど接合強度が高く、良好といえるが、溶け込み深さが必要以上になると溶接速度を低下せざるを得ない場合や、板を貫通してしまう危険がある。
溶融スパッタ数については、50個以下であることが好ましく、スパッタによる金属粉の内部混入の可能性が少なくなる。
ブローホール発生数については、10個以下であることが好ましく、未溶接部が少ないことで高い接合強度を得ることができる。
In addition, the number of melt spatters was reduced in laser welding with the lid member, the occurrence of blow holes could be suppressed, and a sufficient penetration depth could be obtained.
In the obtained results, the penetration depth is preferably about 40 to 80% of the wall thickness of the can. It can be said that the greater the penetration depth, the higher the joint strength and the better. However, if the penetration depth is more than necessary, there is a risk that the welding speed must be reduced or the plate may be penetrated.
The number of fusion sputters is preferably 50 or less, and the possibility of internal mixing of metal powder by sputtering is reduced.
The number of blowholes generated is preferably 10 or less, and a high joint strength can be obtained because there are few unwelded portions.
これらに対し、各元素の含有量が上述の所定範囲から外れているアルミニウム合金板試料である比較例1〜6の試料、作製条件が所定範囲から外れている比較例7〜10の試料は、引張強度や伸びが所定範囲に無いか、レーザ溶接性が不良であった。そして、このうち引張強度が高過ぎる比較例2、6、9、10の試料や、伸びが不十分である比較例7、10の試料、Mn含有量が多すぎる比較例4の試料には、プレス成形時に割れが発生し、角型缶に成形することができなかった。
なお、焼鈍工程で焼鈍温度での保持時間を長くし、冷却速度を遅くした比較例8の試料、昇温速度を遅くした比較例11の試料は、温度管理が難しく、実用性に欠けるものであった。
On the other hand, the samples of Comparative Examples 1 to 6 which are aluminum alloy plate samples whose content of each element is out of the predetermined range described above, and the samples of Comparative Examples 7 to 10 whose manufacturing conditions are out of the predetermined range are as follows: The tensile strength and elongation were not within the predetermined range, or the laser weldability was poor. And among these, the samples of Comparative Examples 2, 6, 9, and 10 where the tensile strength is too high, the samples of Comparative Examples 7 and 10 where the elongation is insufficient, and the sample of Comparative Example 4 that has too much Mn content are Cracks occurred during press molding and could not be molded into a square can.
In addition, the sample of Comparative Example 8 in which the holding time at the annealing temperature was lengthened in the annealing process and the cooling rate was slowed, and the sample of Comparative Example 11 in which the heating rate was slowed were difficult to control temperature and lacked practicality. there were.
「実施例8〜12、比較例12〜18」
先の実施例1〜5で行った試験と同様な試験(引張強さの測定、伸びの測定、レーザ溶接性試験、プレス成形性試験)を板厚0.8mmの圧延板に対しても行い、その結果を表4に示す。板厚0.8mmの試料は、缶の肉厚t:0.6mm、横断面における短幅W:14mm、長幅L:90mm、高さH:70mmの角型缶に成形した。また、レーザ溶接機の出力は550Wに設定した。
表4に示す実施例8〜12の試料は表1に示す実施例1〜5の試料と組成比を表の順に同じとした試料であるが、板厚のみ異なる試料であり、比較例12〜18に示す試料は表1に示す比較例1〜7の試料と表の順に組成比は同じであるが板厚のみ異なる試料である。これらの試料を表4に示す熱間圧延巻取温度で処理し、その後、表1に示す試料と同等の試験に供した。
更に、実施例8で作製した板厚0.8mmのアルミニウム合金板を、多段絞り−しごき加工によって、表5に示す寸法で角型缶に成形し、その成形に際するプレス成形性を同様にして評価した。また、金型の段数が8となっている以外は、スパッタの発生数やブローホールの数の計算方法など、前述の1.6mm厚の試料の場合と同等である。
"Examples 8-12, Comparative Examples 12-18"
Tests similar to the tests performed in Examples 1 to 5 above (measurement of tensile strength, measurement of elongation, laser weldability test, press formability test) were also performed on a rolled plate having a thickness of 0.8 mm. The results are shown in Table 4. A sample having a plate thickness of 0.8 mm was formed into a square can having a thickness t of 0.6 mm, a short width W of 14 mm, a long width L of 90 mm, and a height H of 70 mm. The output of the laser welder was set to 550W.
The samples of Examples 8 to 12 shown in Table 4 are samples having the same composition ratio as that of the samples of Examples 1 to 5 shown in Table 1 in the order of the table, but only the plate thickness is different, and Comparative Examples 12 to The sample shown in FIG. 18 is a sample having the same composition ratio as that of the samples of Comparative Examples 1 to 7 shown in Table 1 but only the plate thickness. These samples were processed at the hot rolling coiling temperature shown in Table 4, and then subjected to a test equivalent to the sample shown in Table 1.
Furthermore, the aluminum alloy plate having a thickness of 0.8 mm produced in Example 8 was formed into a square can with the dimensions shown in Table 5 by multi-stage drawing and ironing, and the press formability during the forming was similarly set. And evaluated. Except for the number of mold stages being 8, the calculation method for the number of spatters and the number of blow holes is the same as that for the 1.6 mm thick sample described above.
表4、表5に示す結果の如く、板厚0.8mmの圧延板を用いた試験においても、板厚1.6mmの圧延板を用いた試験結果を示す表1の試験結果と同等の結果を得ることができたので、板厚0.8mm〜1.6mmの範囲の圧延板において二次電池大型角型缶として用いた場合に同等の結果が得られることがわかった。 As in the results shown in Table 4 and Table 5, even in the test using a rolled plate having a thickness of 0.8 mm, the test results shown in Table 1 showing the test results using the rolled plate having a thickness of 1.6 mm are obtained. As a result, it was found that the same results were obtained when used as a secondary battery large square can on a rolled plate having a thickness of 0.8 mm to 1.6 mm.
1…電池缶、2…電池用角型缶、3…蓋部材、4…溶接部、W…短幅、L…長幅、H…高さ、a…ビード幅、b…切断位置、t…缶の肉厚。 DESCRIPTION OF SYMBOLS 1 ... Battery can, 2 ... Square can for batteries, 3 ... Lid member, 4 ... Welded part, W ... Short width, L ... Long width, H ... Height, a ... Bead width, b ... Cutting position, t ... The thickness of the can.
Claims (4)
Mn:0.90〜1.30質量%
Cu:0.30〜0.80質量%
Mg:0.20〜0.80質量%
Si:0.01〜0.20質量%
Fe:0.05〜0.50質量%
引張強さが150〜230MPa、伸びが20%以上であることを特徴とするレーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板 A high-strength aluminum alloy plate for laser welding that is welded to the member to be joined by the laser welding method, containing Mn, Cu, Mg, Si, Fe in the following contents, and the balance consisting of Al and inevitable impurities ,
Mn: 0.90 to 1.30% by mass
Cu: 0.30 to 0.80 mass%
Mg: 0.20 to 0.80 mass%
Si: 0.01-0.20 mass%
Fe: 0.05 to 0.50 mass%
A high-strength aluminum alloy plate for a secondary battery large square can excellent in laser weldability, characterized by a tensile strength of 150 to 230 MPa and an elongation of 20% or more
Mn:0.90〜1.30質量%
Cu:0.30〜0.80質量%
Mg:0.20〜0.80質量%
Si:0.01〜0.20質量%
Fe:0.05〜0.50質量%
熱間圧延での圧延板の巻取り温度を360℃以下とし、
最終焼鈍を、冷間圧延で得られた圧延板を昇温速度10〜250℃/秒で400〜550℃に昇温した後、この温度で5〜60秒保持し、その後、冷却速度20〜200℃/秒で冷却することで行うことを特徴とするレーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板の製造方法。 A method of manufacturing a high-strength aluminum alloy plate for laser welding that is welded to a member to be joined by a laser welding method, containing Mn, Cu, Mg, Si, Fe in the following contents, and the balance being inevitable with Al When manufacturing high-strength aluminum alloy plates for secondary battery large square cans with excellent laser weldability by sequentially performing homogenization, hot rolling, cold rolling, and final annealing on aluminum alloy ingots made of impurities. ,
Mn: 0.90 to 1.30% by mass
Cu: 0.30 to 0.80 mass%
Mg: 0.20 to 0.80 mass%
Si: 0.01-0.20 mass%
Fe: 0.05 to 0.50 mass%
The coiling temperature of the rolled plate in hot rolling is 360 ° C. or less,
The final annealing is performed by heating the rolled sheet obtained by cold rolling to 400 to 550 ° C. at a temperature rising rate of 10 to 250 ° C./second, and holding at this temperature for 5 to 60 seconds, and then a cooling rate of 20 to A method for producing a high-strength aluminum alloy plate for a secondary battery large-sized square can excellent in laser weldability, which is performed by cooling at 200 ° C./second.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011062760A JP5684617B2 (en) | 2011-03-22 | 2011-03-22 | High strength aluminum alloy plate for secondary battery large square can excellent in laser weldability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011062760A JP5684617B2 (en) | 2011-03-22 | 2011-03-22 | High strength aluminum alloy plate for secondary battery large square can excellent in laser weldability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012197489A true JP2012197489A (en) | 2012-10-18 |
JP5684617B2 JP5684617B2 (en) | 2015-03-18 |
Family
ID=47180002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011062760A Expired - Fee Related JP5684617B2 (en) | 2011-03-22 | 2011-03-22 | High strength aluminum alloy plate for secondary battery large square can excellent in laser weldability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5684617B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013087304A (en) * | 2011-10-14 | 2013-05-13 | Kobe Steel Ltd | Aluminum alloy sheet for battery case and battery case |
JP2014185377A (en) * | 2013-03-25 | 2014-10-02 | Kobe Steel Ltd | Aluminum alloy sheet for large sized square cylindrical battery case |
WO2014181544A1 (en) * | 2013-05-09 | 2014-11-13 | 株式会社Uacj | Aluminum alloy sheet for cell case and method for manufacturing said sheet |
EP2835436A4 (en) * | 2012-10-12 | 2016-03-23 | Nippon Light Metal Co | Aluminum alloy sheet for electric cell case, having excellent moldability, heat dissipation, and weldability |
KR101761026B1 (en) | 2014-12-10 | 2017-07-24 | 가부시키가이샤 고베 세이코쇼 | Aluminum alloy plate for rectangular battery case |
CN107511585A (en) * | 2017-09-20 | 2017-12-26 | 湖北三江航天红阳机电有限公司 | Lithium battery box welding tooling and lithium battery box welding method |
CN111051545A (en) * | 2017-03-23 | 2020-04-21 | 诺维尔里斯公司 | Casting recycled aluminum scrap |
DE102021129641A1 (en) | 2021-11-15 | 2023-05-17 | Bayerische Motoren Werke Aktiengesellschaft | Method for manufacturing a cell housing for a battery cell and a cell housing |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7055609B2 (en) | 2017-09-26 | 2022-04-18 | 株式会社東芝 | Square secondary battery, battery module, power storage device, vehicle and projectile |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002339049A (en) * | 2001-05-15 | 2002-11-27 | Mitsubishi Alum Co Ltd | Method for producing aluminum alloy sheet for secondary battery case |
JP2004156138A (en) * | 2002-10-18 | 2004-06-03 | Sumitomo Light Metal Ind Ltd | Aluminum alloy plate for battery case and its manufacturing process |
JP2005336540A (en) * | 2004-05-26 | 2005-12-08 | Mitsubishi Alum Co Ltd | Aluminum alloy sheet for secondary battery case and its production method |
JP2006169574A (en) * | 2004-12-15 | 2006-06-29 | Mitsubishi Alum Co Ltd | Aluminum alloy sheet for secondary battery case and producing method therefor |
JP2009097029A (en) * | 2007-10-15 | 2009-05-07 | Mitsubishi Alum Co Ltd | Aluminum alloy material for secondary battery case, aluminum alloy sheet for secondary battery case and manufacturing method thereof |
JP2012177187A (en) * | 2011-02-02 | 2012-09-13 | Nippon Light Metal Co Ltd | Aluminum alloy sheet for battery case having excellent moldability and weldability |
-
2011
- 2011-03-22 JP JP2011062760A patent/JP5684617B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002339049A (en) * | 2001-05-15 | 2002-11-27 | Mitsubishi Alum Co Ltd | Method for producing aluminum alloy sheet for secondary battery case |
JP2004156138A (en) * | 2002-10-18 | 2004-06-03 | Sumitomo Light Metal Ind Ltd | Aluminum alloy plate for battery case and its manufacturing process |
JP2005336540A (en) * | 2004-05-26 | 2005-12-08 | Mitsubishi Alum Co Ltd | Aluminum alloy sheet for secondary battery case and its production method |
JP2006169574A (en) * | 2004-12-15 | 2006-06-29 | Mitsubishi Alum Co Ltd | Aluminum alloy sheet for secondary battery case and producing method therefor |
JP2009097029A (en) * | 2007-10-15 | 2009-05-07 | Mitsubishi Alum Co Ltd | Aluminum alloy material for secondary battery case, aluminum alloy sheet for secondary battery case and manufacturing method thereof |
JP2012177187A (en) * | 2011-02-02 | 2012-09-13 | Nippon Light Metal Co Ltd | Aluminum alloy sheet for battery case having excellent moldability and weldability |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013087304A (en) * | 2011-10-14 | 2013-05-13 | Kobe Steel Ltd | Aluminum alloy sheet for battery case and battery case |
EP2835436A4 (en) * | 2012-10-12 | 2016-03-23 | Nippon Light Metal Co | Aluminum alloy sheet for electric cell case, having excellent moldability, heat dissipation, and weldability |
US9885097B2 (en) | 2012-10-12 | 2018-02-06 | Nippon Light Metal Company, Ltd. | Aluminum alloy sheet for battery case use excellent in formability, heat dissipation, and weldability |
JP2014185377A (en) * | 2013-03-25 | 2014-10-02 | Kobe Steel Ltd | Aluminum alloy sheet for large sized square cylindrical battery case |
KR20140116820A (en) | 2013-03-25 | 2014-10-06 | 가부시키가이샤 고베 세이코쇼 | Alluminum alloy plate for large-sized rectangular battery case |
WO2014181544A1 (en) * | 2013-05-09 | 2014-11-13 | 株式会社Uacj | Aluminum alloy sheet for cell case and method for manufacturing said sheet |
JP5864074B2 (en) * | 2013-05-09 | 2016-02-17 | 株式会社Uacj | Aluminum alloy plate for battery case and manufacturing method thereof |
KR101761026B1 (en) | 2014-12-10 | 2017-07-24 | 가부시키가이샤 고베 세이코쇼 | Aluminum alloy plate for rectangular battery case |
CN111051545A (en) * | 2017-03-23 | 2020-04-21 | 诺维尔里斯公司 | Casting recycled aluminum scrap |
CN107511585A (en) * | 2017-09-20 | 2017-12-26 | 湖北三江航天红阳机电有限公司 | Lithium battery box welding tooling and lithium battery box welding method |
DE102021129641A1 (en) | 2021-11-15 | 2023-05-17 | Bayerische Motoren Werke Aktiengesellschaft | Method for manufacturing a cell housing for a battery cell and a cell housing |
Also Published As
Publication number | Publication date |
---|---|
JP5684617B2 (en) | 2015-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5684617B2 (en) | High strength aluminum alloy plate for secondary battery large square can excellent in laser weldability and method for producing the same | |
KR101039206B1 (en) | Aluminum alloy sheet for battery case and its manufacturing method | |
KR101460407B1 (en) | Aluminum alloy plate for battery case and battery case | |
KR101217428B1 (en) | Aluminum alloy sheet for battery case and battery case | |
JP3867989B2 (en) | Aluminum alloy plate for battery case and manufacturing method thereof | |
JPWO2019111970A1 (en) | Aluminum alloy plate for battery lid for forming integral explosion-proof valve and method of manufacturing the same | |
CA2871843C (en) | Aluminum alloy sheet for battery case use excellent in formability, heat dissipation, and weldability | |
WO2013008314A1 (en) | Aluminum alloy plate material for lithium ion battery cases | |
KR20090027564A (en) | Aluminum alloy plate with excellent laser welding property | |
JPWO2014192256A1 (en) | Aluminum alloy plate for battery case and manufacturing method thereof | |
KR100688764B1 (en) | Aluminum alloy plate, process for producing the same, and battery case made of aluminum alloy | |
JP5864074B2 (en) | Aluminum alloy plate for battery case and manufacturing method thereof | |
JP4347137B2 (en) | Method for producing high-strength aluminum alloy plate for secondary battery case | |
JP4539913B2 (en) | Aluminum alloy plate for secondary battery case and manufacturing method thereof | |
JP3860939B2 (en) | Al-Mn-Mg alloy plate for case forming and method for producing the same | |
JP5726430B2 (en) | Aluminum alloy plate for battery case body and battery case | |
JP5599588B2 (en) | Aluminum alloy plate for battery case, method for producing the same, and battery case | |
JP2006037129A (en) | Aluminum alloy sheet for sealing sheet of secondary battery case | |
JP5798710B2 (en) | Aluminum alloy plate and battery case with excellent irregular and bead prevention properties | |
JP6033141B2 (en) | Aluminum alloy plate for large rectangular battery case | |
CN103409668A (en) | Al-Mn alloy for lithium-ion battery shell | |
JP5936348B2 (en) | Aluminum alloy plate for lithium ion secondary battery can | |
US20240279778A1 (en) | Aluminum alloy plate sheet for parallelepiped battery housing | |
JP2011038122A (en) | Aluminum alloy sheet for secondary battery case and method for producing the same | |
JP5943288B2 (en) | Aluminum alloy plate and battery case with excellent irregular and bead prevention properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5684617 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |