JP2012193051A - Method of manufacturing inorganic solid electrolyte - Google Patents

Method of manufacturing inorganic solid electrolyte Download PDF

Info

Publication number
JP2012193051A
JP2012193051A JP2011056169A JP2011056169A JP2012193051A JP 2012193051 A JP2012193051 A JP 2012193051A JP 2011056169 A JP2011056169 A JP 2011056169A JP 2011056169 A JP2011056169 A JP 2011056169A JP 2012193051 A JP2012193051 A JP 2012193051A
Authority
JP
Japan
Prior art keywords
solid electrolyte
inorganic solid
raw material
sulfide
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011056169A
Other languages
Japanese (ja)
Inventor
Shigeo Kondo
繁雄 近藤
Shinya Machida
信也 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2011056169A priority Critical patent/JP2012193051A/en
Publication of JP2012193051A publication Critical patent/JP2012193051A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an inorganic solid electrolyte high in ion conductivity, high in thermal and electrochemical stability, which is expected to be applied to a battery material such as a lithium ion secondary cell etc., an electric storage material such as an electrolysis condenser, an electric double layer capacitor etc. and an electrochemical device such as an indicating element etc.SOLUTION: This method of manufacturing an inorganic solid electrolyte is a method of manufacturing an inorganic solid electrolyte obtainable from an inorganic raw material containing lithium sulfide and other sulfides as essential components, and this method includes a mechanical treating process in which the inorganic raw material is mixed and pulverized and a heat treatment process, and the processes are alternatively repeated more than once.

Description

本発明は無機固体電解質の製造方法に関する。より詳しくはリチウムイオン二次電池およびリチウム一次電池等の電池用材料、電解コンデンサ、電気二重層キャパシタ等の蓄電材料や表示素子等の電気化学デバイスへの応用が期待される無機固体電解質の製造方法に関する。   The present invention relates to a method for producing an inorganic solid electrolyte. More specifically, a method for producing an inorganic solid electrolyte expected to be applied to battery materials such as lithium ion secondary batteries and lithium primary batteries, electric storage materials such as electrolytic capacitors and electric double layer capacitors, and electrochemical devices such as display elements About.

近年、環境問題への関心の高まりを背景に、石油や石炭等の化石燃料から風力や太陽光等の再生可能エネルギーへの転換が進められており、これらから得たエネルギーの貯蔵手段として、電池が注目されている。中でも、繰り返し充放電を行うことができる二次電池は、携帯電話やノートパソコン等の電子機器だけでなく、自動車や航空機等、様々な分野においても使用が広がり、それにつれて各種二次電池や一次電池に用いられる材料について、より性能の向上を目指した研究、開発が行われている。特に、容量が大きく、軽量のリチウムイオン電池については、今後の利用の拡大が更に期待される二次電池であり、最も研究、開発が活発に行われている電池である。
しかし、現在使用されているリチウムイオン二次電池のほとんどは、電池内部に化学的、あるいは電気化学的に反応性の高いリチウムが使われており、更に、引火性、可燃性を有する有機溶媒を電解液に使用している。そのため、実使用時に於いて、高温時や過充電・過放電状態での信頼性に課題を有し、甚だしい時には、発火や破裂爆発のような事態が起こる危険性が秘められている。その結果、現時点では、その安全性を高めることは極めて重要な課題となっている。
こうした技術的要求の流れに対し、無機材料を用いたリチウムイオン伝導性固体電解質材料の研究及びそれを用いた全固体リチウム二次電池の研究開発が盛んとなっている。リチウムイオン伝導性固体電解質は引火性・可燃性がないことに加え、耐熱性や電気化学的な安定性が高いことから研究が進められ、今日では有機電解液に匹敵するイオン伝導度を有する無機固体電解質も得られるようになってきている。中でも、無機固体電解質として、その構成材料に、硫黄原子を含む硫化物系リチウムイオン伝導性固体電解質およびそれを用いた全固体リチウム二次電池の研究が盛んとなっている。この硫化物系無機固体電解質には非晶質系と結晶質系、およびその混合体の存在が知られている。更に、これら材料には、シリコン、ゲルマニウムまたはリンなどの原子を含む系が知られている。
このような無機固体電解質の合成方法としては、溶融急冷法、メカニカルミリング法などが知られている。溶融急冷法では所定の組成となるように混合した材料粉末をガラス状カーボン坩堝にいれ、アルゴン気流中950℃で溶融し反応させた後、液体窒素中に投入して急冷し目的とするガラス化した無機固体電解質を得る方法である。あるいはガラス管中に真空封じしこれを加熱溶融した後、氷水などで急冷する方法である(特許文献1、2)。また、メカニカルミリング法は、合成の為の出発原料を常温常圧下で遊星ボールミルで高速、長時間混合することで、リチウムイオン伝導性が出現し、無機固体電解質を製造する方法である(特許文献2、3、4)。さらに、硫化リチウム系原料を150℃以上、300℃以下の温度、特に高温でボールミルを用いて反応させると比較的短時間でリチウムイオン伝導性固体電解質を得る製法が開示されている(特許文献5)。
In recent years, against the backdrop of growing interest in environmental issues, the shift from fossil fuels such as oil and coal to renewable energy such as wind and solar has been promoted. Is attracting attention. Among them, secondary batteries that can be repeatedly charged and discharged are used not only in electronic devices such as mobile phones and laptop computers, but also in various fields such as automobiles and airplanes. Research and development aimed at improving performance of materials used in batteries are being conducted. In particular, a lithium-ion battery having a large capacity and a light weight is a secondary battery that is expected to expand further in the future, and is a battery that is most actively researched and developed.
However, most of the lithium ion secondary batteries currently in use use lithium that is chemically or electrochemically highly reactive inside the battery, and in addition, flammable and flammable organic solvents are used. Used for electrolyte. Therefore, in actual use, there is a problem in reliability at high temperatures or in an overcharge / overdischarge state, and there is a danger that a situation such as ignition or burst explosion may occur when it is severe. As a result, at the present time, increasing the safety is a very important issue.
In response to these technical demands, research on lithium ion conductive solid electrolyte materials using inorganic materials and research and development on all-solid lithium secondary batteries using the materials have become active. Lithium ion conductive solid electrolytes are not flammable and flammable, and are being researched for their high heat resistance and electrochemical stability, and today they are inorganic materials that have ionic conductivity comparable to organic electrolytes. Solid electrolytes are also being obtained. In particular, as an inorganic solid electrolyte, researches on sulfide-based lithium ion conductive solid electrolytes containing sulfur atoms in their constituent materials and all-solid lithium secondary batteries using the same have been active. It is known that this sulfide-based inorganic solid electrolyte includes an amorphous system, a crystalline system, and a mixture thereof. Furthermore, systems containing atoms such as silicon, germanium or phosphorus are known for these materials.
Known methods for synthesizing such inorganic solid electrolytes include a melt quenching method and a mechanical milling method. In the melt quenching method, the mixed material powder is mixed into a glassy carbon crucible, melted at 950 ° C in an argon stream, reacted, and then quenched into liquid nitrogen for rapid vitrification. This is a method for obtaining an inorganic solid electrolyte. Alternatively, it is a method of vacuum-sealing in a glass tube and heating and melting it, followed by quenching with ice water or the like (Patent Documents 1 and 2). In addition, the mechanical milling method is a method of producing an inorganic solid electrolyte by producing lithium ion conductivity by mixing starting materials for synthesis at high speed for a long time with a planetary ball mill under normal temperature and normal pressure (Patent Literature). 2, 3, 4). Furthermore, a method for producing a lithium ion conductive solid electrolyte in a relatively short time when a lithium sulfide-based raw material is reacted at a temperature of 150 ° C. or higher and 300 ° C. or lower, particularly at a high temperature, using a ball mill is disclosed (Patent Document 5). ).

特開平5−310418号公報JP-A-5-310418 特開2008−103096号公報JP 2008-103096 A 特開2005−228570号公報JP 2005-228570 A 特開2008−4334号公報JP 2008-4334 A 特開平9−303971号公報JP 9-303971 A

しかしながら、溶融急冷法では、無機原料を800℃以上の高温で溶融し、その後急冷するため、工業生産する場合には、特殊な設備が必要である。一方、メカニカルミリング法では、イオン伝導性を高くするには、長時間ミリングする必要があり、且つ、ミリング処理により、ポット容器および用いるボールに合成後の試料が強固に付着し、試料のみを取り出す為にかなりの時間を必要とする為、工業生産には不利である。150℃以上300℃以下の温度でボールミルを用いる反応では、短時間で固体電解質を得られているが、そのイオン伝導度は低いものであった。また高温で混合反応させるには特殊な装置が必要であった。
本発明は、上記現状に鑑みてなされたものであり、高いイオン伝導性、熱的・電気化学的に安定性が高い無機固体電解質の工業的な製造方法を提供することを目的とする。
However, in the melt quenching method, the inorganic raw material is melted at a high temperature of 800 ° C. or higher and then rapidly cooled. Therefore, special equipment is required for industrial production. On the other hand, in the mechanical milling method, in order to increase ion conductivity, it is necessary to perform milling for a long time, and the synthesized sample adheres firmly to the pot container and the balls to be used by the milling process, and only the sample is taken out. This requires a considerable amount of time, which is disadvantageous for industrial production. In the reaction using a ball mill at a temperature of 150 ° C. or higher and 300 ° C. or lower, a solid electrolyte was obtained in a short time, but its ionic conductivity was low. In addition, a special apparatus was required for the mixing reaction at a high temperature.
This invention is made | formed in view of the said present condition, and it aims at providing the industrial manufacturing method of the inorganic solid electrolyte with high ion conductivity and thermal and electrochemical stability high.

本発明は、
(1)硫化リチウムおよびその他の硫化物を必須成分として含む無機材料原料から得られる無機固体電解質の製造方法において、該無機材料原料を混合粉砕する機械的処理工程および加熱処理工程を含み、各工程を交互に複数回繰り返すことを特徴とする、無機固体電解質の製造方法。
(2)加熱処理工程における、加熱処理温度が100〜700℃であり、前記各工程を交互に4回以上繰り返すことを特徴とする(1)の無機固体電解質の製造方法。
(3)無機材料原料の必須成分である硫化リチウムのモル比が、全原料中の45〜90%であることを特徴とする、(1)または(2)の無機固体電解質の製造方法。
に関する。
The present invention
(1) In a method for producing an inorganic solid electrolyte obtained from an inorganic material raw material containing lithium sulfide and other sulfides as essential components, each step includes a mechanical treatment step and a heat treatment step of mixing and grinding the inorganic material raw material. The method for producing an inorganic solid electrolyte is characterized by alternately repeating a plurality of times.
(2) The method for producing an inorganic solid electrolyte according to (1), wherein the heat treatment temperature in the heat treatment step is 100 to 700 ° C., and the respective steps are alternately repeated four times or more.
(3) The method for producing an inorganic solid electrolyte according to (1) or (2), wherein the molar ratio of lithium sulfide, which is an essential component of the inorganic material raw material, is 45 to 90% of the total raw material.
About.

本発明によれば、リチウムイオン伝導性の高い無機固体電解質を短時間で製造する方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the method of manufacturing an inorganic solid electrolyte with high lithium ion conductivity can be provided in a short time.

実施例1で作製した無機固体電解質のXRD測定XRD measurement of the inorganic solid electrolyte produced in Example 1

本発明の無機固体電解質の製造方法は、無機材料原料を混合粉砕する機械的処理工程および加熱処理工程を含み、各工程を交互に複数回繰り返すことを特徴とする。機械的処理工程と加熱処理工程の順番はいずれでも構わないが、加熱処理工程だけでは原料の転化が起こりにくいため機械的処理工程を先に行うことが好ましい。なお、これらの工程は、硫化リチウムが酸素や水と反応性を有するため、窒素やアルゴンなどの不活性乾燥ガス雰囲気下や真空中で反応を行うことが好ましい。   The method for producing an inorganic solid electrolyte of the present invention includes a mechanical treatment step and a heat treatment step for mixing and crushing inorganic material raw materials, and each step is alternately repeated a plurality of times. The order of the mechanical treatment step and the heat treatment step may be any, but it is preferable to perform the mechanical treatment step first because the conversion of the raw material hardly occurs only by the heat treatment step. Note that these steps are preferably performed in an inert dry gas atmosphere such as nitrogen or argon or in a vacuum because lithium sulfide is reactive with oxygen and water.

混合粉砕することにより、硫化リチウムおよびその他の硫化物を必須成分として含む無機材料原料にせん断力を加え原料粒子間で反応が起こり、無機固体電解質に転化することができる。反応温度は、任意の温度で実施できるが、好ましくは50〜150℃の温度でせん断力を加えながら反応させると反応速度が速くなるとともに、せん断力により微細化が進むため反応が促進され高いイオン伝導性の無機固体電解質が得られる。好ましい温度は55〜145℃であり、より好ましくは60℃〜140℃である。   By mixing and pulverizing, a shearing force is applied to an inorganic material raw material containing lithium sulfide and other sulfides as essential components, a reaction occurs between the raw material particles, and it can be converted into an inorganic solid electrolyte. The reaction can be carried out at any temperature, but preferably when the reaction is carried out at a temperature of 50 to 150 ° C. while applying a shearing force, the reaction rate increases and the reaction is promoted because of the refinement due to the shearing force. A conductive inorganic solid electrolyte is obtained. A preferred temperature is 55 to 145 ° C, more preferably 60 to 140 ° C.

機械的処理工程で使用できる装置としては、転動ボールミル、振動ボールミル、遊星ボールミル等のボールミル、螺旋型、リボン型、スクリュー型、高速流動型等の容器固定型混合粉砕機、または、円筒型、双子円筒型、水平円筒型、V型、二重円錐型などの複合型混合粉砕機がある。中でもボールミルによる混合粉砕が好ましい。原料粒子間に強いせん断力が加えることにより、電解質への転化が進み易いためである。中でも振動ボールミルや遊星ボールミルを使うことがより好ましく、振動ボールミルが最も好ましい。反応条件は、使用する機器等により適宜調整すれば良い。
ボールミルでは、用いる容器と容器内に入れるボールの材質、表面積、および回転数が重要となる。容器体積に対する使用するボールの表面積の違いは、原料粒子との接触比率に関係し、ボールの体積比率との関係は原料粒子に加わるせん断力に関係する。従って、表面積比率、体積比率が大きい程、又、回転速度が速いほど、原料粒子間に強い接合界面を形成させ得るものとなる。ポット容積に対する使用するボールの体積比率は5〜60%、好ましくは20〜40%が選定される。使用するボールミルは容器内の温度を特定の温度に保つ為、温度調製手段を備えたものが好ましく、特に制限はないが、温度制御した熱媒を循環可能なジャケットや電熱器等を備えたものが好ましい。
Equipment that can be used in the mechanical treatment process includes ball mills such as rolling ball mills, vibration ball mills, and planetary ball mills, spiral-type, ribbon-type, screw-type, high-speed fluid-type and other container-fixed mixing and grinding machines, or cylindrical types, There are complex type mixing and grinding machines such as twin cylindrical type, horizontal cylindrical type, V type and double cone type. Of these, mixed pulverization by a ball mill is preferable. This is because conversion to an electrolyte easily proceeds by applying a strong shearing force between the raw material particles. Among them, it is more preferable to use a vibration ball mill or a planetary ball mill, and a vibration ball mill is most preferable. The reaction conditions may be appropriately adjusted depending on the equipment used.
In the ball mill, the material to be used, the material of the ball to be put in the container, the surface area, and the rotational speed are important. The difference in the surface area of the balls used with respect to the container volume is related to the contact ratio with the raw material particles, and the relationship with the volume ratio of the balls is related to the shearing force applied to the raw material particles. Therefore, the larger the surface area ratio and volume ratio, and the faster the rotation speed, the stronger the bonding interface can be formed between the raw material particles. The volume ratio of the balls to be used to the pot volume is selected from 5 to 60%, preferably 20 to 40%. The ball mill to be used is preferably equipped with a temperature adjusting means in order to keep the temperature in the container at a specific temperature, and is not particularly limited, but is equipped with a jacket or an electric heater that can circulate a temperature-controlled heating medium. Is preferred.

こうした機械的処理工程を行うことにより、原料粒子間の強い接合界面に固体電解質層が形成され、できた固体電解質層が剥離され易くなり、容器ならびにボール等への強固な付着が起こらず微細状態の無機固体電解質が形成される。回転速度や処理時間は、反応に合わせ適宜調整でき、回転速度は速いほど、処理時間は長いほど原料からの転化率が高くなる。回転速度は、10回転/分以上、好ましくは100回転/分以上、より好ましくは200回転/分以上である。回転速度が速すぎても、摩擦熱により反応温度を制御できなくなる恐れがあるため、上限は1000回転/分以下、好ましくは800回転/分以下、より好ましくは600回転/分以下である。1回の処理時間は0.1〜100時間、より好ましくは0.3〜30時間、さらに好ましくは0.4〜10時間である。複数回に分けて処理する場合は、全処理時間が100時間以内、好ましくは50時間以内が好ましい。   By performing such a mechanical treatment process, a solid electrolyte layer is formed at the strong bonding interface between the raw material particles, the resulting solid electrolyte layer is easily peeled off, and does not cause strong adhesion to containers and balls, etc. An inorganic solid electrolyte is formed. The rotation speed and treatment time can be appropriately adjusted according to the reaction. The faster the rotation speed and the longer the treatment time, the higher the conversion rate from the raw material. The rotation speed is 10 revolutions / minute or more, preferably 100 revolutions / minute or more, more preferably 200 revolutions / minute or more. Since the reaction temperature may not be controlled by frictional heat even if the rotational speed is too high, the upper limit is 1000 revolutions / minute or less, preferably 800 revolutions / minute or less, more preferably 600 revolutions / minute or less. One treatment time is 0.1 to 100 hours, more preferably 0.3 to 30 hours, and further preferably 0.4 to 10 hours. When the treatment is performed in a plurality of times, the total treatment time is preferably within 100 hours, preferably within 50 hours.

本発明の加熱処理工程としては、原料および無機固体電解質が溶融しない温度であれば良い。加熱処理を行うことにより、原料粒子界面の反応が促進され非晶質化が進み、イオン伝導性の無機固体電解質に転化することができ、また無機固体電解質の非晶質の一部または全部を結晶化することができ、イオン伝導性を向上させることができる。加熱処理は、撹拌または混合下でも静置下のどちらでも良いが、好ましくは静置下である。処理温度は好ましくは100〜700℃の範囲である。この範囲の温度で熱処理することにより、原料粒子間の接合界面に無機固体電解質の薄い層を形成させることができる。好ましくは、150〜600℃であり、より好ましくは170〜500℃、さらに好ましくは1800〜400℃である。1回の処理時間は、処理温度により適宜調整すれば良いが.0.5〜24時間が好ましく、1〜12時間がより好ましい。複数回に分けて処理する場合は、全処理時間が100時間以内、好ましくは70時間以内が好ましい。   The heat treatment step of the present invention may be a temperature at which the raw material and the inorganic solid electrolyte are not melted. By performing the heat treatment, the reaction at the raw material particle interface is promoted and amorphization progresses, so that it can be converted into an ion-conductive inorganic solid electrolyte, and a part or all of the amorphous solid electrolyte is partly or entirely. It can be crystallized and ion conductivity can be improved. The heat treatment may be either stirring or mixing or standing, but is preferably standing. The treatment temperature is preferably in the range of 100 to 700 ° C. By performing heat treatment at a temperature within this range, a thin layer of an inorganic solid electrolyte can be formed at the bonding interface between the raw material particles. Preferably, it is 150-600 degreeC, More preferably, it is 170-500 degreeC, More preferably, it is 1800-400 degreeC. The treatment time for one time may be adjusted appropriately depending on the treatment temperature. 0.5 to 24 hours are preferable, and 1 to 12 hours are more preferable. When the treatment is performed in a plurality of times, the total treatment time is preferably within 100 hours, preferably within 70 hours.

機械的処理工程と加熱処理工程の各工程は交互に繰り返すほど、原料の転化が進み非晶質化によりイオン伝導性は向上する。加熱処理工程の後に機械的処理工程を行うことにより、加熱処理工程により原料粒子界面に生成した無機固体電解質の薄い層を剥離させ微細化が進み非晶質状態の無機固体電解質への転化がより進む。そのため交互に繰り返す回数は複数回以上で適宜決めれば良いが、4回以上、好ましくは5回以上、より好ましくは6回以上、さらに好ましくは8回以上である。ここで繰り返し回数とは、機械的処理工程および加熱処理工程のセットを1回とする。また、複数回繰り返した後は機械的処理工程、加熱処理工程のいずれで止めても良い。   As the mechanical treatment step and the heat treatment step are alternately repeated, the conversion of the raw material proceeds and the ionic conductivity is improved by the amorphization. By carrying out the mechanical treatment step after the heat treatment step, the thin layer of the inorganic solid electrolyte formed at the raw material particle interface by the heat treatment step is peeled off, and miniaturization proceeds and the conversion to an amorphous solid electrolyte is more performed. move on. Therefore, the number of times of repeating alternately may be appropriately determined by plural times or more, but is 4 times or more, preferably 5 times or more, more preferably 6 times or more, and further preferably 8 times or more. Here, the number of repetitions means that the set of the mechanical treatment process and the heat treatment process is one. Moreover, after repeating several times, you may stop by either a mechanical treatment process or a heat treatment process.

本発明の製造方法で合成できる無機固体電解質は、硫化リチウムおよびその他の硫化物を必須成分として含む。その他の硫化物としては、硫化リン、硫化ケイ素、硫化ゲルマニウム、硫化アルミニウム、硫化ホウ素、硫化バリウムおよび硫化ガリウムからなる群より選択される少なくとも一種の化合物であることが好ましい。好ましくは硫化リン、硫化アルミニウム、硫化ケイ素、硫化ゲルマニウム、硫化ホウ素である。   The inorganic solid electrolyte that can be synthesized by the production method of the present invention contains lithium sulfide and other sulfides as essential components. The other sulfide is preferably at least one compound selected from the group consisting of phosphorus sulfide, silicon sulfide, germanium sulfide, aluminum sulfide, boron sulfide, barium sulfide and gallium sulfide. Preferred are phosphorus sulfide, aluminum sulfide, silicon sulfide, germanium sulfide, and boron sulfide.

硫化リン、硫化ケイ素、硫化ゲルマニウム、硫化アルミニウム及び硫化ホウ素これらの化合物を具体的に表すと、P、P、P、P、P、P10等の硫化リン、SiS等の硫化ケイ素、GeS等の硫化ゲルマニウム、Al等の硫化アルミニウム、B等の硫化ホウ素が挙げられる。これらの中でも、より好ましくは、硫化リン、硫化ケイ素であり、更に好ましくは硫化リンであり、中でも、Pが特に好ましい。これらの化合物は一種を用いてもよく二種以上を用いてもよい。 Specific examples of phosphorus sulfide, silicon sulfide, germanium sulfide, aluminum sulfide, and boron sulfide include P 2 S 3 , P 2 S 5 , P 4 S 3 , P 4 S 5 , P 4 S 7 , P 4 S 10 phosphosulfurized such as silicon sulfide such SiS 2, germanium sulfide such as GeS 2, aluminum sulfide such as Al 2 S 3, include boron sulfide such as B 2 S 3. Among these, phosphorus sulfide and silicon sulfide are more preferable, and phosphorus sulfide is more preferable. Among them, P 2 S 5 is particularly preferable. These compounds may be used alone or in combination of two or more.

硫化リチウムおよびその他硫化物は必須成分であるが、いずれにも該当しないその他の成分を含んでいてもよい。これら必須成分の割合は、原料全体を100質量%に対して、50質量%以上であることが好ましい。より好ましくは、70質量%以上であり、更に好ましくは、90質量%以上であり、特に好ましくは、95質量%以上であり、最も好ましくは、原料が実質的にこれら必須成分のみからなることである。   Lithium sulfide and other sulfides are essential components, but may contain other components not corresponding to any of them. The ratio of these essential components is preferably 50% by mass or more with respect to 100% by mass of the entire raw material. More preferably, it is 70% by mass or more, more preferably 90% by mass or more, particularly preferably 95% by mass or more, and most preferably, the raw material consists essentially of these essential components. is there.

本発明では、硫化リチウムおよびその他硫化物を必須成分とするが、必須成分中の硫化リチウムのモル比が、45〜90%であることが好ましく、より好ましくは60〜80%である。ここで、上記硫化リチウムは、硫黄元素とリチウム元素とを1:2(モル比)で含むものであれば特に限定されるものではなく、化合物である硫化リチウムを用いてもよく、硫黄と金属リチウムとを1:2(モル比)となるように別々に加えても差し支えない。同様にその他の化合物についても、それぞれの構成元素を対応する組成比で加えることも差し支えない。   In the present invention, lithium sulfide and other sulfides are essential components, and the molar ratio of lithium sulfide in the essential components is preferably 45 to 90%, more preferably 60 to 80%. Here, the lithium sulfide is not particularly limited as long as it contains sulfur element and lithium element at 1: 2 (molar ratio), and lithium sulfide as a compound may be used. Lithium may be added separately so that the molar ratio is 1: 2. Similarly, for other compounds, the respective constituent elements may be added at the corresponding composition ratios.

また、上記その他の成分は特に制約は無いが、例えば酸化アルミニウム、酸化リン、酸化ケイ素や酸化チタン等の無機酸化物類;天然黒鉛、人造黒鉛、非晶質炭素、カーボンファイバーやフラーレン等の無機炭素類;銅、ニッケル、ガリウム、ゲルマニウム、インジウム、スズ等の金属類、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレンオキシド、ポリエチレングリコール、ポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリアセチレン、ポリアニリン等の有機物類;等から選ばれる物質を上げることができる。   The above-mentioned other components are not particularly limited. For example, inorganic oxides such as aluminum oxide, phosphorus oxide, silicon oxide and titanium oxide; inorganic such as natural graphite, artificial graphite, amorphous carbon, carbon fiber and fullerene Carbons: Metals such as copper, nickel, gallium, germanium, indium, tin, organic substances such as polyvinylidene fluoride, polytetrafluoroethylene, polyethylene oxide, polyethylene glycol, polyphenylene sulfide, polyethylene terephthalate, polyacetylene, polyaniline, etc. The substance chosen can be raised.

本発明の好ましい原料組成として、例えば硫化リチウムと硫化リン(P)のモル比を70:30で用いた場合、得られた無機固体電解質は、ラマン分光測定からLiPSとLiのユニットが共存し、これらの相が1:1の割合で共存するイオン伝導体が形成され、優れたイオン伝導度が発現していると考えられる。 As a preferable raw material composition of the present invention, for example, when a molar ratio of lithium sulfide to phosphorus sulfide (P 2 S 5 ) is used at 70:30, the obtained inorganic solid electrolyte is obtained from Li 3 PS 4 and Li 3 by Raman spectroscopy. 4 P 2 S 7 units coexist, and an ionic conductor in which these phases coexist at a ratio of 1: 1 is formed, and it is considered that excellent ionic conductivity is expressed.

本発明では、原料を粉砕し、50μm以下、好ましくは30μm、更に好ましくは10μm以下にまで小粒径化するとともに、反応前に均一に混合することが好ましい。これにより、反応時間を短縮し、また、得られる硫化物リチウム系無機固体電解質も小粒径化でき、接触面積が増えることにより特性の振れを小さくすることができる。   In the present invention, it is preferable that the raw materials are pulverized to reduce the particle size to 50 μm or less, preferably 30 μm, more preferably 10 μm or less, and to mix uniformly before the reaction. As a result, the reaction time can be shortened, the obtained sulfide lithium-based inorganic solid electrolyte can be reduced in particle size, and the fluctuation in characteristics can be reduced by increasing the contact area.

本発明の無機固体電解質は、イオン伝導性を有していれば、その結晶状態については特に限定されるものではないが、非晶質の一部または全部をリチウムイオン伝導性の高い結晶質に転化しても良い。非晶質から結晶質への転化は、ガラス転移温度付近の温度による熱処理をさらに組み合わせることにより達成でき、このような加熱処理工程をさらに含んでも良い。このような熱処理温度は、180〜400℃であり、好ましくは200〜350℃である。   As long as the inorganic solid electrolyte of the present invention has ionic conductivity, its crystalline state is not particularly limited, but part or all of the amorphous state is made crystalline with high lithium ion conductivity. It may be converted. The conversion from amorphous to crystalline can be achieved by further combining heat treatment at a temperature near the glass transition temperature, and may further include such a heat treatment step. Such a heat treatment temperature is 180 to 400 ° C, preferably 200 to 350 ° C.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を意味するものとする。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples. Unless otherwise specified, “parts” means “parts by weight”.

酸素や水分の影響を防ぐため、原料の秤量や混合等の操作は、不活性ガス雰囲気下で雰囲気を管理し、露点を−50℃以下に制御したグローブボックス内で行った。また測定に際して、グローブボックスから取り出す際には、密閉状態で取り出した。測定の際は、次の条件で行った。
[ラマンスペクトル測定]
NRS−3100(日本分光社製)を用いて、下記の条件で測定した。
励起波長532nm、露光時間10秒、積算回数10回
[XRD(X線回折)分析]
X線回折装置は理学電気(株)ローターフレックスRU−200B回転陰極型強力X線装置を使用し、加速電圧40kV、管電流200mAで発生させたCuKα線(λ=1.5418Å)、測定範囲2θ=10〜80°、ステップ間隔0.02°で測定した。得られたデータはピークサーチ処理を行い、同定した。
[ペレット作成]
乳鉢で十分すり潰した無機固体電解質120mgを内径10mmの金型に計り取り、均一に充填した後プレス機にかけ、3.8t/cmで加圧成型した。
[イオン伝導度]
作成したペレットをIn電極で挟み込み、E4980A(Agilent社)を用い、複素インピーダンス法にて測定した。
In order to prevent the influence of oxygen and moisture, operations such as weighing and mixing of raw materials were performed in a glove box in which the atmosphere was controlled under an inert gas atmosphere and the dew point was controlled to -50 ° C or lower. In addition, when taking out from the glove box, it was taken out in a sealed state. The measurement was performed under the following conditions.
[Raman spectrum measurement]
It measured on condition of the following using NRS-3100 (made by JASCO Corporation).
Excitation wavelength 532 nm, exposure time 10 seconds, integration 10 times [XRD (X-ray diffraction) analysis]
The X-ray diffractometer uses a Rotorflex RU-200B rotating cathode type strong X-ray apparatus, Rigaku Denki Co., Ltd., CuKα ray (λ = 1.5418Å) generated at an acceleration voltage of 40 kV and a tube current of 200 mA, and measurement range 2θ. Measured at 10-80 ° and a step interval of 0.02 °. The obtained data was identified by performing a peak search process.
[Pellet making]
120 mg of an inorganic solid electrolyte sufficiently ground in a mortar was weighed into a mold having an inner diameter of 10 mm, uniformly filled, then applied to a press machine, and pressure molded at 3.8 t / cm 2 .
[Ionic conductivity]
The prepared pellets were sandwiched between In electrodes and measured by a complex impedance method using E4980A (Agilent).

(実施例1)
硫化リチウム(LiS)33部、硫化リン(P)67部をグローブボックス中で秤量し、これをメノウ乳鉢で10分間粉砕、混合した後、粉砕用アルミナボールと共に遊星ボールミル用ステンレスポット内に充填、密封し、グローブボックスから取り出し、遊星ボールミルを用いて370回転/分で、0.5時間混合粉砕した。その際の内温は60℃であった。次いでメノウ乳鉢で10分間粉砕、混合した後、210℃で6時間熱処理した。この操作を繰り返しガラス状無機固体電解質を得た。途中25℃でイオン伝導度を測定した。機械的処理工程および加熱処理工程を5回繰り返したときのイオン伝導率は測定限界以下であった。以後各工程のイオン伝導率を表1に示す。各工程を交互に繰り返し8回で9.5×10−5S/cm、さらに機械的処理を行った結果1.1×10−4S/cmのイオン伝導率を示した。また、加熱処理工程と機械的処理工程を繰り返すことによる結晶相の変化を確認する為、実施例1の無機固体電解質について、XRD分析を行った結果を図1に示す。図1から、原料に由来する結晶性のピーク(2θが25〜30°および45°)は、加熱処理工程と機械的処理工程を繰り返すにつれ小さくなり、8回後には、ほぼ消えて非晶質となっていることがわかる。
Example 1
33 parts of lithium sulfide (Li 2 S) and 67 parts of phosphorus sulfide (P 2 S 5 ) were weighed in a glove box, pulverized and mixed for 10 minutes in an agate mortar, and then mixed with alumina balls for pulverization and stainless steel for planetary ball mills. The pot was filled and sealed, removed from the glove box, and mixed and ground for 0.5 hour at 370 rpm using a planetary ball mill. The internal temperature at that time was 60 ° C. Next, the mixture was pulverized and mixed in an agate mortar for 10 minutes, and then heat treated at 210 ° C. for 6 hours. This operation was repeated to obtain a glassy inorganic solid electrolyte. In the middle, the ionic conductivity was measured at 25 ° C. The ionic conductivity when the mechanical treatment step and the heat treatment step were repeated five times was below the measurement limit. Table 1 shows the ionic conductivity of each step thereafter. Each step was alternately repeated 8 times, and 9.5 × 10 −5 S / cm and further mechanical treatment showed an ionic conductivity of 1.1 × 10 −4 S / cm. Moreover, in order to confirm the change of the crystal phase by repeating a heat treatment process and a mechanical treatment process, the result of having performed the XRD analysis about the inorganic solid electrolyte of Example 1 is shown in FIG. From FIG. 1, the crystallinity peak (2θ of 25 to 30 ° and 45 °) derived from the raw material becomes smaller as the heat treatment process and the mechanical treatment process are repeated, and after 8 times, it almost disappears and becomes amorphous. It turns out that it is.

Figure 2012193051
Figure 2012193051

*MMはメカニカルミリング(遊星ボールミルによる)を表す
(比較例1)
実施例1の加熱処理を行わない以外は同様の操作を行った。遊星ボールミルを用いて370回転/分で、0.5時間混合粉砕を8回繰り返し無機固体電解質のイオン伝導度を測定したがイオン伝導性は発現しなかった。
* MM represents mechanical milling (by planetary ball mill) (Comparative Example 1)
The same operation was performed except that the heat treatment of Example 1 was not performed. The ionic conductivity of the inorganic solid electrolyte was measured by repeating the mixed pulverization for 8 hours at 370 rpm using a planetary ball mill, but the ionic conductivity was not expressed.

(比較例2)
実施例1の遊星ボールミルを行わない以外は同様の操作を行った。すなわち、210℃で36時間熱処理した。得られた無機固体電解質のイオン伝導度を測定したがイオン伝導性は発現しなかった。
(Comparative Example 2)
The same operation was performed except that the planetary ball mill of Example 1 was not performed. That is, heat treatment was performed at 210 ° C. for 36 hours. Although the ionic conductivity of the obtained inorganic solid electrolyte was measured, the ionic conductivity was not expressed.

本発明の無機固体電解質の製造方法は、比較的短時間で高いイオン電導度の無機固体電解質を合成でき、また得られた無機固体電解質は、安全性、電気化学的な安定性が高く、優れたイオン伝導性を発揮することから、電池材料として適用でき、電解コンデンサ、電気二重層キャパシタ、表示素等の電気化学デバイスへの適用や蓄電材料としての適用が期待されるものであり、中でも、近年様々な分野への使用が拡大し、高い安全性と優れた電気特性とが要求されるリチウム二次電池の材料として好適に用いることができるものである The method for producing an inorganic solid electrolyte of the present invention is capable of synthesizing an inorganic solid electrolyte with high ionic conductivity in a relatively short time, and the obtained inorganic solid electrolyte is excellent in safety and electrochemical stability. It can be applied as a battery material, and is expected to be applied to electrochemical devices such as electrolytic capacitors, electric double layer capacitors, display elements, and storage materials. In recent years, the use in various fields has expanded, and it can be suitably used as a material for lithium secondary batteries that require high safety and excellent electrical characteristics.

Claims (3)

硫化リチウムおよびその他の硫化物を必須成分として含む無機材料原料から得られる無機固体電解質の製造方法において、該無機材料原料を混合粉砕する機械的処理工程および加熱処理工程を含み、各工程を交互に複数回繰り返すことを特徴とする、無機固体電解質の製造方法。 In a method for producing an inorganic solid electrolyte obtained from an inorganic material raw material containing lithium sulfide and other sulfides as essential components, the method includes a mechanical treatment step and a heat treatment step for mixing and grinding the inorganic material raw material. A method for producing an inorganic solid electrolyte, which is repeated a plurality of times. 加熱処理工程における、加熱処理温度が100〜700℃であり、前記各工程を交互に4回以上繰り返すことを特徴とする請求項1記載の無機固体電解質の製造方法。 2. The method for producing an inorganic solid electrolyte according to claim 1, wherein the heat treatment temperature in the heat treatment step is 100 to 700 ° C., and the steps are alternately repeated four times or more. 無機材料原料の必須成分である硫化リチウムのモル比が、全原料中の45〜90%であることを特徴とする、前記請求項1または2に記載の無機固体電解質の製造方法。 3. The method for producing an inorganic solid electrolyte according to claim 1, wherein the molar ratio of lithium sulfide, which is an essential component of the inorganic material raw material, is 45 to 90% of the total raw material.
JP2011056169A 2011-03-15 2011-03-15 Method of manufacturing inorganic solid electrolyte Withdrawn JP2012193051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056169A JP2012193051A (en) 2011-03-15 2011-03-15 Method of manufacturing inorganic solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056169A JP2012193051A (en) 2011-03-15 2011-03-15 Method of manufacturing inorganic solid electrolyte

Publications (1)

Publication Number Publication Date
JP2012193051A true JP2012193051A (en) 2012-10-11

Family

ID=47085341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056169A Withdrawn JP2012193051A (en) 2011-03-15 2011-03-15 Method of manufacturing inorganic solid electrolyte

Country Status (1)

Country Link
JP (1) JP2012193051A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093454A (en) * 2012-11-05 2014-05-19 Ngk Insulators Ltd All-solid type electric double layer capacitor
WO2016017714A1 (en) * 2014-07-31 2016-02-04 富士フイルム株式会社 All-solid secondary battery, and method for manufacturing inorganic solid electrolyte particles, solid electrolyte composition, electrode sheet for batteries, and all-solid secondary battery
JP2017117639A (en) * 2015-12-24 2017-06-29 出光興産株式会社 Sulfide solid electrolyte, sulfide glass, electrode mixture, and lithium ion battery
JP2019071210A (en) * 2017-10-10 2019-05-09 古河機械金属株式会社 Method for manufacturing inorganic material
JP7245269B2 (en) 2016-09-21 2023-03-23 古河機械金属株式会社 Method for producing sulfide-based inorganic solid electrolyte material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093454A (en) * 2012-11-05 2014-05-19 Ngk Insulators Ltd All-solid type electric double layer capacitor
WO2016017714A1 (en) * 2014-07-31 2016-02-04 富士フイルム株式会社 All-solid secondary battery, and method for manufacturing inorganic solid electrolyte particles, solid electrolyte composition, electrode sheet for batteries, and all-solid secondary battery
US10763542B2 (en) 2014-07-31 2020-09-01 Fujifilm Corporation All solid-state secondary battery, inorganic solid electrolyte particles, solid electrolyte composition, electrode sheet for battery, and method for manufacturing all solid-state secondary battery
US11817548B2 (en) 2014-07-31 2023-11-14 Fujifilm Corporation All solid-state secondary battery, inorganic solid electrolyte particles, solid electrolyte composition, electrode sheet for battery, and method for manufacturing all solid-state secondary battery
JP2017117639A (en) * 2015-12-24 2017-06-29 出光興産株式会社 Sulfide solid electrolyte, sulfide glass, electrode mixture, and lithium ion battery
JP7245269B2 (en) 2016-09-21 2023-03-23 古河機械金属株式会社 Method for producing sulfide-based inorganic solid electrolyte material
JP2019071210A (en) * 2017-10-10 2019-05-09 古河機械金属株式会社 Method for manufacturing inorganic material

Similar Documents

Publication Publication Date Title
Li et al. A review on current anode materials for rechargeable Mg batteries
US10033067B2 (en) All-solid-state secondary cell
JP5957144B2 (en) Sulfide-based solid electrolyte for lithium-ion battery
CA2969193C (en) Ionic conductor and method for producing the same
JP5158008B2 (en) All solid battery
CN105050976B (en) The manufacture method of sulfide solid electrolyte material, lithium solid state battery and sulfide solid electrolyte material
KR101506109B1 (en) Sulfide solid electrolyte material, lithium solid-state battery, and method for producing sulfide solid electrolyte material
Luo et al. Fast, green microwave-assisted synthesis of single crystalline Sb2Se3 nanowires towards promising lithium storage
CN109641805B (en) Sulfide solid electrolyte
JP5594253B2 (en) Sulfide solid electrolyte material, lithium solid battery, and method for producing sulfide solid electrolyte material
KR20110055635A (en) Process for producing whole solid type lithium battery
JP6984652B2 (en) Method for producing a solid electrolyte having Li3PS4
JP2017168449A (en) Solid electrolyte material for lithium ion battery, solid electrolyte for lithium ion battery, and lithium ion battery
JP2017021965A (en) Lithium solid electrolyte
JP6118521B2 (en) Electrode layer including sulfide-based solid electrolyte, electrolyte layer including sulfide-based solid electrolyte, and all-solid-state battery using the same
JP6310713B2 (en) Solid electrolyte material, lithium ion battery, and method for producing solid electrolyte material
WO2020181848A1 (en) Solid electrolyte and preparation method thereof, and electrochemical device and electronic device comprising same
JP2014038755A (en) Manufacturing method of sulfide solid electrolytic material
JP2012193051A (en) Method of manufacturing inorganic solid electrolyte
WO2020254314A1 (en) Lithium-ion conducting haloboro-oxysulfides
US20210300773A1 (en) IONIC CONDUCTOR CONTAINING HIGH-TEMPERATURE PHASE OF LiCB9H10, METHOD FOR MANUFACTURING SAME, AND SOLID ELECTROLYTE FOR ALL-SOLID-STATE BATTERY CONTAINING SAID ION CONDUCTOR
JP2011181495A (en) Inorganic electrolyte and lithium secondary battery using the same
JP2014049361A (en) Solid electrolyte material for lithium ion battery, solid electrolyte for lithium ion battery, lithium ion battery, and method for producing solid electrolyte material for lithium ion battery
CN112864461B (en) Method for producing sulfide solid electrolyte material
JP6062308B2 (en) Solid electrolyte material for lithium ion battery, solid electrolyte for lithium ion battery, lithium ion battery, and method for producing solid electrolyte material for lithium ion battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131212

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603