JP2012193245A - Near infrared ray-absorbing particle, method for producing the same, dispersion liquid, resin composition, article having near infrared ray-absorbing coating film and near infrared ray-absorbing article - Google Patents

Near infrared ray-absorbing particle, method for producing the same, dispersion liquid, resin composition, article having near infrared ray-absorbing coating film and near infrared ray-absorbing article Download PDF

Info

Publication number
JP2012193245A
JP2012193245A JP2011056926A JP2011056926A JP2012193245A JP 2012193245 A JP2012193245 A JP 2012193245A JP 2011056926 A JP2011056926 A JP 2011056926A JP 2011056926 A JP2011056926 A JP 2011056926A JP 2012193245 A JP2012193245 A JP 2012193245A
Authority
JP
Japan
Prior art keywords
infrared absorbing
particles
infrared
absorbing particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011056926A
Other languages
Japanese (ja)
Other versions
JP5673250B2 (en
Inventor
Satoshi Kashiwabara
智 柏原
Wakako Ito
和佳子 伊藤
Makoto Hasegawa
誠 長谷川
Mitsuo Osawa
光生 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2011056926A priority Critical patent/JP5673250B2/en
Publication of JP2012193245A publication Critical patent/JP2012193245A/en
Application granted granted Critical
Publication of JP5673250B2 publication Critical patent/JP5673250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a near infrared ray-absorbing particle which is high in the transmittance of a visible light region, is low in the transmittance of a near infrared region, steeply changes the transmittance in a wavelength region of 630-700 nm, and is excellent in moisture resistance; a method for producing the same; a dispersion liquid; a resin composition; an article having a near infrared ray-absorbing coating film; and a near infrared ray-absorbing article.SOLUTION: The near infrared ray-absorbing particle comprises a core particle comprising a crystallite of ACuPO, and a shell covering the surface of the core particle and containing silicon oxide as a main component. In the formula, A is one or more selected from the group consisting of alkali metals (Li, Na, K, Rb, Cs), alkaline earth metals (Mg, Ca, Sr, Ba) and NH; n is 1 when A is an alkali metal or NH4, or 2 when A is an alkaline earth metal.

Description

本発明は、近赤外線領域の光を吸収する近赤外線吸収粒子、その製造方法、近赤外線吸収粒子を含む分散液、樹脂組成物、近赤外線吸収塗膜を有する物品および近赤外線吸収物品に関する。   The present invention relates to near-infrared absorbing particles that absorb light in the near-infrared region, a method for producing the same, a dispersion containing near-infrared absorbing particles, a resin composition, an article having a near-infrared absorbing coating film, and a near-infrared absorbing article.

カメラ等の撮像素子(CCD、CMOS等)、自動露出計等の受光素子等の感度は、可視光領域から近赤外線領域にわたっている。一方、人間の視感度は可視光領域のみである。そのため、たとえばカメラにおいては、レンズと撮像素子との間に、可視光領域(420〜630nm)の光を透過し、かつ近赤外線領域(700〜1100nm)の光を吸収または反射する近赤外線フィルタを設けることで、人間の視感度に近づくように撮像素子の感度を補正している。より人間の視感度に近づけるためには、近赤外線フィルタには波長630〜700nmの間で急峻に透過率が変化することが求められる。   Sensitivity of imaging devices such as cameras (CCD, CMOS, etc.) and light receiving devices such as automatic exposure meters ranges from the visible light region to the near infrared region. On the other hand, human visibility is only in the visible light region. Therefore, for example, in a camera, a near-infrared filter that transmits light in the visible light region (420 to 630 nm) and absorbs or reflects light in the near-infrared region (700 to 1100 nm) is interposed between the lens and the image sensor. By providing, the sensitivity of the image sensor is corrected so as to approach the human visibility. In order to make it closer to human visibility, the near-infrared filter is required to have a sharp change in transmittance between wavelengths of 630 to 700 nm.

近赤外線フィルタとしては、近赤外線吸収粒子を分散媒に分散させた分散液にバインダ樹脂等を加えた塗料を、ガラス基材の表面に塗布して形成された近赤外線吸収塗膜を有するものが知られている。
また、近赤外線吸収粒子として、銅およびリン酸を含むものがいくつか提案されている。
(1)銅をCuO、リン酸をPに換算してCuO/Pのモル比が0.05〜4である近赤外線吸収粒子の表面をアルミニウム化合物で処理した、波長700〜1100nmの光を吸収する近赤外線吸収粒子(特許文献1)。
(2)リン酸銅を分散剤によって分散媒に分散させた分散液(特許文献2)。
As a near-infrared filter, a filter having a near-infrared absorbing coating formed by applying a paint obtained by adding a binder resin or the like to a dispersion obtained by dispersing near-infrared absorbing particles in a dispersion medium on the surface of a glass substrate. Are known.
Some near infrared absorbing particles containing copper and phosphoric acid have been proposed.
(1) The wavelength of 700 was obtained by treating the surface of near-infrared absorbing particles having a CuO / P 2 O 5 molar ratio of 0.05 to 4 in terms of copper as CuO and phosphoric acid as P 2 O 5 with an aluminum compound. Near-infrared absorbing particles that absorb light of ˜1100 nm (Patent Document 1).
(2) A dispersion in which copper phosphate is dispersed in a dispersion medium using a dispersant (Patent Document 2).

(1)の近赤外線吸収粒子および(2)の分散液ともに、これを用いて形成された近赤外線吸収塗膜は、波長800nm以上の近赤外線を吸収することが確認されている。しかし、該近赤外線吸収塗膜は、波長630〜700nmの間で急峻に透過率が変化せず、近赤外線フィルタに要求される性能を充分に満足しない。   It has been confirmed that the near-infrared absorbing coating film formed using both the near-infrared absorbing particles (1) and the dispersion liquid (2) absorb near-infrared rays having a wavelength of 800 nm or more. However, the transmittance of the near-infrared absorbing film does not change sharply between wavelengths of 630 to 700 nm, and does not sufficiently satisfy the performance required for the near-infrared filter.

特開平07−070548号公報Japanese Patent Application Laid-Open No. 07-070548 特開2004−231708号公報JP 2004-231708 A

そこで、本発明者らは、下式(1)で表わされる化合物の結晶子からなる近赤外線吸収粒子が、可視光領域の透過率が高く、近赤外線領域の透過率が低く、かつ波長630〜700nmの間で急峻に透過率が変化することを見出した(特願2009−227554)。
1/nCuPO ・・・(1)。
ただし、Aは、アルカリ金属(Li、Na、K、Rb、Cs)、アルカリ土類金属(Mg、Ca、Sr、Ba)およびNHからなる群から選ばれる1種以上であり、
nは、Aがアルカリ金属またはNHの場合は1であり、Aがアルカリ土類金属の場合は2である。
Therefore, the inventors of the present invention have a near-infrared absorbing particle composed of a crystallite of the compound represented by the following formula (1) that has a high transmittance in the visible light region, a low transmittance in the near-infrared region, and a wavelength of 630 to 630. It has been found that the transmittance changes sharply between 700 nm (Japanese Patent Application No. 2009-227554).
A 1 / n CuPO 4 (1).
However, A is an alkali metal (Li, Na, K, Rb , Cs), alkaline earth metal and a (Mg, Ca, Sr, Ba ) and one or more selected from the group consisting of NH 4,
n is 1 when A is an alkali metal or NH 4 , and 2 when A is an alkaline earth metal.

しかし、該近赤外線吸収粒子は、水蒸気および水分に暴露されると、A1/nCuPO・HOで表わされる水和物となるため、結晶子がA1/nCuPOの結晶構造を維持できなくなり、可視光領域の透過率が低くなり、また、近赤外線領域の透過率が高くなるという問題を有する。 However, since the near-infrared absorbing particles become a hydrate represented by A 1 / n CuPO 4 .H 2 O when exposed to water vapor and moisture, the crystal structure of the crystallite is A 1 / n CuPO 4 . Cannot be maintained, the transmittance in the visible light region is low, and the transmittance in the near infrared region is high.

本発明は、可視光領域の透過率が高く、近赤外線領域の透過率が低く、波長630〜700nmの間で急峻に透過率が変化し、かつ耐湿性に優れる近赤外線吸収粒子、その製造方法、分散液、樹脂組成物、近赤外線吸収塗膜を有する物品および近赤外線吸収物品を提供する。   The present invention relates to a near-infrared absorbing particle having high transmittance in the visible light region, low transmittance in the near-infrared region, a sharp change in transmittance between wavelengths of 630 to 700 nm, and excellent moisture resistance, and a method for producing the same , A dispersion, a resin composition, an article having a near-infrared absorbing coating film, and a near-infrared absorbing article.

本発明の近赤外線吸収粒子は、下式(1)で表わされる化合物の結晶子からなるコア粒子と、該コア粒子の表面を覆う酸化ケイ素を主成分とするシェルとを有することを特徴とする。
1/nCuPO ・・・(1)。
ただし、Aは、アルカリ金属(Li、Na、K、Rb、Cs)、アルカリ土類金属(Mg、Ca、Sr、Ba)およびNHからなる群から選ばれる1種以上であり、
nは、Aがアルカリ金属またはNHの場合は1であり、Aがアルカリ土類金属の場合は2である。
The near-infrared absorbing particles of the present invention include core particles composed of crystallites of a compound represented by the following formula (1), and a shell mainly composed of silicon oxide that covers the surface of the core particles. .
A 1 / n CuPO 4 (1).
However, A is an alkali metal (Li, Na, K, Rb , Cs), alkaline earth metal and a (Mg, Ca, Sr, Ba ) and one or more selected from the group consisting of NH 4,
n is 1 when A is an alkali metal or NH 4 , and 2 when A is an alkaline earth metal.

本発明の近赤外線吸収粒子は、X線回折から求めた前記結晶子の大きさが、5〜50nmであり、前記近赤外線吸収粒子の数平均凝集粒子径が、20〜200nmであり、前記近赤外線吸収粒子の拡散反射スペクトルにおける波長450nmの反射率が、80%以上が好ましい。   In the near-infrared absorbing particles of the present invention, the crystallite size determined from X-ray diffraction is 5 to 50 nm, the number-average aggregated particle diameter of the near-infrared absorbing particles is 20 to 200 nm, The reflectance at a wavelength of 450 nm in the diffuse reflection spectrum of the infrared absorbing particles is preferably 80% or more.

本発明の近赤外線吸収粒子は、下式(2)で表わされる反射率の変化量Dが、−0.41以下が好ましい。
D(%/nm)=[R700(%)−R600(%)]/[700(nm)−600(nm)] ・・・(2)。
ただし、R700は、近赤外線吸収粒子の拡散反射スペクトルにおける波長700nmの反射率であり、R600は、近赤外線吸収粒子の拡散反射スペクトルにおける波長600nmの反射率である。
The near-infrared absorbing particles of the present invention preferably have a reflectance change amount D represented by the following formula (2) of -0.41 or less.
D (% / nm) = [ R700 (%)- R600 (%)] / [700 (nm) -600 (nm)] (2).
However, R 700 is a reflectance at a wavelength of 700 nm in the diffuse reflection spectrum of the near-infrared absorbing particles, and R 600 is a reflectance at a wavelength of 600 nm in the diffuse reflection spectrum of the near-infrared absorbing particles.

本発明の近赤外線吸収粒子は、前記近赤外線吸収粒子の拡散反射スペクトルにおける波長715nmの反射率が、19%以下であり、かつ波長500nmの反射率が、85%以上が好ましい。   In the near-infrared absorbing particles of the present invention, the reflectance at a wavelength of 715 nm in the diffuse reflection spectrum of the near-infrared absorbing particles is preferably 19% or less, and the reflectance at a wavelength of 500 nm is preferably 85% or more.

本発明の近赤外線吸収粒子の製造方法は、下記の工程(d)を有することを特徴とする。
(d)前記式(1)で表わされる化合物の結晶子からなるコア粒子を、アルコキシシランによって表面処理して、前記コア粒子の表面に酸化ケイ素を主成分とするシェルを形成する工程。
The manufacturing method of the near-infrared absorption particle | grains of this invention has the following process (d), It is characterized by the above-mentioned.
(D) A step of surface-treating the core particles made of crystallites of the compound represented by the formula (1) with alkoxysilane to form a shell mainly composed of silicon oxide on the surface of the core particles.

前記工程(d)は、下記の工程(d’)が好ましい。
(d’)前記式(1)で表わされる化合物の結晶子からなるコア粒子と、アルコキシシランとを含む液に、マイクロ波を照射して、前記コア粒子の表面に酸化ケイ素を主成分とするシェルを形成する工程。
The step (d) is preferably the following step (d ′).
(D ′) A liquid containing core particles composed of crystallites of the compound represented by the formula (1) and alkoxysilane is irradiated with microwaves, and the surface of the core particles is mainly composed of silicon oxide. Forming a shell;

本発明の近赤外線吸収粒子の製造方法は、下記の工程(a)〜工程(c)をさらに有することが好ましい。
(a)溶媒中にて、Cu2+を含む塩と、PO 3−を含む塩または有機物とを、Cu2+に対するPO 3−のモル比(PO 3−/Cu2+)が10〜20となるような割合で、かつAn+(ただし、Aは、アルカリ金属(Li、Na、K、Rb、Cs)、アルカリ土類金属(Mg、Ca、Sr、Ba)およびNHからなる群から選ばれる1種以上であり、nは、Aがアルカリ金属またはNHの場合は1であり、Aがアルカリ土類金属の場合は2である。)の存在下に混合して得られる原料粉末を、分散媒に分散させて原料スラリーを得る工程。
(b)前記工程(a)で得られた原料スラリーを熱プラズマまたは火炎中に導入し、得られた生成物を冷却して粒子を得る工程。
(c)前記工程(b)で得られた粒子を、300〜700℃で熱処理して、前記式(1)で表わされる化合物の結晶子からなるコア粒子を得る工程。
It is preferable that the manufacturing method of the near-infrared absorption particle | grains of this invention further has the following process (a)-process (c).
At (a) in a solvent, a salt containing Cu 2+, a salt or an organic material containing PO 4 3-, PO 4 3- molar ratio with respect to Cu 2+ (PO 4 3- / Cu 2+) 10-20 And A n + (where A is an alkali metal (Li, Na, K, Rb, Cs), alkaline earth metal (Mg, Ca, Sr, Ba) and NH 4 ) 1 or more selected, and n is 1 when A is an alkali metal or NH 4 , and 2 when A is an alkaline earth metal). Is a step of dispersing a raw material in a dispersion medium to obtain a raw material slurry.
(B) A step of introducing particles of the raw material slurry obtained in the step (a) into thermal plasma or flame and cooling the resulting product to obtain particles.
(C) A step of obtaining core particles composed of crystallites of the compound represented by the formula (1) by heat-treating the particles obtained in the step (b) at 300 to 700 ° C.

本発明の分散液は、本発明の近赤外線吸収粒子を分散媒に分散させたものであることを特徴とする。
本発明の樹脂組成物は、本発明の近赤外線吸収粒子を樹脂に分散させたものであることを特徴とする。
本発明の近赤外線吸収塗膜を有する物品は、本発明の近赤外線吸収粒子を含む近赤外線吸収塗膜を、基材の表面に有するものであることを特徴とする。
本発明の近赤外線吸収物品は、本発明の近赤外線吸収粒子を含むものであることを特徴とする。
The dispersion of the present invention is characterized in that the near-infrared absorbing particles of the present invention are dispersed in a dispersion medium.
The resin composition of the present invention is characterized in that the near-infrared absorbing particles of the present invention are dispersed in a resin.
The article having the near-infrared absorbing coating film of the present invention is characterized by having a near-infrared absorbing coating film containing the near-infrared absorbing particles of the present invention on the surface of a substrate.
The near-infrared absorbing article of the present invention includes the near-infrared absorbing particles of the present invention.

本発明の近赤外線吸収粒子は、可視光領域の透過率が高く、近赤外線領域の透過率が低く、波長630〜700nmの間で急峻に透過率が変化し、かつ耐湿性に優れる。
本発明の近赤外線吸収粒子の製造方法によれば、可視光領域の透過率が高く、近赤外線領域の透過率が低く、波長630〜700nmの間で急峻に透過率が変化し、かつ耐湿性に優れる近赤外線吸収粒子を製造できる。
本発明の分散液は、可視光領域の透過率が高く、近赤外線領域の透過率が低く、波長630〜700nmの間で急峻に透過率が変化し、かつ耐湿性に優れる近赤外線吸収塗膜の形成に有用である。
本発明の樹脂組成物は、可視光領域の透過率が高く、近赤外線領域の透過率が低く、波長630〜700nmの間で急峻に透過率が変化し、かつ耐湿性に優れる近赤外線吸収塗膜、近赤外線吸収物品の形成に有用である。
本発明の近赤外線吸収塗膜を有する物品は、可視光領域の透過率が高く、近赤外線領域の透過率が低く、波長630〜700nmの間で急峻に透過率が変化し、かつ塗膜の耐湿性に優れる。
本発明の近赤外線吸収物品は、可視光領域の透過率が高く、近赤外線領域の透過率が低く、波長630〜700nmの間で急峻に透過率が変化し、かつ耐湿性に優れる。
The near-infrared absorbing particles of the present invention have a high transmittance in the visible light region, a low transmittance in the near-infrared region, a sharp change in wavelength between 630 to 700 nm, and excellent moisture resistance.
According to the method for producing near-infrared absorbing particles of the present invention, the transmittance in the visible light region is high, the transmittance in the near-infrared region is low, the transmittance sharply changes between wavelengths of 630 to 700 nm, and the moisture resistance. It is possible to produce near-infrared absorbing particles that are superior to the above.
The dispersion of the present invention has a high transmittance in the visible light region, a low transmittance in the near-infrared region, a sharp change in transmittance between wavelengths of 630 to 700 nm, and an excellent near-infrared absorbing coating film. It is useful for the formation of
The resin composition of the present invention has a high transmittance in the visible light region, a low transmittance in the near-infrared region, a sharp change in transmittance between wavelengths of 630 to 700 nm, and excellent near-infrared absorption coating. It is useful for forming films and near infrared absorbing articles.
The article having the near-infrared absorbing coating film of the present invention has a high transmittance in the visible light region, a low transmittance in the near-infrared region, a sharp change in transmittance between wavelengths of 630 to 700 nm, and Excellent moisture resistance.
The near-infrared absorbing article of the present invention has a high transmittance in the visible light region, a low transmittance in the near-infrared region, a sharp change in wavelength between 630 and 700 nm, and excellent moisture resistance.

例1のコア粒子のX線回折の結果を示す図である。FIG. 3 is a diagram showing the results of X-ray diffraction of core particles of Example 1. 例1の耐湿試験前後の近赤外線吸収粒子の拡散反射スペクトルである。2 is a diffuse reflection spectrum of near-infrared absorbing particles before and after the moisture resistance test of Example 1. 例2の耐湿試験前後の近赤外線吸収粒子の拡散反射スペクトルである。2 is a diffuse reflection spectrum of near-infrared absorbing particles before and after the moisture resistance test of Example 2. 例3の耐湿試験前後の近赤外線吸収粒子の拡散反射スペクトルである。4 is a diffuse reflection spectrum of near-infrared absorbing particles before and after the moisture resistance test of Example 3. 例4の耐湿試験前後の近赤外線吸収粒子の拡散反射スペクトルである。6 is a diffuse reflection spectrum of near-infrared absorbing particles before and after the moisture resistance test of Example 4. 例5の耐湿試験前後の近赤外線吸収粒子の拡散反射スペクトルである。6 is a diffuse reflection spectrum of near-infrared absorbing particles before and after the moisture resistance test of Example 5.

<近赤外線吸収粒子>
本発明の近赤外線吸収粒子は、下式(1)で表わされる化合物の結晶子からなるコア粒子と、該コア粒子の表面を覆う酸化ケイ素を主成分とするシェルとを有する。
1/nCuPO ・・・(1)。
ただし、Aは、アルカリ金属(Li、Na、K、Rb、Cs)、アルカリ土類金属(Mg、Ca、Sr、Ba)およびNHからなる群から選ばれる1種以上であり、
nは、Aがアルカリ金属またはNHの場合は1であり、Aがアルカリ土類金属の場合は2である。
<Near-infrared absorbing particles>
The near-infrared absorbing particles of the present invention have core particles made of crystallites of a compound represented by the following formula (1), and a shell mainly composed of silicon oxide that covers the surface of the core particles.
A 1 / n CuPO 4 (1).
However, A is an alkali metal (Li, Na, K, Rb , Cs), alkaline earth metal and a (Mg, Ca, Sr, Ba ) and one or more selected from the group consisting of NH 4,
n is 1 when A is an alkali metal or NH 4 , and 2 when A is an alkaline earth metal.

「結晶子」とは、単結晶とみなせる単位結晶を意味し、「粒子」は、複数の結晶子によって構成される。
「式(1)で表わされる化合物の結晶子からなる」とは、たとえば図1に示すように、X線回折によってA1/nCuPOの結晶構造を確認でき、実質的にA1/nCuPOの結晶子からなることがX線回折によって同定されていることを意味し、「実質的にA1/nCuPOの結晶子からなる」とは、結晶子がA1/nCuPOの結晶構造を充分に維持できる、つまりX線回折によってA1/nCuPOの結晶構造を確認できる範囲内で不純物を含んでいてもよいことを意味する。
X線回折は、粉末状態の近赤外線吸収粒子について、X線回折装置を用いて測定される。
“Crystallite” means a unit crystal that can be regarded as a single crystal, and “particle” is composed of a plurality of crystallites.
"Consisting crystallites of the compound represented by formula (1)", for example, as shown in FIG. 1, you can see the crystal structure of A 1 / n CuPO 4 by X-ray diffraction, essentially A 1 / n It means that it consists of crystallites CuPO 4 have been identified by X-ray diffraction, and "consisting of crystallites substantially a 1 / n CuPO 4" is crystallite a 1 / n CuPO 4 This means that impurities may be contained within a range in which the crystal structure of A 1 / n CuPO 4 can be confirmed by X-ray diffraction.
X-ray diffraction is measured with a X-ray diffractometer on powdered near-infrared absorbing particles.

本発明においてAとして、アルカリ金属、アルカリ土類金属またはNHを採用する理由は、下記の(i)〜(iii)の通りである。
(i)本発明の近赤外線吸収粒子における結晶子の結晶構造は、PO 3−とCu2+との交互結合からなる網目状三次元骨格であり、骨格の内部に空間を有する。該空間のサイズが、アルカリ金属イオン(Li:0.90Å、Na:1.16Å、K:1.52Å、Rb:1.66Å、Cs:1.81Å)、アルカリ土類金属イオン(Mg2+:0.86Å、Ca2+:1.14Å、Sr2+:1.32Å、Ba2+:1.49Å)およびNH (1.66Å)のイオン半径と適合するため、結晶構造を充分に維持できる。
The reason why alkali metal, alkaline earth metal or NH 4 is used as A in the present invention is as follows (i) to (iii).
(I) The crystal structure of the crystallite in the near-infrared absorbing particles of the present invention is a network-like three-dimensional skeleton composed of alternating bonds of PO 4 3− and Cu 2+, and has a space inside the skeleton. The size of the space is alkali metal ion (Li + : 0.90Å, Na + : 1.16Å, K + : 1.52Å, Rb + : 1.66 :, Cs + : 1.81Å), alkaline earth metal In order to match the ionic radius of ions (Mg 2+ : 0.86 Å, Ca 2+ : 1.14 Å, Sr 2+ : 1.32 Å, Ba 2+ : 1.49 Å) and NH 4 + (1.66 Å) Sufficiently maintain.

(ii)アルカリ金属イオン、アルカリ土類金属イオンおよびNH は、溶液中で1価または2価のカチオンとして安定に存在できるため、近赤外線吸収粒子の製造過程において、前駆体が生成する際、結晶構造中にカチオンが取り込まれやすい。
(iii)PO 3−と配位結合性の強いカチオン、たとえば遷移金属イオン等では、充分な近赤外線吸収特性を発現する本発明における結晶構造とは異なる結晶構造を与える可能性がある。
Aとしては、PO 3−とCu2+とからなる骨格内に取り込まれるイオンとして最もカチオンサイズが適し、熱力学的な安定構造をとる点から、Kが特に好ましい。
(Ii) Alkali metal ions, alkaline earth metal ions, and NH 4 + can stably exist as monovalent or divalent cations in the solution, and therefore, when the precursor is generated in the production process of near-infrared absorbing particles. Cations are easily incorporated into the crystal structure.
(Iii) A cation having a strong coordination bond with PO 4 3− , such as a transition metal ion, may give a crystal structure different from the crystal structure in the present invention that exhibits sufficient near infrared absorption characteristics.
As A, the cation size is most suitable as an ion taken into the skeleton composed of PO 4 3− and Cu 2+, and K is particularly preferable from the viewpoint of taking a thermodynamically stable structure.

本発明の近赤外線吸収粒子が、A1/nCuPOの結晶子からなるコア粒子が酸化ケイ素を主成分とするシェルによって覆われていることは、透過型電子顕微鏡による粒子観察によって確認される。 In the near-infrared absorbing particles of the present invention, it is confirmed by particle observation with a transmission electron microscope that the core particles made of crystallites of A 1 / n CuPO 4 are covered with a shell mainly composed of silicon oxide. .

シェルは、酸化ケイ素を主成分とするものであり、耐湿性、耐薬品性等の点から、シェル(100質量%)のうち、90質量%以上が好ましく、100質量%が特に好ましい。   The shell is mainly composed of silicon oxide, and is preferably 90% by mass or more and particularly preferably 100% by mass in the shell (100% by mass) from the viewpoint of moisture resistance, chemical resistance and the like.

シェルの厚さは、1.0〜50.0nmが好ましく、5.0〜30.0nmがより好ましい。シェルの厚さが1.0nm以上であれば、耐湿性、耐薬品性等がさらに向上する。シェルの厚さが50.0nm以下であれば、コア粒子が有する近赤外線吸収特性が充分に発揮される。
シェルの厚さは、後述する製造方法におけるアルコシキシランの量、マイクロ波の出力、照射時間等を適宜調整できる。
シェルの厚さは、近赤外線吸収粒子を透過型電子顕微鏡にて観察し、20個の粒子を無作為に選び出し、各粒子のシェルの厚さを測定し、20個の粒子のシェルの厚さを平均した値である。
The thickness of the shell is preferably 1.0 to 50.0 nm, and more preferably 5.0 to 30.0 nm. If the thickness of the shell is 1.0 nm or more, moisture resistance, chemical resistance, and the like are further improved. When the thickness of the shell is 50.0 nm or less, the near-infrared absorption characteristics of the core particles are sufficiently exhibited.
The thickness of the shell can appropriately adjust the amount of alkoxysilane, microwave output, irradiation time, etc. in the production method described later.
The thickness of the shell is determined by observing near-infrared absorbing particles with a transmission electron microscope, randomly selecting 20 particles, measuring the thickness of the shell of each particle, and measuring the thickness of the shell of 20 particles. Is an average value.

本発明の近赤外線吸収粒子における結晶子の大きさは、5〜50nmが好ましく、10〜30nmがより好ましい。結晶子の大きさが5nm以上であれば、結晶子がA1/nCuPOの結晶構造を充分に維持でき、その結果、充分な近赤外線吸収特性を発現できる。結晶子の大きさが50nm以下であれば、近赤外線吸収粒子の数平均凝集粒子径を小さく抑えることができ、分散液、樹脂組成物およびこれらを用いて形成された近赤外線吸収塗膜のヘーズが低く抑えられる。
結晶子の大きさは、粉末状態の近赤外線吸収粒子についてX線回折を行い、シェラーの方法により計算によって求めた値である。
5-50 nm is preferable and, as for the magnitude | size of the crystallite in the near-infrared absorption particle | grains of this invention, 10-30 nm is more preferable. If the crystallite size is 5 nm or more, the crystallite can sufficiently maintain the crystal structure of A 1 / n CuPO 4 , and as a result, sufficient near infrared absorption characteristics can be exhibited. If the crystallite size is 50 nm or less, the number-average aggregated particle diameter of the near-infrared absorbing particles can be kept small, and the haze of the dispersion, the resin composition, and the near-infrared absorbing coating film formed using them can be reduced. Is kept low.
The size of the crystallite is a value obtained by performing X-ray diffraction on the near-infrared absorbing particles in a powder state and calculating by the Scherrer method.

本発明の近赤外線吸収粒子の数平均凝集粒子径は、20〜200nmが好ましく、20〜150nmがより好ましい。数平均凝集粒子径が20nm以上であれば、結晶子がA1/nCuPOの結晶構造を充分に維持でき、その結果、充分な近赤外線吸収特性を発現できる。数平均凝集粒子径が200nm以下であれば、分散液、樹脂組成物およびこれらを用いて形成された近赤外線吸収塗膜のヘーズが低くなり、すなわち透過率が高くなり、たとえばカメラの近赤外線吸収フィルタの用途等に好適となる。
数平均凝集粒子径は、近赤外線吸収粒子を分散媒に分散させた粒子径測定用分散液について、動的光散乱式粒度分布測定装置を用いて測定した値である。
The number average aggregate particle diameter of the near infrared ray absorbing particles of the present invention is preferably 20 to 200 nm, more preferably 20 to 150 nm. If the number average aggregate particle diameter is 20 nm or more, the crystallite can sufficiently maintain the crystal structure of A 1 / n CuPO 4 , and as a result, sufficient near infrared absorption characteristics can be exhibited. If the number average agglomerated particle diameter is 200 nm or less, the haze of the dispersion, the resin composition, and the near-infrared absorbing coating film formed using these will be low, that is, the transmittance will be high. It is suitable for use of a filter.
The number average agglomerated particle diameter is a value measured using a dynamic light scattering particle size distribution measuring apparatus for a particle diameter measurement dispersion in which near-infrared absorbing particles are dispersed in a dispersion medium.

本発明の近赤外線吸収粒子の、拡散反射スペクトルにおける波長450nmの反射率は、80%以上が好ましく、81%以上がより好ましい。
近赤外線吸収粒子の反射率が高いということは、近赤外線吸収粒子による光の吸収が少なく、近赤外線吸収粒子の反射率が低いということは、近赤外線吸収粒子による光の吸収が多いことを示している。波長450nmの反射率は、粒子を含む膜の透過スペクトルでの可視光領域の短波長側の波長420nmの透過率に対応するとみなすことができる。つまり、本発明では、拡散反射スペクトルの反射率の波長に対する変化量が大きな波長420nmではなく、該変化量が比較的小さくなる波長450nmの反射率を用いて近赤外吸収粒子の光の吸収が少ないことを判定している。すなわち、前記波長450nmの反射率が80%以上であれば、粒子を含む膜の透過スペクトルでの波長420nmの透過率が充分に高くなり、近赤外線吸収粒子による可視光領域の光吸収が充分に抑えられ、例えばカメラの近赤外線吸収フィルタに好適となる。
The reflectance at a wavelength of 450 nm in the diffuse reflection spectrum of the near-infrared absorbing particles of the present invention is preferably 80% or more, and more preferably 81% or more.
High reflectivity of near infrared absorbing particles means that light absorption by near infrared absorbing particles is low, and low reflectivity of near infrared absorbing particles means that light absorption by near infrared absorbing particles is high. ing. The reflectance at a wavelength of 450 nm can be regarded as corresponding to the transmittance at a wavelength of 420 nm on the short wavelength side in the visible light region in the transmission spectrum of the film containing particles. That is, in the present invention, the absorption of light of the near-infrared absorbing particles is not performed using the reflectance of the wavelength 450 nm, which is a relatively small change amount of the diffuse reflection spectrum with respect to the wavelength, but the wavelength of 420 nm. Judging that there are few. That is, if the reflectance at a wavelength of 450 nm is 80% or more, the transmittance at a wavelength of 420 nm in the transmission spectrum of the film containing the particles is sufficiently high, and the near-infrared absorbing particles sufficiently absorb light in the visible light region. For example, it is suitable for a near infrared absorption filter of a camera.

近赤外線吸収塗膜のヘーズを低く抑えるために、近赤外線吸収粒子の数平均凝集粒子径を小さくしようと、近赤外線吸収粒子に過度の粉砕処理を施すと、コア粒子を構成する結晶子がA1/nCuPOの結晶構造を充分に維持できなくなり、拡散反射スペクトルにおける波長450nmの反射率が小さくなる傾向にある。よって、波長450nmの反射率が80%以上であれば、近赤外線吸収粒子の数平均凝集径が200nm以下であっても、結晶子がA1/nCuPOの結晶構造を充分に維持していることの目安となる。また、結晶子がA1/nCuPOの結晶構造を充分に維持するためには、過度の粉砕処理を施すことなく数平均凝集粒子径が充分に小さい近赤外線吸収粒子を得ることができる、後述する近赤外線吸収粒子の製造方法(工程(a)〜(c))が好適である。 In order to keep the near-infrared absorbing coating film haze low, if the near-infrared absorbing particles are excessively pulverized to reduce the number-average aggregated particle diameter of the near-infrared absorbing particles, the crystallites constituting the core particles are A. The crystal structure of 1 / n CuPO 4 cannot be sufficiently maintained, and the reflectance at a wavelength of 450 nm in the diffuse reflection spectrum tends to be small. Therefore, if the reflectance at a wavelength of 450 nm is 80% or more, the crystallites can sufficiently maintain the crystal structure of A 1 / n CuPO 4 even if the number average aggregate diameter of the near infrared absorbing particles is 200 nm or less. It becomes a standard of being. Further, in order to sufficiently maintain the crystal structure of the A 1 / n CuPO 4 crystallite, near-infrared absorbing particles having a sufficiently small number average agglomerated particle diameter can be obtained without excessive pulverization. The method for producing near-infrared absorbing particles described later (steps (a) to (c)) is suitable.

本発明の近赤外線吸収粒子の、下式(2)で表わされる反射率の変化量Dは、−0.41以下が好ましく、−0.45以下がより好ましい。
D(%/nm)=[R700(%)−R600(%)]/[700(nm)−600(nm)] ・・・(2)。
ただし、R700は、近赤外線吸収粒子の拡散反射スペクトルにおける波長700nmの反射率であり、R600は、近赤外線吸収粒子の拡散反射スペクトルにおける波長600nmの反射率である。
The reflectance change amount D represented by the following formula (2) of the near-infrared absorbing particles of the present invention is preferably −0.41 or less, more preferably −0.45 or less.
D (% / nm) = [ R700 (%)- R600 (%)] / [700 (nm) -600 (nm)] (2).
However, R 700 is a reflectance at a wavelength of 700 nm in the diffuse reflection spectrum of the near-infrared absorbing particles, and R 600 is a reflectance at a wavelength of 600 nm in the diffuse reflection spectrum of the near-infrared absorbing particles.

光吸収がある粒子の拡散反射スペクトル測定では、光吸収波長において光路長により光吸収の強度が異なるため、粒子を含む膜の透過スペクトルにおいて弱い吸収帯が、拡散反射スペクトルでは比較的強く観測される。そこで、本明細書中での反射率の変化率算出は、粒子を含む膜の透過スペクトルでの透過率変化と同等に反射率が変化する範囲である600〜700nmの反射率の値を用いる。
前記反射率の変化量Dが−0.41以下であれば、波長630〜700nmの間における透過率の変化が充分に急峻となり、これを用いて形成された近赤外線吸収塗膜は、たとえばカメラの近赤外線吸収フィルタに好適となる。
In diffuse reflection spectrum measurement of particles with light absorption, since the intensity of light absorption varies depending on the optical path length at the light absorption wavelength, a weak absorption band in the transmission spectrum of the film containing particles is observed relatively strongly in the diffuse reflection spectrum. . Therefore, the reflectance change rate calculation in this specification uses a reflectance value of 600 to 700 nm, which is a range in which the reflectance changes in the same manner as the transmittance change in the transmission spectrum of the film including particles.
When the reflectance change amount D is −0.41 or less, the transmittance change between wavelengths of 630 to 700 nm is sufficiently steep, and a near-infrared absorbing coating film formed using this is, for example, a camera It is suitable for the near infrared absorption filter.

本発明の近赤外線吸収粒子の、拡散反射スペクトルにおける波長715nmの反射率は、19%以下が好ましく、18%以下がより好ましい。波長715nmの反射率が19%以下であれば、近赤外線領域の透過率が充分に低くなる。
本発明の近赤外線吸収粒子の、拡散反射スペクトルにおける波長500nmの反射率は、85%以上が好ましく、86%以上がより好ましい。波長500nmの反射率が85%以上であれば、可視光領域の透過率が充分に高くなる。
拡散反射スペクトルは、粉末状態の近赤外線吸収粒子について、紫外可視分光光度計を用いて測定される。
19% or less is preferable and the reflectance of the wavelength of 715 nm in the diffuse reflection spectrum of the near-infrared absorbing particles of the present invention is more preferably 18% or less. If the reflectance at a wavelength of 715 nm is 19% or less, the transmittance in the near infrared region is sufficiently low.
The reflectance of the wavelength of 500 nm in the diffuse reflection spectrum of the near-infrared absorbing particles of the present invention is preferably 85% or more, and more preferably 86% or more. If the reflectance at a wavelength of 500 nm is 85% or more, the transmittance in the visible light region is sufficiently high.
The diffuse reflection spectrum is measured using a UV-visible spectrophotometer for powdered near-infrared absorbing particles.

本発明の近赤外線吸収粒子においては、A1/nCuPO以外の結晶構造、たとえば、A1/nCu(POが増えると、波長630〜700nmの間における透過率の変化が緩慢となり、これを用いて形成された近赤外線吸収塗膜は、カメラの近赤外線吸収フィルタに適さない。
よって、X線回折によって実質的にA1/nCuPOの結晶子からなることが同定されていることが必要である。
In the near-infrared absorbing particles of the present invention, when the crystal structure other than A 1 / n CuPO 4 , for example, A 1 / n Cu 4 (PO 4 ) 3 increases, the transmittance changes between wavelengths of 630 to 700 nm. The near-infrared absorbing coating film formed by using this is slow and is not suitable for a near-infrared absorbing filter of a camera.
Therefore, it is necessary to have been identified by X-ray diffraction to be substantially composed of A 1 / n CuPO 4 crystallites.

(作用効果)
以上説明した本発明の近赤外線吸収粒子にあっては、A1/nCuPOで表わされる化合物の結晶子からなるコア粒子を有する近赤外線吸収粒子であるため、可視光領域の透過率が高く、近赤外線領域の透過率が低く、かつ該近赤外線吸収粒子を含む膜は波長630〜700nmの間で急峻に透過率が変化する。
また、以上説明した本発明の近赤外線吸収粒子にあっては、A1/nCuPOの結晶子からなるコア粒子の表面を覆う酸化ケイ素を主成分とするシェルを有するため、耐湿性に優れる。
(Function and effect)
The near-infrared absorbing particles of the present invention described above are near-infrared absorbing particles having core particles composed of crystallites of a compound represented by A 1 / n CuPO 4 , and thus have high transmittance in the visible light region. The transmittance of the film containing the near-infrared absorbing particles is steeply changed between the wavelengths of 630 and 700 nm.
In addition, the near-infrared absorbing particles of the present invention described above have excellent moisture resistance because they have a shell mainly composed of silicon oxide covering the surface of the core particles made of crystallites of A 1 / n CuPO 4. .

<近赤外線吸収粒子の製造方法>
本発明の近赤外線吸収粒子の製造方法は、下記の工程(d)を有する方法であり、数平均凝集粒子径が充分に小さい近赤外線吸収粒子を得ることができる点から、下記の工程(a)〜(d)を有する方法が好ましい。
(a)溶媒中にて、Cu2+を含む塩と、PO 3−を含む塩または有機物とを、Cu2+に対するPO 3−のモル比(PO 3−/Cu2+)が10〜20となるような割合で、かつAn+の存在下に混合して得られる原料粉末を、分散媒に分散させて原料スラリーを得る工程。
(b)前記工程(a)で得られた原料スラリーを熱プラズマまたは火炎中に導入し、得られた生成物を冷却して粒子を得る工程。
(c)前記工程(b)で得られた粒子を、300〜700℃で熱処理して、A1/nCuPOの結晶子からなるコア粒子を得る工程。
(d)A1/nCuPOの結晶子からなるコア粒子を、アルコキシシランによって表面処理して、前記コア粒子の表面に酸化ケイ素を主成分とするシェルを形成する工程。
<Method for producing near-infrared absorbing particles>
The manufacturing method of the near-infrared absorbing particles of the present invention is a method having the following step (d), and the following step (a) from the point that near-infrared absorbing particles having a sufficiently small number average aggregated particle diameter can be obtained. ) To (d) are preferred.
At (a) in a solvent, a salt containing Cu 2+, a salt or an organic material containing PO 4 3-, PO 4 3- molar ratio with respect to Cu 2+ (PO 4 3- / Cu 2+) 10-20 A step of obtaining a raw material slurry by dispersing a raw material powder obtained by mixing in the presence of An + in a dispersion medium.
(B) A step of introducing particles of the raw material slurry obtained in the step (a) into thermal plasma or flame and cooling the resulting product to obtain particles.
(C) A step of heat-treating the particles obtained in the step (b) at 300 to 700 ° C. to obtain core particles made of A 1 / n CuPO 4 crystallites.
(D) A step of surface-treating the core particles made of A 1 / n CuPO 4 crystallites with alkoxysilane to form a shell mainly composed of silicon oxide on the surface of the core particles.

(工程(a))
Cu2+を含む塩としては、硫酸銅(II)五水和物、塩化銅(II)二水和物、酢酸銅(II)一水和物、臭化銅(II)、硝酸銅(II)三水和物等が挙げられる。
PO 3−を含む塩または有機物としては、アルカリ金属のリン酸塩、リン酸のアンモニウム塩、アルカリ土類金属のリン酸塩、リン酸等が挙げられる。
(Process (a))
Examples of salts containing Cu 2+ include copper (II) sulfate pentahydrate, copper (II) chloride dihydrate, copper (II) acetate monohydrate, copper (II) bromide, and copper (II) nitrate. And trihydrate.
Examples of the salt or organic substance containing PO 4 3- include alkali metal phosphates, ammonium phosphates, alkaline earth metal phosphates, phosphoric acid, and the like.

アルカリ金属のリン酸塩またはアルカリ土類金属のリン酸塩としては、リン酸水素二カリウム、リン酸二水素カリウム、リン酸カリウム、リン酸水素二ナトリウム十二水和物、リン酸二水素ナトリウム二水和物、リン酸三ナトリウム十二水和物、リン酸リチウム、リン酸水素カルシウム、リン酸水素マグネシウム三水和物、リン酸マグネシウム八水和物等が挙げられる。
リン酸のアンモニウム塩としては、リン酸水素二アンモニウム、リン酸二水素アンモニウム、リン酸水素アンモニウムナトリウム四水和物、リン酸アンモニウム三水和物等が挙げられる。
Examples of alkali metal phosphate or alkaline earth metal phosphate include dipotassium hydrogen phosphate, potassium dihydrogen phosphate, potassium phosphate, disodium hydrogen phosphate dodecahydrate, sodium dihydrogen phosphate Examples thereof include dihydrate, trisodium phosphate dodecahydrate, lithium phosphate, calcium hydrogen phosphate, magnesium hydrogen phosphate trihydrate, and magnesium phosphate octahydrate.
Examples of the ammonium salt of phosphoric acid include diammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium ammonium hydrogen phosphate tetrahydrate, and ammonium phosphate trihydrate.

n+を存在させる方法としては、PO 3−を含む塩としてアルカリ金属のリン酸塩、リン酸のアンモニウム塩、アルカリ土類金属のリン酸塩等を用いる方法;Cu2+を含む塩とPO 3−を含む塩または有機物とを混合する際に、An+を含む塩を添加する方法等が挙げられる。
n+を含む塩としては、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アルカリ金属の塩化物、アルカリ土類金属の塩化物、アルカリ金属の臭化物、アルカリ土類金属の臭化物、アルカリ金属の硝酸塩、アルカリ土類金属の硝酸塩、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、アルカリ金属の硫酸塩、アルカリ土類金属の硫酸塩等が挙げられる。
As a method for allowing An + to exist, a method using an alkali metal phosphate, an ammonium phosphate, an alkaline earth metal phosphate, or the like as a salt containing PO 4 3- ; a salt containing Cu 2+ and PO 4 When a salt containing 3- or an organic substance is mixed, a method of adding a salt containing An + is exemplified.
Salts containing An + include alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal chlorides, alkaline earth metal chlorides, alkali metal bromides, alkaline earth metal bromides, Examples thereof include alkali metal nitrates, alkaline earth metal nitrates, alkali metal carbonates, alkaline earth metal carbonates, alkali metal sulfates, alkaline earth metal sulfates, and the like.

Cu2+を含む塩とPO 3−を含む塩または有機物との混合は、溶媒中で行う。該溶媒としては、Cu2+を含む塩、およびPO 3−を含む塩または有機物を溶解し得る溶媒が好ましい。An+を含む塩を用いる場合、該溶媒としては、An+を含む塩も溶解し得る溶媒が好ましい。該溶媒としては、水が特に好ましい。 Mixing of the salt containing Cu 2+ and the salt or organic substance containing PO 4 3- is performed in a solvent. As the solvent, a salt containing Cu 2+ and a salt containing PO 4 3− or a solvent capable of dissolving an organic substance is preferable. When a salt containing An + is used, the solvent is preferably a solvent that can also dissolve a salt containing An + . As the solvent, water is particularly preferable.

Cu2+を含む塩とPO 3−を含む塩または有機物との割合は、Cu2+に対するPO 3−のモル比(PO 3−/Cu2+)が10〜20、好ましくは12〜18となるような割合とする。PO 3−/Cu2+が10以上であれば、工程(b)においてA1/nCu(POが副生しない、または副生したとしてもその量が、結晶子がA1/nCuPOの結晶構造を充分に維持できる程度であるため、波長630〜700nmの間における透過率の変化が充分に急峻となる近赤外線吸収粒子が得られる。PO 3−/Cu2+が20以下であれば、工程(b)においてA1/nCuPO以外の不純物が副生しない、または副生したとしてもその量が、結晶子がA1/nCuPOの結晶構造を充分に維持できる程度であるため、波長630〜700nmの間における透過率の変化が充分に急峻となる近赤外線吸収粒子が得られる。 Ratio of the salt or organic containing salt and PO 4 3- and containing Cu 2+ is, PO 4 3- molar ratio with respect to Cu 2+ (PO 4 3- / Cu 2+) 10-20, preferably 12-18 and The ratio is as follows. If PO 4 3− / Cu 2+ is 10 or more, even if A 1 / n Cu 4 (PO 4 ) 3 is not by-produced or by-produced in the step (b), the amount of crystallites is A 1. Since the crystal structure of / n CuPO 4 can be sufficiently maintained, near-infrared absorbing particles in which the change in transmittance between wavelengths of 630 to 700 nm is sufficiently steep are obtained. If PO 4 3− / Cu 2+ is 20 or less, impurities other than A 1 / n CuPO 4 are not by-produced in the step (b), or even if they are by-produced, the amount of crystallites is A 1 / n. Since the crystal structure of CuPO 4 is sufficiently maintained, near-infrared absorbing particles in which the change in transmittance between wavelengths of 630 to 700 nm is sufficiently steep can be obtained.

Cu2+を含む塩とPO 3−を含む塩または有機物とを混合する際の温度は、10〜95℃が好ましく、15〜40℃がより好ましい。該温度が高すぎると、溶媒の蒸発による溶質の濃縮が生じ、目的とする生成物以外の不純物が混入するおそれがある。該温度が低すぎると、反応速度が遅くなり、反応時間が長くなるため、工程上好ましくない。 Temperature at the time of mixing the salt or organic containing salt and PO 4 3- and containing Cu 2+ is preferably 10 to 95 ° C., and more preferably from 15 to 40 ° C.. If the temperature is too high, the solute is concentrated by evaporation of the solvent, and impurities other than the target product may be mixed. If the temperature is too low, the reaction rate becomes slow and the reaction time becomes long.

溶媒中にて、Cu2+を含む塩と、PO 3−を含む塩または有機物とを、Cu2+に対するPO 3−のモル比(PO 3−/Cu2+)が10〜20となるような割合で、かつAn+の存在下に混合して得られる原料粉末は、必要に応じて固液分離し乾燥させ、分散媒に分散させて原料スラリーとする。 In a solvent, a salt containing Cu 2+, a salt or an organic material containing PO 4 3-, PO 4 3- molar ratio with respect to Cu 2+ (PO 4 3- / Cu 2+) to become 10 to 20 The raw material powder obtained by mixing in a small proportion and in the presence of An + is solid-liquid separated and dried as necessary, and dispersed in a dispersion medium to obtain a raw material slurry.

原料スラリーの分散媒としては、水、アルコール、ケトン、エーテル、エステル、アルデヒド、アミン、脂肪族炭化水素、脂環族炭化水素、芳香族炭化水素等が挙げられる。分散媒は、1種を単独で用いてもよく、2種類以上を併用してもよい。分散媒としては、取扱いが容易で、かつ熱プラズマ通過時に酸素源となる酸素原子を含むものが好適である点から、メタノール、エタノール、イソプロパノール等のアルコールが好ましい。   Examples of the dispersion medium for the raw slurry include water, alcohol, ketone, ether, ester, aldehyde, amine, aliphatic hydrocarbon, alicyclic hydrocarbon, and aromatic hydrocarbon. A dispersion medium may be used individually by 1 type, and may use 2 or more types together. As the dispersion medium, alcohols such as methanol, ethanol, and isopropanol are preferable because they are easy to handle and contain an oxygen atom that becomes an oxygen source when passing through thermal plasma.

原料スラリー中の固形分濃度により、工程(b)で得られる近赤外線吸収粒子の粒子径が変化するため、必要に応じて原料スラリーの固形分濃度を調整する必要がある。すなわち、原料スラリー中の固形分濃度が高いほど、熱プラズマ通過時の結晶核濃度が高く、結晶成長が生じ、粒子径の大きい近赤外線吸収粒子が得られる。原料スラリー中の固形分濃度が低いほど、熱プラズマ通過時の結晶核濃度が低く、結晶成長が抑制され、粒子径が小さい近赤外線吸収粒子が得られる。分散媒の量は、分散液(100質量%)のうち、50〜95質量%が好ましい。   Since the particle diameter of the near-infrared absorbing particles obtained in the step (b) varies depending on the solid content concentration in the raw material slurry, it is necessary to adjust the solid content concentration of the raw material slurry as necessary. That is, the higher the solid content concentration in the raw slurry, the higher the crystal nucleus concentration when passing through the thermal plasma, the crystal growth occurs, and the near infrared absorbing particles having a large particle diameter can be obtained. The lower the solid content concentration in the raw material slurry, the lower the crystal nucleus concentration when passing through the thermal plasma, the crystal growth is suppressed, and the near-infrared absorbing particles having a small particle diameter can be obtained. The amount of the dispersion medium is preferably 50 to 95% by mass in the dispersion (100% by mass).

原料スラリーは、原料粉末、分散媒、必要に応じてジルコニアビーズ等を混合し、自転・公転式ミキサー、ビーズミル、遊星ミル、超音波ホモジナイザ等によって撹拌することにより調製できる。粒子径が小さく、かつ均一な近赤外線吸収粒子を得るためには、原料スラリー中の原料粉末の粒子径も小さく、かつ均一である必要があるため、充分に撹拌する必要がある。撹拌は、連続的に行ってもよく、断続的に行ってもよい。   The raw material slurry can be prepared by mixing raw material powder, a dispersion medium, and if necessary, zirconia beads and the like, and stirring with a rotation / revolution mixer, a bead mill, a planetary mill, an ultrasonic homogenizer or the like. In order to obtain a uniform near-infrared absorbing particle having a small particle size, the particle size of the raw material powder in the raw material slurry needs to be small and uniform. Stirring may be performed continuously or intermittently.

(工程(b))
原料スラリーを熱プラズマまたは火炎中に導入し、得られた生成物を冷却して粒子を得る方法は、特開2005−170760号公報、特許第4420690号公報等に記載されている。
よって、原料スラリーとして工程(a)で得られた原料スラリーを用いる以外は、特開2005−170760号公報、特許第4420690号公報等に記載された装置を用い、特開2005−170760号公報、特許第4420690号公報等に記載された条件を適宜変更して粒子を製造すればよい。
(Process (b))
Methods for introducing raw slurry into thermal plasma or flame and cooling the resulting product to obtain particles are described in JP-A-2005-170760, JP-A-4420690, and the like.
Therefore, except using the raw material slurry obtained in step (a) as the raw material slurry, using the apparatus described in Japanese Patent Application Laid-Open No. 2005-170760, Japanese Patent No. 4420690, etc., Japanese Patent Application Laid-Open No. 2005-170760, The particles may be produced by appropriately changing the conditions described in Japanese Patent No. 4420690.

たとえば、プラズマガス(アルゴンガス等)をプラズマトーチ内に供給し、該プラズマトーチ内にて熱プラズマを発生させつつ、プラズマトーチに設けられたノズルから原料スラリーをキャリアガス(酸素ガス等)とともに噴霧することによって、原料スラリーの液滴を熱プラズマに導入する。熱プラズマ内にて原料スラリーの溶媒を蒸発させつつ、原料スラリーに含まれていた原料を反応させ、熱プラズマから発生する生成物をプラズマトーチの下方に隣接するチャンバに移動させる。チャンバ内で熱プラズマからの生成物を急冷することによって結晶化させ、粒子を生成させる。   For example, plasma gas (argon gas, etc.) is supplied into a plasma torch, and while generating thermal plasma in the plasma torch, the raw material slurry is sprayed together with a carrier gas (oxygen gas, etc.) from a nozzle provided in the plasma torch. By doing so, droplets of the raw slurry are introduced into the thermal plasma. While the solvent of the raw material slurry is evaporated in the thermal plasma, the raw material contained in the raw material slurry is reacted, and the product generated from the thermal plasma is moved to a chamber adjacent to the lower part of the plasma torch. The product from the thermal plasma is crystallized by quenching in the chamber to produce particles.

(工程(c))
前記工程(b)で得られた粒子は、結晶構造中に酸素欠陥を有する場合がある。結晶構造中に酸素欠陥を有する粒子は、可視光領域の透過率が低下するため、熱処理を施し、結晶構造中の酸素欠陥を低減することが好ましい。
(Process (c))
The particles obtained in the step (b) may have oxygen defects in the crystal structure. Since particles having an oxygen defect in the crystal structure have a low transmittance in the visible light region, it is preferable to perform heat treatment to reduce the oxygen defect in the crystal structure.

熱処理温度は、300〜700℃であり、300〜500℃が好ましい。熱処理温度が300℃以上であれば、結晶構造中の酸素欠陥を充分に低減できる。熱処理温度が700℃以下であれば、熱による分解を抑制できる。
熱処理時間は、0.5〜300分が好ましく、1〜10分がより好ましい。熱処理時間が0.5分以上であれば、結晶構造中の酸素欠陥を充分に低減できる。熱処理時間が300分以下であれば、熱処理による結晶成長を抑制できる。
赤外イメージ炉を用いると、急速加熱および急速冷却が可能であるため、結晶成長の抑制に有効である。また、粒子を流動させながら焼成可能なロータリーキルン炉も、結晶成長の抑制に効果がある。
The heat treatment temperature is 300 to 700 ° C, preferably 300 to 500 ° C. If the heat treatment temperature is 300 ° C. or higher, oxygen defects in the crystal structure can be sufficiently reduced. If heat processing temperature is 700 degrees C or less, decomposition | disassembly by a heat | fever can be suppressed.
The heat treatment time is preferably 0.5 to 300 minutes, more preferably 1 to 10 minutes. If the heat treatment time is 0.5 minutes or more, oxygen defects in the crystal structure can be sufficiently reduced. If the heat treatment time is 300 minutes or less, crystal growth due to the heat treatment can be suppressed.
When an infrared image furnace is used, rapid heating and rapid cooling are possible, which is effective in suppressing crystal growth. A rotary kiln furnace that can be fired while flowing particles is also effective in suppressing crystal growth.

(工程(d))
1/nCuPOの結晶子からなるコア粒子を、アルコキシシランによって表面処理する方法としては、公知の方法を用いればよい。工程(d)としては、下記の理由から、下記の工程(d’)が好ましい。
(d’)前記式(1)で表わされる化合物の結晶子からなるコア粒子と、アルコキシシランとを含む液に、マイクロ波を照射して、前記コア粒子の表面に酸化ケイ素を主成分とするシェルを形成する工程。
(Process (d))
A known method may be used as a method of surface-treating the core particles made of A 1 / n CuPO 4 crystallites with alkoxysilane. As the step (d), the following step (d ′) is preferable for the following reasons.
(D ′) A liquid containing core particles composed of crystallites of the compound represented by the formula (1) and alkoxysilane is irradiated with microwaves, and the surface of the core particles is mainly composed of silicon oxide. Forming a shell;

理由:コア粒子を選択的に、かつ高温(100℃以上)に加熱できる。そのため、液全体が高温(100℃以上)になったとしても、コア粒子がさらに高温に加熱されているため、アルコキシシランの加水分解がコア粒子の表面にて優先的に進行し、コア粒子の表面に酸化ケイ素が選択的に析出する。よって、コア粒子の表面以外に単独で析出する酸化ケイ素の量が抑えられる。また、シェルを高温条件にて形成できるため、緻密なシェルが短時間で形成される。   Reason: The core particles can be selectively heated to a high temperature (100 ° C. or higher). Therefore, even if the entire liquid becomes high temperature (100 ° C. or higher), since the core particles are heated to a higher temperature, hydrolysis of alkoxysilane proceeds preferentially on the surface of the core particles, Silicon oxide is selectively deposited on the surface. Therefore, the amount of silicon oxide precipitated alone other than the surface of the core particle can be suppressed. Further, since the shell can be formed under high temperature conditions, a dense shell can be formed in a short time.

工程(d’)は、具体的には、下記の工程(d1)〜工程(d3)からなる。
(a)コア粒子を分散媒に分散させたコア粒子の分散液に、アルコキシシラン、必要に応じて水、有機溶媒、アルカリまたは酸、硬化触媒等を加え、原料液を調製する工程。
(b)該原料液にマイクロ波を照射して該原料液を加熱するとともに、アルコキシシランをアルカリまたは酸によって加水分解して、コア粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コアシェル構造の近赤外線吸収粒子の分散液を得る工程。
(c)必要に応じて、近赤外線吸収粒子の分散液から分散媒を除去し、近赤外線吸収粒子を回収する工程。
Specifically, the step (d ′) includes the following steps (d1) to (d3).
(A) A step of preparing a raw material liquid by adding alkoxysilane, water, an organic solvent, an alkali or an acid, a curing catalyst, or the like to a dispersion of core particles in which the core particles are dispersed in a dispersion medium.
(B) The raw material liquid is irradiated with microwaves to heat the raw material liquid, and the alkoxysilane is hydrolyzed with an alkali or an acid to precipitate silicon oxide on the surface of the core particles to form a shell. A step of obtaining a dispersion of near-infrared absorbing particles having a structure.
(C) A step of removing the dispersion medium from the dispersion of near-infrared absorbing particles and collecting near-infrared absorbing particles as necessary.

工程(d1):
分散媒としては、水、アルコール(メタノール、エタノール、イソプロパノール等)、ケトン(アセトン、メチルエチルケトン等)、エーテル(テトラヒドロフラン、1,4−ジオキサン等)、エステル(酢酸エチル、酢酸メチル等)、グリコールエーテル(エチレングリコールモノアルキルエーテル等)、含窒素化合物(N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等)、含硫黄化合物(ジメチルスルホキシド等)等が挙げられる。
分散媒は、アルコキシシランの加水分解に水が必要であるため、分散媒100質量%中、5〜100質量%の水を含むことが好ましい。
Step (d1):
Examples of the dispersion medium include water, alcohol (methanol, ethanol, isopropanol, etc.), ketone (acetone, methyl ethyl ketone, etc.), ether (tetrahydrofuran, 1,4-dioxane, etc.), ester (ethyl acetate, methyl acetate, etc.), glycol ether ( Ethylene glycol monoalkyl ether), nitrogen-containing compounds (N, N-dimethylacetamide, N, N-dimethylformamide, etc.), sulfur-containing compounds (dimethyl sulfoxide, etc.) and the like.
Since the dispersion medium requires water for hydrolysis of alkoxysilane, it is preferable that 5 to 100% by mass of water is contained in 100% by mass of the dispersion medium.

分散液中におけるコア粒子の濃度は、コア粒子の分散液(100質量%)中、0.1〜40質量%が好ましく、0.5〜20質量%がより好ましい。コア粒子の濃度が0.1質量%以上であれば、近赤外線吸収粒子の製造効率が良好となる。コア粒子の濃度が40質量%以下であれば、コア粒子が凝集しにくい。   The concentration of the core particles in the dispersion is preferably 0.1 to 40% by mass, and more preferably 0.5 to 20% by mass in the core particle dispersion (100% by mass). If the density | concentration of a core particle is 0.1 mass% or more, the manufacturing efficiency of a near-infrared absorption particle will become favorable. When the concentration of the core particles is 40% by mass or less, the core particles hardly aggregate.

アルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン(以下、TEOSと記す。)、テトラn−プロポキシシラン、テトライソプロポキシシラン等が挙げられ、反応速度が適正な点から、TEOSが好ましい。   Examples of the alkoxysilane include tetramethoxysilane, tetraethoxysilane (hereinafter referred to as TEOS), tetra n-propoxysilane, tetraisopropoxysilane, and the like, and TEOS is preferable from the viewpoint of an appropriate reaction rate.

アルコキシシランの量は、シェルの厚さが1.0〜50.0nmとなる量が好ましく、シェルの厚さが5.0〜30.0nmとなる量がより好ましい。
アルコキシシランの量(金属酸化物換算)は、具体的には、コア粒子100質量部に対して、0.1〜10000質量部が好ましい。
The amount of alkoxysilane is preferably such that the shell thickness is 1.0 to 50.0 nm, and more preferably the shell thickness is 5.0 to 30.0 nm.
Specifically, the amount of alkoxysilane (in terms of metal oxide) is preferably 0.1 to 10,000 parts by mass with respect to 100 parts by mass of the core particles.

アルカリとしては、水酸化カリウム、水酸化ナトリウム、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム、ジメチルアミン、トリエチルアミン、アニリン等が挙げられ、加温により除去可能な点から、アンモニアが好ましい。
アルカリの量は、アルコキシシランが三次元的に重合して緻密なシェルを形成しやすい点から、原料液のpHが8.5〜10.5となる量が好ましく、9.0〜10.0となる量が好ましい。
Examples of the alkali include potassium hydroxide, sodium hydroxide, ammonia, ammonium carbonate, ammonium hydrogen carbonate, dimethylamine, triethylamine, aniline and the like. Ammonia is preferable because it can be removed by heating.
The amount of the alkali is preferably such that the pH of the raw material liquid is 8.5 to 10.5 from the viewpoint that the alkoxysilane is three-dimensionally polymerized to form a dense shell. Is preferred.

酸としては、塩酸、硝酸等が挙げられる。
酸の量は、原料液のpHが3.5〜5.5となる量が好ましい。
Examples of the acid include hydrochloric acid and nitric acid.
The amount of the acid is preferably such that the pH of the raw material liquid is 3.5 to 5.5.

硬化触媒としては、金属キレート化合物、有機スズ化合物、金属アルコレート、金属脂肪酸塩等が挙げられ、シェルの強度の点から、金属キレート化合物、有機スズ化合物が好ましく、金属キレート化合物が特に好ましい。
硬化触媒の量(金属酸化物換算)は、アルコキシシランの量(金属酸化物換算)の100質量部に対して0.1〜20.0質量部が好ましく、0.2〜8.0質量部がより好ましい。
Examples of the curing catalyst include metal chelate compounds, organotin compounds, metal alcoholates, metal fatty acid salts, and the like. From the viewpoint of shell strength, metal chelate compounds and organotin compounds are preferred, and metal chelate compounds are particularly preferred.
The amount of the curing catalyst (in terms of metal oxide) is preferably 0.1 to 20.0 parts by mass, and preferably 0.2 to 8.0 parts by mass, based on 100 parts by mass of the alkoxysilane (in terms of metal oxide). Is more preferable.

工程(d2):
マイクロ波とは、通常、周波数が1G〜100GHzの電磁波を指す。通常は、周波数が2.45±0.05GHzのマイクロ波が用いられるが、5.8±0.075GHz、24.125±0.125GHz等のマイクロ波を用いてもよい。
マイクロ波の出力は、原料液が100〜500℃に加熱される出力が好ましく、原料液が120〜300℃に加熱される出力がより好ましい。具体的には100〜5000Wが好ましく、500〜3000Wがより好ましい。
原料液の温度が100℃以上であれば、緻密なシェルを短時間で形成できる。原料液の温度が500℃以下であれば、コア粒子表面以外で析出する酸化ケイ素の量が抑えられる。
Step (d2):
The microwave usually refers to an electromagnetic wave having a frequency of 1 G to 100 GHz. Usually, a microwave having a frequency of 2.45 ± 0.05 GHz is used, but a microwave of 5.8 ± 0.075 GHz, 24.125 ± 0.125 GHz, or the like may be used.
The microwave output is preferably an output in which the raw material liquid is heated to 100 to 500 ° C., and an output in which the raw material liquid is heated to 120 to 300 ° C. is more preferable. Specifically, 100 to 5000 W is preferable, and 500 to 3000 W is more preferable.
If the temperature of the raw material liquid is 100 ° C. or higher, a dense shell can be formed in a short time. When the temperature of the raw material liquid is 500 ° C. or lower, the amount of silicon oxide precipitated on the surface other than the core particle surface can be suppressed.

マイクロ波の照射時間は、マイクロ波の出力(原料液の温度)に応じて、所望の厚さのシェルが形成される時間に調整すればよく、たとえば、10秒〜60分である。   What is necessary is just to adjust the irradiation time of a microwave to the time when the shell of desired thickness is formed according to the output (temperature of a raw material liquid) of a microwave, for example, is 10 second-60 minutes.

工程(d3):
コアシェル構造の近赤外線吸収粒子の分散液から分散媒を除去し、近赤外線吸収粒子を回収する方法としては、下記の方法が挙げられる。
・近赤外線吸収粒子の分散液を加熱して、分散媒等を揮発させる方法。
・近赤外線吸収粒子の分散液を固液分離して、固形分を乾燥する方法。
・スプレードライヤーを用い、加熱されたガス中に近赤外線吸収粒子の分散液を噴霧して分散媒等を揮発させる方法(スプレードライ法)。
・近赤外線吸収粒子の分散液を冷却し減圧することで、分散媒等を昇華させる方法(凍結乾燥法)。
Step (d3):
Examples of a method for removing the dispersion medium from the dispersion of the near-infrared absorbing particles having the core-shell structure and recovering the near-infrared absorbing particles include the following methods.
-A method of volatilizing a dispersion medium by heating a dispersion of near-infrared absorbing particles.
A method of solid-liquid separation of a dispersion of near-infrared absorbing particles and drying the solid content.
-A method of spraying a dispersion of near-infrared absorbing particles in a heated gas using a spray dryer to volatilize the dispersion medium or the like (spray drying method).
A method (freeze-drying method) in which a dispersion medium or the like is sublimated by cooling and depressurizing the dispersion of near-infrared absorbing particles.

(他の表面処理)
以上のようにして得られた近赤外線吸収粒子は、耐候性、耐酸性、耐水性等の向上や表面改質によるバインダ樹脂との相溶性の向上を目的に、公知の方法にてさらに表面処理されてもよい。
表面処理の方法としては、近赤外線吸収粒子を含む分散液中に、表面処理剤または溶媒で希釈した表面処理剤を添加し、撹拌して処理した後、溶媒を除去し乾燥させる方法(湿式法);近赤外線吸収粒子を撹拌しながら、表面処理剤または溶媒で希釈した表面処理剤を、乾燥空気または窒素ガスで噴射させて処理した後、乾燥させる方法(乾式法)が挙げられる。
表面処理剤としては、界面活性剤、カップリング剤等が挙げられる。
(Other surface treatment)
The near-infrared absorbing particles obtained as described above are further subjected to surface treatment by a known method for the purpose of improving weather resistance, acid resistance, water resistance, etc. and improving compatibility with the binder resin by surface modification. May be.
As a surface treatment method, a surface treatment agent or a surface treatment agent diluted with a solvent is added to a dispersion containing near-infrared absorbing particles, the mixture is stirred and treated, and then the solvent is removed and dried (wet method). ); A method (dry method) in which a surface treatment agent diluted with a surface treatment agent or a solvent is jetted with dry air or nitrogen gas and then dried while stirring the near infrared absorbing particles (dry method).
Examples of the surface treatment agent include a surfactant and a coupling agent.

(作用効果)
以上説明した本発明の近赤外線吸収粒子の製造方法にあっては、工程(d)において、A1/nCuPOで表わされる化合物の結晶子からなるコア粒子をアルコキシシランによって表面処理して、コア粒子の表面に酸化ケイ素を主成分とするシェルを形成しているため、可視光領域の透過率が高く、近赤外線領域の透過率が低く、波長630〜700nmの間で急峻に透過率が変化し、かつ耐湿性に優れる近赤外線吸収粒子を製造できる。
(Function and effect)
In the method for producing near-infrared absorbing particles of the present invention described above, in the step (d), the core particles composed of crystallites of the compound represented by A 1 / n CuPO 4 are surface-treated with alkoxysilane, Since a shell mainly composed of silicon oxide is formed on the surface of the core particle, the transmittance in the visible light region is high, the transmittance in the near infrared region is low, and the transmittance is steep between wavelengths of 630 to 700 nm. Near-infrared absorbing particles that change and have excellent moisture resistance can be produced.

また、工程(b)において原料スラリーが熱プラズマまたは火炎中を通過することで、原料スラリー中に含まれる原料粒子が急速加熱され原子状態まで気化した後、急速に冷却される。そのため、近接する結晶核同士の結合による粒子成長が抑制され、X線回折から求めた結晶子の大きさが5〜50nmの生成物を容易に得ることができる。また、該生成物に対し、工程(c)において熱処理を施すことによって、熱処理による粒子成長が抑制され、かつ構造欠陥が少なく可視光領域の透過率が高い粒子が得られる。すなわち、過度の粉砕処理を施すことなく粒子の数平均凝集粒子径が20〜200nmとなる。   In addition, in the step (b), the raw material slurry passes through thermal plasma or flame, so that the raw material particles contained in the raw material slurry are rapidly heated and vaporized to an atomic state, and then rapidly cooled. Therefore, particle growth due to bonding between adjacent crystal nuclei is suppressed, and a product having a crystallite size of 5 to 50 nm obtained from X-ray diffraction can be easily obtained. Further, by subjecting the product to a heat treatment in step (c), particle growth due to the heat treatment is suppressed, and particles having few structural defects and high transmittance in the visible light region are obtained. That is, the number average aggregate particle diameter of the particles is 20 to 200 nm without excessive pulverization.

一方、工程(a)〜(c)を有する方法を用いない場合、近赤外線吸収粒子の数平均凝集粒子径を20〜200nmとするためには、湿式粉砕等の処理が必要である。しかし、過度の粉砕処理を行うことで粒子の結晶構造が部分的に崩壊し、可視光領域の透過率が減少することがある。すなわち、工程(a)〜(c)を有する方法を用いない場合、過度の粉砕処理を必要とするため、数平均凝集粒子径が小さいが、可視光領域の透過率が低い近赤外線吸収粒子となる場合がある。また、長時間の粉砕は生産性の効率を下げるので、できるだけ短時間の粉砕処理が好ましい。   On the other hand, when not using the method which has process (a)-(c), in order to make the number average aggregated particle diameter of a near-infrared absorption particle 20-200 nm, processes, such as wet grinding | pulverization, are required. However, an excessive pulverization treatment may partially destroy the crystal structure of the particles and reduce the transmittance in the visible light region. That is, when the method having the steps (a) to (c) is not used, an excessive pulverization process is required, and therefore the number-average aggregated particle diameter is small, but the near-infrared absorbing particles having a low visible light region transmittance There is a case. In addition, pulverization for as long as possible is preferable because pulverization for a long time reduces productivity efficiency.

以上から、工程(a)〜(c)を有する方法にあっては、過度の粉砕処理を施すことなく、X線回折から求めた結晶子の大きさが5〜50nmであり、数平均凝集粒子径が20〜200nmである、A1/nCuPOの結晶子からなるコア粒子を製造できる。 From the above, in the method having the steps (a) to (c), the crystallite size obtained from X-ray diffraction is 5 to 50 nm without excessive pulverization, and the number average aggregated particles Core particles made of crystallites of A 1 / n CuPO 4 having a diameter of 20 to 200 nm can be produced.

<用途>
本発明の近赤外線吸収粒子は、分散媒に分散させて分散液として用いてもよく、樹脂に分散させて樹脂組成物として用いてもよい。
<Application>
The near-infrared absorbing particles of the present invention may be dispersed in a dispersion medium and used as a dispersion, or may be dispersed in a resin and used as a resin composition.

<分散液>
本発明の分散液は、分散媒と、該分散媒に分散された本発明の近赤外線吸収粒子とを含み、必要に応じて分散剤、バインダ樹脂、他の光吸収材を含む。
近赤外線吸収粒子の量は、分散液(100質量%)のうち、5〜50質量%が好ましい。近赤外線吸収粒子の量が5質量%以上であれば、充分な近赤外線吸収特性を発現できる。近赤外線吸収粒子の量が50質量%以下であれば、可視光領域の透過率を高く維持できる。
<Dispersion>
The dispersion liquid of the present invention includes a dispersion medium and the near-infrared absorbing particles of the present invention dispersed in the dispersion medium, and optionally includes a dispersant, a binder resin, and other light absorbing materials.
The amount of near-infrared absorbing particles is preferably 5 to 50% by mass in the dispersion (100% by mass). If the amount of near-infrared absorbing particles is 5% by mass or more, sufficient near-infrared absorbing characteristics can be exhibited. If the amount of near-infrared absorbing particles is 50% by mass or less, the transmittance in the visible light region can be maintained high.

(分散媒)
分散媒としては、水、アルコール、ケトン、エーテル、エステル、アルデヒド、アミン、脂肪族炭化水素、脂環族炭化水素、芳香族炭化水素等が挙げられる。分散媒は、1種を単独で用いてもよく、2種類以上を併用してもよい。分散媒の量は、近赤外線吸収粒子の分散性を維持する点から、分散液(100質量%)のうち、50〜95質量%が好ましい。
(Dispersion medium)
Examples of the dispersion medium include water, alcohol, ketone, ether, ester, aldehyde, amine, aliphatic hydrocarbon, alicyclic hydrocarbon, and aromatic hydrocarbon. A dispersion medium may be used individually by 1 type, and may use 2 or more types together. The amount of the dispersion medium is preferably 50 to 95% by mass in the dispersion (100% by mass) from the viewpoint of maintaining the dispersibility of the near-infrared absorbing particles.

(分散剤)
分散剤としては、近赤外線吸収粒子の表面に対して改質効果を示すもの、たとえば、界面活性剤、シラン、シリコーンレジン、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコアルミネート系カップリング剤等が挙げられる。
(Dispersant)
Dispersing agents that have a modification effect on the surface of near-infrared absorbing particles, such as surfactants, silanes, silicone resins, titanate coupling agents, aluminum coupling agents, zircoaluminate couplings Agents and the like.

界面活性剤としては、アニオン系界面活性剤(特殊ポリカルボン酸型高分子界面活性剤、アルキルリン酸エステル等)、ノニオン系界面活性剤(ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンカルボン酸エステル、ソルビタン高級カルボン酸エステル等)、カチオン系界面活性剤(ポリオキシエチレンアルキルアミンカルボン酸エステル、アルキルアミン、アルキルアンモニウム塩等)、両性界面活性剤(高級アルキルベタイン等)が挙げられる。   Surfactants include anionic surfactants (special polycarboxylic acid type polymer surfactants, alkyl phosphate esters, etc.), nonionic surfactants (polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxy Ethylene carboxylic acid esters, sorbitan higher carboxylic acid esters, etc.), cationic surfactants (polyoxyethylene alkylamine carboxylic acid esters, alkylamines, alkylammonium salts, etc.), and amphoteric surfactants (higher alkylbetaines, etc.). .

シランとしては、シランカップリング剤、クロロシラン、アルコキシシラン、シラザンが挙げられる。シランカップリング剤としては、官能基(グリシドキシ基、ビニル基、アミノ基、アルケニル基、エポキシ基、メルカプト基、クロロ基、アンモニウム基、アクリロキシ基、メタクリロキシ基等)を有するアルコキシシラン等が挙げられる。
シリコーンレジンとしては、メチルシリコーンレジン、メチルフェニルシリコーンレジン等が挙げられる。
Examples of silane include a silane coupling agent, chlorosilane, alkoxysilane, and silazane. Examples of the silane coupling agent include alkoxysilanes having a functional group (glycidoxy group, vinyl group, amino group, alkenyl group, epoxy group, mercapto group, chloro group, ammonium group, acryloxy group, methacryloxy group, etc.).
Examples of the silicone resin include methyl silicone resin and methylphenyl silicone resin.

チタネート系カップリング剤としては、アシロキシ基、ホスホキシ基、ピロホスホキシ基、スルホキシ基、アリーロキシ基等を有するものが挙げられる。
アルミニウム系カップリング剤としては、アセトアルコキシアルミニウムジイソプロピレートが挙げられる。
ジルコアルミネート系カップリング剤としては、アミノ基、メルカプト基、アルキル基、アルケニル基等を有するものが挙げられる。
Examples of titanate coupling agents include those having an acyloxy group, phosphoxy group, pyrophosphoxy group, sulfoxy group, aryloxy group, and the like.
Examples of the aluminum coupling agent include acetoalkoxyaluminum diisopropylate.
Examples of the zircoaluminate coupling agent include those having an amino group, a mercapto group, an alkyl group, an alkenyl group, and the like.

分散剤の量は、分散剤の種類にもよるが、分散液(100質量%)のうち、0.5〜10質量%が好ましい。分散剤の量が該範囲内であれば、近赤外線吸収粒子の分散性が良好となり、透明性が損なわれず、また、経時的に近赤外線吸収粒子が沈降することが抑えられる。   Although the quantity of a dispersing agent is based also on the kind of dispersing agent, 0.5-10 mass% is preferable among dispersion liquids (100 mass%). If the amount of the dispersant is within the above range, the dispersibility of the near-infrared absorbing particles becomes good, the transparency is not impaired, and the near-infrared absorbing particles are prevented from settling with time.

(バインダ樹脂)
バインダ樹脂としては、熱可塑性樹脂(ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、アルキド系樹脂等)、熱硬化性樹脂(エポキシ系樹脂、熱硬化型アクリル系樹脂、シルセスキオキサン系樹脂等)が挙げられる。近赤外線吸収塗膜に透明性が必要となる場合、バインダ樹脂としては、アクリル系樹脂またはポリエステル系樹脂が好ましい。バインダ樹脂の量は、分散液の固形分(100質量%)のうち、10〜90質量%が好ましい。
(Binder resin)
Binder resins include thermoplastic resins (polyester resins, acrylic resins, polycarbonate resins, polyamide resins, alkyd resins, etc.), thermosetting resins (epoxy resins, thermosetting acrylic resins, silsesquioxy). Sun resin). When the near-infrared absorbing coating film needs transparency, the binder resin is preferably an acrylic resin or a polyester resin. As for the quantity of binder resin, 10-90 mass% is preferable among solid content (100 mass%) of a dispersion liquid.

(他の光吸収材)
他の光吸収材としては、紫外線吸収材、他の赤外線吸収材等が挙げられる。
紫外線吸収材としては、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム、マイカ、カオリン、セリサイト等が挙げられる。
他の赤外線吸収材料としては、ITO(Indium Tin Oxide)、ATO(Antimony doped Tin Oxide)等が挙げられる。ITOは、可視光領域の透過率が高く、かつ1100nmを超える電波領域も含めた広範囲の電磁波吸収性を有するため、電波遮蔽性を必要とする場合に特に好ましい。
他の光吸収材の数平均凝集粒子径は、透明性の点から、100nm以下が好ましい。
(Other light absorbers)
Examples of other light absorbing materials include ultraviolet absorbing materials and other infrared absorbing materials.
Examples of the ultraviolet absorber include zinc oxide, titanium oxide, cerium oxide, zirconium oxide, mica, kaolin, and sericite.
Examples of other infrared absorbing materials include ITO (Indium Tin Oxide), ATO (Antimony doped Tin Oxide), and the like. ITO has a high transmittance in the visible light region and has a wide range of electromagnetic wave absorptivity including a radio wave region exceeding 1100 nm. Therefore, ITO is particularly preferable when radio wave shielding is required.
The number average aggregated particle diameter of the other light absorbing material is preferably 100 nm or less from the viewpoint of transparency.

(分散液の調製)
本発明の分散液は、本発明の近赤外線吸収粒子、分散媒、必要に応じて分散剤、バインダ樹脂等を混合し、自転・公転式ミキサー、ビーズミル、遊星ミル、超音波ホモジナイザ等によって撹拌することにより調製できる。高い透明性を確保するためには、充分に撹拌する必要がある。撹拌は、連続的に行ってもよく、断続的に行ってもよい。
(Preparation of dispersion)
The dispersion of the present invention is mixed with the near-infrared absorbing particles of the present invention, a dispersion medium, a dispersant, a binder resin, etc., if necessary, and stirred by a rotation / revolution mixer, a bead mill, a planetary mill, an ultrasonic homogenizer, or the like. Can be prepared. In order to ensure high transparency, it is necessary to sufficiently stir. Stirring may be performed continuously or intermittently.

(作用効果)
以上説明した本発明の分散液にあっては、本発明の近赤外線吸収粒子を分散媒に分散させたものであるため、可視光領域の透過率が高く、近赤外線領域の透過率が低く、波長630〜700nmの間で急峻に透過率が変化し、かつ耐湿性に優れる近赤外線吸収塗膜の形成に有用である。
(Function and effect)
In the dispersion of the present invention described above, since the near-infrared absorbing particles of the present invention are dispersed in a dispersion medium, the transmittance in the visible light region is high, the transmittance in the near-infrared region is low, It is useful for forming a near-infrared absorbing coating film having a sharp change in transmittance between wavelengths of 630 and 700 nm and excellent moisture resistance.

<樹脂組成物>
本発明の樹脂組成物は、樹脂と、該樹脂に分散された本発明の近赤外線吸収粒子とを含み、必要に応じて分散剤、他の光吸収材を含む。
近赤外線吸収粒子の量は、樹脂組成物(100質量%)のうち、10〜60質量%が好ましい。近赤外線吸収粒子の量が10質量%以上であれば、充分な近赤外線吸収特性を発現できる。近赤外線吸収粒子の量が60質量%以下であれば、可視光領域の透過率を高く維持できる。
<Resin composition>
The resin composition of the present invention includes a resin and the near-infrared absorbing particles of the present invention dispersed in the resin, and optionally includes a dispersant and other light absorbing materials.
The amount of near-infrared absorbing particles is preferably 10 to 60% by mass in the resin composition (100% by mass). If the amount of near-infrared absorbing particles is 10% by mass or more, sufficient near-infrared absorbing characteristics can be expressed. When the amount of the near-infrared absorbing particles is 60% by mass or less, the transmittance in the visible light region can be maintained high.

(樹脂)
樹脂としては、熱可塑性樹脂(ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、アルキド系樹脂等)、熱硬化性樹脂(エポキシ系樹脂、熱硬化型アクリル系樹脂、シルセスキオキサン系樹脂等)が挙げられる。近赤外線吸収塗膜に透明性が必要となる場合、樹脂としては、アクリル系樹脂またはポリエステル系樹脂が好ましい。樹脂の量は、樹脂組成物(100質量%)のうち、40〜90質量%が好ましい。
(resin)
Resins include thermoplastic resins (polyester resins, acrylic resins, polycarbonate resins, polyamide resins, alkyd resins, etc.), thermosetting resins (epoxy resins, thermosetting acrylic resins, silsesquioxanes). Resin). When the near-infrared absorbing coating film needs transparency, the resin is preferably an acrylic resin or a polyester resin. The amount of the resin is preferably 40 to 90% by mass in the resin composition (100% by mass).

(分散剤)
分散剤としては、近赤外線吸収粒子の表面に対して改質効果を示すもの、たとえば、上述した界面活性剤、シラン、シリコーンレジン、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコアルミネート系カップリング剤等が挙げられる。
(Dispersant)
As the dispersant, those having a modification effect on the surface of the near infrared absorbing particles, for example, the above-mentioned surfactant, silane, silicone resin, titanate coupling agent, aluminum coupling agent, zircoaluminate type. A coupling agent etc. are mentioned.

(他の光吸収材)
他の光吸収材としては、上述した紫外線吸収材、他の赤外線吸収材等が挙げられる。
(Other light absorbers)
Examples of the other light absorbing material include the above-described ultraviolet absorbing material and other infrared absorbing materials.

(樹脂組成物の調製)
本発明の樹脂組成物は、本発明の近赤外線吸収粒子、樹脂、必要に応じて溶媒や分散剤等を混合し、自転・公転式ミキサー、ビーズミル、遊星ミル、ミキサー型混練機、3本ロール等によって混練することにより調製できる。高い透明性を確保するためには、充分に混練する必要がある。混練は、連続的に行ってもよく、断続的に行ってもよい。
(Preparation of resin composition)
The resin composition of the present invention is a mixture of the near-infrared absorbing particles of the present invention, a resin, and a solvent and a dispersing agent as required, and a rotation / revolution mixer, a bead mill, a planetary mill, a mixer-type kneader, and a three-roll It can prepare by kneading | mixing by etc. In order to ensure high transparency, it is necessary to knead sufficiently. Kneading may be performed continuously or intermittently.

(作用効果)
以上説明した本発明の樹脂組成物にあっては、本発明の近赤外線吸収粒子を樹脂に分散させたものであるため、可視光領域の透過率が高く、近赤外線領域の透過率が低く、波長630〜700nmの間で急峻に透過率が変化し、かつ耐湿性に優れる近赤外線吸収塗膜、近赤外線吸収物品の形成に有用である。
(Function and effect)
In the resin composition of the present invention described above, since the near-infrared absorbing particles of the present invention are dispersed in the resin, the transmittance in the visible light region is high, the transmittance in the near-infrared region is low, It is useful for the formation of a near-infrared absorbing coating film and a near-infrared absorbing article having a sharp change in transmittance between wavelengths of 630 to 700 nm and excellent in moisture resistance.

<近赤外線吸収塗膜を有する物品>
本発明の近赤外線吸収塗膜を有する物品は、本発明の近赤外線吸収粒子を含む近赤外線吸収塗膜を、基材の表面に有する。
本発明の近赤外線吸収塗膜を有する物品は、本発明の分散液を、基材の表面に塗布し、乾燥させる、または、本発明の樹脂組成物を、基材の表面に塗布し、必要に応じて硬化させることによって製造できる。
<Articles with near infrared absorption coating>
The article having the near infrared absorbing coating film of the present invention has a near infrared absorbing coating film containing the near infrared absorbing particles of the present invention on the surface of the substrate.
The article having the near-infrared absorbing coating film of the present invention is required by applying the dispersion liquid of the present invention to the surface of the substrate and drying, or applying the resin composition of the present invention to the surface of the substrate. Can be produced by curing.

近赤外線吸収塗膜を有する物品としては、カメラ用の近赤外線フィルタ、プラズマディスプレイ用の光学フィルタ、車両(自動車等)用のガラス窓、ランプ等が挙げられる。
基材の形状は、フィルム状であってもよく、板状であってもよい。基材の材料としては、ガラス、ポリエチレンテレフタレート(PET)、アクリル樹脂、ウレタン樹脂、ポリカーボネート、ポリエチレン、エチレン酢酸ビニル共重合体、塩化ビニル、フッ素樹脂等が挙げられ、透明性および耐熱性の点から、ガラスが好ましい。
Examples of the article having a near-infrared absorbing coating include a near-infrared filter for a camera, an optical filter for a plasma display, a glass window for a vehicle (such as an automobile), a lamp, and the like.
The shape of the substrate may be a film shape or a plate shape. Examples of the material for the base material include glass, polyethylene terephthalate (PET), acrylic resin, urethane resin, polycarbonate, polyethylene, ethylene vinyl acetate copolymer, vinyl chloride, and fluororesin. From the viewpoint of transparency and heat resistance Glass is preferred.

近赤外線吸収塗膜の、下式(3)で表わされる透過率の変化量D’は、−0.36以下が好ましく、−0.37以下がより好ましい。
D’(%/nm)=[T700(%)−T630(%)]/[700(nm)−630(nm)] ・・・(3)。
ただし、T700は、近赤外線吸収塗膜の波長700nmの透過率であり、T630は、近赤外線吸収塗膜の波長630nmの透過率である。
The transmittance change amount D ′ represented by the following formula (3) of the near-infrared absorbing coating film is preferably −0.36 or less, and more preferably −0.37 or less.
D ′ (% / nm) = [T 700 (%) − T 630 (%)] / [700 (nm) −630 (nm)] (3).
However, T 700 is the transmittance at a wavelength of 700nm near infrared absorbing coating, T 630 is a transmittance at a wavelength of 630nm near infrared absorbing coating.

透過率の変化量D’が−0.36以下であれば、波長630〜700nmの間における透過率の変化が充分に急峻となり、カメラの近赤外線吸収フィルタに好適となる。
近赤外線吸収塗膜の波長600nmの透過率は、70%以上が好ましく、75%以上がより好ましい。波長600nmの透過率が70%以上であれば、赤色光の吸収が充分に抑えられ、カメラの近赤外線吸収フィルタに好適となる。
近赤外線吸収塗膜の波長450nmの透過率は、75%以上が好ましく、80%以上がより好ましい。波長450nmの透過率が75%以上であれば、可視光領域の光吸収が少なく、カメラの近赤外線吸収フィルタに好適となる。
When the transmittance change amount D ′ is −0.36 or less, the transmittance change between wavelengths of 630 to 700 nm is sufficiently steep, which is suitable for a near-infrared absorption filter of a camera.
The transmittance of the near-infrared absorbing coating film at a wavelength of 600 nm is preferably 70% or more, and more preferably 75% or more. If the transmittance at a wavelength of 600 nm is 70% or more, red light absorption is sufficiently suppressed, which is suitable for a near-infrared absorption filter of a camera.
The transmittance of the near-infrared absorbing coating film at a wavelength of 450 nm is preferably 75% or more, and more preferably 80% or more. If the transmittance at a wavelength of 450 nm is 75% or more, light absorption in the visible light region is small, which is suitable for a near infrared absorption filter of a camera.

近赤外線吸収塗膜の波長715nmの透過率は、10%以下が好ましく、5%以下がより好ましい。
近赤外線吸収塗膜の波長500nmの透過率は、80%以上が好ましく、85%以上がより好ましい。
近赤外線吸収塗膜の透過率は、下記のようにして測定する。
樹脂がポリエステル系樹脂の場合、固形分として近赤外線吸収粒子の31質量%および樹脂の69質量%を含む分散液をガラス基材に塗布し、厚さ70μmの近赤外線吸収塗膜を形成する。樹脂がアクリル系樹脂の場合、固形分として近赤外線吸収粒子の50質量%および樹脂の50質量%を含む分散液をガラス基材に塗布し、厚さ20μmの近赤外線吸収塗膜を形成する。該近赤外線吸収塗膜について、紫外可視分光光度計を用いて透過率を測定する。
The transmittance of the near-infrared absorbing coating film at a wavelength of 715 nm is preferably 10% or less, and more preferably 5% or less.
The transmittance of the near-infrared absorbing coating film at a wavelength of 500 nm is preferably 80% or more, and more preferably 85% or more.
The transmittance of the near infrared absorbing coating film is measured as follows.
When the resin is a polyester-based resin, a dispersion containing 31% by mass of near-infrared absorbing particles and 69% by mass of resin as a solid content is applied to a glass substrate to form a near-infrared absorbing coating film having a thickness of 70 μm. When the resin is an acrylic resin, a dispersion containing 50% by mass of near-infrared absorbing particles and 50% by mass of resin as a solid content is applied to a glass substrate to form a near-infrared absorbing coating film having a thickness of 20 μm. The transmittance of the near-infrared absorbing coating film is measured using an ultraviolet-visible spectrophotometer.

<近赤外線吸収物品>
本発明の近赤外線吸収物品は、本発明の近赤外線吸収粒子を含む。
本発明の近赤外線吸収物品は、本発明の樹脂組成物を、公知の成形法で成形することによって製造できる。
成形法としては、押出成形法、射出成形法、カレンダー法、キャスティング法等が挙げられる。
物品の形状としては、フィルム状、板状、基材に対するコート膜等が挙げられる。
<Near-infrared absorbing article>
The near-infrared absorbing article of the present invention includes the near-infrared absorbing particles of the present invention.
The near-infrared absorbing article of the present invention can be produced by molding the resin composition of the present invention by a known molding method.
Examples of the molding method include an extrusion molding method, an injection molding method, a calendar method, and a casting method.
Examples of the shape of the article include a film shape, a plate shape, and a coating film on the substrate.

以下、本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。
例1〜3は、実施例であり、例4、5は、比較例である。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
Examples 1 to 3 are examples, and examples 4 and 5 are comparative examples.

(X線回折)
粉末状態の近赤外線吸収粒子について、X線回折装置(RIGAKU社製、RINT−TTR−III)を用いてX線回折の測定を行い、結晶構造の同定を行った。また、結晶子の大きさを、2θ=14°の反射についてシェラーの方法により計算によって求めた。
(X-ray diffraction)
About the near-infrared absorption particle | grains of a powder state, the X-ray-diffraction measurement was performed using the X-ray-diffraction apparatus (the RIGAKU company make, RINT-TTR-III), and the crystal structure was identified. Further, the size of the crystallite was obtained by calculation according to Scherrer's method for reflection at 2θ = 14 °.

(数平均凝集粒子径)
近赤外線吸収粒子を水に分散させた粒子径測定用分散液(固形分濃度:5質量%)について、動的光散乱式粒度分布測定装置(日機装社製、マイクロトラック超微粒子粒度分析計UPA−150)を用いて数平均凝集粒子径を測定した。
(Number average agglomerated particle size)
About a dispersion for particle size measurement (solid content concentration: 5% by mass) in which near-infrared absorbing particles are dispersed in water, a dynamic light scattering particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., Microtrac Ultrafine Particle Size Analyzer UPA-) 150) was used to measure the number average aggregate particle size.

(反射率)
粉末状態の近赤外線吸収粒子について、紫外可視分光光度計(日立ハイテクノロジーズ社製、U−4100形)を用いて拡散反射スペクトル(反射率)を測定した。ベースラインとして、硫酸バリウムを用いた。
(Reflectance)
About the near-infrared absorption particle | grains of a powder state, the diffuse reflection spectrum (reflectance) was measured using the ultraviolet visible spectrophotometer (the Hitachi High-Technologies company make, U-4100 type). Barium sulfate was used as the baseline.

(透過率)
近赤外線吸収塗膜について紫外可視分光光度計(日立ハイテクノロジーズ社製、U−4100形)を用いて透過スペクトル(透過率)を測定した。
(Transmittance)
About the near-infrared absorption coating film, the transmission spectrum (transmittance) was measured using the ultraviolet visible spectrophotometer (Hitachi High-Technologies company make, U-4100 type).

(ヘーズ)
透過率の測定に用いた近赤外線吸収塗膜についてヘーズメーター(BYK Gardner社製、haze−gard plus)を用いてヘーズを測定した。
(Haze)
About the near-infrared absorption coating film used for the transmittance | permeability measurement, the haze was measured using the haze meter (the BYK Gardner company make, gaze-gard plus).

〔例1〕
工程(a):
52質量%リン酸水素二カリウム(純正化学製)水溶液の500gに、撹拌しながら、5質量%硫酸銅・五水和物(純正化学製)水溶液の500gを加え、5時間以上室温にて撹拌し、水色反応液を得た。反応時のPO 3−/Cu2+(モル比)を表1に示す。水色反応液を、卓上遠心分離機を用いて固液分離し、水色沈降物を得た。水色沈降物をアセトン中に分散させ、超音波処理を行った後、卓上遠心分離機を用いて固液分離した。得られた沈降物を150℃で2時間乾燥した後、エタノールに分散させて、原料スラリーを得た。
[Example 1]
Step (a):
To 500 g of 52 mass% dipotassium hydrogen phosphate (made by Junsei Kagaku), 500 g of 5 mass% copper sulfate pentahydrate (made by Junsei Chemical) aqueous solution is added with stirring and stirred at room temperature for 5 hours or more. As a result, a light blue reaction solution was obtained. Table 4 shows PO 4 3− / Cu 2+ (molar ratio) during the reaction. The light blue reaction solution was subjected to solid-liquid separation using a desktop centrifuge to obtain a light blue precipitate. The light blue sediment was dispersed in acetone, subjected to ultrasonic treatment, and then subjected to solid-liquid separation using a desktop centrifuge. The obtained precipitate was dried at 150 ° C. for 2 hours and then dispersed in ethanol to obtain a raw material slurry.

工程(b):
特開2005−170760号公報に記載された装置を用い、工程(a)で得られた原料スラリーをプラズマトーチ内の熱プラズマに導入し、得られた生成物をチャンバ内で冷却して暗緑色の粒子を得た。
Step (b):
Using the apparatus described in JP-A-2005-170760, the raw material slurry obtained in step (a) is introduced into the thermal plasma in the plasma torch, and the resulting product is cooled in the chamber to dark green. Obtained particles.

工程(c):
工程(b)で得られた粒子を、平皿に移し、大気中で、500℃で5分間熱処理し、薄青緑色のコア粒子を得た。熱処理には赤外線イメージ炉を用いた。
得られたコア粒子は、走査型電子顕微鏡を用いた観察よって平均粒子径が70nm程度で粒度分布の少ないことが確認された。また、コア粒子についてX線回折を測定した。結果を図1に示す。X線回折の結果から、KCuPOの結晶構造を確認でき、該粒子は、実質的にKCuPOの結晶子からなるコア粒子であることが同定された。
Step (c):
The particles obtained in the step (b) were transferred to a flat plate and heat-treated at 500 ° C. for 5 minutes in the air to obtain light blue-green core particles. An infrared image furnace was used for the heat treatment.
The obtained core particles were confirmed by observation with a scanning electron microscope to have an average particle diameter of about 70 nm and a small particle size distribution. Further, X-ray diffraction was measured for the core particles. The results are shown in FIG. From the result of X-ray diffraction, the crystal structure of KCuPO 4 could be confirmed, and it was identified that the particle was a core particle substantially composed of a crystallite of KCuPO 4 .

工程(d):
200mLの石英製耐圧容器に、コア粒子の1.00g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の7.72g、イソプロパノールの31.20g、28質量%のアンモニア水溶液の0.50gを入れ、原料液を調製した。
耐圧容器を密封した後、マイクロ波加熱装置(マイルストーンゼネラル社製、MicroSYNTH)を用い、原料液に最大出力:1000W、周波数:2.45GHzのマイクロ波を、到達温度150℃の設定で照射し、TEOSを加水分解して、コア粒子の表面に酸化ケイ素を析出させ、シェルを形成し、近赤外線吸収粒子の分散液を得た。得られた分散液を、卓上遠心分離機を用いて固液分離した。得られた沈降物を150℃で2時間乾燥し、酸化ケイ素により表面被覆された赤外線吸収微粒子粉を得た。透過型電子顕微鏡を用いた観察結果から酸化ケイ素からなるシェルの厚さはおよそ10nmであった。
Step (d):
In a 200 mL quartz pressure vessel, 1.00 g of core particles, 7.72 g of TEOS (concentration of solid content in terms of silicon oxide: 28.8% by mass), 31.20 g of isopropanol, 0 of 28% by mass of aqueous ammonia solution. .50 g was added to prepare a raw material solution.
After sealing the pressure vessel, a microwave heating device (Milestone General, Micro SYNTH) is used to irradiate the raw material liquid with a microwave with a maximum output of 1000 W and a frequency of 2.45 GHz at a setting of an ultimate temperature of 150 ° C. Then, TEOS was hydrolyzed to deposit silicon oxide on the surface of the core particles to form a shell, thereby obtaining a dispersion of near-infrared absorbing particles. The obtained dispersion was subjected to solid-liquid separation using a desktop centrifuge. The obtained precipitate was dried at 150 ° C. for 2 hours to obtain an infrared absorbing fine particle powder surface-coated with silicon oxide. From the observation result using a transmission electron microscope, the thickness of the shell made of silicon oxide was about 10 nm.

また、近赤外線吸収粒子についてX線回折を測定した。X線回折の結果から、KCuPOの結晶構造を確認でき、該粒子は、工程(d)を経た後も、実質的にKCuPOの結晶子からなる近赤外線吸収粒子であることが同定された。また、結晶子の大きさを表1に示す。
また、近赤外線吸収粒子の粒子径測定用分散液を調製し、数平均凝集粒子径を測定した。結果を表1に示す。
また、近赤外線吸収粒子の拡散反射スペクトル(反射率)を測定した。結果を表1に示す。また、拡散反射スペクトルを図2に実線にて示す。
Further, X-ray diffraction was measured for the near infrared absorbing particles. From the result of X-ray diffraction, the crystal structure of KCuPO 4 was confirmed, and it was identified that the particle was a near-infrared absorbing particle substantially composed of a crystallite of KCuPO 4 even after passing through the step (d). . The crystallite size is shown in Table 1.
Also, a dispersion for measuring the particle size of near infrared absorbing particles was prepared, and the number average aggregated particle size was measured. The results are shown in Table 1.
Moreover, the diffuse reflection spectrum (reflectance) of near-infrared absorbing particles was measured. The results are shown in Table 1. Further, the diffuse reflection spectrum is shown by a solid line in FIG.

耐湿試験:
近赤外線吸収粒子を、るつぼに入れ、耐湿試験を行った。試験機としては、恒温恒湿器(エスペック社製、小型環境試験機LH−113)を用い、試験条件は85℃、相対湿度85%と設定し、1000時間暴露した。該試験後の近赤外線吸収粒子について、X線回折を測定した。X線回折の結果から、該試験後もKCuPOの結晶構造を保持することが確認された。
また、該試験後の近赤外線吸収粒子の拡散反射スペクトル(反射率)を測定した。結果を図2に破線にて示す。拡散反射スペクトルの結果から、図2に実線で示す該試験前の近赤外線吸収粒子の拡散反射スペクトルと一致することから、該試験後も近赤外線吸収特性を保持することが示された。また、比較評価方法としては、下記を採用した。結果を表1に示す。
波長300nm〜2600nmの拡散反射の測定結果において、(試験後の近赤外線吸収微粒子の各波長での反射率(%)−試験前の赤外線吸収微粒子の各波長での反射率(%))の最大値の絶対値が15%未満である場合を○とした。上記値が15%以上である場合、×とした。
Moisture resistance test:
Near-infrared absorbing particles were placed in a crucible and subjected to a moisture resistance test. As a tester, a thermo-hygrostat (manufactured by ESPEC Co., Ltd., a small environmental tester LH-113) was used. The test conditions were set to 85 ° C. and relative humidity 85%, and the tester was exposed for 1000 hours. X-ray diffraction was measured for the near-infrared absorbing particles after the test. From the results of X-ray diffraction, it was confirmed that the crystal structure of KCuPO 4 was retained after the test.
Moreover, the diffuse reflection spectrum (reflectance) of the near-infrared absorbing particles after the test was measured. The results are shown by broken lines in FIG. The result of the diffuse reflection spectrum agrees with the diffuse reflection spectrum of the near-infrared absorbing particles before the test shown by the solid line in FIG. Moreover, the following was employ | adopted as a comparative evaluation method. The results are shown in Table 1.
In the measurement results of diffuse reflection at wavelengths of 300 nm to 2600 nm, the maximum of (reflectance at each wavelength of near-infrared absorbing fine particles after test (%) − reflectance at each wavelength of infrared absorbing fine particles before test) (%) The case where the absolute value of the value was less than 15% was marked as ◯. When the said value was 15% or more, it was set as x.

分散液、塗膜:
近赤外線吸収粒子と、ポリエステル系樹脂(大阪ガスケミカル社製、OKP4HT)の25質量%シクロヘキサノン溶液とを、固形分が近赤外線吸収粒子の31質量%およびポリエステル系樹脂の69質量%となるような割合で混合し、自転・公転式ミキサーで撹拌し、分散液を得た。該分散液をガラス基材に塗布し、窒素置換デシケータにて15分以上乾燥させ、150℃で10分間加熱し、厚さ70μmの近赤外線吸収塗膜を形成した。
Dispersion, coating:
The near-infrared absorbing particles and a 25% by mass cyclohexanone solution of polyester resin (manufactured by Osaka Gas Chemical Co., Ltd., OKP4HT) are mixed so that the solid content is 31% by mass of the near-infrared absorbing particles and 69% by mass of the polyester-based resin. The mixture was mixed at a ratio and stirred with a rotation / revolution mixer to obtain a dispersion. The dispersion was applied to a glass substrate, dried with a nitrogen-substituted desiccator for 15 minutes or more, and heated at 150 ° C. for 10 minutes to form a near-infrared absorbing coating film having a thickness of 70 μm.

該近赤外線吸収塗膜について、透過率およびヘーズを測定した。また、耐湿試験を行った。試験機として、恒温恒湿器(エスペック社製、小型環境試験機LH−113)を用い、試験条件は85℃、相対湿度85%とし、100時間暴露した。該試験後の近赤外線吸収塗膜の透過率およびヘーズを測定し、試験前と比較評価した。結果を表1に示す。なお、比較評価方法としては、下記を採用した。   The transmittance and haze of the near infrared absorbing coating film were measured. In addition, a moisture resistance test was performed. As a tester, a thermo-hygrostat (manufactured by ESPEC Co., Ltd., a small environmental tester LH-113) was used. The test conditions were 85 ° C. and relative humidity 85%, and exposure was performed for 100 hours. The transmittance and haze of the near-infrared absorbing coating film after the test were measured and compared with those before the test. The results are shown in Table 1. In addition, the following was employ | adopted as a comparative evaluation method.

耐湿試験100時間経過後の、近赤外線吸収塗膜の透過率スペクトルについては、(100−(試験後の近赤外線吸収塗膜の800nmの透過率(%))を(100−(試験前の近赤外線吸収塗膜の800nmの透過率(%))で割った値が0.95以上である場合、○とした。上記値が0.90以上、かつ、0.95未満である場合、△とした。上記値が0.90未満である場合、×とした。
耐湿試験100時間経過後の、近赤外線吸収塗膜のヘーズについては、(100−(試験後の近赤外線吸収塗膜のヘーズ(%))を(100−(試験前の近赤外線吸収塗膜のヘーズ(%))で割った値が0.95以上である場合、○とした。上記値が0.90以上、かつ、0.95未満である場合、△とした。上記値が0.90未満である場合、×とした。
About the transmittance | permeability spectrum of the near-infrared absorptive coating film after 100-hour humidity resistance test, (100- (800 nm transmittance | permeability (%) of the near-infrared absorptive coating after a test)) (100- (near before test) When the value divided by 800 nm transmittance (%) of the infrared absorbing coating film is 0.95 or more, it was evaluated as ◯. When the above value was 0.90 or more and less than 0.95, Δ and When the above value was less than 0.90, it was marked as x.
For the haze of the near-infrared absorbing coating film after 100 hours of the moisture resistance test, (100- (haze (%) of the near-infrared absorbing coating film after the test)) (100- (of the near-infrared absorbing coating film before the test) When the value divided by haze (%) is 0.95 or more, the result is ◯, and when the value is 0.90 or more and less than 0.95, the result is △. When it was less than, it was set as x.

〔例2〕
工程(d)における到達温度を160℃に設定した以外は、例1と同様にして近赤外線吸収粒子を得た。透過型電子顕微鏡を用いた観察結果から酸化ケイ素からなるシェルの厚さはおよそ15nmであった。
近赤外線吸収粒子についてX線回折を測定した。X線回折の結果から、KCuPOの結晶構造を確認でき、該粒子は、工程(d)を経た後も、実質的にKCuPOの結晶子からなる近赤外線吸収粒子であることが同定された。また、結晶子の大きさを表1に示す。
また、近赤外線吸収粒子の粒子径測定用分散液を調製し、数平均凝集粒子径を測定した。結果を表1に示す。
また、近赤外線吸収粒子の拡散反射スペクトル(反射率)を測定した。結果を表1に示す。また、拡散反射スペクトルを図3に実線にて示す。
[Example 2]
Near-infrared absorbing particles were obtained in the same manner as in Example 1 except that the ultimate temperature in the step (d) was set to 160 ° C. From the observation result using a transmission electron microscope, the thickness of the shell made of silicon oxide was approximately 15 nm.
X-ray diffraction was measured for the near-infrared absorbing particles. From the result of X-ray diffraction, the crystal structure of KCuPO 4 was confirmed, and it was identified that the particle was a near-infrared absorbing particle substantially composed of a crystallite of KCuPO 4 even after passing through the step (d). . The crystallite size is shown in Table 1.
Also, a dispersion for measuring the particle size of near infrared absorbing particles was prepared, and the number average aggregated particle size was measured. The results are shown in Table 1.
Moreover, the diffuse reflection spectrum (reflectance) of near-infrared absorbing particles was measured. The results are shown in Table 1. Further, the diffuse reflection spectrum is shown by a solid line in FIG.

耐湿試験:
近赤外線吸収粒子を、るつぼに入れ、例1と同様に耐湿試験を行った。該試験後の近赤外線吸収粒子について、拡散反射スペクトル(反射率)を測定し、耐湿試験後も近赤外線吸収特性を保持することを確認した。結果を表1に示す。また、拡散反射スペクトルを図3に破線にて示す。
Moisture resistance test:
Near-infrared absorbing particles were placed in a crucible and subjected to a moisture resistance test in the same manner as in Example 1. About the near-infrared absorption particle | grains after this test, the diffuse reflection spectrum (reflectance) was measured and it confirmed that a near-infrared absorption characteristic was hold | maintained after a moisture resistance test. The results are shown in Table 1. Further, the diffuse reflection spectrum is shown by a broken line in FIG.

分散液、塗膜:
近赤外線吸収粒子を用いて、例1と同様にして近赤外線吸収塗膜を形成した。該近赤外線吸収塗膜について、例1と同様に耐湿試験を行い、試験前後の透過率およびヘーズの変化について比較評価した。結果を表1に示す。
Dispersion, coating:
A near-infrared absorbing coating film was formed in the same manner as in Example 1 using near-infrared absorbing particles. The near-infrared absorbing coating film was subjected to a moisture resistance test in the same manner as in Example 1, and a comparative evaluation was conducted on changes in transmittance and haze before and after the test. The results are shown in Table 1.

〔例3〕
工程(d)における到達温度を170℃に設定した以外は、例1と同様にして表面処理された近赤外線吸収粒子を得た。透過型電子顕微鏡を用いた観察結果から酸化ケイ素からなるシェルの厚さはおよそ15nmであった。
近赤外線吸収粒子についてX線回折を測定した。X線回折の結果から、KCuPOの結晶構造を確認でき、該粒子は、工程(d)を経た後も、実質的にKCuPOの結晶子からなる近赤外線吸収粒子であることが同定された。また、結晶子の大きさを表1に示す。
また、近赤外線吸収粒子の粒子径測定用分散液を調製し、数平均凝集粒子径を測定した。結果を表1に示す。
また、近赤外線吸収粒子の拡散反射スペクトル(反射率)を測定した。結果を表1に示す。また、拡散反射スペクトルを図4に実線にて示す。
[Example 3]
Near-infrared absorbing particles surface-treated in the same manner as in Example 1 were obtained except that the ultimate temperature in the step (d) was set to 170 ° C. From the observation result using a transmission electron microscope, the thickness of the shell made of silicon oxide was approximately 15 nm.
X-ray diffraction was measured for the near-infrared absorbing particles. From the result of X-ray diffraction, the crystal structure of KCuPO 4 was confirmed, and it was identified that the particle was a near-infrared absorbing particle substantially composed of a crystallite of KCuPO 4 even after passing through the step (d). . The crystallite size is shown in Table 1.
Also, a dispersion for measuring the particle size of near infrared absorbing particles was prepared, and the number average aggregated particle size was measured. The results are shown in Table 1.
Moreover, the diffuse reflection spectrum (reflectance) of near-infrared absorbing particles was measured. The results are shown in Table 1. The diffuse reflection spectrum is shown by a solid line in FIG.

耐湿試験:
近赤外線吸収粒子を、るつぼに入れ、例1と同様に耐湿試験を行った。該試験後の近赤外線吸収粒子について、拡散反射スペクトル(反射率)を測定し、耐湿試験後も近赤外線吸収特性を保持することを確認した。結果を表1に示す。また、拡散反射スペクトルを図4に破線にて示す。
Moisture resistance test:
Near-infrared absorbing particles were placed in a crucible and subjected to a moisture resistance test in the same manner as in Example 1. About the near-infrared absorption particle | grains after this test, the diffuse reflection spectrum (reflectance) was measured and it confirmed that a near-infrared absorption characteristic was hold | maintained after a moisture resistance test. The results are shown in Table 1. Further, the diffuse reflection spectrum is shown by a broken line in FIG.

分散液、塗膜:
近赤外線吸収粒子を用いて、例1と同様にして近赤外線吸収塗膜を形成した。該近赤外線吸収塗膜について、例1と同様に耐湿試験を行い、試験前後の透過率およびヘーズの変化について比較評価した。結果を表1に示す。
Dispersion, coating:
A near-infrared absorbing coating film was formed in the same manner as in Example 1 using near-infrared absorbing particles. The near-infrared absorbing coating film was subjected to a moisture resistance test in the same manner as in Example 1, and a comparative evaluation was conducted on changes in transmittance and haze before and after the test. The results are shown in Table 1.

〔例4〕
例1の工程(c)により得られたコア粒子についてX線回折を測定した。結晶子の大きさを表2に示す。
また、コア粒子の粒子径測定用分散液を調製し、数平均凝集粒子径を測定した。結果を表2に示す。
また、コア粒子の拡散反射スペクトル(反射率)を測定した。結果を表2に示す。また、拡散反射スペクトルを図5に実線にて示す。
[Example 4]
X-ray diffraction was measured for the core particles obtained in step (c) of Example 1. Table 2 shows the crystallite size.
Also, a dispersion for measuring the particle size of the core particles was prepared, and the number average aggregate particle size was measured. The results are shown in Table 2.
Further, the diffuse reflection spectrum (reflectance) of the core particles was measured. The results are shown in Table 2. The diffuse reflection spectrum is shown by a solid line in FIG.

耐湿試験:
例1の工程(c)により得られたコア粒子を、るつぼに入れ、例1と同様に耐湿試験を行った。該試験後のコア粒子について、X線回折を測定した。X線回折の結果から、図1に示す該試験前のコア粒子のX線回折と異なることから、該試験後にKCuPOの結晶構造が崩壊していることが確認された。
Moisture resistance test:
The core particles obtained in the step (c) of Example 1 were put in a crucible, and a moisture resistance test was conducted in the same manner as in Example 1. X-ray diffraction was measured for the core particles after the test. From the result of X-ray diffraction, since it is different from the X-ray diffraction of the core particle before the test shown in FIG. 1, it was confirmed that the crystal structure of KCuPO 4 was destroyed after the test.

また、該試験後のコア粒子の拡散反射スペクトル(反射率)を測定した。結果を表2に示す。また、拡散反射スペクトルを図5に破線にて示す。拡散反射スペクトルの結果から、図5に実線で示す該試験前のコア粒子の拡散反射スペクトルと異なり、該試験後は可視光波長範囲の長波長側の反射率が減少し、近赤外線波長領域の反射率が上昇した。すなわち、該試験により、コア粒子の近赤外線吸収特性が損なわれることが示された。   Further, the diffuse reflection spectrum (reflectance) of the core particles after the test was measured. The results are shown in Table 2. Further, the diffuse reflection spectrum is shown by a broken line in FIG. From the result of the diffuse reflectance spectrum, unlike the diffuse reflectance spectrum of the core particle before the test shown by a solid line in FIG. 5, the reflectance on the long wavelength side of the visible light wavelength range decreases after the test, Reflectivity increased. That is, the test showed that the near-infrared absorption characteristics of the core particles were impaired.

分散液、塗膜:
例1の工程(c)により得られたコア粒子を用いて、例1と同様にして近赤外線吸収塗膜を形成した。該近赤外線吸収塗膜について、例1と同様に耐湿試験を行い、試験前後の透過率およびヘーズの変化について比較評価した。結果を表2に示す。
Dispersion, coating:
A near-infrared absorbing coating film was formed in the same manner as in Example 1 using the core particles obtained in the step (c) of Example 1. The near-infrared absorbing coating film was subjected to a moisture resistance test in the same manner as in Example 1, and a comparative evaluation was conducted on changes in transmittance and haze before and after the test. The results are shown in Table 2.

〔例5〕
工程(d)において、マイクロ波の照射を行うことなく、反応液を室温で24時間撹拌した以外は、例1と同様にして近赤外線吸収粒子を得た。透過型電子顕微鏡を用いた観察結果から酸化ケイ素からなるシェルは確認されなかった。
近赤外線吸収粒子についてX線回折を測定した。X線回折の結果から、KCuPOの結晶構造を確認でき、該粒子は、工程(d)を経た後も、実質的にKCuPOの結晶子からなる近赤外線吸収粒子であることが同定された。また、結晶子の大きさを表2に示す。
また、近赤外線吸収粒子の粒子径測定用分散液を調製し、数平均凝集粒子径を測定した。結果を表2に示す。
また、近赤外線吸収粒子の拡散反射スペクトル(反射率)を測定した。結果を表2に示す。また、拡散反射スペクトルを図6に実線にて示す。
[Example 5]
In the step (d), near-infrared absorbing particles were obtained in the same manner as in Example 1 except that the reaction solution was stirred at room temperature for 24 hours without performing microwave irradiation. The shell made of silicon oxide was not confirmed from the observation result using the transmission electron microscope.
X-ray diffraction was measured for the near-infrared absorbing particles. From the result of X-ray diffraction, the crystal structure of KCuPO 4 was confirmed, and it was identified that the particle was a near-infrared absorbing particle substantially composed of a crystallite of KCuPO 4 even after passing through the step (d). . The crystallite size is shown in Table 2.
Also, a dispersion for measuring the particle size of near infrared absorbing particles was prepared, and the number average aggregated particle size was measured. The results are shown in Table 2.
Moreover, the diffuse reflection spectrum (reflectance) of near-infrared absorbing particles was measured. The results are shown in Table 2. Further, the diffuse reflection spectrum is shown by a solid line in FIG.

耐湿試験:
近赤外線吸収粒子を、るつぼに入れ、例1と同様に耐湿試験を行った。該試験後の近赤外線吸収粒子について、拡散反射スペクトル(反射率)を測定した。結果を表2に示す。また、拡散反射スペクトルを図6に破線にて示す。
Moisture resistance test:
Near-infrared absorbing particles were placed in a crucible and subjected to a moisture resistance test in the same manner as in Example 1. About the near-infrared absorption particle | grains after this test, the diffuse reflection spectrum (reflectance) was measured. The results are shown in Table 2. Further, the diffuse reflection spectrum is shown by a broken line in FIG.

分散液、塗膜:
近赤外線吸収粒子を用いて、例1と同様にして近赤外線吸収塗膜を形成した。該近赤外線吸収塗膜について、例1と同様に耐湿試験を行い、試験前後の透過率およびヘーズの変化について比較評価した。結果を表2に示す。
Dispersion, coating:
A near-infrared absorbing coating film was formed in the same manner as in Example 1 using near-infrared absorbing particles. The near-infrared absorbing coating film was subjected to a moisture resistance test in the same manner as in Example 1, and a comparative evaluation was conducted on changes in transmittance and haze before and after the test. The results are shown in Table 2.

Figure 2012193245
Figure 2012193245

Figure 2012193245
Figure 2012193245

本発明の近赤外線吸収粒子は、カメラ用の近赤外線フィルタ、プラズマディスプレイ用の光学フィルタ、車両(自動車等)用のガラス窓、ランプ等の近赤外線吸収塗膜に含まれる近赤外線吸収材として有用である。   The near-infrared absorbing particles of the present invention are useful as near-infrared absorbing materials contained in near-infrared absorbing coatings such as near-infrared filters for cameras, optical filters for plasma displays, glass windows for vehicles (automobiles, etc.), lamps, etc. It is.

Claims (11)

下式(1)で表わされる化合物の結晶子からなるコア粒子と、
該コア粒子の表面を覆う酸化ケイ素を主成分とするシェルと
を有する、近赤外線吸収粒子。
1/nCuPO ・・・(1)。
ただし、Aは、アルカリ金属(Li、Na、K、Rb、Cs)、アルカリ土類金属(Mg、Ca、Sr、Ba)およびNHからなる群から選ばれる1種以上であり、
nは、Aがアルカリ金属またはNHの場合は1であり、Aがアルカリ土類金属の場合は2である。
Core particles composed of crystallites of the compound represented by the following formula (1);
A near-infrared absorbing particle comprising: a shell mainly composed of silicon oxide covering a surface of the core particle.
A 1 / n CuPO 4 (1).
However, A is an alkali metal (Li, Na, K, Rb , Cs), alkaline earth metal and a (Mg, Ca, Sr, Ba ) and one or more selected from the group consisting of NH 4,
n is 1 when A is an alkali metal or NH 4 , and 2 when A is an alkaline earth metal.
X線回折から求めた前記結晶子の大きさが、5〜50nmであり、
前記近赤外線吸収粒子の数平均凝集粒子径が、20〜200nmであり、
前記近赤外線吸収粒子の拡散反射スペクトルにおける波長450nmの反射率が、80%以上である、請求項1に記載の近赤外線吸収粒子。
The size of the crystallite obtained from X-ray diffraction is 5 to 50 nm,
The number-average aggregated particle diameter of the near-infrared absorbing particles is 20 to 200 nm,
The near-infrared absorbing particles according to claim 1, wherein a reflectance at a wavelength of 450 nm in the diffuse reflection spectrum of the near-infrared absorbing particles is 80% or more.
下式(2)で表わされる反射率の変化量Dが、−0.41以下である、請求項1または2に記載の近赤外線吸収粒子。
D(%/nm)=[R700(%)−R600(%)]/[700(nm)−600(nm)] ・・・(2)。
ただし、R700は、近赤外線吸収粒子の拡散反射スペクトルにおける波長700nmの反射率であり、R600は、近赤外線吸収粒子の拡散反射スペクトルにおける波長600nmの反射率である。
The near-infrared absorbing particles according to claim 1 or 2, wherein a change amount D of reflectance represented by the following formula (2) is -0.41 or less.
D (% / nm) = [ R700 (%)- R600 (%)] / [700 (nm) -600 (nm)] (2).
However, R 700 is a reflectance at a wavelength of 700 nm in the diffuse reflection spectrum of the near-infrared absorbing particles, and R 600 is a reflectance at a wavelength of 600 nm in the diffuse reflection spectrum of the near-infrared absorbing particles.
前記近赤外線吸収粒子の拡散反射スペクトルにおける波長715nmの反射率が、19%以下であり、かつ波長500nmの反射率が、85%以上である、請求項1〜3のいずれか一項に記載の近赤外線吸収粒子。   The reflectance at a wavelength of 715 nm in the diffuse reflectance spectrum of the near-infrared absorbing particles is 19% or less, and the reflectance at a wavelength of 500 nm is 85% or more. Near-infrared absorbing particles. 請求項1〜4のいずれかに記載の近赤外線吸収粒子を製造する方法であって、
下記の工程(d)を有する、近赤外線吸収粒子の製造方法。
(d)前記式(1)で表わされる化合物の結晶子からなるコア粒子を、アルコキシシランによって表面処理して、前記コア粒子の表面に酸化ケイ素を主成分とするシェルを形成する工程。
A method for producing near-infrared absorbing particles according to any one of claims 1 to 4,
The manufacturing method of near-infrared absorption particles which has the following process (d).
(D) A step of surface-treating the core particles made of crystallites of the compound represented by the formula (1) with alkoxysilane to form a shell mainly composed of silicon oxide on the surface of the core particles.
前記工程(d)が、下記の工程(d’)である、請求項5に記載の近赤外線吸収粒子の製造方法。
(d’)前記式(1)で表わされる化合物の結晶子からなるコア粒子と、アルコキシシランとを含む液に、マイクロ波を照射して、前記コア粒子の表面に酸化ケイ素を主成分とするシェルを形成する工程。
The method for producing near-infrared absorbing particles according to claim 5, wherein the step (d) is the following step (d ′).
(D ′) A liquid containing core particles composed of crystallites of the compound represented by the formula (1) and alkoxysilane is irradiated with microwaves, and the surface of the core particles is mainly composed of silicon oxide. Forming a shell;
下記の工程(a)〜工程(c)をさらに有する、請求項5または6に記載の近赤外線吸収粒子の製造方法。
(a)溶媒中にて、Cu2+を含む塩と、PO 3−を含む塩または有機物とを、Cu2+に対するPO 3−のモル比(PO 3−/Cu2+)が10〜20となるような割合で、かつAn+(ただし、Aは、アルカリ金属(Li、Na、K、Rb、Cs)、アルカリ土類金属(Mg、Ca、Sr、Ba)およびNHからなる群から選ばれる1種以上であり、nは、Aがアルカリ金属またはNHの場合は1であり、Aがアルカリ土類金属の場合は2である。)の存在下に混合して得られる原料粉末を、分散媒に分散させて原料スラリーを得る工程。
(b)前記工程(a)で得られた原料スラリーを熱プラズマまたは火炎中に導入し、得られた生成物を冷却して粒子を得る工程。
(c)前記工程(b)で得られた粒子を、300〜700℃で熱処理して、前記式(1)で表わされる化合物の結晶子からなるコア粒子を得る工程。
The method for producing near-infrared absorbing particles according to claim 5 or 6, further comprising the following steps (a) to (c).
At (a) in a solvent, a salt containing Cu 2+, a salt or an organic material containing PO 4 3-, PO 4 3- molar ratio with respect to Cu 2+ (PO 4 3- / Cu 2+) 10-20 And A n + (where A is an alkali metal (Li, Na, K, Rb, Cs), alkaline earth metal (Mg, Ca, Sr, Ba) and NH 4 ) 1 or more selected, and n is 1 when A is an alkali metal or NH 4 , and 2 when A is an alkaline earth metal). Is a step of dispersing a raw material in a dispersion medium to obtain a raw material slurry.
(B) A step of introducing particles of the raw material slurry obtained in the step (a) into thermal plasma or flame and cooling the resulting product to obtain particles.
(C) A step of obtaining core particles composed of crystallites of the compound represented by the formula (1) by heat-treating the particles obtained in the step (b) at 300 to 700 ° C.
請求項1〜4のいずれかに記載の近赤外線吸収粒子を分散媒に分散させた、分散液。   The dispersion liquid which disperse | distributed the near-infrared absorption particle in any one of Claims 1-4 to the dispersion medium. 請求項1〜4のいずれかに記載の近赤外線吸収粒子を樹脂に分散させた、樹脂組成物。   The resin composition which disperse | distributed the near-infrared absorption particle in any one of Claims 1-4 to resin. 請求項1〜4のいずれかに記載の近赤外線吸収粒子を含む近赤外線吸収塗膜を、基材の表面に有する、近赤外線吸収塗膜を有する物品。   The article which has a near-infrared absorption coating film which has the near-infrared absorption coating film containing the near-infrared absorption particle in any one of Claims 1-4 on the surface of a base material. 請求項1〜4のいずれかに記載の近赤外線吸収粒子を含む、近赤外線吸収物品。   The near-infrared absorptive article containing the near-infrared absorptive particle in any one of Claims 1-4.
JP2011056926A 2011-03-15 2011-03-15 Near-infrared absorbing particles, manufacturing method thereof, dispersion, resin composition, article having near-infrared absorbing coating film, and near-infrared absorbing article Active JP5673250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056926A JP5673250B2 (en) 2011-03-15 2011-03-15 Near-infrared absorbing particles, manufacturing method thereof, dispersion, resin composition, article having near-infrared absorbing coating film, and near-infrared absorbing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056926A JP5673250B2 (en) 2011-03-15 2011-03-15 Near-infrared absorbing particles, manufacturing method thereof, dispersion, resin composition, article having near-infrared absorbing coating film, and near-infrared absorbing article

Publications (2)

Publication Number Publication Date
JP2012193245A true JP2012193245A (en) 2012-10-11
JP5673250B2 JP5673250B2 (en) 2015-02-18

Family

ID=47085475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056926A Active JP5673250B2 (en) 2011-03-15 2011-03-15 Near-infrared absorbing particles, manufacturing method thereof, dispersion, resin composition, article having near-infrared absorbing coating film, and near-infrared absorbing article

Country Status (1)

Country Link
JP (1) JP5673250B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536269A (en) * 2013-11-11 2016-11-24 ケミスケ ファブリック ブデンヘイム ケージー Doped copper hydroxide (II) phosphate, method for producing the same, and use thereof
GB2579687A (en) * 2019-05-16 2020-07-01 Keeling & Walker Ltd Composition and method
JP2021116212A (en) * 2020-01-28 2021-08-10 住友金属鉱山株式会社 Infrared absorbing fine particle powder, infrared absorbing fine particle powder dispersion, infrared absorbing fine particle dispersion, and manufacturing methods therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207161A (en) * 1993-01-12 1994-07-26 Asahi Glass Co Ltd Improved near infrared light absorbing material and ink using the same
JPH06306349A (en) * 1993-04-23 1994-11-01 Asahi Glass Co Ltd Near-infrared-absorbing material
JPH0753945A (en) * 1993-06-08 1995-02-28 Asahi Glass Co Ltd Near-infrared absorber
JPH0770548A (en) * 1993-09-07 1995-03-14 Asahi Glass Co Ltd Near-infrared-absorbing powder
JP2004231708A (en) * 2003-01-29 2004-08-19 C I Kasei Co Ltd Infrared-cutting composition, infrared-cutting powder, and coating material and molded article made therefrom
JP2006193376A (en) * 2005-01-14 2006-07-27 Sumitomo Metal Mining Co Ltd Surface-coated hexaboride particulate and method for producing the same
JP2008291109A (en) * 2007-05-24 2008-12-04 Sumitomo Metal Mining Co Ltd Infrared shielding microparticle, its manufacturing method, infrared shielding microparticle dispersion, infrared shielding element, and infrared shielding base material
JP2010270217A (en) * 2009-05-21 2010-12-02 Ishihara Sangyo Kaisha Ltd Infrared reflective material, method for producing the same, and paint and resin composition containing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207161A (en) * 1993-01-12 1994-07-26 Asahi Glass Co Ltd Improved near infrared light absorbing material and ink using the same
JPH06306349A (en) * 1993-04-23 1994-11-01 Asahi Glass Co Ltd Near-infrared-absorbing material
JPH0753945A (en) * 1993-06-08 1995-02-28 Asahi Glass Co Ltd Near-infrared absorber
JPH0770548A (en) * 1993-09-07 1995-03-14 Asahi Glass Co Ltd Near-infrared-absorbing powder
JP2004231708A (en) * 2003-01-29 2004-08-19 C I Kasei Co Ltd Infrared-cutting composition, infrared-cutting powder, and coating material and molded article made therefrom
JP2006193376A (en) * 2005-01-14 2006-07-27 Sumitomo Metal Mining Co Ltd Surface-coated hexaboride particulate and method for producing the same
JP2008291109A (en) * 2007-05-24 2008-12-04 Sumitomo Metal Mining Co Ltd Infrared shielding microparticle, its manufacturing method, infrared shielding microparticle dispersion, infrared shielding element, and infrared shielding base material
JP2010270217A (en) * 2009-05-21 2010-12-02 Ishihara Sangyo Kaisha Ltd Infrared reflective material, method for producing the same, and paint and resin composition containing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536269A (en) * 2013-11-11 2016-11-24 ケミスケ ファブリック ブデンヘイム ケージー Doped copper hydroxide (II) phosphate, method for producing the same, and use thereof
GB2579687A (en) * 2019-05-16 2020-07-01 Keeling & Walker Ltd Composition and method
GB2579687B (en) * 2019-05-16 2020-12-30 Keeling & Walker Ltd Composition and method
JP2021116212A (en) * 2020-01-28 2021-08-10 住友金属鉱山株式会社 Infrared absorbing fine particle powder, infrared absorbing fine particle powder dispersion, infrared absorbing fine particle dispersion, and manufacturing methods therefor

Also Published As

Publication number Publication date
JP5673250B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5594293B2 (en) Near-infrared absorbing particles, production method thereof, dispersion liquid and article thereof
JP5589214B2 (en) ITO powder and manufacturing method thereof, coating material for transparent conductive material, and transparent conductive film
JP5629344B2 (en) Tin oxide particles and method for producing the same
JP5673273B2 (en) Near-infrared absorbing particles and production method thereof, dispersion liquid, resin composition, article having near-infrared absorbing coating film and near-infrared absorbing article
JP2010513666A (en) Composites of polymers and metal / metalloid oxide nanoparticles and methods for forming these composites
JP5585812B2 (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding material, method for producing near-infrared shielding material fine particles, and near-infrared shielding material fine particles
JP5454127B2 (en) Optical member and optical filter
Jung et al. Co-doping effect of monovalent alkali metals on optical properties of CeO2: Eu nanophosphor prepared by spray pyrolysis and application for preparing pearlescent pigments with red emission
JP4617499B2 (en) ITO powder and manufacturing method thereof, coating material for transparent conductive material, and transparent conductive film
WO2021153693A1 (en) Electromagnetic wave absorbing particle dispersion, electromagnetic wave absorbing laminate, and electromagnetic wave absorbing transparent substrate
JP5891580B2 (en) Method for producing near-infrared absorbing particles, method for producing dispersion, and method for producing resin composition
JP6468457B2 (en) Titanium oxide particles and method for producing the same
TW201400417A (en) ITO film, ITO powder used in manufacture of the same ITO film, method of manufacturing ITO powder, and method of manufacturing ITO film
JP5673250B2 (en) Near-infrared absorbing particles, manufacturing method thereof, dispersion, resin composition, article having near-infrared absorbing coating film, and near-infrared absorbing article
US20230022949A1 (en) Near-infrared absorbing material particles, near-infrared absorbing material particle dispersing solution, and near-infrared absorbing material particle dispersion
JP5691690B2 (en) Near-infrared absorbing member
JP5344131B2 (en) Ultraviolet shielding material fine particle manufacturing method, ultraviolet shielding material fine particle dispersion, and ultraviolet shielding material
JP2015160759A (en) Transparent electroconductive compound oxide fine powder, production method thereof, and transparent electroconductive film
JP6413969B2 (en) Dispersion for forming solar shading body and solar shading body using the dispersion
JP6949304B2 (en) Masterbatch containing heat ray absorbing component and its manufacturing method, heat ray absorbing transparent resin molded body, and heat ray absorbing transparent laminate
JP2012214337A (en) Boehmite composite particle, and method for producing the same
JP2021028279A (en) Composite tungsten oxide particle
Tolstikova et al. Synthesis and study of nanocrystalline powders for an optical ceramic composed of magnesium aluminate spinel
JP2014214299A (en) Near infrared light-absorbing particle, method for producing the same, fluid dispersion and article thereof
JP7359376B2 (en) Method for manufacturing composite tungsten oxide particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250