JP2012193715A - Power generating device - Google Patents

Power generating device Download PDF

Info

Publication number
JP2012193715A
JP2012193715A JP2011059714A JP2011059714A JP2012193715A JP 2012193715 A JP2012193715 A JP 2012193715A JP 2011059714 A JP2011059714 A JP 2011059714A JP 2011059714 A JP2011059714 A JP 2011059714A JP 2012193715 A JP2012193715 A JP 2012193715A
Authority
JP
Japan
Prior art keywords
power generation
condenser
pressure
flow rate
pressure value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011059714A
Other languages
Japanese (ja)
Inventor
Mikiko Hatama
未来子 畑間
Takaaki Mizutani
高明 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011059714A priority Critical patent/JP2012193715A/en
Publication of JP2012193715A publication Critical patent/JP2012193715A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generating device that can prevent air from mixing in a flow passage for a power generating medium.SOLUTION: Heat supply to a condenser is increased so that a pressure for the power generating medium on an outlet of the condenser, the pressure being the most negative pressure relative to the atmospheric pressure is made to be more positive pressure than the atmospheric pressure.

Description

本発明は、密閉循環流路を通流する発電用媒体を空気で冷却する凝縮器を備えた発電装置に関する。   The present invention relates to a power generation apparatus including a condenser that cools a power generation medium flowing through a closed circulation channel with air.

媒体に水を用い、熱源で水を加熱して生じた蒸気でタービンを回し、タービンに連結された発電機で発電を行い、タービンから排出された低温蒸気を凝縮器で液化し、液化した水を前記熱源で気化するサイクルを備えた発電装置が知られている。従来の発電装置では、媒体である水を外気と接触させ、水の気化熱による冷却効果で水自身を冷やしていた。例えば、特許文献1は、復水器と、空気抽出器と、復水器冷却器と、復水器冷却器に冷却水を送る循環水ポンプと、循環水ポンプ用電動機と、復水器冷却器の冷却能力を調整するべく循環水ポンプの回転数を制御する制御手段と、を有する復水器システムを開示している。
上記のような、水と外気を直接接触させて冷却する方式とは別の冷却方式として、特許文献2は、発電用その他に利用される蒸気タービンより排気される蒸気を排気管により復水器本体内に形成された風洞に導き、復水器本体に設けられた空気入口部より風洞に導入された空気との熱交換により蒸気を凝縮させて復水する空冷復水器において、復水器本体の空気入口部に設けられた吸気冷却器と、この吸気冷却器に冷却配管を介して接続され冷媒を循環させて空気入口部より風洞に流入する空気を冷却する放熱器と、吸気冷却器より放熱器に戻る冷媒を凝縮させる圧縮機を備える空冷復水器を開示している。
Water is used as a medium, water is heated by a heat source, the turbine is rotated by steam generated, power is generated by a generator connected to the turbine, and the low-temperature steam discharged from the turbine is liquefied by a condenser and liquefied water There is known a power generation apparatus having a cycle for vaporizing the gas with the heat source. In the conventional power generator, water as a medium is brought into contact with the outside air, and the water itself is cooled by a cooling effect due to the heat of vaporization of water. For example, Patent Document 1 discloses a condenser, an air extractor, a condenser cooler, a circulating water pump that sends cooling water to the condenser cooler, an electric motor for the circulating water pump, and condenser cooling. And a control means for controlling the rotational speed of the circulating water pump in order to adjust the cooling capacity of the condenser.
As a cooling system different from the above-described cooling system in which water and outside air are brought into direct contact with each other, Patent Document 2 discloses that a steam exhausted from a steam turbine used for power generation or the like is discharged from a condenser through an exhaust pipe. In an air-cooled condenser that condenses steam by condensing steam by heat exchange with air introduced into the wind tunnel from an air inlet provided in the condenser body and led to the wind tunnel formed in the main body. An intake air cooler provided at the air inlet of the main body, a radiator connected to the intake air cooler via a cooling pipe for circulating the refrigerant and cooling the air flowing into the wind tunnel from the air inlet, and the intake air cooler An air-cooled condenser having a compressor that condenses the refrigerant returning to the radiator more is disclosed.

特開2003−343211号公報Japanese Patent Laid-Open No. 2003-343211 特開2007−107814号公報JP 2007-107814 A

特許文献1のような水と外気を直接接触させて冷却する方式では、水が蒸発するため補給水が必要であり、さらに水の濃縮によりスケールが発生するため、水質管理をしなければならない問題点があった。この問題点を克服する冷却方式として、特許文献2に記載のような空冷方式の冷却器が開発されている。しかし、特許文献2のように、吸気冷却器で冷却された空気によって発電用媒体である蒸気を冷却する方式では、発電用媒体ガスを冷却する冷却器において、冬季に外気温度が発電用媒体の沸点より低下すると発電用媒体ガス流路内が大気に比べて負圧になるために、発電用媒体流路の配管接続部分から空気が混入するという問題があった。   In the method of cooling water by directly contacting water and outside air as in Patent Document 1, since water evaporates, makeup water is necessary, and further, the scale is generated due to the concentration of water, so the water quality must be controlled. There was a point. As a cooling system that overcomes this problem, an air-cooled cooler as described in Patent Document 2 has been developed. However, in the method of cooling the steam that is the power generation medium with the air cooled by the intake air cooler as in Patent Document 2, in the cooler that cools the power generation medium gas, the outside air temperature of the power generation medium is low in winter. When the temperature drops below the boiling point, the power generation medium gas flow path has a negative pressure as compared with the atmosphere, and there is a problem that air is mixed in from the pipe connection portion of the power generation medium flow path.

上記の課題を解決するべく、本発明は、発電用媒体流路に空気が混入することを防止できる発電装置を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a power generation device capable of preventing air from entering a power generation medium flow path.

上記課題を解決するため、発明者は、大気圧に対して最も負圧になる凝縮器出口側の発電用媒体圧力が大気圧より正圧になるように、凝縮器への熱の供給量を増加させればよいということを発想した。そこで、本発明に係る発電装置は、熱源流体の熱で発電用媒体を蒸発させる蒸発器と、前記蒸発器から排出された発電用媒体で回転するタービンと、前記タービンに接続された発電機と、前記タービンから排出された発電用媒体を空気で冷却して凝縮させる凝縮器と、前記凝縮器から排出される発電用媒体の圧力を測定する圧力計と、前記凝縮器から排出される発電用媒体を前記蒸発器に送る循環ポンプと、前記循環ポンプの流量を制御する制御装置を備える発電装置であって、前記制御装置は、大気圧以上の予め定めた圧力値を目標圧力値として、または前記大気圧に所定の値を加えた値を目標圧力値として設定され、前記圧力計の圧力値が前記目標圧力値より高い場合は、前記凝縮器への熱供給量を減らし、前記圧力計の圧力値が前記目標圧力値より低い場合は、前記凝縮器への熱供給量を増やすことを基本的な特徴とする。熱源流体としては、例えば、地熱水や工場排熱などが利用できる。凝縮器へ供給される熱の温度は、発電用媒体の沸点より高い温度である。   In order to solve the above problems, the inventor has reduced the amount of heat supplied to the condenser so that the power generation medium pressure on the condenser outlet side, which is the most negative pressure with respect to the atmospheric pressure, is more positive than the atmospheric pressure. I thought that it should be increased. Therefore, a power generation apparatus according to the present invention includes an evaporator that evaporates a power generation medium with the heat of a heat source fluid, a turbine that rotates with the power generation medium discharged from the evaporator, and a generator that is connected to the turbine. A condenser that cools and condenses the power generation medium discharged from the turbine with air, a pressure gauge that measures the pressure of the power generation medium discharged from the condenser, and a power generation discharge from the condenser A power generation device comprising a circulation pump for sending a medium to the evaporator and a control device for controlling the flow rate of the circulation pump, wherein the control device uses a predetermined pressure value equal to or higher than atmospheric pressure as a target pressure value, or A value obtained by adding a predetermined value to the atmospheric pressure is set as a target pressure value, and when the pressure value of the pressure gauge is higher than the target pressure value, the amount of heat supplied to the condenser is reduced, and the pressure gauge The pressure value is Is lower than the pressure value is a basic feature of increasing the heat supply amount to the condenser. As the heat source fluid, for example, geothermal water or factory exhaust heat can be used. The temperature of the heat supplied to the condenser is higher than the boiling point of the power generation medium.

このような構成にすれば、凝縮器へ供給される熱量を増加することで、凝縮器出口側の発電用媒体の温度の低下を防止できる。したがって、凝縮器での流入熱量より放熱量が多くなって凝縮器出口側の発電用媒体の温度が沸点より低下することによって凝縮器出口側が大気圧より負圧になるという状況を避けることができる。   With such a configuration, it is possible to prevent the temperature of the power generation medium on the outlet side of the condenser from decreasing by increasing the amount of heat supplied to the condenser. Therefore, it is possible to avoid a situation in which the outlet side of the condenser becomes negative pressure from the atmospheric pressure because the amount of heat released is larger than the inflow heat amount in the condenser and the temperature of the power generation medium on the outlet side of the condenser is lower than the boiling point. .

上記の発電装置の一つの態様としては、前記基本的な特徴を備えた発電装置において、前記制御装置は、前記圧力計の圧力値が前記目標圧力値より高い場合は、前記循環ポンプの発電用媒体流量を減らし、前記圧力計の圧力値が前記目標圧力値より低い場合は、前記循環ポンプの発電用媒体流量を増やすようにしてもよい。   As one aspect of the above power generation device, in the power generation device having the basic characteristics, the control device is configured to generate power for the circulation pump when the pressure value of the pressure gauge is higher than the target pressure value. If the medium flow rate is decreased and the pressure value of the pressure gauge is lower than the target pressure value, the power generation medium flow rate of the circulation pump may be increased.

このような構成にすれば、凝縮器出口側が大気圧より負圧になるという状況を避けることができると共に、熱の供給量が調節し易くなる。
また、上記の発電装置の別の態様としては、前記タービン出口から前記凝縮器入口を接続する配管に第1流量調整バルブを設け、前記制御装置は、前記圧力計の圧力値が前記目標圧力値より高い場合は、前記第1流量調整バルブのバルブ開度を減らし、前記圧力計の圧力値が前記目標圧力値より低い場合は、前記第1流量調整バルブのバルブ開度を増やすようにしてもよい。
With such a configuration, it is possible to avoid a situation in which the condenser outlet side becomes a negative pressure from the atmospheric pressure, and it is easy to adjust the heat supply amount.
Moreover, as another aspect of said electric power generating apparatus, the 1st flow regulating valve is provided in piping which connects the said condenser inlet from the said turbine exit, The said control apparatus is a pressure value of the said pressure gauge, and the said target pressure value is provided. If it is higher, the valve opening of the first flow rate adjustment valve is decreased, and if the pressure value of the pressure gauge is lower than the target pressure value, the valve opening of the first flow rate adjustment valve is increased. Good.

このような構成にすれば、凝縮器出口側が大気圧より負圧になるという状況を避けることができると共に、凝縮器への熱の供給量が調節し易くなる。
また、上記の発電装置の別の態様としては、前記基本的な特徴を備えた発電装置において、前記タービン入口から前記凝縮器入口を接続するバイパス流路を設け、前記バイパス流路に第2流量調整バルブを設け、前記制御装置は、前記圧力計の圧力値が前記目標圧力値より高い場合は、前記第2流量調整バルブのバルブ開度を減らし、前記圧力計の圧力値が前記目標圧力値より低い場合は、前記第2流量調整バルブのバルブ開度を増やすようにしてもよい。
With such a configuration, it is possible to avoid a situation in which the condenser outlet side becomes a negative pressure from the atmospheric pressure, and it is easy to adjust the amount of heat supplied to the condenser.
Further, as another aspect of the above power generation device, in the power generation device having the above basic characteristics, a bypass flow path connecting the condenser inlet to the turbine inlet is provided, and a second flow rate is provided in the bypass flow path. When the pressure value of the pressure gauge is higher than the target pressure value, the control device reduces the valve opening of the second flow rate adjustment valve, and the pressure value of the pressure gauge becomes the target pressure value. If it is lower, the valve opening of the second flow rate adjusting valve may be increased.

このような構成にすれば、凝縮器出口側が大気圧より負圧になるという状況を避けることができると共に、凝縮器への熱の供給量が調節し易くなる。
また、上記の発電装置の別の態様としては、前記基本的な特徴を備えた発電装置において、前記凝縮器は、大気圧における発電用媒体の沸点より高い温度の前記熱源流体で加温されることがより望ましい。より具体的には、前記の特徴を備えた発電装置において、大気圧における発電用媒体の沸点より高い温度の前記熱源流体を通流して前記凝縮器を加温する第1加温流路を設け、前記第1加温流路に加温用ポンプを設けるかまたは前記熱源流体を分流して第1加温流路に流入させる分岐点に3方弁を設け、前記制御装置は、前記圧力計の圧力値が前記目標圧力値より高い場合は、前記第1加温流路を通流する前記熱源流体の流量を減らし、前記圧力計の圧力値が前記目標圧力値より低い場合は、前記第1加温流路を通流する前記熱源流体の流量を増やすように前記加温用ポンプまたは前記3方弁を制御するようにしてもよい。その際、前記第1加温流路を通流する前記熱源流体に、前記蒸発器より下流側の熱源流体を用いる事がより望ましい。さらに、前記凝縮器の加温される部位が、前記凝縮器の出口ヘッダ部であることがより望ましい。
With such a configuration, it is possible to avoid a situation in which the condenser outlet side becomes a negative pressure from the atmospheric pressure, and it is easy to adjust the amount of heat supplied to the condenser.
Further, as another aspect of the above power generation device, in the power generation device having the basic characteristics, the condenser is heated by the heat source fluid having a temperature higher than the boiling point of the power generation medium at atmospheric pressure. It is more desirable. More specifically, in the power generation apparatus having the above characteristics, a first heating flow path is provided for heating the condenser by flowing the heat source fluid having a temperature higher than the boiling point of the power generation medium at atmospheric pressure. A heating pump is provided in the first heating channel, or a three-way valve is provided at a branch point where the heat source fluid is divided and flows into the first heating channel, and the control device includes the pressure gauge When the pressure value of the pressure gauge is higher than the target pressure value, the flow rate of the heat source fluid flowing through the first heating channel is reduced, and when the pressure value of the pressure gauge is lower than the target pressure value, The heating pump or the three-way valve may be controlled to increase the flow rate of the heat source fluid flowing through the one heating channel. At this time, it is more preferable to use a heat source fluid downstream from the evaporator as the heat source fluid flowing through the first heating channel. Furthermore, it is more desirable that the heated portion of the condenser is an outlet header portion of the condenser.

このような構成にすれば、凝縮器出口側が大気圧より負圧になるという状況を避けることができると共に、発電用媒体を加熱した後の熱源流体の熱を利用する場合には、発電量が減ることがなく、従来そのまま排出されていた低温排熱を有効利用できる。   With such a configuration, it is possible to avoid the situation where the condenser outlet side becomes a negative pressure from the atmospheric pressure, and when the heat of the heat source fluid after heating the power generation medium is used, the amount of power generation is The low-temperature exhaust heat that has been exhausted as it is can be used effectively without decreasing.

また、上記の発電装置の別の態様としては、前記基本的な特徴を備えた発電装置において、前記蒸発器と前記循環ポンプの間に前記蒸発器から出た前記熱源流体と前記循環ポンプから出た前記発電用媒体を熱交換する予熱器を備え、前記予熱器からでた発電用媒体の一部を分流させて、分流した前記発電用媒体の熱を前記凝縮器に供給する第2加温流路を設け、前記第2加温流路に第3流量調整バルブを設け、前記制御装置は、前記圧力計の圧力値が前記目標圧力値より高い場合は、前記第2加温流路を通流する前記熱源流体の流量を減らし、前記圧力計の圧力値が前記目標圧力値より低い場合は、前記第2加温流路を通流する前記熱源流体の流量を増やすように前記第3流量調整バルブを制御することとしてもよい。   Further, as another aspect of the above power generation device, in the power generation device having the above basic features, the heat source fluid that has flowed out of the evaporator and the circulation pump between the evaporator and the circulation pump. A second heating unit that includes a preheater for exchanging heat of the power generation medium, divides a part of the power generation medium from the preheater, and supplies the heat of the divided power generation medium to the condenser. A flow path is provided, and a third flow rate adjustment valve is provided in the second warming flow path, and the control device opens the second warming flow path when the pressure value of the pressure gauge is higher than the target pressure value. When the flow rate of the heat source fluid flowing is reduced and the pressure value of the pressure gauge is lower than the target pressure value, the flow rate of the heat source fluid flowing through the second heating channel is increased. The flow rate adjusting valve may be controlled.

このような構成にすれば、凝縮器出口側が大気圧より負圧になるという状況を避けることができると共に、予熱器を備えているので熱源流体から回収できる熱量を増加できる。
より具体的には、前記第2加温流路が、前記予熱器の発電用媒体出口側と前記凝縮器の入口側を接続する流路であり、前記予熱器で加熱された発電用媒体が、前記凝縮器の入口側へ供給されるようにしてもよい。また、前記第2加温流路が、前記予熱器の発電用媒体出口側と前記凝縮器の出口ヘッダ部を接続する流路であり、前記予熱器で加熱された発電用媒体が、前記凝縮器の出口ヘッダ部へ供給されるようにしてもよい。
With such a configuration, it is possible to avoid a situation in which the condenser outlet side becomes a negative pressure from the atmospheric pressure, and it is possible to increase the amount of heat that can be recovered from the heat source fluid because the preheater is provided.
More specifically, the second heating channel is a channel connecting the power generation medium outlet side of the preheater and the inlet side of the condenser, and the power generation medium heated by the preheater is , And may be supplied to the inlet side of the condenser. The second heating channel is a channel connecting the power generation medium outlet side of the preheater and the outlet header portion of the condenser, and the power generation medium heated by the preheater is condensed. You may make it supply to the exit header part of a container.

本発明によれば、発電用媒体流路に空気が混入することを防止できる発電装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the electric power generating apparatus which can prevent that air mixes in the medium flow path for electric power generation can be provided.

本発明の第1の実施形態に係る構成図である。1 is a configuration diagram according to a first embodiment of the present invention. 本発明の第2の実施形態に係る構成図である。It is a block diagram which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る構成図である。It is a block diagram which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る構成図である。It is a block diagram which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る構成図である。It is a block diagram which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る凝縮器の概略構成図である。It is a schematic block diagram of the condenser which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る構成図である。It is a block diagram which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る凝縮器の概略構成図である。It is a schematic block diagram of the condenser which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る構成図である。It is a block diagram which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る凝縮器の概略構成図である。It is a schematic block diagram of the condenser which concerns on the 7th Embodiment of this invention.

以下、本発明に係る発電装置の実施形態を図面を参照しながら説明する。なお、本発明は、下記の実施形態に限定されるものではなく、その要旨を変更しない範囲内で適宜変形して実施することができるものである。   Hereinafter, an embodiment of a power generator according to the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment, In the range which does not change the summary, it can implement suitably.

本発明に係る第1の実施形態について、図面を用いて説明する。図1は、第1の実施形態における発電装置の主な構成図である。図1は、図2から図4にとって共通の構造を備えているため、同一の構成要素については、同一の符号を付け、重複する説明は省略する。   A first embodiment according to the present invention will be described with reference to the drawings. FIG. 1 is a main configuration diagram of the power generation device according to the first embodiment. Since FIG. 1 has a structure common to FIGS. 2 to 4, the same components are denoted by the same reference numerals, and redundant description is omitted.

熱源流体入口1から流入した熱源流体は、配管を通って蒸発器3、予熱器8を通流後、熱源流体出口15へ排出される。熱源流体入口1の近傍の配管に熱源流体の流量を測定する流量計16と、温度計17が設置されている。発電用媒体が通流する部分としては、循環ポンプ7、予熱器8、蒸発器3、タービン4および凝縮器6が、順に環状に配管で接続されており、タービン4と凝縮器6の間の配管に温度計20と圧力計21を備え、凝縮器6と循環ポンプ7との間の配管に温度計22と圧力計23を備えている。予熱器8では、蒸発器3から排出された熱源流体で凝縮器6から排出された液状の発電用媒体を加熱している。なお、予熱器8は必須ではないが、予熱器8を備える構成にすると、熱源流体から回収できる熱量を増加できる。   The heat source fluid flowing in from the heat source fluid inlet 1 flows through the evaporator 3 and the preheater 8 through the pipe, and is then discharged to the heat source fluid outlet 15. A flow meter 16 for measuring the flow rate of the heat source fluid and a thermometer 17 are installed in a pipe near the heat source fluid inlet 1. As a part through which the power generation medium flows, a circulation pump 7, a preheater 8, an evaporator 3, a turbine 4, and a condenser 6 are connected in an annular manner in order, and the space between the turbine 4 and the condenser 6 is connected. A pipe is provided with a thermometer 20 and a pressure gauge 21, and a pipe between the condenser 6 and the circulation pump 7 is provided with a thermometer 22 and a pressure gauge 23. In the preheater 8, the liquid power generating medium discharged from the condenser 6 is heated by the heat source fluid discharged from the evaporator 3. In addition, although the preheater 8 is not essential, if it is set as the structure provided with the preheater 8, the calorie | heat amount which can be collect | recovered from a heat source fluid can be increased.

予熱器8で予熱された液状の発電用媒体は、蒸発器3で気化され、ガス状の発電用媒体がタービン4へ供給される。蒸発器3とタービン4を接続する配管には気化した発電用媒体の温度と圧力をそれぞれ測定する温度計と圧力計が設置されている。   The liquid power generating medium preheated by the preheater 8 is vaporized by the evaporator 3, and the gaseous power generating medium is supplied to the turbine 4. A pipe connecting the evaporator 3 and the turbine 4 is provided with a thermometer and a pressure gauge for measuring the temperature and pressure of the vaporized power generation medium, respectively.

タービン4は、タービン入口側にある蒸発器3で生じる高圧と、タービン出口側にある凝縮器6により生じる低圧との間の圧力差によって発電用媒体が高圧側から低圧側へ移動する力を受けて回転する。タービン4の回転軸は、発電機5に連結されており、タービン5の回転により発電機5は発電する。タービンの回転数を計測する回転数計25が設置されている。発電機5の出力は、電力変換器30に入力され、各制御装置40,41,42,43,44,45の指令に基づいて所定の電圧の直流電力、または所定の電圧と周波数の交流電力へ変換され、外部へ出力される。   The turbine 4 receives a force for moving the power generation medium from the high pressure side to the low pressure side due to a pressure difference between the high pressure generated in the evaporator 3 on the turbine inlet side and the low pressure generated on the condenser 6 on the turbine outlet side. Rotate. The rotating shaft of the turbine 4 is connected to the generator 5, and the generator 5 generates power by the rotation of the turbine 5. A rotational speed meter 25 for measuring the rotational speed of the turbine is installed. The output of the generator 5 is input to the power converter 30, and based on the commands of the control devices 40, 41, 42, 43, 44, 45, the DC power of a predetermined voltage, or the AC power of a predetermined voltage and frequency And output to the outside.

タービン4から排出された発電用媒体は、凝縮器6へ導入される。凝縮器6は、空冷式の熱交換器であり、外部からの電力の供給なしに、隔壁を介して外気と発電用媒体との間で熱交換が行われる。凝縮器6の具体的構造としては、例えば、フィンチューブ型の熱交換器が望ましい。   The power generation medium discharged from the turbine 4 is introduced into the condenser 6. The condenser 6 is an air-cooled heat exchanger, and heat exchange is performed between the outside air and the power generation medium via a partition without supplying electric power from the outside. As a specific structure of the condenser 6, for example, a fin tube type heat exchanger is desirable.

図1、図2、図3、図4、図5、図7、図9において、温度計17,20,22,26、圧力計21,23、流量計16、回転数計25の各値は、図中に破線で示した信号線を通して制御装置40,41,42,43,44,45,46にぞれぞれ入力されている。また、これら制御装置は、発電装置が外部へ出力する電圧や周波数に関する指令を電力変換器30へ出力している。さらに、これら制御装置は、循環ポンプ7を制御して発電用媒体の流量を調整している。   1, 2, 3, 4, 5, 7, and 9, the values of thermometers 17, 20, 22, 26, pressure gauges 21, 23, flow meter 16, and revolution meter 25 are These are inputted to the control devices 40, 41, 42, 43, 44, 45 and 46 through signal lines indicated by broken lines in the figure. In addition, these control devices output to the power converter 30 commands related to voltages and frequencies output from the power generation device to the outside. Furthermore, these control devices control the circulation pump 7 to adjust the flow rate of the power generation medium.

図1に示した第1の実施形態の制御装置40では、大気圧より若干高い圧力を目標圧力値として、凝縮器6出口側に備えた圧力計23の圧力が目標圧力になるように循環ポンプ7の流量を制御する。圧力計23の圧力が目標圧力より高い場合は、目標圧力と実測圧力の乖離の程度に応じて循環ポンプ7の流量を減らし、圧力計23の圧力が目標圧力より低い場合は、目標圧力と実測圧力の乖離の程度に応じて循環ポンプ7の流量を増やすように制御する。目標圧力に幅を持たせるように上限値、下限値を設定して、圧力計23の圧力が目標圧力上限値より高い場合は、目標圧力と実測圧力の乖離の程度に応じて循環ポンプ7の流量を減らし、圧力計23の圧力が目標圧力下限値より低い場合は、目標圧力と実測圧力の乖離の程度に応じて循環ポンプ7の流量を増やすように制御してもよい。   In the control device 40 of the first embodiment shown in FIG. 1, the circulation pump is set so that the pressure of the pressure gauge 23 provided on the outlet side of the condenser 6 becomes the target pressure with a pressure slightly higher than the atmospheric pressure as the target pressure value. 7 is controlled. When the pressure of the pressure gauge 23 is higher than the target pressure, the flow rate of the circulation pump 7 is reduced according to the degree of deviation between the target pressure and the measured pressure. When the pressure of the pressure gauge 23 is lower than the target pressure, the target pressure and the measured pressure are measured. Control is performed to increase the flow rate of the circulation pump 7 in accordance with the degree of pressure divergence. When the upper limit value and the lower limit value are set so that the target pressure has a width, and the pressure of the pressure gauge 23 is higher than the target pressure upper limit value, the circulation pump 7 is set according to the degree of the difference between the target pressure and the actually measured pressure. When the flow rate is reduced and the pressure of the pressure gauge 23 is lower than the target pressure lower limit value, the flow rate of the circulation pump 7 may be controlled to increase in accordance with the degree of deviation between the target pressure and the actually measured pressure.

図2は、第2の実施形態における発電装置の主な構成図である。第2の実施形態では、図1の発電装置に加えて、凝縮器6の上流側配管に第1流量調整バルブ19を備えている。制御装置41は、第1流量調整バルブ19のバルブ開度を制御して、凝縮器6へ流入する発電用媒体の流量を調整している。通常運転時には、第1流量調整バルブ19のバルブ開度は、全開ではなく、予め定めた開度の絞りを行っている。制御装置41は、凝縮器6出口側に備えた圧力計23の圧力が大気圧より低くならないように第1流量調整バルブ19のバルブ開度を制御している。具体的には、大気圧より若干高い圧力を目標圧力値として、圧力計23の圧力が目標圧力になるように第1流量調整バルブ19のバルブ開度を制御する。圧力計23の圧力が目標圧力より高い場合は、第1流量調整バルブ19のバルブ開度を予め定めた開度になるように制御する。圧力計23の圧力が目標圧力より低い場合は、目標圧力と実測圧力の乖離の程度に応じて第1流量調整バルブ19のバルブ開度を予め定めた開度よりも開くように制御する。第1流量調整バルブ19のバルブ開度が全開であっても圧力計23の圧力が目標圧力より低い場合は、循環ポンプ7の流量を増やすように制御する。   FIG. 2 is a main configuration diagram of the power generation device according to the second embodiment. In 2nd Embodiment, in addition to the electric power generating apparatus of FIG. 1, the 1st flow regulating valve 19 is provided in the upstream piping of the condenser 6. FIG. The control device 41 controls the valve opening degree of the first flow rate adjusting valve 19 to adjust the flow rate of the power generation medium flowing into the condenser 6. During normal operation, the valve opening of the first flow rate adjustment valve 19 is not fully opened but is throttled by a predetermined opening. The control device 41 controls the valve opening degree of the first flow rate adjusting valve 19 so that the pressure of the pressure gauge 23 provided on the outlet side of the condenser 6 does not become lower than the atmospheric pressure. Specifically, the valve opening degree of the first flow rate adjusting valve 19 is controlled so that the pressure of the pressure gauge 23 becomes the target pressure with a pressure slightly higher than the atmospheric pressure as the target pressure value. When the pressure of the pressure gauge 23 is higher than the target pressure, control is performed so that the valve opening degree of the first flow rate adjustment valve 19 becomes a predetermined opening degree. When the pressure of the pressure gauge 23 is lower than the target pressure, control is performed so that the valve opening of the first flow rate adjustment valve 19 is opened from a predetermined opening according to the degree of deviation between the target pressure and the actually measured pressure. If the pressure of the pressure gauge 23 is lower than the target pressure even when the valve opening of the first flow rate adjustment valve 19 is fully open, the flow rate of the circulation pump 7 is controlled to increase.

図3は、第3の実施形態における発電装置の主な構成図である。第3の実施形態では、図1の発電装置に加えて、タービン入口から凝縮器入口を連通するバイパス流路18を備え、さらに、このバイパス流路18に第2流量調整バルブ20を備えている。制御装置42は、第2流量調整バルブ20のバルブ開度を制御して、バイパス流路18を経由して凝縮器6へ流入する発電用媒体の流量を調整している。通常運転時には、第2流量調整バルブ20のバルブ開度は、全閉である。制御装置42は、大気圧より若干高い圧力を目標圧力値として、圧力計23の圧力が目標圧力になるように第2流量調整バルブ20のバルブ開度を制御する。具体的には、圧力計23の圧力が目標圧力より高い場合は、第2流量調整バルブ20のバルブ開度を全閉になるように制御する。圧力計23の圧力が目標圧力より低い場合は、目標圧力と実測圧力の乖離の程度に応じて第2流量調整バルブ20のバルブ開度を開くように制御する。   FIG. 3 is a main configuration diagram of the power generation device according to the third embodiment. In the third embodiment, in addition to the power generation device of FIG. 1, a bypass flow path 18 that communicates from the turbine inlet to the condenser inlet is provided, and the bypass flow path 18 is further provided with a second flow rate adjustment valve 20. . The control device 42 controls the valve opening degree of the second flow rate adjusting valve 20 to adjust the flow rate of the power generation medium flowing into the condenser 6 via the bypass flow path 18. During normal operation, the valve opening of the second flow rate adjustment valve 20 is fully closed. The control device 42 controls the valve opening degree of the second flow rate adjustment valve 20 so that the pressure of the pressure gauge 23 becomes the target pressure with a pressure slightly higher than the atmospheric pressure as the target pressure value. Specifically, when the pressure of the pressure gauge 23 is higher than the target pressure, the valve opening degree of the second flow rate adjustment valve 20 is controlled to be fully closed. When the pressure of the pressure gauge 23 is lower than the target pressure, control is performed so that the valve opening of the second flow rate adjustment valve 20 is opened according to the degree of deviation between the target pressure and the actually measured pressure.

図4は、第4の実施形態における発電装置の主な構成図である。第4の実施形態では、図1の発電装置に加えて、蒸発器3の下流側に温度計26を備える。そして、蒸発器3より下流の熱源流体を一部分岐させて、分岐した熱源流体の熱を凝縮器6に供給する第1加温流路31を備え、第1加温流路31に加熱用ポンプ24を備えている。温度計22の温度が温度計26の温度より低い場合において、制御装置43は、加熱用ポンプ24の流量を制御して、第1加温流路31を経由して凝縮器6へ伝熱する熱の供給量を調整している。通常運転時には、加熱用ポンプ24は、休止している。制御装置43は、大気圧より若干高い圧力を目標圧力値として、圧力計23の圧力が目標圧力になるように加熱用ポンプ24の流量を制御する。具体的には、圧力計23の圧力が目標圧力より高い場合は、加熱用ポンプ24の流量をゼロにする。圧力計23の圧力が目標圧力より低い場合は、目標圧力と実測圧力の乖離の程度に応じて加熱用ポンプ24の流量を増加するように制御する。加温に使用された後の熱源流体は、熱源流体出口15へ排出される。温度計22の温度が温度計26の温度より低いことが明らかな場合では、温度計26を省略してもよい。   FIG. 4 is a main configuration diagram of the power generation device according to the fourth embodiment. In 4th Embodiment, in addition to the electric power generating apparatus of FIG. 1, the thermometer 26 is provided in the downstream of the evaporator 3. As shown in FIG. A first heating channel 31 is provided to partially branch the heat source fluid downstream from the evaporator 3 and supply heat of the branched heat source fluid to the condenser 6. A heating pump is provided in the first heating channel 31. 24. When the temperature of the thermometer 22 is lower than the temperature of the thermometer 26, the control device 43 controls the flow rate of the heating pump 24 and transfers heat to the condenser 6 via the first heating channel 31. The amount of heat supply is adjusted. During normal operation, the heating pump 24 is at rest. The control device 43 controls the flow rate of the heating pump 24 so that the pressure of the pressure gauge 23 becomes the target pressure with a pressure slightly higher than the atmospheric pressure as the target pressure value. Specifically, when the pressure of the pressure gauge 23 is higher than the target pressure, the flow rate of the heating pump 24 is set to zero. When the pressure of the pressure gauge 23 is lower than the target pressure, control is performed to increase the flow rate of the heating pump 24 according to the degree of deviation between the target pressure and the actually measured pressure. The heat source fluid after being used for heating is discharged to the heat source fluid outlet 15. When it is clear that the temperature of the thermometer 22 is lower than the temperature of the thermometer 26, the thermometer 26 may be omitted.

図5は、第5の実施形態における発電装置の主な構成図である。第5の実施形態では、図1の発電装置に加えて、蒸発器3の下流側に温度計26を備える。そして、蒸発器3より下流の熱源流体を一部分岐させて、分岐した熱源流体の熱を凝縮器6に供給する第1加温流路31を備え、熱源流体流路2と第1加温流路31の上流側の分岐点に3方弁27を備えている。蒸発器3と3方弁27の間に、循環ポンプ7から出た発電用媒体と蒸発器3から出た熱源流体とで熱交換する予熱器8を備えることがより望ましい。3方弁27は、熱源流体流路2と第1加温流路31とに流れる熱源流体の流量分配比率を調整している。温度計22の温度が温度計26の温度より低い場合において、制御装置43は、3方弁27の流量分配比率を変更して第1加温流路31への流量を増減して、第1加温流路31を経由して凝縮器6へ伝熱する熱の供給量を調整している。通常運転時には、3方弁27の流量分配比率は、第1加温流路31への流量がゼロになるようにしている。より具体的には、制御装置44は、大気圧より若干高い圧力を目標圧力値として、圧力計23の圧力が目標圧力になるように3方弁27の流量分配比率を制御する。圧力計23の圧力が目標圧力より高い場合は、目標圧力と実測圧力の乖離の程度に応じて3方弁27の流量分配比率を第1加温流路31への流量が減るように制御し、圧力計23の圧力が目標圧力より低い場合は、目標圧力と実測圧力の乖離の程度に応じて3方弁27の流量分配比率を第1加温流路31への流量が増えるように制御する。目標圧力に幅を持たせるように上限値、下限値を設定して、圧力計23の圧力が目標圧力上限値より高い場合は、目標圧力と実測圧力の乖離の程度に応じて3方弁27の流量分配比率を第1加温流路31への流量が減るように制御し、圧力計23の圧力が目標圧力下限値より低い場合は、目標圧力と実測圧力の乖離の程度に応じて3方弁27の流量分配比率を第1加温流路31への流量が増えるように制御してもよい。加温に使用された後の熱源流体は、熱源流体出口15へ排出される。温度計22の温度が温度計26の温度より低いことが明らかな場合では、温度計26を省略してもよい。   FIG. 5 is a main configuration diagram of the power generation device according to the fifth embodiment. In the fifth embodiment, a thermometer 26 is provided on the downstream side of the evaporator 3 in addition to the power generator of FIG. The heat source fluid downstream from the evaporator 3 is partly branched, and the first heating channel 31 for supplying the heat of the branched heat source fluid to the condenser 6 is provided, and the heat source fluid channel 2 and the first heating flow are provided. A three-way valve 27 is provided at a branch point on the upstream side of the passage 31. It is more desirable to provide a preheater 8 between the evaporator 3 and the three-way valve 27 for exchanging heat between the power generation medium output from the circulation pump 7 and the heat source fluid output from the evaporator 3. The three-way valve 27 adjusts the flow rate distribution ratio of the heat source fluid flowing through the heat source fluid flow path 2 and the first heating flow path 31. When the temperature of the thermometer 22 is lower than the temperature of the thermometer 26, the control device 43 changes the flow rate distribution ratio of the three-way valve 27 to increase or decrease the flow rate to the first warming flow path 31. The supply amount of heat transferred to the condenser 6 via the heating channel 31 is adjusted. During normal operation, the flow rate distribution ratio of the three-way valve 27 is such that the flow rate to the first heating channel 31 is zero. More specifically, the control device 44 controls the flow rate distribution ratio of the three-way valve 27 so that the pressure of the pressure gauge 23 becomes the target pressure with a pressure slightly higher than the atmospheric pressure as the target pressure value. When the pressure of the pressure gauge 23 is higher than the target pressure, the flow rate distribution ratio of the three-way valve 27 is controlled so that the flow rate to the first warming flow path 31 decreases according to the degree of deviation between the target pressure and the actually measured pressure. When the pressure of the pressure gauge 23 is lower than the target pressure, the flow rate distribution ratio of the three-way valve 27 is controlled so that the flow rate to the first heating channel 31 increases according to the degree of deviation between the target pressure and the actually measured pressure. To do. When the upper limit value and the lower limit value are set so that the target pressure has a width, and the pressure of the pressure gauge 23 is higher than the target pressure upper limit value, the three-way valve 27 is set according to the degree of deviation between the target pressure and the actually measured pressure. When the pressure of the pressure gauge 23 is lower than the target pressure lower limit value, the flow rate distribution ratio is 3 according to the degree of deviation between the target pressure and the measured pressure. You may control the flow volume distribution ratio of the way valve 27 so that the flow volume to the 1st heating flow path 31 may increase. The heat source fluid after being used for heating is discharged to the heat source fluid outlet 15. When it is clear that the temperature of the thermometer 22 is lower than the temperature of the thermometer 26, the thermometer 26 may be omitted.

図6は、第5の実施形態における凝縮器6の概略構成図である。ガス状の発電用媒体は、凝縮器入口ヘッダ部34で各熱交換細管35に分流され、ここを通流する過程で熱交換細管35の管壁を介して空気と熱交換して冷却されて、液化する。その後、液化した発電用媒体は、凝縮器出口ヘッダ部36で第1加温流路31の暖かい熱源流体と熱交換され、凝縮器出口ヘッダ部36が加温される。その後、液化した発電用媒体は、凝縮器出口ヘッダ部36から循環ポンプ7へ流れる。   FIG. 6 is a schematic configuration diagram of the condenser 6 in the fifth embodiment. The gaseous power generation medium is diverted to each heat exchange capillary 35 at the condenser inlet header 34, and is cooled by exchanging heat with air through the tube wall of the heat exchange capillary 35 in the course of flowing therethrough. Liquefy. Thereafter, the liquefied power generation medium is heat-exchanged with the warm heat source fluid in the first heating flow path 31 in the condenser outlet header portion 36, and the condenser outlet header portion 36 is heated. Thereafter, the liquefied power generation medium flows from the condenser outlet header portion 36 to the circulation pump 7.

図7は、第6の実施形態における発電装置の主な構成図である。第6の実施形態では、図1の発電装置に加えて、予熱器8出口と凝縮器出口ヘッダ部36とを接続する第2加温流路32を備えている。第2加温流路32には、第3流量調整バルブ33を備えており、制御装置45は、第3流量調整バルブ33のバルブ開度を制御して、第2加温流路32を経由して凝縮器38へ流入する発電用媒体の流量を調整している。通常運転時には、第3流量調整バルブ33のバルブ開度は、全閉である。制御装置45は、大気圧より若干高い圧力を目標圧力値として、圧力計23の圧力が目標圧力になるように第3流量調整バルブ33のバルブ開度を制御する。具体的には、圧力計23の圧力が目標圧力より高い場合は、第3流量調整バルブ33のバルブ開度を全閉になるように制御する。圧力計23の圧力が目標圧力より低い場合は、目標圧力と実測圧力の乖離の程度に応じて第3流量調整バルブ33のバルブ開度を開くように制御する。   FIG. 7 is a main configuration diagram of the power generation device according to the sixth embodiment. In 6th Embodiment, in addition to the electric power generating apparatus of FIG. 1, the 2nd heating flow path 32 which connects the preheater 8 exit and the condenser exit header part 36 is provided. The second heating channel 32 includes a third flow rate adjustment valve 33, and the control device 45 controls the valve opening degree of the third flow rate adjustment valve 33 and passes through the second heating channel 32. Thus, the flow rate of the power generation medium flowing into the condenser 38 is adjusted. During normal operation, the valve opening of the third flow rate adjustment valve 33 is fully closed. The control device 45 controls the valve opening degree of the third flow rate adjustment valve 33 so that the pressure of the pressure gauge 23 becomes the target pressure with a pressure slightly higher than the atmospheric pressure as the target pressure value. Specifically, when the pressure of the pressure gauge 23 is higher than the target pressure, the valve opening degree of the third flow rate adjustment valve 33 is controlled to be fully closed. When the pressure of the pressure gauge 23 is lower than the target pressure, control is performed so that the valve opening degree of the third flow rate adjustment valve 33 is opened according to the degree of deviation between the target pressure and the actually measured pressure.

図8は、第6の実施形態における凝縮器38の概略構成図である。ガス状の発電用媒体は、凝縮器入口ヘッダ部34で各熱交換細管35に分流され、ここを通流する過程で熱交換細管35の管壁を介して空気と熱交換して冷却されて、液化する。その後、液化した発電用媒体は、凝縮器出口ヘッダ部36で第2加温流路32の暖かい発電用媒体と合流され、凝縮器出口ヘッダ部36が加温される。その後、液化している発電用媒体は、凝縮器出口ヘッダ部36から循環ポンプ7へ流れる。   FIG. 8 is a schematic configuration diagram of the condenser 38 in the sixth embodiment. The gaseous power generation medium is diverted to each heat exchange capillary 35 at the condenser inlet header 34, and is cooled by exchanging heat with air through the tube wall of the heat exchange capillary 35 in the course of flowing therethrough. Liquefy. Thereafter, the liquefied power generation medium is merged with the warm power generation medium in the second warming flow path 32 at the condenser outlet header portion 36, and the condenser outlet header portion 36 is heated. Thereafter, the liquefied power generation medium flows from the condenser outlet header portion 36 to the circulation pump 7.

図9は、第7の実施形態における発電装置の主な構成図である。第7の実施形態では、図1の発電装置に加えて、予熱器8出口と凝縮器39の凝縮器入口ヘッダ部34とを接続する第2加温流路50を備えている。第2加温流路50には、第3流量調整バルブ33を備えており、制御装置46は、第3流量調整バルブ33のバルブ開度を制御して、第2加温流路50を経由して凝縮器39へ流入する発電用媒体の流量を調整している。通常運転時には、第3流量調整バルブ33のバルブ開度は、全閉である。制御装置46は、大気圧より若干高い圧力を目標圧力値として、圧力計23の圧力が目標圧力になるように第3流量調整バルブ33のバルブ開度を制御する。具体的には、圧力計23の圧力が目標圧力より高い場合は、第3流量調整バルブ33のバルブ開度を全閉になるように制御する。圧力計23の圧力が目標圧力より低い場合は、目標圧力と実測圧力の乖離の程度に応じて第3流量調整バルブ33のバルブ開度を開くように制御する。   FIG. 9 is a main configuration diagram of the power generation device according to the seventh embodiment. In 7th Embodiment, in addition to the electric power generating apparatus of FIG. 1, the 2nd heating flow path 50 which connects the preheater 8 exit and the condenser inlet header part 34 of the condenser 39 is provided. The second heating channel 50 is provided with a third flow rate adjustment valve 33, and the control device 46 controls the valve opening degree of the third flow rate adjustment valve 33 and passes through the second heating channel 50. Thus, the flow rate of the power generation medium flowing into the condenser 39 is adjusted. During normal operation, the valve opening of the third flow rate adjustment valve 33 is fully closed. The control device 46 controls the valve opening degree of the third flow rate adjustment valve 33 so that the pressure of the pressure gauge 23 becomes the target pressure with a pressure slightly higher than the atmospheric pressure as the target pressure value. Specifically, when the pressure of the pressure gauge 23 is higher than the target pressure, the valve opening degree of the third flow rate adjustment valve 33 is controlled to be fully closed. When the pressure of the pressure gauge 23 is lower than the target pressure, control is performed so that the valve opening degree of the third flow rate adjustment valve 33 is opened according to the degree of deviation between the target pressure and the actually measured pressure.

図10は、第7の実施形態における凝縮器39の概略構成図である。タービン4から流入するガス状の発電用媒体は、凝縮器入口ヘッダ部34で第2加温流路50の暖かい発電用媒体と合流され、凝縮器39を通過する発電用媒体全体の温度が上昇する。混合されたガス状の発電用媒体は、凝縮器入口ヘッダ部34で各熱交換細管35に分流され、ここを通流する過程で熱交換細管35の管壁を介して空気と熱交換して冷却されて、液化する。その後、液化した発電用媒体は、凝縮器出口ヘッダ部36から循環ポンプ7へ流れる。   FIG. 10 is a schematic configuration diagram of the condenser 39 according to the seventh embodiment. The gaseous power generation medium flowing in from the turbine 4 is merged with the warm power generation medium in the second heating channel 50 at the condenser inlet header portion 34, and the temperature of the entire power generation medium passing through the condenser 39 is increased. To do. The mixed gaseous power generation medium is diverted to each heat exchange capillary 35 at the condenser inlet header section 34, and exchanges heat with air through the tube wall of the heat exchange capillary 35 in the course of flowing therethrough. Cool and liquefy. Thereafter, the liquefied power generation medium flows from the condenser outlet header portion 36 to the circulation pump 7.

1 熱源流体入口
2 熱源流体流路
3 蒸発器
4 タービン
5 発電機
6,38,39 凝縮器
7 循環ポンプ
8 予熱器
15 熱源流体出口
16 流量計
17,20,22,26 温度計
18 バイパス流路
19 第1流量調整バルブ
20 第2流量調整バルブ
21,23 圧力計
24 加熱用ポンプ
25 回転数計
27 3方弁
30 電力変換器
31 第1加温流路
32, 50 第2加温流路
33 第3流量調整バルブ
34 凝縮器入口ヘッダ部
35 熱交換細管
36 凝縮器出口ヘッダ部
37 フィン
40,41,42,43,44,45,46 制御装置
DESCRIPTION OF SYMBOLS 1 Heat source fluid inlet 2 Heat source fluid flow path 3 Evaporator 4 Turbine 5 Generator 6, 38, 39 Condenser 7 Circulation pump 8 Preheater 15 Heat source fluid outlet 16 Flowmeter 17, 20, 22, 26 Thermometer 18 Bypass flow path 19 1st flow control valve 20 2nd flow control valve 21, 23 Pressure gauge 24 Heating pump 25 Revolution meter 27 Three-way valve 30 Power converter 31 1st heating flow path 32, 50 2nd heating flow path 33 Third flow regulating valve 34 Condenser inlet header 35 Heat exchange thin tube 36 Condenser outlet header 37 Fins 40, 41, 42, 43, 44, 45, 46 Control device

Claims (11)

熱源流体の熱で発電用媒体を蒸発させる蒸発器と、
前記蒸発器から排出された発電用媒体で回転するタービンと、
前記タービンに接続された発電機と、
前記タービンから排出された発電用媒体を空気で冷却して凝縮させる凝縮器と、
前記凝縮器から排出される発電用媒体の圧力を測定する圧力計と、
前記凝縮器から排出される発電用媒体を前記蒸発器に送る循環ポンプと、
前記循環ポンプの流量を制御する制御装置を備える発電装置であって、
前記制御装置は、大気圧以上の予め定めた圧力値を目標圧力値として、または前記大気圧に所定の値を加えた値を目標圧力値として設定され、前記圧力計の圧力値が前記目標圧力値より高い場合は、前記凝縮器への熱供給量を減らし、前記圧力計の圧力値が前記目標圧力値より低い場合は、前記凝縮器への熱供給量を増やすことを特徴とする発電装置。
An evaporator that evaporates the power generation medium with the heat of the heat source fluid;
A turbine rotating with a power generation medium discharged from the evaporator;
A generator connected to the turbine;
A condenser that cools and condenses the power generation medium discharged from the turbine with air;
A pressure gauge for measuring the pressure of the medium for power generation discharged from the condenser;
A circulation pump for sending the power generation medium discharged from the condenser to the evaporator;
A power generation device comprising a control device for controlling the flow rate of the circulation pump,
The control device is set with a predetermined pressure value equal to or higher than the atmospheric pressure as a target pressure value, or a value obtained by adding a predetermined value to the atmospheric pressure as a target pressure value, and the pressure value of the pressure gauge is the target pressure value. If the pressure value is higher than the value, the heat supply amount to the condenser is reduced, and if the pressure value of the pressure gauge is lower than the target pressure value, the heat supply amount to the condenser is increased. .
請求項1に記載の発電装置において、
前記制御装置は、前記圧力計の圧力値が前記目標圧力値より高い場合は、前記循環ポンプの発電用媒体流量を減らし、前記圧力計の圧力値が前記目標圧力値より低い場合は、前記循環ポンプの発電用媒体流量を増やすことを特徴とする発電装置。
The power generator according to claim 1,
When the pressure value of the pressure gauge is higher than the target pressure value, the control device reduces the power generation medium flow rate of the circulation pump, and when the pressure value of the pressure gauge is lower than the target pressure value, the circulation A power generation device characterized by increasing a flow rate of a power generation medium of a pump.
請求項1に記載の発電装置において、
前記タービン出口から前記凝縮器入口を接続する配管に第1流量調整バルブを設け、
前記制御装置は、前記圧力計の圧力値が前記目標圧力値より高い場合は、前記第1流量調整バルブのバルブ開度を減らし、前記圧力計の圧力値が前記目標圧力値より低い場合は、前記第1流量調整バルブのバルブ開度を増やすことを特徴とする発電装置。
The power generator according to claim 1,
A first flow rate adjusting valve is provided in a pipe connecting the condenser outlet to the turbine outlet;
When the pressure value of the pressure gauge is higher than the target pressure value, the control device reduces the valve opening of the first flow rate adjustment valve, and when the pressure value of the pressure gauge is lower than the target pressure value, A power generation device that increases a valve opening degree of the first flow rate adjusting valve.
請求項1に記載の発電装置において、
前記タービン入口から前記凝縮器入口を接続するバイパス流路を設け、
前記バイパス流路に第2流量調整バルブを設け、
前記制御装置は、前記圧力計の圧力値が前記目標圧力値より高い場合は、前記第2流量調整バルブのバルブ開度を減らし、前記圧力計の圧力値が前記目標圧力値より低い場合は、前記第2流量調整バルブのバルブ開度を増やすことを特徴とする発電装置。
The power generator according to claim 1,
Providing a bypass passage connecting the condenser inlet from the turbine inlet;
A second flow rate adjusting valve is provided in the bypass channel;
When the pressure value of the pressure gauge is higher than the target pressure value, the control device reduces the valve opening of the second flow rate adjustment valve, and when the pressure value of the pressure gauge is lower than the target pressure value, A power generator that increases a valve opening degree of the second flow rate adjustment valve.
請求項1に記載の発電装置において、
前記凝縮器は、大気圧における発電用媒体の沸点より高い温度の前記熱源流体で加温されることを特徴とする発電装置。
The power generator according to claim 1,
The power generator is characterized in that the condenser is heated by the heat source fluid having a temperature higher than the boiling point of the power generation medium at atmospheric pressure.
請求項5に記載の発電装置において、
大気圧における発電用媒体の沸点より高い温度の前記熱源流体を通流して前記凝縮器を加温する第1加温流路を設け、
前記第1加温流路に加温用ポンプを設けるかまたは前記熱源流体を分流して第1加温流路に流入させる分岐点に3方弁を設け、
前記制御装置は、前記圧力計の圧力値が前記目標圧力値より高い場合は、前記第1加温流路を通流する前記熱源流体の流量を減らし、前記圧力計の圧力値が前記目標圧力値より低い場合は、前記第1加温流路を通流する前記熱源流体の流量を増やすように前記加温用ポンプまたは前記3方弁を制御することを特徴とする発電装置。
The power generator according to claim 5,
Providing a first heating passage for heating the condenser through the heat source fluid having a temperature higher than the boiling point of the power generation medium at atmospheric pressure;
A warming pump is provided in the first heating channel or a three-way valve is provided at a branch point where the heat source fluid is diverted and flows into the first heating channel;
When the pressure value of the pressure gauge is higher than the target pressure value, the control device reduces the flow rate of the heat source fluid flowing through the first heating channel, and the pressure value of the pressure gauge is set to the target pressure. When the value is lower than the value, the heating pump or the three-way valve is controlled so as to increase the flow rate of the heat source fluid flowing through the first heating channel.
請求項5または6に記載の発電装置において、
前記第1加温流路を通流する前記熱源流体は、前記蒸発器より下流側の熱源流体であることを特徴とする発電装置。
The power generator according to claim 5 or 6,
The power generation apparatus according to claim 1, wherein the heat source fluid flowing through the first heating flow path is a heat source fluid downstream of the evaporator.
請求項5ないし7のいずれか1つに記載の発電装置において、
前記凝縮器の加温される部位が、前記凝縮器の出口ヘッダ部であることを特徴とする発電装置。
In the electric power generating apparatus as described in any one of Claim 5 thru | or 7,
The power generator is characterized in that a portion to be heated of the condenser is an outlet header portion of the condenser.
請求項1に記載の発電装置において、
前記蒸発器と前記循環ポンプの間に前記蒸発器から出た前記熱源流体と前記循環ポンプから出た前記発電用媒体を熱交換する予熱器を備え、
前記予熱器からでた発電用媒体の一部を分流させて、分流した前記発電用媒体の熱を前記凝縮器に供給する第2加温流路を設け、
前記第2加温流路に第3流量調整バルブを設け、
前記制御装置は、前記圧力計の圧力値が前記目標圧力値より高い場合は、前記第2加温流路を通流する前記熱源流体の流量を減らし、前記圧力計の圧力値が前記目標圧力値より低い場合は、前記第2加温流路を通流する前記熱源流体の流量を増やすように前記第3流量調整バルブを制御することを特徴とする発電装置。
The power generator according to claim 1,
A preheater for exchanging heat between the heat source fluid exiting from the evaporator and the power generating medium exiting from the circulation pump between the evaporator and the circulation pump;
Providing a second heating flow path for diverting a part of the power generation medium from the preheater and supplying heat of the diverted power generation medium to the condenser;
A third flow rate adjusting valve is provided in the second heating channel;
When the pressure value of the pressure gauge is higher than the target pressure value, the control device reduces the flow rate of the heat source fluid flowing through the second heating channel, and the pressure value of the pressure gauge is set to the target pressure. When it is lower than the value, the third flow rate adjusting valve is controlled so as to increase the flow rate of the heat source fluid flowing through the second warming flow path.
請求項9に記載の発電装置において、
前記第2加温流路が、前記予熱器の発電用媒体出口側と前記凝縮器の入口側を接続する流路であり、前記予熱器で加熱された発電用媒体が、前記凝縮器の入口側へ供給されることを特徴とする発電装置。
The power generator according to claim 9,
The second heating channel is a channel connecting the power generation medium outlet side of the preheater and the inlet side of the condenser, and the power generation medium heated by the preheater is an inlet of the condenser A power generation device supplied to the side.
請求項9に記載の発電装置において、
前記第2加温流路が、前記予熱器の発電用媒体出口側と前記凝縮器の出口ヘッダ部を接続する流路であり、前記予熱器で加熱された発電用媒体が、前記凝縮器の出口ヘッダ部へ供給されることを特徴とする発電装置。
The power generator according to claim 9,
The second heating flow path is a flow path connecting the power generation medium outlet side of the preheater and the outlet header portion of the condenser, and the power generation medium heated by the preheater is connected to the condenser. A power generation device that is supplied to an outlet header.
JP2011059714A 2011-03-17 2011-03-17 Power generating device Withdrawn JP2012193715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011059714A JP2012193715A (en) 2011-03-17 2011-03-17 Power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011059714A JP2012193715A (en) 2011-03-17 2011-03-17 Power generating device

Publications (1)

Publication Number Publication Date
JP2012193715A true JP2012193715A (en) 2012-10-11

Family

ID=47085821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011059714A Withdrawn JP2012193715A (en) 2011-03-17 2011-03-17 Power generating device

Country Status (1)

Country Link
JP (1) JP2012193715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044834A (en) * 2014-08-20 2016-04-04 日本電子株式会社 Fluid circulation device, electric charged particle beam device and fluid circulation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044834A (en) * 2014-08-20 2016-04-04 日本電子株式会社 Fluid circulation device, electric charged particle beam device and fluid circulation method

Similar Documents

Publication Publication Date Title
JP6194274B2 (en) Waste heat recovery system and waste heat recovery method
JP2015197236A (en) Refrigerator system
KR20180119417A (en) Turbine measuring device
SG194589A1 (en) Operation control system for cold generation apparatus
RU2015107191A (en) COOLING CIRCUIT, INSTALLATION FOR DRYING GAS COOLING AND METHOD FOR CONTROLING THE COOLING CIRCUIT
JP6029533B2 (en) Binary power generator operating method and binary power generator
JP6188629B2 (en) Binary power generator operation method
JP2007298235A (en) Heat source system and its control method
CN103348196B (en) Heat source system and control method thereof
KR20160099624A (en) Heat exchanger
JP6612320B2 (en) Method and corresponding apparatus for adjusting a cryogenic cooling device
BR112016023438B1 (en) SYSTEM FOR HEATING AND/OR COOLING A FLUID, CONTROL SYSTEM ARRANGED TO CONTROL THE HEATING AND/OR COOLING OF A VOLUME OF FLUID, METHOD FOR HEATING AND/OR COOLING A FLUID, AND, MACHINE-READable MEDIUM
JP6434848B2 (en) Heat source control system
US20160230700A1 (en) Exhaust heat recovery apparatus of engine
US9920998B2 (en) Air cooled condenser and power generating apparatus provided with the same
CN213899191U (en) Cooling system of wind generating set and wind generating set
JP2013160059A (en) Heat recovery power generation device
CN110260675B (en) Air cooling and water cooling parallel system and energy consumption control method thereof
JP2012193715A (en) Power generating device
JP5835949B2 (en) Turbine cooling control apparatus and method, program, and gas turbine plant using the same
JP6771665B2 (en) Power plant with gas turbine intake system
JP2012102626A (en) Generator system
JP2009092318A (en) Method and device for energy saving control operation of steam absorptive freezer
JP6262012B2 (en) Heat exchanger
JP2015152264A5 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603