JP2012197487A - Method for producing metal ultrafine particle and composition containing the metal ultrafine particle - Google Patents

Method for producing metal ultrafine particle and composition containing the metal ultrafine particle Download PDF

Info

Publication number
JP2012197487A
JP2012197487A JP2011062495A JP2011062495A JP2012197487A JP 2012197487 A JP2012197487 A JP 2012197487A JP 2011062495 A JP2011062495 A JP 2011062495A JP 2011062495 A JP2011062495 A JP 2011062495A JP 2012197487 A JP2012197487 A JP 2012197487A
Authority
JP
Japan
Prior art keywords
ultrafine
silver
water
metal particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011062495A
Other languages
Japanese (ja)
Other versions
JP5690180B2 (en
JP2012197487A5 (en
Inventor
Naoya Nishimura
直哉 西村
Shigeki Shino
成樹 志野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2011062495A priority Critical patent/JP5690180B2/en
Publication of JP2012197487A publication Critical patent/JP2012197487A/en
Publication of JP2012197487A5 publication Critical patent/JP2012197487A5/en
Application granted granted Critical
Publication of JP5690180B2 publication Critical patent/JP5690180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing metal ultrafine particles capable of exhibiting high electrical conductivity without being heated even when the pattern of a thick film is formed, and to provide a composition containing metal ultrafine particles.SOLUTION: The method for producing metal ultrafine particles includes: a process for obtaining a dispersion in which metal ultrafine particles having an average particle diameter of 0.1 μm or less are dispersed into an aqueous medium; a process for mixing the dispersion with a water soluble halide in such a manner that the molar ratio of the water soluble halide to the metal ultrafine particles is within the range of 0.15 to 8.0%; and a process for refining the metal ultrafine particles, at least in this order.

Description

本発明は金属超微粒子の製造方法、および金属超微粒子含有組成物に関する。   The present invention relates to a method for producing ultrafine metal particles and a composition containing ultrafine metal particles.

従来から、基板上に印刷にて導電性パターンを形成し配線基板を作製するための導電性ペーストとして、金属粉末と樹脂とから構成される導電性ペーストが使用されている。   Conventionally, a conductive paste composed of a metal powder and a resin has been used as a conductive paste for forming a wiring board by forming a conductive pattern on a substrate.

導電性ペーストは、その用途によりカーボンブラックやグラファイト粉、貴金属粉、銅粉、ニッケル粉、アルミニウム粉等を樹脂と溶剤に混合してペースト状にし、これを用いてフィルム等の基材上に塗布、印刷等でパターンを形成し、樹脂を硬化する事により、導電性パターンを形成する。   Depending on the application, the conductive paste is made into a paste by mixing carbon black, graphite powder, noble metal powder, copper powder, nickel powder, aluminum powder, etc. with resin and solvent, and is applied onto a substrate such as a film. A conductive pattern is formed by forming a pattern by printing or the like and curing the resin.

その中でも比較的低い体積抵抗率を有する導電性銀ペーストは配線や電極の形成材料として広く使用されている。例えばキーボード等のメンブレンスイッチ配線、グルコースセンサー用電極、タッチパネルの額縁電極、太陽電池の集電用電極、RFIDのアンテナ等の用途が挙げられる。   Among them, conductive silver paste having a relatively low volume resistivity is widely used as a material for forming wirings and electrodes. Examples thereof include membrane switch wiring such as a keyboard, glucose sensor electrode, touch panel frame electrode, solar cell current collecting electrode, RFID antenna, and the like.

電極や配線用途では抵抗損失を最低限に抑えるために低抵抗を実現する事が重要である。そのため高銀濃度の導電性銀ペーストを用い、スクリーン印刷等の印刷法を用いて基材上に厚さ10μm以上の厚膜のパターンを形成し、その後導電性を発現させる事で厚膜の導電性パターンを形成する事が一般的に行われており、スクリーン印刷機等の厚膜のパターンを印刷する装置が広く普及している。   In electrode and wiring applications, it is important to achieve low resistance in order to minimize resistance loss. Therefore, using a conductive silver paste with a high silver concentration, using a printing method such as screen printing, a thick film pattern with a thickness of 10 μm or more is formed on the base material, and then the conductivity of the thick film is developed by developing conductivity. In general, an apparatus for printing a thick film pattern such as a screen printing machine is widely used.

基材上に形成されたパターンに導電性を発現させる方法として従来から用いられている加熱による硬化では、高い導電性を発現させるためには一般的に150℃で30分間程度の加熱を要する。そのためコストや環境負荷の増大、単位時間当たりの製造効率の低下を招いているほか、使用する基材が耐熱性を有する基材に限定されてしまうという課題があった。近年では120℃で10分間程度の加熱により導電性を発現させる事が可能とうたわれている銀ペーストも市販されているが、加熱後のパターンの導電性が見劣りするという課題があった。   In the case of curing by heating, which has been conventionally used as a method for developing conductivity in a pattern formed on a base material, heating at 150 ° C. for about 30 minutes is generally required to develop high conductivity. For this reason, there is a problem in that the cost and environmental load increase, the production efficiency per unit time is reduced, and the base material to be used is limited to a base material having heat resistance. In recent years, silver pastes that are said to be able to develop conductivity by heating at 120 ° C. for about 10 minutes are also commercially available, but there is a problem that the conductivity of the pattern after heating is poor.

加熱後のパターンの導電性改善や、加熱温度の低下、硬化時間の短縮を実現するために、ペーストの金属成分に金属超微粒子を使用する試みは多数行われており、例えば特開2005−294254号公報(特許文献1)には、平均粒径が0.5μm〜20μmの銀粒子と、一次粒子の平均粒径が50nm以下の球状銀粒子とを主成分とする導電性銀ペーストが開示されている。しかし該文献ではパターンの導電性改善は実現しているものの、依然150℃で30分の加熱を要するものであった。   Many attempts have been made to use ultrafine metal particles as the metal component of the paste in order to improve the conductivity of the pattern after heating, lower the heating temperature, and shorten the curing time. For example, Japanese Patent Application Laid-Open No. 2005-294254 (Patent Document 1) discloses a conductive silver paste mainly composed of silver particles having an average particle size of 0.5 μm to 20 μm and spherical silver particles having an average particle size of primary particles of 50 nm or less. ing. However, although this document has improved the conductivity of the pattern, it still requires heating at 150 ° C. for 30 minutes.

これに対し、特開2008−4375号公報(特許文献2)では、保護剤で被覆された金属超微粒子に対しハロゲン化物を作用させる事で該粒子間の結合を促し、加熱を行う事なく短時間で基材上に導電性パターンを形成する方法が開示されている。該文献では、ハロゲン化物を作用させる方法として、(1)基材上に、ハロゲン化物そのもの、あるいはハロゲン化物が含まれている層を事前に全面あるいは必要な部位に形成しておき、その上に金属超微粒子分散液を用い所望の形状を作製する方法、(2)基材上に金属超微粒子分散液を用い所望の形状を作製した後、その上にハロゲン化物を含む溶液を塗布あるいは浸漬する方法、(3)基材上に金属超微粒子分散液を用い所望の形状を作製した後、ハロゲン化物を溶解または分散させた溶液が霧状に存在する環境下に放置する方法、(4)基材上に金属超微粒子分散液と、ハロゲン化物を含む溶液を直前に混合し、所望の形状を作製する方法、(5)水を含まない無極性有機溶媒中に、金属超微粒子とハロゲン化物とを共に分散し、所望の形状を作製し、有機溶媒を揮散あるいは吸収させる方法、が挙げられている。該文献に従えば、加熱を一切必要とせず、任意の基材上に低い体積抵抗率を有する導電性パターンを形成出来る。   On the other hand, in Japanese Patent Application Laid-Open No. 2008-4375 (Patent Document 2), a halide is allowed to act on metal ultrafine particles coated with a protective agent to promote bonding between the particles, and heating can be performed without heating. A method of forming a conductive pattern on a substrate in time is disclosed. In this document, as a method of causing a halide to act, (1) a halide itself or a layer containing a halide is previously formed on the entire surface or a necessary portion on a substrate, A method of producing a desired shape using a metal ultrafine particle dispersion, (2) After producing a desired shape using a metal ultrafine particle dispersion on a substrate, a solution containing a halide is applied or immersed thereon. (3) A method in which a metal ultrafine particle dispersion is used to form a desired shape on a substrate, and then a solution in which a halide is dissolved or dispersed is left in an environment where it exists in a mist, (4) A method of preparing a desired shape by immediately mixing a metal ultrafine particle dispersion and a halide-containing solution on a material, and (5) a metal ultrafine particle and a halide in a nonpolar organic solvent not containing water. Are distributed together, Shape to produce a method for volatilizing or absorb organic solvents, it is mentioned. According to this literature, no heating is required, and a conductive pattern having a low volume resistivity can be formed on any substrate.

上記(1)〜(5)のうち、環境負荷を低減する観点から有機溶媒を使用しない(1)〜(4)の方法が好ましい。しかしながら、(1)〜(4)の方法に従い、広く普及しているスクリーン印刷機等の厚膜のパターンを印刷する装置を用いて、例えば厚さ10μm以上の厚膜の導電性パターンを形成した場合、(1)〜(4)のいずれの方法でも最終的に得られる厚膜の導電性パターンの体積抵抗率は満足いくものでは無かった。   Among the above (1) to (5), the method of (1) to (4) that does not use an organic solvent is preferable from the viewpoint of reducing environmental load. However, according to the methods (1) to (4), a thick film conductive pattern of, for example, a thickness of 10 μm or more is formed using a widely used apparatus for printing a thick film pattern such as a screen printer. In this case, the volume resistivity of the thick conductive pattern finally obtained by any of the methods (1) to (4) was not satisfactory.

特開2009−242874号公報(特許文献3)には水性媒体中に、少なくとも水溶性銀塩、塩基性化合物、水溶性高分子化合物および還元剤を含有せしめ、水溶性銀塩由来の銀イオンを還元し銀超微粒子を製造する銀超微粒子の製造方法において、該水溶性高分子化合物および還元剤としてマルトデキストリンを用いる事を特徴とする銀超微粒子の製造方法が開示されている。該文献では、還元反応により水性媒体に分散した状態で得た銀超微粒子に対して遠心分離や限外濾過等による精製を行う事が開示されている。また得られた銀超微粒子に対し特許文献2に従いハロゲン化物を作用させる事で導電性が発現する事、精製された銀超微粒子を用いる事でより高い導電性が発現する事が記載されている。しかしながら該銀超微粒子を含有する組成物を用い、スクリーン印刷により、例えば厚さ10μm以上の導電性パターンを形成しても、十分満足出来る導電性は得られなかった。   JP 2009-242874 A (Patent Document 3) contains at least a water-soluble silver salt, a basic compound, a water-soluble polymer compound, and a reducing agent in an aqueous medium, and contains silver ions derived from the water-soluble silver salt. In the method for producing silver ultrafine particles to produce reduced silver ultrafine particles, a method for producing silver ultrafine particles characterized by using maltodextrin as the water-soluble polymer compound and the reducing agent is disclosed. This document discloses that the ultrafine silver particles obtained in a state of being dispersed in an aqueous medium by a reduction reaction are purified by centrifugation, ultrafiltration, or the like. In addition, it is described that conductivity is expressed by applying a halide to the obtained silver ultrafine particles according to Patent Document 2, and that higher conductivity is expressed by using purified silver ultrafine particles. . However, even when a conductive pattern having a thickness of, for example, 10 μm or more is formed by screen printing using a composition containing the ultrafine silver particles, a sufficiently satisfactory conductivity cannot be obtained.

特開2009−242875号公報(特許文献4)には水性媒体中に水溶性銀塩、塩基性化合物、水溶性高分子化合物および還元剤を含有せしめた混合物をメディアミルを用いて混練する事で銀超微粒子分散液を製造する事を特徴とする銀超微粒子の製造方法が開示されている。また特開2008−50691号公報(特許文献5)には、水溶液中に金属超微粒子が分散した状態で凝集促進剤を添加した後、該金属超微粒子を水溶液から分離する事で低温焼成を可能とする金属超微粒子製造方法が開示され、特開2009−62570号公報(特許文献6)には、金属超微粒子分散液に該粒子の分散安定性を低下させる分散性低下剤を添加し、遠心分離による金属超微粒子の高濃度化を容易にする金属超微粒子の製造方法が開示されている。しかしながらこれらの製造方法により得られた銀超微粒子を含有する組成物を用い、スクリーン印刷により、例えば厚さ10μm以上の導電性パターンを形成しても、十分満足出来る導電性は得られなかった。   In JP 2009-242875 (Patent Document 4), a mixture containing a water-soluble silver salt, a basic compound, a water-soluble polymer compound and a reducing agent in an aqueous medium is kneaded using a media mill. A method for producing silver ultrafine particles, characterized by producing a silver ultrafine particle dispersion, is disclosed. JP-A-2008-50691 (Patent Document 5) enables low-temperature firing by adding an aggregation promoter in a state where metal ultrafine particles are dispersed in an aqueous solution and then separating the metal ultrafine particles from the aqueous solution. A method for producing ultrafine metal particles is disclosed. In JP 2009-62570 A (Patent Document 6), a dispersion reducing agent for reducing the dispersion stability of the particles is added to an ultrafine metal particle dispersion, followed by centrifugation. A method for producing ultrafine metal particles that facilitates high concentration of ultrafine metal particles by separation is disclosed. However, even if a conductive pattern having a thickness of, for example, 10 μm or more is formed by screen printing using a composition containing ultrafine silver particles obtained by these production methods, sufficiently satisfactory conductivity cannot be obtained.

特開2005−294254号公報JP 2005-294254 A 特開2008−4375号公報JP 2008-4375 A 特開2009−242874号公報JP 2009-242874 A 特開2009−242875号公報JP 2009-242875 A 特開2008−50691号公報JP 2008-50691 A 特開2009−62570号公報JP 2009-62570 A

本発明の目的は、厚膜のパターンを形成した際にも、加熱する事なく高い導電性を発現させる事が可能な金属超微粒子の製造方法、および金属超微粒子含有組成物を提供するものである。   An object of the present invention is to provide a method for producing ultrafine metal particles and a composition containing ultrafine metal particles that can exhibit high conductivity without heating even when a thick film pattern is formed. is there.

本発明の上記目的は、以下の発明によって基本的に達成された。
1.水性媒体中に平均粒径が0.1μm以下の金属超微粒子を分散させた分散液を得る工程、該分散液と水溶性ハロゲン化物とを、金属超微粒子に対する水溶性ハロゲン化物のモル比で0.15%以上8.0%以下の範囲内で混合する工程、および金属超微粒子の精製を行う工程、の3工程を少なくともこの順序に具備する金属超微粒子の製造方法。
2.前記金属超微粒子が、主に銀から成る事を特徴とする上記1記載の金属超微粒子の製造方法。
3.上記1または2記載の製造方法により製造された金属超微粒子を含む金属超微粒子含有組成物。
The above object of the present invention has been basically achieved by the following invention.
1. A step of obtaining a dispersion in which ultrafine metal particles having an average particle size of 0.1 μm or less are dispersed in an aqueous medium, the dispersion and water-soluble halide being in a molar ratio of water-soluble halide to ultrafine metal particles of 0 A method for producing ultrafine metal particles comprising at least three steps of mixing in a range of 0.1% to 8.0% and purifying ultrafine metal particles in this order.
2. 2. The method for producing ultrafine metal particles according to 1 above, wherein the ultrafine metal particles are mainly composed of silver.
3. An ultrafine metal particle-containing composition comprising ultrafine metal particles produced by the production method according to 1 or 2 above.

本発明によれば、厚膜のパターンを形成した際にも、加熱する事なく高い導電性を発現させる事が可能な金属超微粒子の製造方法、および金属超微粒子含有組成物を提供する事が出来る。   According to the present invention, it is possible to provide a method for producing ultrafine metal particles and a composition containing ultrafine metal particles that can exhibit high conductivity without heating even when a thick film pattern is formed. I can do it.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、水性媒体中に平均粒径が0.1μm以下の金属超微粒子を分散させた分散液を得る工程、該分散液と水溶性ハロゲン化物とを、金属超微粒子に対する水溶性ハロゲン化物のモル比で0.15%以上8.0%以下の範囲内で混合する工程、および金属超微粒子の精製を行う工程、の3工程を少なくともこの順序に具備する金属超微粒子の製造方法により得られた金属超微粒子は、スクリーン印刷等の印刷法を用いて基材上に、例えば厚さ10μm以上の厚膜のパターンを形成しても優れた導電性を有する導電性パターンが得られる事を見出した。   The inventors of the present invention provide a step of obtaining a dispersion in which metal ultrafine particles having an average particle size of 0.1 μm or less are dispersed in an aqueous medium, and the dispersion and water-soluble halide are combined with a water-soluble halogen for the metal ultrafine particles. By the method for producing ultrafine metal particles comprising at least three steps of mixing in a molar ratio of 0.15% or more and 8.0% or less and a step of purifying ultrafine metal particles in this order. The obtained ultrafine metal particles can obtain a conductive pattern having excellent conductivity even when a thick film pattern of, for example, a thickness of 10 μm or more is formed on a substrate using a printing method such as screen printing. I found.

水性媒体中に平均粒径が0.1μm以下の金属超微粒子を分散させた分散液を得る工程について説明する。本発明において水性媒体とは、固形分を除く分散媒成分の少なくとも50質量%以上が水である事を意味する。水以外に含まれる溶媒としては、アルコール類、グリコール類等の水と混和性の高い有機溶媒を例示する事が出来る。後述するように、金属超微粒子として水性媒体中で合成した金属超微粒子を用いる場合には、合成時の水性媒体をそのまま使用する事が出来る。   A process for obtaining a dispersion in which ultrafine metal particles having an average particle size of 0.1 μm or less are dispersed in an aqueous medium will be described. In the present invention, the aqueous medium means that at least 50% by mass or more of the dispersion medium component excluding the solid content is water. Examples of the solvent other than water include organic solvents having high miscibility with water, such as alcohols and glycols. As will be described later, when metal ultrafine particles synthesized in an aqueous medium are used as the metal ultrafine particles, the aqueous medium at the time of synthesis can be used as it is.

本発明で用いられる金属超微粒子は、不活性ガス中で金属を蒸発させガスとの衝突により冷却・凝縮し回収するガス中蒸発法、真空中で金属を蒸発させ有機溶剤と共に回収する金属蒸気合成法、レーザー照射のエネルギーにより液中で蒸発・凝縮し回収するレーザーアブレーション法、水溶液中で溶液中金属イオンを還元し生成・回収する化学的還元法、有機金属化合部の熱分解による方法、金属塩化物の気相中での還元による方法、酸化物の水素中還元法等、公知の種々の方法により製造された物を好ましく用いる事が出来る。化学還元法は水性媒体中で金属超微粒子を合成するため、必然的に水性媒体中に金属超微粒子が分散された状態で得られるため、化学還元法で合成された金属超微粒子を用いる事が特に好ましい。   The ultrafine metal particles used in the present invention are vapor evaporation methods in which the metal is evaporated in an inert gas and cooled, condensed and recovered by collision with the gas, and the metal vapor synthesis in which the metal is evaporated in vacuum and recovered together with the organic solvent. Method, laser ablation method that recovers by evaporation / condensation in liquid by energy of laser irradiation, chemical reduction method that reduces and generates / recovers metal ions in solution in aqueous solution, method by pyrolysis of organometallic compound part, metal Products prepared by various known methods such as a method of reducing chloride in the gas phase and a method of reducing oxides in hydrogen can be preferably used. Since the chemical reduction method synthesizes ultrafine metal particles in an aqueous medium, it is inevitably obtained in a state where the ultrafine metal particles are dispersed in an aqueous medium. Therefore, it is possible to use ultrafine metal particles synthesized by the chemical reduction method. Particularly preferred.

化学還元法にて金属超微粒子を合成する場合の分散剤としては公知のものを広く用いる事が出来る。例えばデキストリン等の多糖類や、ポリビニルピロリドン等の水溶性高分子、リンゴ酸二ナトリウム等の各種イオン性化合物、ドデシルベンゼンスルホン酸ナトリウム等の各種界面活性剤、脂肪酸やアミン等を持つ各種有機金属化合物類を挙げる事が出来る。還元剤と分散剤の両方の役割を果たす事からデキストリン等の多糖類を用いる事が特に好ましい。   A well-known thing can be widely used as a dispersing agent in the case of synthesize | combining a metal ultrafine particle with a chemical reduction method. For example, polysaccharides such as dextrin, water-soluble polymers such as polyvinylpyrrolidone, various ionic compounds such as disodium malate, various surfactants such as sodium dodecylbenzenesulfonate, various organometallic compounds having fatty acids, amines, etc. You can list things. It is particularly preferable to use a polysaccharide such as dextrin because it serves as both a reducing agent and a dispersing agent.

化学還元法以外の方法により得られた金属超微粒子を水性媒体へ分散させる方法については公知の方法を広く用いる事が出来る。例えば金属超微粒子を粉末として得た場合には、スターラー撹拌、プロペラ撹拌、タービン型撹拌、ホモミキサー型撹拌、メディアミル、圧力式分散機、超音波分散機、および薄膜旋回型分散機等を使用し水性媒体へ分散させる方法等が挙げられる。金属超微粒子を有機溶媒に分散した状態で得た場合には、有機溶媒を蒸発させ粉末状の金属超微粒子として回収し、前述の方法により水性媒体へ分散させる方法、特開2010−5506号公報に記載の如く水性媒体に抽出する方法等が考えられる。金属超微粒子の分散濃度としては、あまり高濃度であると本発明の効果を金属超微粒子全体に均一に与えることが困難になるため、好ましい範囲としては0.1〜75質量%であり、より好ましくは0.15〜50質量%である。   As a method of dispersing the ultrafine metal particles obtained by a method other than the chemical reduction method in an aqueous medium, a known method can be widely used. For example, when metal ultrafine particles are obtained as powder, use stirrer stirring, propeller stirring, turbine stirring, homomixer stirring, media mill, pressure disperser, ultrasonic disperser, thin film swirl disperser, etc. And a method of dispersing in an aqueous medium. When the metal ultrafine particles are obtained in a state dispersed in an organic solvent, the organic solvent is evaporated and recovered as powdered metal ultrafine particles, and dispersed in an aqueous medium by the above-described method, Japanese Patent Application Laid-Open No. 2010-5506 The method of extracting to an aqueous medium etc. can be considered as described in (1). As the dispersion concentration of the ultrafine metal particles, it is difficult to uniformly impart the effect of the present invention to the entire ultrafine metal particles if the concentration is too high. Preferably it is 0.15-50 mass%.

金属超微粒子を均一に分散させるため、分散剤を用いることも好ましい。分散剤は、金属超微粒子を安定して水性媒体に分散出来るものであれば特に限定はされず、前述の多糖類や水溶性高分子、各種イオン性化合物、各種界面活性剤、各種有機金属化合物類を例示出来る。   In order to uniformly disperse the metal ultrafine particles, it is also preferable to use a dispersant. The dispersant is not particularly limited as long as the ultrafine metal particles can be stably dispersed in an aqueous medium, and the above-mentioned polysaccharides, water-soluble polymers, various ionic compounds, various surfactants, and various organometallic compounds. Examples can be given.

金属超微粒子の平均粒径は、金属超微粒子の分散安定性の観点から0.1μm以下である事が必要であり、好ましくは0.05μm以下である。なお、金属超微粒子の平均粒径は、電子顕微鏡下での観察により求める事が出来る。詳細にはポリエチレンテレフタレートフィルムの上に、金属超微粒子分散液を塗布、乾燥させ、走査型電子顕微鏡にて観察し、一定面積内に存在する100個の粒子各々の投影面積に等しい円の直径を粒子径として平均し求める。   From the viewpoint of dispersion stability of the ultrafine metal particles, the average particle size of the ultrafine metal particles needs to be 0.1 μm or less, and preferably 0.05 μm or less. The average particle size of the ultrafine metal particles can be determined by observation under an electron microscope. Specifically, a metal ultrafine particle dispersion is applied on a polyethylene terephthalate film, dried, and observed with a scanning electron microscope. The diameter of a circle equal to the projected area of each of 100 particles existing within a certain area is obtained. The average is obtained as the particle diameter.

金属超微粒子は、高い導電性、価格、生産性、扱いやすさ等の点から、主に銀からなる事が好ましい。銀の占める割合は少なくとも50質量%以上である事が好ましく、より好ましくは銀の占める割合が70質量%以上であり、特に好ましくは90質量%以上である。銀以外に含まれる金属としては、金、銅、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム、ニッケル、ビスマスを挙げる事が出来る。銀以外の金属は銀超微粒子中に含まれていても良く、銀超微粒子と銀以外の金属の超微粒子が混合していても良い。   The ultrafine metal particles are preferably mainly composed of silver from the viewpoint of high conductivity, cost, productivity, ease of handling, and the like. The proportion of silver is preferably at least 50% by mass, more preferably the proportion of silver is 70% by mass or more, and particularly preferably 90% by mass or more. Examples of metals contained other than silver include gold, copper, platinum, palladium, rhodium, ruthenium, iridium, osmium, nickel, and bismuth. Metals other than silver may be contained in the silver ultrafine particles, or silver ultrafine particles and metal ultrafine particles other than silver may be mixed.

次に分散液と水溶性ハロゲン化物とを、金属超微粒子に対する水溶性ハロゲン化物のモル比で0.15%以上8.0%以下の範囲内で混合する工程について説明する。本発明で用いられる水溶性ハロゲン化物としては、ハロゲン化水素、無機塩類等を挙げる事が出来る。ハロゲン化水素としては、塩酸、臭化水素酸等を挙げる事が出来る。無機塩類としては、リチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩、ジルコニウム塩、アルミニウム塩、マグネシウム塩、カルシウム塩、アンモニウム塩等を挙げる事が出来る。例えば、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化アンモニウム、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化カルシウム、臭化アンモニウム、沃化リチウム、沃化ナトリウム、沃化カリウム等を挙げる事が出来る。   Next, the step of mixing the dispersion and the water-soluble halide within a range of 0.15% to 8.0% in terms of the molar ratio of the water-soluble halide to the metal ultrafine particles will be described. Examples of the water-soluble halide used in the present invention include hydrogen halide and inorganic salts. Examples of the hydrogen halide include hydrochloric acid and hydrobromic acid. Examples of inorganic salts include lithium salts, sodium salts, potassium salts, ammonium salts, zirconium salts, aluminum salts, magnesium salts, calcium salts, ammonium salts, and the like. For example, lithium chloride, sodium chloride, potassium chloride, calcium chloride, ammonium chloride, lithium bromide, sodium bromide, potassium bromide, calcium bromide, ammonium bromide, lithium iodide, sodium iodide, potassium iodide, etc. I can list.

例示した水溶性ハロゲン化物は、1種または2種以上組み合わせて用いる事が出来る。最終的に得られる導電性パターンの導電性の観点より、塩化ナトリウム、塩化カリウム、塩化アンモニウム、臭化ナトリウム、臭化カリウム、臭化アンモニウムが特に好ましい。   The exemplified water-soluble halides can be used alone or in combination of two or more. From the viewpoint of the conductivity of the finally obtained conductive pattern, sodium chloride, potassium chloride, ammonium chloride, sodium bromide, potassium bromide, and ammonium bromide are particularly preferable.

前述の特許文献2に記載の通り、水溶性ハロゲン化物は金属超微粒子間の結合を促進する。そのため混合方法によっては金属超微粒子の分散状態が不均一化し、最終的に得られる導電性パターンの導電性が低下する場合がある。このような理由から水溶性ハロゲン化物を混合する際には、混合工程を低温に保ち、短時間のうちに精製工程へと移行する事が好ましい。   As described in Patent Document 2 mentioned above, the water-soluble halide promotes the bonding between the ultrafine metal particles. Therefore, depending on the mixing method, the dispersion state of the ultrafine metal particles may become non-uniform, and the conductivity of the finally obtained conductive pattern may be reduced. For this reason, when mixing the water-soluble halide, it is preferable to keep the mixing step at a low temperature and shift to the purification step within a short time.

また金属超微粒子と水溶性ハロゲン化物を混合する際は、水溶性ハロゲン化物を水溶液の状態で混合する事が好ましい。固体の水溶性ハロゲン化物を混合すると、最終的に得られる導電性パターンの導電性が低下する場合がある。水溶液の水溶性ハロゲン化物濃度は、1.2mol/L以下である事が好ましく、より好ましくは0.8mol/L以下である。高濃度の水溶性ハロゲン化物水溶液を用いた場合、最終的に得られる導電性パターンの導電性が低下する場合がある。下限は0.001mol/L以上ある事が望ましい。   Further, when mixing the ultrafine metal particles and the water-soluble halide, it is preferable to mix the water-soluble halide in the state of an aqueous solution. When a solid water-soluble halide is mixed, the conductivity of the finally obtained conductive pattern may be lowered. The water-soluble halide concentration of the aqueous solution is preferably 1.2 mol / L or less, more preferably 0.8 mol / L or less. When a high-concentration water-soluble halide aqueous solution is used, the conductivity of the finally obtained conductive pattern may be lowered. The lower limit is preferably 0.001 mol / L or more.

混合方法としては公知の方法を広く用いる事が出来、前述のスターラー撹拌、プロペラ撹拌、タービン型撹拌、ホモミキサー型撹拌、メディアミル、圧力式分散機、超音波分散機、および薄膜旋回型分散機等を例示出来る。混合が不十分な場合、最終的に得られる導電性パターンの導電性が低下する場合がある。   Known methods can be widely used as the mixing method. The above-mentioned stirrer stirring, propeller stirring, turbine stirring, homomixer stirring, media mill, pressure disperser, ultrasonic disperser, and thin film swirl disperser Etc. can be illustrated. If the mixing is insufficient, the conductivity of the finally obtained conductive pattern may be lowered.

混合工程は低温に保たれる事が好ましい。混合温度は50℃以下である事が好ましく、より好ましくは35℃以下である。50℃を超える環境で混合を実施すると、最終的に得られる導電性パターンの導電性が低下する場合がある。   The mixing process is preferably kept at a low temperature. The mixing temperature is preferably 50 ° C. or lower, more preferably 35 ° C. or lower. When mixing is performed in an environment exceeding 50 ° C., the conductivity of the finally obtained conductive pattern may be lowered.

混合工程の時間は、短時間である事が好ましい。混合時間は6時間以下である事が好ましく、より好ましくは1時間以下である。   The time for the mixing step is preferably a short time. The mixing time is preferably 6 hours or less, more preferably 1 hour or less.

金属超微粒子と水溶性ハロゲン化物との混合比率は、金属に対する水溶性ハロゲン化物のモル比で0.15%以上8.0%以下の範囲内である必要がある。水溶性ハロゲン化物が過剰もしくは不足のいずれの場合でも最終的に得られる導電性パターンの導電性が低下する。   The mixing ratio of the ultrafine metal particles and the water-soluble halide needs to be in the range of 0.15% or more and 8.0% or less in terms of the molar ratio of the water-soluble halide to the metal. Even when the water-soluble halide is excessive or insufficient, the conductivity of the finally obtained conductive pattern is lowered.

金属超微粒子の精製を行う工程について説明する。金属超微粒子の精製とは、金属超微粒子分散液から金属超微粒子を高濃度化し分離し、金属超微粒子以外の成分を減ずる事を意味する。精製方法としては濾過法、限外濾過法、遠心分離法、デカンテーション法、溶媒抽出法といった公知の種々の精製法を好ましく使用する事が出来る。製造効率の観点から濾過法、限外濾過法、遠心分離法を用いる事が好ましい。   A process for purifying ultrafine metal particles will be described. Purification of ultrafine metal particles means that the ultrafine metal particles are concentrated and separated from the ultrafine metal particle dispersion to reduce components other than ultrafine metal particles. As the purification method, various known purification methods such as filtration, ultrafiltration, centrifugation, decantation, and solvent extraction can be preferably used. From the viewpoint of production efficiency, it is preferable to use a filtration method, an ultrafiltration method, or a centrifugal separation method.

なお、前記3工程を少なくともこの順序で具備していれば、3工程の前後や各工程間に別の工程を実施する事は問題なく、また各工程を複数回実施する事も可能である。例えば金属超微粒子の精製後に水溶性ハロゲン化物を混合し、その後あらためて金属超微粒子の精製を行えば本発明の目的を達成出来る。   If the three steps are provided in at least this order, there is no problem in performing another step before and after the three steps or between each step, and each step can be performed a plurality of times. For example, the object of the present invention can be achieved by mixing a water-soluble halide after refining the ultrafine metal particles and then repurifying the ultrafine metal particles.

本発明の製造方法により得られた金属超微粒子を含む金属超微粒子含有組成物に対し、ポリマー系の分散剤や界面活性剤、消泡剤、高沸点有機溶媒、増粘剤等を適宜添加し、各種印刷方式に適した粘度、表面張力、乾燥性を有する金属ナノインク液にする事が出来る。例えば、フラットスクリーン印刷用の金属ナノインク液として作製する場合には、乾燥を抑制するための高沸点有機溶媒(例えばエチレングリコールやプロピレングリコール、グリセリン等)、多糖類やポリアクリル酸等の増粘剤を適量添加し、スクリーン印刷適性を有した金属ナノインク液とする。印刷方式としては、フラットスクリーン印刷以外にもロータリースクリーン印刷、インクジェット印刷、フレキソ印刷、グラビア印刷、オフセットグラビア印刷、凸版印刷等公知の方法を例示する事が出来る。   To the composition containing ultrafine metal particles containing ultrafine metal particles obtained by the production method of the present invention, a polymer-based dispersant, surfactant, antifoaming agent, high-boiling organic solvent, thickener, etc. are appropriately added. The metal nano ink liquid having viscosity, surface tension, and drying property suitable for various printing methods can be obtained. For example, in the case of producing as a metal nano ink liquid for flat screen printing, a thickening agent such as a high boiling point organic solvent (for example, ethylene glycol, propylene glycol, glycerin, etc.), polysaccharides, polyacrylic acid or the like for suppressing drying. Is added to obtain a metal nano ink liquid having screen printing suitability. Examples of the printing method include well-known methods such as rotary screen printing, ink jet printing, flexographic printing, gravure printing, offset gravure printing, letterpress printing, etc. in addition to flat screen printing.

本発明の製造方法により得られた金属超微粒子は、例えばインクジェット印刷、フレキソ印刷、グラビア印刷、オフセットグラビア印刷、凸版印刷により形成される薄膜のパターン形成に用いる事も出来るが、特にこれらの印刷方法を複数回重ねて行う厚膜のパターン形成、あるいはフラットスクリーン印刷、ロータリースクリーン印刷等による厚膜のパターン形成に用いると、本発明の効果が顕著になるために好ましい。本発明において厚膜のパターンとは、導電性を発現させた後に得られた導電性パターンの厚みとして、好ましくは5μm以上であり、特に好ましくは10μm以上である。   The ultrafine metal particles obtained by the production method of the present invention can be used for pattern formation of a thin film formed by, for example, ink jet printing, flexographic printing, gravure printing, offset gravure printing, letterpress printing, particularly these printing methods. Is preferably used for forming a thick film pattern formed by overlapping a plurality of times, or for forming a thick film pattern by flat screen printing, rotary screen printing, or the like. In the present invention, the thick film pattern is preferably 5 μm or more, particularly preferably 10 μm or more, as the thickness of the conductive pattern obtained after developing the conductivity.

本発明の製造方法により得られた金属超微粒子からなる厚膜のパターンは、パターン形成時点では満足いく導電性を発現しない。厚膜のパターンに導電性を発現させる方法としては、前述した特許文献2に記載される(1)〜(3)の方法に従い、あらためて水溶性ハロゲン化物を作用させる方法が最終的に得られる導電性の観点から特に好ましいが、他の導電性発現方法を用いても構わない。例えば本発明の製造方法により得られた金属超微粒子からなる厚膜のパターンに対し、特開2008−235224号公報に記載の如くクエン酸やアスコルビン酸等の還元性物質を作用させる、特開2009−21153号公報に記載の如く亜硫酸塩やチオ硫酸塩等を作用させる、特開2009−104807号公報に記載の如く炭素数3以上のジカルボン酸を含有する水溶液を作用させる、基材の耐熱温度以下の温度で加熱する、等公知の導電性発現方法を用いる事も可能である。   The thick film pattern made of ultrafine metal particles obtained by the production method of the present invention does not exhibit satisfactory conductivity at the time of pattern formation. As a method for expressing conductivity in the thick film pattern, a method of finally obtaining a method of causing a water-soluble halide to act again according to the methods (1) to (3) described in Patent Document 2 described above is obtained. However, other conductivity expression methods may be used, although it is particularly preferable from the viewpoint of safety. For example, a reducing substance such as citric acid or ascorbic acid is allowed to act on a thick film pattern made of ultrafine metal particles obtained by the production method of the present invention as described in JP-A-2008-235224. As described in Japanese Patent No. 21153, sulfite, thiosulfate and the like are allowed to act. As described in JP 2009-104807 A, an aqueous solution containing a dicarboxylic acid having 3 or more carbon atoms is allowed to act. It is also possible to use a known conductivity expression method such as heating at the following temperature.

(1)の方法に従い水溶性ハロゲン化物を作用させる具体的な方法としては、特許文献2記載の如く、支持体上にカウンターイオンにハロゲンイオンを有するカチオン性高分子化合物を塗布し作製した基材を用いる方法、支持体上にポリビニルアルコール等の樹脂バインダーとともに水溶性ハロゲン化物を塗布し作製した基材を用いる方法、支持体上に微粒子と樹脂バインダーからなる多孔質層を有する基材に対し、水溶性ハロゲン化物を含ませる方法、等が例示出来る。最終的に得られる導電性パターンの導電性の観点から、多孔質層を有する基材に対し、水溶性ハロゲン化物を含ませる方法を用いる事が好ましい。   As a specific method of causing a water-soluble halide to act according to the method of (1), a substrate prepared by applying a cationic polymer compound having a halogen ion as a counter ion on a support as described in Patent Document 2. For a substrate having a porous layer composed of fine particles and a resin binder on a support, a method using a substrate prepared by applying a water-soluble halide together with a resin binder such as polyvinyl alcohol on a support, Examples thereof include a method of including a water-soluble halide. From the viewpoint of the conductivity of the finally obtained conductive pattern, it is preferable to use a method in which a water-soluble halide is included in a substrate having a porous layer.

(2)の方法に従い水溶性ハロゲン化物を作用させる具体的な方法としては、任意の基材上に設けた厚膜のパターンに対し、水性媒体中に水溶性ハロゲン化物を溶解させた水溶性ハロゲン化物水溶液を塗布する方法、厚膜のパターンを水溶性ハロゲン化物水溶液に浸漬する方法、等が例示出来る。最終的に得られる導電性パターンの導電性の観点から、水溶性ハロゲン化物水溶液の水溶性ハロゲン化物濃度は0.8mol/L以上である事が好ましい。   As a specific method of causing the water-soluble halide to act according to the method (2), a water-soluble halogen obtained by dissolving a water-soluble halide in an aqueous medium with respect to a thick film pattern provided on an arbitrary substrate. Examples thereof include a method of applying a halide aqueous solution, a method of immersing a thick film pattern in a water-soluble halide aqueous solution, and the like. From the viewpoint of the conductivity of the finally obtained conductive pattern, the water-soluble halide concentration of the water-soluble halide aqueous solution is preferably 0.8 mol / L or more.

(3)の方法に従い水溶性ハロゲン化物を作用させる具体的な方法としては、水溶性ハロゲン化物水溶液をスプレーノズルや霧吹き等の公知の噴霧装置を用いて噴霧する方法が例示出来る。最終的に得られる導電性パターンの導電性の観点から、水溶性ハロゲン化物水溶液の水溶性ハロゲン化物濃度は0.8mol/L以上である事が好ましい。   Specific examples of the method of causing the water-soluble halide to act according to the method (3) include a method of spraying a water-soluble halide aqueous solution using a known spraying device such as a spray nozzle or a spray. From the viewpoint of the conductivity of the finally obtained conductive pattern, the water-soluble halide concentration of the water-soluble halide aqueous solution is preferably 0.8 mol / L or more.

(1)〜(3)の方法に従い形成された導電性パターンの導電性を高めるため、さらに水分を供給する事も好ましい。水分の供給には、例えばインクジェット方式による水滴の付与やスプレーノズルや霧吹きにより水の噴霧を行う方法もあるが、単純に周辺雰囲気の湿度を高くしても良い。この場合、温度は10℃から80℃が好ましく、重量絶対湿度Hとして0.01kg/kgD.A.以上である事が好ましい。   In order to increase the conductivity of the conductive pattern formed according to the methods (1) to (3), it is also preferable to supply moisture. There are methods for supplying water such as application of water droplets by an ink jet method or spraying water by a spray nozzle or spraying, but the humidity in the surrounding atmosphere may be simply increased. In this case, the temperature is preferably 10 ° C. to 80 ° C., and the weight absolute humidity H is 0.01 kg / kg D.D. A. The above is preferable.

最終的に得られた厚膜の導電性パターンに対し、必要に応じて水洗を行う事、樹脂成分を塗布する事により導電性パターンを封止し、保護する事も好ましく行う事が出来る。   The finally obtained thick film conductive pattern can be preferably washed with water if necessary and sealed and protected by applying a resin component.

以下、実施例により本発明を詳しく説明するが、本発明の内容は実施例に限られるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the content of this invention is not restricted to an Example.

《実施例1》
<金属超微粒子含有組成物の作製>
10Lのステンレスビーカーに焙焼デキストリン(日澱化学株式会社製、デキストリンNo.3)653gと純水5772gを加え、のこぎり歯状ブレード型分散機を用いて約30分間撹拌し溶解した。その後、硝酸銀1582gを加え、約30分間撹拌し溶解した。この液を氷浴中にて約5℃まで冷却し、水酸化カリウム730gを純水1007gに溶解した10℃の液を添加し、氷浴中で攪拌しながら1時間の還元反応を行った。得られた溶液に酢酸を添加し、pH=5.6に調整した後、ビオザイムF10SD(天野エンザイム株式会社製)を添加し1時間撹拌し、余剰のデキストリンを低分子化した。最終的に10質量%の銀超微粒子分散液1を9888g得た。含まれる銀超微粒子の平均粒径は20nmであり、収率は98.4%であった。
Example 1
<Preparation of a composition containing ultrafine metal particles>
To a 10 L stainless beaker, 653 g of roasted dextrin (manufactured by Nissho Chemical Co., Ltd., dextrin No. 3) and 5772 g of pure water were added, and dissolved by stirring for about 30 minutes using a sawtooth blade type disperser. Thereafter, 1582 g of silver nitrate was added and dissolved by stirring for about 30 minutes. This solution was cooled to about 5 ° C. in an ice bath, a solution at 10 ° C. in which 730 g of potassium hydroxide was dissolved in 1007 g of pure water was added, and a reduction reaction was performed for 1 hour with stirring in the ice bath. Acetic acid was added to the resulting solution to adjust the pH to 5.6, then Biozyme F10SD (manufactured by Amano Enzyme Co., Ltd.) was added and stirred for 1 hour to lower the excess dextrin. Finally, 9888 g of 10 mass% silver ultrafine particle dispersion 1 was obtained. The average particle diameter of the contained silver ultrafine particles was 20 nm, and the yield was 98.4%.

銀超微粒子分散液1を800g取り、遠心分離による精製を行い、上澄みと銀超微粒子とを分離した。純水を加えて再分散した後、高沸点有機溶媒、増粘剤を加え銀濃度が45.0質量%のスクリーン印刷適性を有した銀超微粒子含有組成物1を126g得た。   800 g of the silver ultrafine particle dispersion 1 was taken and purified by centrifugation to separate the supernatant and the silver ultrafine particles. After adding pure water and redispersing, 126 g of ultrafine silver particle-containing composition 1 having screen printing suitability with a silver concentration of 45.0% by mass was added by adding a high boiling point organic solvent and a thickener.

銀超微粒子分散液1を800g取り、そこにスターラー撹拌下で0.22mol/Lの塩化ナトリウム水溶液を100mL加え、塩化ナトリウムを銀に対しモル比で3.0%の比率で混合した。10分間の混合中、液温は20℃を維持した。その後遠心分離を行い、上澄みと銀超微粒子とを分離した後、純水を加えて再分散した。高沸点有機溶媒、増粘剤を加え銀濃度が45.0質量%のスクリーン印刷適性を有した銀超微粒子含有組成物2を129g得た。   800 g of the silver ultrafine particle dispersion 1 was taken, and 100 mL of a 0.22 mol / L sodium chloride aqueous solution was added thereto with stirring with a stirrer, and sodium chloride was mixed at a molar ratio of 3.0% with respect to silver. During mixing for 10 minutes, the liquid temperature was maintained at 20 ° C. Centrifugation was then performed to separate the supernatant and the ultrafine silver particles, and then redispersed with pure water. A high-boiling organic solvent and a thickener were added to obtain 129 g of silver ultrafine particle-containing composition 2 having screen printing suitability with a silver concentration of 45.0% by mass.

<厚膜の導電性パターンの形成>
水に硝酸(2.5部)とアルミナ水和物(平均一次粒子径15nm)を添加し、のこぎり歯状ブレード型分散機を用いて、固形分濃度30質量%の無機微粒子分散液を得た。無機微粒子分散液中に分散しているアルミナ水和物の平均二次粒子径は160nmであった。この無機微粒子分散液を用い、下記組成の多孔質層形成塗液を作製した。
<Formation of thick conductive pattern>
Nitric acid (2.5 parts) and alumina hydrate (average primary particle size 15 nm) were added to water, and an inorganic fine particle dispersion having a solid content concentration of 30% by mass was obtained using a sawtooth blade type disperser. . The average secondary particle diameter of the alumina hydrate dispersed in the inorganic fine particle dispersion was 160 nm. Using this inorganic fine particle dispersion, a porous layer forming coating solution having the following composition was prepared.

<多孔質層形成塗液>
無機微粒子分散液 (アルミナ水和物固形分として) 100g
ポリビニルアルコール 12g
(ケン化度88%、平均重合度3,500、分子量約150,000)
ホウ酸 0.5g
ノニオン性界面活性剤 0.3g
(ポリオキシエチレンアルキルエーテル)
固形分濃度が16質量%になるように水で調整した。
<Porous layer forming coating solution>
Inorganic fine particle dispersion (as alumina hydrate solid content) 100g
Polyvinyl alcohol 12g
(Saponification degree 88%, average polymerization degree 3,500, molecular weight about 150,000)
Boric acid 0.5g
Nonionic surfactant 0.3g
(Polyoxyethylene alkyl ether)
It adjusted with water so that solid content concentration might be 16 mass%.

支持体として、易接着処理がなされた厚み100μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製)を用い、支持体上に上記多孔質層形成塗液をアルミナ水和物の固形分として30g/mとなるようにスライドビード方式を用いて塗布を行い、乾燥機により乾燥し、多孔質層を形成した。支持体上に形成された多孔質層の厚みは約40μmである。 A 100 μm thick polyethylene terephthalate film (manufactured by Teijin DuPont Films Ltd.), which has been subjected to an easy adhesion treatment, is used as a support, and the porous layer-forming coating solution is used as a solid content of alumina hydrate on the support. The coating was performed using a slide bead method so that it was 2, and dried with a drier to form a porous layer. The thickness of the porous layer formed on the support is about 40 μm.

上記多孔質層上に、下記組成の導電性発現剤塗液を、斜線グラビアロールを用いた塗布方式を用いて塗布を行い、乾燥機により乾燥し、水溶性ハロゲン化物含有基材を得た。ここで用いた斜線グラビアロールは、直径60mm、斜線角度45度、線数90線/インチ、溝深さ110μmのグラビアロールであり、リバース回転で用いた。導電性発現剤塗液の湿分塗布量は、斜線グラビアロールの回転数を調整し20g/mに設定した。得られた水溶性ハロゲン化物含有基材は210mm×297mmのシート状に加工した。水銀ポロシメーターを用いて測定された空隙容量は23.0ml/mであった。 On the said porous layer, the electroconductive expression agent coating liquid of the following composition was apply | coated using the application | coating system using a diagonal gravure roll, and it dried with the dryer, and obtained the water-soluble halide containing base material. The oblique gravure roll used here is a gravure roll having a diameter of 60 mm, an oblique line angle of 45 degrees, a number of lines of 90 lines / inch, and a groove depth of 110 μm, and was used in reverse rotation. The moisture application amount of the conductive expression agent coating solution was set to 20 g / m 2 by adjusting the rotation speed of the oblique gravure roll. The obtained water-soluble halide-containing substrate was processed into a 210 mm × 297 mm sheet. The void volume measured using a mercury porosimeter was 23.0 ml / m 2 .

<導電性発現剤塗液>
塩化ナトリウム 1.0g
水 99.0g
<Conducting agent coating liquid>
Sodium chloride 1.0g
99.0g of water

水溶性ハロゲン化物含有基材に対し、銀超微粒子含有組成物1および2を用いスクリーン印刷により厚さ5μm、12μm、15μmのベタパターンをそれぞれ作製した。パターンの厚さは版の紗厚と乳剤厚を変更することで調節した。その後50℃80%Rh(重量絶対湿度H=0.067kg/kgD.A.)の高湿条件下にて5分間放置し、導電性パターン1〜6を得た。マイクロメーターを使用し、各導電性パターンの膜厚を測定した。   Solid patterns having a thickness of 5 μm, 12 μm, and 15 μm were prepared by screen printing on the water-soluble halide-containing substrate using the silver ultrafine particle-containing compositions 1 and 2, respectively. The pattern thickness was adjusted by changing the plate thickness and emulsion thickness. Thereafter, it was left for 5 minutes under high humidity conditions of 50 ° C. and 80% Rh (weight absolute humidity H = 0.067 kg / kg DA) to obtain conductive patterns 1 to 6. Using a micrometer, the film thickness of each conductive pattern was measured.

銀超微粒子含有組成物1および2を用い、易接着処理がなされた厚み100μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製)上にスクリーン印刷により厚さ15μmのベタパターンをそれぞれ作製した。その後、20質量%塩化ナトリウム水溶液に1分間浸漬した後、水洗・乾燥させ導電性パターン7および8を得た。マイクロメーターを使用し、各導電性パターンの膜厚を測定した。   Using the silver ultrafine particle-containing compositions 1 and 2, a solid pattern having a thickness of 15 μm was produced by screen printing on a polyethylene terephthalate film (manufactured by Teijin DuPont Films Co., Ltd.) having a thickness of 100 μm that had been subjected to an easy adhesion treatment. Then, after being immersed in a 20 mass% sodium chloride aqueous solution for 1 minute, it was washed with water and dried to obtain conductive patterns 7 and 8. Using a micrometer, the film thickness of each conductive pattern was measured.

銀超微粒子含有組成物1および2を用い、易接着処理がなされた厚み100μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製)上にスクリーン印刷により厚さ15μmのベタパターンをそれぞれ作製した。その後、パターンに対し20質量%塩化ナトリウム水溶液をスプレーノズルにより5分間噴霧した後、水洗・乾燥させ導電性パターン9および10を得た。マイクロメーターを使用し、各導電性パターンの膜厚を測定した。   Using the silver ultrafine particle-containing compositions 1 and 2, a solid pattern having a thickness of 15 μm was produced by screen printing on a polyethylene terephthalate film (manufactured by Teijin DuPont Films Co., Ltd.) having a thickness of 100 μm that had been subjected to an easy adhesion treatment. Then, after spraying a 20 mass% sodium chloride aqueous solution with a spray nozzle for 5 minutes with respect to a pattern, it washed with water and dried and obtained the conductive patterns 9 and 10. Using a micrometer, the film thickness of each conductive pattern was measured.

<導電性の評価>
導電性パターン1〜10それぞれについて、株式会社三菱化学アナリテック製ロレスターGPを用いて電気抵抗値を測定した。測定結果を各導電性パターンの膜厚測定結果とともに表1に示す。
<Evaluation of conductivity>
About each of the electroconductive patterns 1-10, the electrical resistance value was measured using Mitsubishi Chemical Analytech Co., Ltd. Lorester GP. The measurement results are shown in Table 1 together with the film thickness measurement results of the respective conductive patterns.

Figure 2012197487
Figure 2012197487

表1の結果から明らかなように、本発明によって加熱する事なく厚膜のパターンに高い導電性を発現させる事が可能な金属超微粒子を製造出来る事が判る。また、本発明の効果が導電性パターンの厚みとして5μm以上、特に10μm以上の場合に顕著になる事が判る。   As is apparent from the results in Table 1, it can be seen that the present invention can produce ultrafine metal particles capable of expressing high conductivity in a thick film pattern without heating. Further, it can be seen that the effect of the present invention becomes remarkable when the thickness of the conductive pattern is 5 μm or more, particularly 10 μm or more.

《実施例2》
<金属超微粒子含有組成物の作製>
銀超微粒子分散液1を800g取り、そこにスターラー撹拌下で0.0075mol/Lの塩化ナトリウム水溶液を100mL加え、塩化ナトリウムを銀に対しモル比で0.10%の比率で混合した。10分間の混合中、液温は20℃を維持した。その後遠心分離を行い、上澄みと銀超微粒子とを分離した後、純水を加えて再分散した。高沸点有機溶媒、増粘剤を加え銀濃度が45.0質量%のスクリーン印刷適性を有した銀超微粒子含有組成物3を128g得た。
Example 2
<Preparation of a composition containing ultrafine metal particles>
800 g of the silver ultrafine particle dispersion 1 was taken, 100 mL of a 0.0075 mol / L sodium chloride aqueous solution was added thereto with stirring with a stirrer, and sodium chloride was mixed at a ratio of 0.10% by mole with respect to silver. During mixing for 10 minutes, the liquid temperature was maintained at 20 ° C. Centrifugation was then performed to separate the supernatant and the ultrafine silver particles, and then redispersed with pure water. A high-boiling organic solvent and a thickener were added to obtain 128 g of silver ultrafine particle-containing composition 3 having a screen printing suitability with a silver concentration of 45.0% by mass.

銀超微粒子分散液1を800g取り、そこにスターラー撹拌下で0.015mol/Lの塩化ナトリウム水溶液を100mL加え、塩化ナトリウムを銀に対しモル比で0.20%の比率で混合した。10分間の混合中、液温は20℃を維持した。その後遠心分離を行い、上澄みと銀超微粒子とを分離した後、純水を加えて再分散した。高沸点有機溶媒、増粘剤を加え銀濃度が45.0質量%のスクリーン印刷適性を有した銀超微粒子含有組成物4を129g得た。   800 g of the silver ultrafine particle dispersion 1 was taken, and 100 mL of a 0.015 mol / L aqueous sodium chloride solution was added thereto while stirring with a stirrer, and sodium chloride was mixed at a molar ratio of 0.20% with respect to silver. During mixing for 10 minutes, the liquid temperature was maintained at 20 ° C. Centrifugation was then performed to separate the supernatant and the ultrafine silver particles, and then redispersed with pure water. A high-boiling organic solvent and a thickener were added to obtain 129 g of silver ultrafine particle-containing composition 4 having screen printing suitability with a silver concentration of 45.0% by mass.

銀超微粒子分散液1を800g取り、そこにスターラー撹拌下で0.11mol/Lの塩化ナトリウム水溶液を100mL加え、塩化ナトリウムを銀に対しモル比で1.5%の比率で混合した。10分間の混合中、液温は20℃を維持した。その後遠心分離を行い、上澄みと銀超微粒子とを分離した後、純水を加えて再分散した。高沸点有機溶媒、増粘剤を加え銀濃度が45.0質量%のスクリーン印刷適性を有した銀超微粒子含有組成物5を130g得た。   800 g of the silver ultrafine particle dispersion 1 was taken, and 100 mL of a 0.11 mol / L sodium chloride aqueous solution was added thereto with stirring with a stirrer, and sodium chloride was mixed at a ratio of 1.5% by mole with respect to silver. During mixing for 10 minutes, the liquid temperature was maintained at 20 ° C. Centrifugation was then performed to separate the supernatant and the ultrafine silver particles, and then redispersed with pure water. 130 g of a silver ultrafine particle-containing composition 5 having a screen printing suitability with a silver concentration of 45.0% by mass was added by adding a high boiling point organic solvent and a thickener.

銀超微粒子分散液1を800g取り、そこにスターラー撹拌下で0.40mol/Lの塩化ナトリウム水溶液を100mL加え、塩化ナトリウムを銀に対しモル比で5.4%の比率で混合した。10分間の混合中、液温は20℃を維持した。その後遠心分離を行い、上澄みと銀超微粒子とを分離した後、純水を加えて再分散した。高沸点有機溶媒、増粘剤を加え銀濃度が45.0質量%のスクリーン印刷適性を有した銀超微粒子含有組成物6を126g得た。   800 g of the silver ultrafine particle dispersion 1 was taken, 100 mL of a 0.40 mol / L sodium chloride aqueous solution was added thereto with stirring with a stirrer, and sodium chloride was mixed in a molar ratio of 5.4% with respect to silver. During mixing for 10 minutes, the liquid temperature was maintained at 20 ° C. Centrifugation was then performed to separate the supernatant and the ultrafine silver particles, and then redispersed with pure water. A high-boiling organic solvent and a thickener were added to obtain 126 g of silver ultrafine particle-containing composition 6 having a screen printing suitability with a silver concentration of 45.0% by mass.

銀超微粒子分散液1を800g取り、そこにスターラー撹拌下で0.52mol/Lの塩化ナトリウム水溶液を100mL加え、塩化ナトリウムを銀に対しモル比で7.0%の比率で混合した。10分間の混合中、液温は20℃を維持した。その後遠心分離を行い、上澄みと銀超微粒子とを分離した後、純水を加えて再分散した。高沸点有機溶媒、増粘剤を加え銀濃度が45.0質量%のスクリーン印刷適性を有した銀超微粒子含有組成物7を131g得た。   800 g of the silver ultrafine particle dispersion 1 was taken, and 100 mL of a 0.52 mol / L sodium chloride aqueous solution was added thereto with stirring with a stirrer, and sodium chloride was mixed at a molar ratio of 7.0% with respect to silver. During mixing for 10 minutes, the liquid temperature was maintained at 20 ° C. Centrifugation was then performed to separate the supernatant and the ultrafine silver particles, and then redispersed with pure water. A high-boiling organic solvent and a thickener were added to obtain 131 g of silver ultrafine particle-containing composition 7 having screen printing suitability with a silver concentration of 45.0% by mass.

銀超微粒子分散液1を800g取り、そこにスターラー撹拌下で0.67mol/Lの塩化ナトリウム水溶液を100mL加え、塩化ナトリウムを銀に対しモル比で9.0%の比率で混合した。10分間の混合中、液温は20℃を維持した。その後遠心分離を行い、上澄みと銀超微粒子とを分離した後、純水を加えて再分散した。高沸点有機溶媒、増粘剤を加え銀濃度が45.0質量%のスクリーン印刷適性を有した銀超微粒子含有組成物8を130g得た。   800 g of the silver ultrafine particle dispersion 1 was taken, and 100 mL of a 0.67 mol / L sodium chloride aqueous solution was added thereto with stirring with a stirrer, and sodium chloride was mixed at a molar ratio of 9.0% with respect to silver. During mixing for 10 minutes, the liquid temperature was maintained at 20 ° C. Centrifugation was then performed to separate the supernatant and the ultrafine silver particles, and then redispersed with pure water. 130 g of an ultrafine silver particle-containing composition 8 having screen printing suitability with a silver concentration of 45.0% by mass was added by adding a high boiling point organic solvent and a thickener.

銀超微粒子分散液1を800g取り、そこにスターラー撹拌下で0.22mol/Lの塩化カリウム水溶液を100mL加え、塩化カリウムを銀に対しモル比で3.0%の比率で混合した。10分間の混合中、液温は20℃を維持した。その後遠心分離を行い、上澄みと銀超微粒子とを分離した後、純水を加えて再分散した。高沸点有機溶媒、増粘剤を加え銀濃度が45.0質量%のスクリーン印刷適性を有した銀超微粒子含有組成物9を129g得た。   800 g of the silver ultrafine particle dispersion 1 was taken, and 100 mL of a 0.22 mol / L potassium chloride aqueous solution was added thereto with stirring with a stirrer, and potassium chloride was mixed at a molar ratio of 3.0% with respect to silver. During mixing for 10 minutes, the liquid temperature was maintained at 20 ° C. Centrifugation was then performed to separate the supernatant and the ultrafine silver particles, and then redispersed with pure water. A high-boiling organic solvent and a thickener were added to obtain 129 g of a silver ultrafine particle-containing composition 9 having screen printing suitability with a silver concentration of 45.0% by mass.

銀超微粒子分散液1を800g取り、そこにスターラー撹拌下で0.22mol/Lの臭化ナトリウム水溶液を100mL加え、臭化ナトリウムを銀に対しモル比で3.0%の比率で混合した。10分間の混合中、液温は20℃を維持した。その後遠心分離を行い、上澄みと銀超微粒子とを分離した後、純水を加えて再分散した。高沸点有機溶媒、増粘剤を加え銀濃度が45.0質量%のスクリーン印刷適性を有した銀超微粒子含有組成物10を125g得た。   800 g of the silver ultrafine particle dispersion 1 was taken, and 100 mL of a 0.22 mol / L aqueous solution of sodium bromide was added thereto while stirring with a stirrer, and sodium bromide was mixed at a molar ratio of 3.0% with respect to silver. During mixing for 10 minutes, the liquid temperature was maintained at 20 ° C. Centrifugation was then performed to separate the supernatant and the ultrafine silver particles, and then redispersed with pure water. 125 g of ultrafine silver particle-containing composition 10 having screen printing suitability with a silver concentration of 45.0% by mass was added by adding a high boiling point organic solvent and a thickener.

銀超微粒子分散液1を800g取り、遠心分離による精製を行い、上澄みと銀超微粒子とを分離した。0.37mol/Lの塩化ナトリウム水溶液を60mL加え再分散を行い、塩化ナトリウムを銀に対してモル比で3.0%の比率で混合した。10分間の混合中、液温は20℃を維持した。その後精製せずに高沸点有機溶媒、増粘剤を加え銀濃度が45.0質量%のスクリーン印刷適性を有した銀超微粒子含有組成物11を130g得た。   800 g of the silver ultrafine particle dispersion 1 was taken and purified by centrifugation to separate the supernatant and the silver ultrafine particles. 60 mL of a 0.37 mol / L sodium chloride aqueous solution was added for redispersion, and sodium chloride was mixed at a molar ratio of 3.0% with respect to silver. During mixing for 10 minutes, the liquid temperature was maintained at 20 ° C. Thereafter, 130 g of ultrafine silver particle-containing composition 11 having a screen printing suitability with a silver concentration of 45.0% by mass was obtained without purification by adding a high-boiling organic solvent and a thickener.

<厚膜の導電性パターンの形成>
銀超微粒子含有組成物3〜11を用い、易接着処理がなされた厚み100μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製)上にスクリーン印刷により厚さ15μmのベタパターンをそれぞれ作製した。その後、20質量%塩化ナトリウム水溶液に1分間浸漬した後、水洗・乾燥させ導電性パターン11〜19を得た。マイクロメーターを使用し、各導電性パターンの膜厚を測定した。
<Formation of thick conductive pattern>
Using the silver ultrafine particle-containing compositions 3 to 11, solid patterns having a thickness of 15 μm were respectively produced by screen printing on a polyethylene terephthalate film having a thickness of 100 μm (manufactured by Teijin DuPont Films Ltd.) subjected to easy adhesion treatment. Then, after being immersed for 1 minute in 20 mass% sodium chloride aqueous solution, it washed with water and dried and obtained the conductive patterns 11-19. Using a micrometer, the film thickness of each conductive pattern was measured.

<導電性の評価>
導電性パターン11〜19それぞれについて、株式会社三菱化学アナリテック製ロレスターGPを用いて電気抵抗値を測定した。測定結果を各導電性パターンの膜厚測定結果とともに表2に示す。
<Evaluation of conductivity>
About each of the electroconductive patterns 11-19, the electrical resistance value was measured using Mitsubishi Chemical Analytech Co., Ltd. Lorester GP. The measurement results are shown in Table 2 together with the film thickness measurement results of the respective conductive patterns.

Figure 2012197487
Figure 2012197487

表2の結果から明らかなように、本発明によって加熱する事なく厚膜のパターンに高い導電性を発現させる事が可能な金属超微粒子を製造出来る事が判る。   As is apparent from the results in Table 2, it can be seen that the present invention can produce ultrafine metal particles capable of expressing high conductivity in a thick film pattern without heating.

Claims (3)

水性媒体中に平均粒径が0.1μm以下の金属超微粒子を分散させた分散液を得る工程、該分散液と水溶性ハロゲン化物とを、金属超微粒子に対する水溶性ハロゲン化物のモル比で0.15%以上8.0%以下の範囲内で混合する工程、および金属超微粒子の精製を行う工程、の3工程を少なくともこの順序に具備する金属超微粒子の製造方法。   A step of obtaining a dispersion in which ultrafine metal particles having an average particle size of 0.1 μm or less are dispersed in an aqueous medium, the dispersion and water-soluble halide being in a molar ratio of water-soluble halide to ultrafine metal particles of 0 A method for producing ultrafine metal particles comprising at least three steps of mixing in a range of 0.1% to 8.0% and purifying ultrafine metal particles in this order. 前記金属超微粒子が、主に銀から成る事を特徴とする請求項1記載の金属超微粒子の製造方法。   2. The method for producing ultrafine metal particles according to claim 1, wherein the ultrafine metal particles are mainly composed of silver. 請求項1または2記載の製造方法により製造された金属超微粒子を含む金属超微粒子含有組成物。   An ultrafine metal particle-containing composition comprising ultrafine metal particles produced by the production method according to claim 1 or 2.
JP2011062495A 2011-03-22 2011-03-22 Method for producing composition containing ultrafine metal particles Expired - Fee Related JP5690180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062495A JP5690180B2 (en) 2011-03-22 2011-03-22 Method for producing composition containing ultrafine metal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062495A JP5690180B2 (en) 2011-03-22 2011-03-22 Method for producing composition containing ultrafine metal particles

Publications (3)

Publication Number Publication Date
JP2012197487A true JP2012197487A (en) 2012-10-18
JP2012197487A5 JP2012197487A5 (en) 2013-11-28
JP5690180B2 JP5690180B2 (en) 2015-03-25

Family

ID=47180000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062495A Expired - Fee Related JP5690180B2 (en) 2011-03-22 2011-03-22 Method for producing composition containing ultrafine metal particles

Country Status (1)

Country Link
JP (1) JP5690180B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117047A (en) * 2011-12-05 2013-06-13 Dowa Electronics Materials Co Ltd Fine silver particle dispersion
JP2013137891A (en) * 2011-12-28 2013-07-11 Dowa Electronics Materials Co Ltd Silver conductive film and method for producing the same
US10592791B2 (en) 2017-07-13 2020-03-17 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and storage medium with obtaining of resistance information relating to resistance value of print image

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231675A (en) * 2003-01-28 2004-08-19 Sumitomo Metal Mining Co Ltd Coating liquid for forming transparent conductive layer and transparent conductive film
JP2008004375A (en) * 2006-06-22 2008-01-10 Mitsubishi Paper Mills Ltd Conductive member, and its developing method
JP2008235035A (en) * 2007-03-20 2008-10-02 Tokyo Univ Of Science Metal nanoparticle paste and manufacturing method of metal nanoparticle paste
JP2010077493A (en) * 2008-09-26 2010-04-08 Dowa Electronics Materials Co Ltd Silver powder and method for producing the same
JP2011159392A (en) * 2010-01-29 2011-08-18 Mitsubishi Paper Mills Ltd Composition containing silver ultrafine particles and conductive pattern manufacturing method
JP2012067333A (en) * 2010-09-21 2012-04-05 Jgc Catalysts & Chemicals Ltd Metal fine particle dispersion, metal fine particle, and method for producing metal fine particle dispersion or the like

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231675A (en) * 2003-01-28 2004-08-19 Sumitomo Metal Mining Co Ltd Coating liquid for forming transparent conductive layer and transparent conductive film
JP2008004375A (en) * 2006-06-22 2008-01-10 Mitsubishi Paper Mills Ltd Conductive member, and its developing method
JP2008235035A (en) * 2007-03-20 2008-10-02 Tokyo Univ Of Science Metal nanoparticle paste and manufacturing method of metal nanoparticle paste
JP2010077493A (en) * 2008-09-26 2010-04-08 Dowa Electronics Materials Co Ltd Silver powder and method for producing the same
JP2011159392A (en) * 2010-01-29 2011-08-18 Mitsubishi Paper Mills Ltd Composition containing silver ultrafine particles and conductive pattern manufacturing method
JP2012067333A (en) * 2010-09-21 2012-04-05 Jgc Catalysts & Chemicals Ltd Metal fine particle dispersion, metal fine particle, and method for producing metal fine particle dispersion or the like

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117047A (en) * 2011-12-05 2013-06-13 Dowa Electronics Materials Co Ltd Fine silver particle dispersion
JP2013137891A (en) * 2011-12-28 2013-07-11 Dowa Electronics Materials Co Ltd Silver conductive film and method for producing the same
US10592791B2 (en) 2017-07-13 2020-03-17 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and storage medium with obtaining of resistance information relating to resistance value of print image

Also Published As

Publication number Publication date
JP5690180B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
CN104303238B (en) Transparent conductivity ink and transparent conductive patterns forming method
JP5632852B2 (en) Low temperature sinterable silver nanoparticle composition and electronic article formed using the composition
EP2671927B1 (en) A metallic nanoparticle dispersion
KR101800391B1 (en) A metallic nanoparticle dispersion
CN105733366B (en) A kind of preparation method of ink jet printing nano silver conductive ink
JPWO2009060803A1 (en) Copper fine particles, production method thereof and copper fine particle dispersion
JP2009197325A (en) Dispersion solution of metal nanoparticle, and method for production thereof
TW201545172A (en) Ferromagnetic metal nanowire dispersion and production method thereof
JP5424545B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
CN104010752A (en) Silver fine particles, production process therefor, conductive paste, conductive membrane and electronic device, containing said silver fine particles
JP5690180B2 (en) Method for producing composition containing ultrafine metal particles
JP2009191354A (en) Method for synthesizing metal nanoparticle
KR20150099595A (en) A method to prepare a metallic nanoparticle dispersion
TWI694469B (en) Composition for forming conductive pattern and method of forming conductive pattern
JP2020076155A (en) Silver-coated copper powder and method for producing the same
JP5326647B2 (en) Method for producing composition for forming electrode of solar cell
JP2011159392A (en) Composition containing silver ultrafine particles and conductive pattern manufacturing method
JP2004311265A (en) Conductive ink and its manufacturing method
JP5053902B2 (en) Method for producing silver ultrafine particles
US20170107382A1 (en) Antioxidant conductive copper paste and method for preparing the same
JP5151230B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP5705150B2 (en) Metal fine particle dispersion and method for producing the same
KR20200062181A (en) Silver particulate dispersion
JP5945608B2 (en) Gold nanoparticle dispersion for forming conductive film, method for producing the same, and conductive coating composition containing the dispersion
JP7197685B2 (en) Method for preparing self-assembled copper spheres

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150130

R150 Certificate of patent or registration of utility model

Ref document number: 5690180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees