JP2012192513A - Surface coated cutting tool excellent in peel resistance and wear resistance - Google Patents

Surface coated cutting tool excellent in peel resistance and wear resistance Download PDF

Info

Publication number
JP2012192513A
JP2012192513A JP2011097775A JP2011097775A JP2012192513A JP 2012192513 A JP2012192513 A JP 2012192513A JP 2011097775 A JP2011097775 A JP 2011097775A JP 2011097775 A JP2011097775 A JP 2011097775A JP 2012192513 A JP2012192513 A JP 2012192513A
Authority
JP
Japan
Prior art keywords
layer
cutting
oxynitride layer
coated
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011097775A
Other languages
Japanese (ja)
Inventor
Hiroaki Kakinuma
宏彰 柿沼
Koichi Tanaka
耕一 田中
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011097775A priority Critical patent/JP2012192513A/en
Publication of JP2012192513A publication Critical patent/JP2012192513A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cutting tool the hard coated layer of which exhibits peel resistance and chipping resistance in a wet cutting process of a hard difficult-to-cut material such as a Ti based alloy.SOLUTION: In the cutting tool, an oxynitride layer of Ti and Al having an average layer thickness of 0.5 to 3.4 μm is coated on the outermost surface of a tool base, and a nitride layer of Ti and Al having an average layer thickness of 0.8 to 4.0 μm is coated on the lower layer. The oxynitride layer has a porous form having minute pores distributed with a meandering path from the surface toward the depth direction and when it is assumed that the diameter of a circle inscribed in a minute pore when the oxynitride layer is observed from the surface is the pore diameter of the minute pore, the pore diameter of the minute power is 0.1 to 1.5 μm, the specific surface area of the oxynitride layer is 0.4 to 1.0 m/g and the area ratio of the minute pore opening to the area on a substrate when the oxynitride layer is observed from the surface is 0.05 to 0.3.

Description

本発明は、湿式切削条件において硬質被覆層の表面に潤滑性とすぐれた放熱性を有する多孔質形状酸窒化物層を備えるため、特に各種のNi系合金やTi系合金などの高熱を発する硬質難削材の切削を行った場合にも、高熱が発生しにくく、溶着が発生することによる硬質被覆層の剥離を抑制し、長期に亘ってすぐれた耐剥離性と耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   Since the present invention includes a porous oxynitride layer having heat dissipation and excellent lubricity on the surface of the hard coating layer under wet cutting conditions, particularly hard materials that generate high heat such as various Ni-based alloys and Ti-based alloys. Even when cutting difficult-to-cut materials, a surface that is hard to generate high heat, suppresses the peeling of the hard coating layer due to the occurrence of welding, and exhibits excellent peeling resistance and chipping resistance over a long period of time The present invention relates to a coated cutting tool (hereinafter referred to as a coated tool).

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving and shouldering of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

また、高速度工具鋼、超硬合金またはサーメットなどで構成された工具基体の表面に、最上層の膜厚が0.1〜1.5μmの範囲にあり、幅が0.1〜10.0μmレベルのポアを持つ被覆層が形成された切削工具が知られている。   Further, on the surface of the tool base made of high-speed tool steel, cemented carbide or cermet, the film thickness of the uppermost layer is in the range of 0.1 to 1.5 μm, and the width is 0.1 to 10.0 μm. A cutting tool having a coating layer having a level of pores is known.

さらに、前記従来被覆工具は、アークイオンプレーティング法でTiNまたはTiAlNを成膜した後、最上層を膜厚で0.1〜1.5μmだけ成膜し、反応ガスNにArを加えることにより最上層表面に形成されるドロップレットから飛び出した溶融粒子であるTiの金属を、超微細なアルミナ粉またはジルコニア細粉を含む研磨剤をアークイオンプレーティング表面に対し圧力(0.5〜2)×10Pa程度で弱く吹き付けるブラスト処理(研掃処理)を行い、または、超微細なダイヤ砥粒をアークイオンプレーティング表面に対しブラスト処理を行うエアロラップで溶融粒子であるTiの金属の除去を行い、表面上に幅が0.1〜10.0μm程度で深さ0.1〜1.5μmのレベルのポアを持つ被覆膜を形成することにより製造されることも知られている。 Further, in the conventional coated tool, after TiN or TiAlN is formed by an arc ion plating method, the uppermost layer is formed by a thickness of 0.1 to 1.5 μm, and Ar is added to the reaction gas N 2. The Ti metal, which is a molten particle popping out from the droplet formed on the surface of the uppermost layer, is applied to an abrasive containing ultrafine alumina powder or zirconia fine powder with a pressure (0.5-2) against the arc ion plating surface. ) Perform a blasting process (abrasion process) that blows weakly at about 10 5 Pa, or an aero lap that blasts the surface of the arc ion plating with ultrafine diamond abrasive grains. Manufactured by forming a coating film having a pore with a level of about 0.1 to 10.0 μm and a depth of 0.1 to 1.5 μm on the surface. It is also known to be.

特開2005−153072号公報JP 2005-153072 A

近年の切削加工装置の高性能化および自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化し、かつ被削材の種類に限定されない汎用性のある被覆工具が強く望まれる傾向にあるが、前記従来被覆工具においては、これをAl-Si系合金などの硬質難削材の切削加工を行った場合には長寿命を示すものの、これを熱伝導率が低く、切削時に工具刃先に熱が留まりやすい、各種のNi系合金やTi系合金などの硬質難削材の高速切削加工を行った場合には、切削時に発生するきわめて高い発熱による工具刃先への溶着が起きやすく、これを原因として、硬質被覆層の剥離が起こり、チッピングしてしまうため、比較的短時間にて使用寿命に至るのが現状である。   The performance and automation of cutting machines in recent years have been remarkable. On the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting. Accordingly, cutting speed has been increased and types of work materials have been increased. There is a tendency that a general-purpose coated tool that is not limited to the above is strongly desired. However, in the conventional coated tool, when a hard difficult-to-cut material such as an Al-Si alloy is cut, a long life is obtained. Although shown, this occurs during cutting when high-speed cutting of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys, where heat conductivity is low and heat tends to stay at the tool edge during cutting. As a result, welding to the tool edge is likely to occur due to extremely high heat generation, and due to this, the hard coating layer is peeled off and chipped, so that the service life is reached in a relatively short time.

そこで、本発明者らは、前述のような観点から、前記の硬質難削材の高速切削加工において硬質被覆層がすぐれた耐剥離性、耐チッピング性を発揮する被覆工具を開発すべく、鋭意研究を行った結果、次のような知見を得た。   In view of the above, the present inventors have earnestly developed a coated tool that exhibits excellent peeling resistance and chipping resistance with a hard coating layer in high-speed cutting of the hard difficult-to-cut materials. As a result of the research, the following findings were obtained.

まず、従来被覆工具(特許文献1)においては、TiN層またはTiAlN層をアークイオンプレーティング法で成膜しており、これをAl-Si系合金などの硬質難削材などの切削加工に用いた場合には特段の問題も生じないが、これを特に各種のNi系合金やTi系合金などの硬質難削材の高速切削加工に用いた場合には、切削油の保持効果が十分でないことに起因するきわめて高い発熱によって溶着が生じ、その溶着による硬質被覆層の剥離が起こることを突き止めた。   First, in the conventional coated tool (Patent Document 1), a TiN layer or a TiAlN layer is formed by an arc ion plating method, and this is used for cutting hard difficult-to-cut materials such as Al-Si alloys. However, when this is used for high-speed cutting of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys, the retention effect of the cutting oil is not sufficient. It was ascertained that welding was caused by extremely high heat generation caused by the phenomenon, and that the hard coating layer was peeled off due to the welding.

そこで、本発明者らは、溶着発生が起こりにくく、かつ、高い切削油保持効果を有するTiAlNO層組織に着目して研究を行ったところ、TiAlN層を成膜するに当たり、特許文献1に示されるように単純にアークイオンプレーティング法で成膜するのではなく、アークイオンプレーティング法によりTiAlNの硬質皮膜を成膜後、アシストガンを用い特定の条件にて酸素プラズマ処理を行い、硬質被覆層表面に正の電荷を蓄えやすい絶縁体である薄い酸化膜を形成させ、基体とその周辺に形成されたプラズマ中酸素陰イオンまたは電子を媒介としたアーク放電に起因する絶縁破壊を起こすことにより、蛇行経路を持って分布する微細孔を有するTiAlNO層を表面層に形成でき、このようにして得られた硬質被覆層は、各種のNi系合金やTi系合金などの硬質難削材の高速切削加工においても、表面組織がポーラスであること及び微細孔形状に起因した高い切削油保持効果から、発熱しにくく、溶着も生じにくいTiAlNO層を成膜し得ることを見出したのである。   Therefore, the present inventors conducted research with a focus on the TiAlNO layer structure that hardly causes the occurrence of welding and has a high cutting oil retention effect. As shown in Patent Document 1, the TiAlN layer is formed. The film is not simply formed by the arc ion plating method, but a hard coating of TiAlN is formed by the arc ion plating method, and then an oxygen plasma treatment is performed under specific conditions using an assist gun to form a hard coating layer. By forming a thin oxide film that is an insulator that easily stores positive charges on the surface, and causing dielectric breakdown due to arc discharge mediated by oxygen anions or electrons in the plasma formed around the substrate and its surroundings, A TiAlNO layer having micropores distributed along a meandering path can be formed on the surface layer, and the hard coating layer thus obtained can be used for various Ni Even in high-speed cutting of hard difficult-to-cut materials such as alloys and Ti-based alloys, a TiAlNO layer that hardly generates heat and does not easily weld due to the porous surface structure and the high cutting oil retention effect due to the fine hole shape It was found that a film can be formed.

具体的に言うならば、図1に、アークイオンプレーティング装置の概略平面図を示すが、アークイオンプレーティング装置にTi−Al合金からなるカソード電極(蒸発源)を配置し、装置内雰囲気を、Ar雰囲気にし、アーク放電を行って、反応ガスとしてNを導入し硬質皮膜を成膜後、アシストガンを用い、放電電圧130V、フィラメント電流36A、コイル電流16A、バイアス電圧100Vにて酸素プラズマ処理を行うと、湿式切削において高い切削油保持効果を有し、放熱効率が大きく向上する多孔質形状を有する酸窒化物層を上層に形成できるため、切削時に発生する高い発熱による溶着を生じにくくし、溶着による被膜の剥離を抑制することができる。 Specifically, FIG. 1 shows a schematic plan view of an arc ion plating apparatus. A cathode electrode (evaporation source) made of a Ti—Al alloy is arranged in the arc ion plating apparatus, and the atmosphere in the apparatus is changed. In an Ar atmosphere, arc discharge is performed, N 2 is introduced as a reaction gas to form a hard film, and an oxygen plasma is generated using an assist gun with a discharge voltage of 130 V, a filament current of 36 A, a coil current of 16 A, and a bias voltage of 100 V. When the treatment is performed, it is possible to form an oxynitride layer having a porous shape that has a high cutting oil retention effect in wet cutting and greatly improves heat dissipation efficiency, so that it is difficult to cause welding due to high heat generated during cutting. And peeling of the film by welding can be suppressed.

それにより、この結果の被覆工具は、特に著しい高熱発生を伴う各種のNi系合金やTi系合金などの硬質難削材の湿式高速切削において、上層にはすぐれた切削油剤の保油性、放熱性、耐溶着性を有する酸窒化物層、及び下層には酸素プラズマ未処理部に相当するすぐれた耐摩耗性を有する窒化物層が両立することにより、特に、溶着に起因する硬質被覆層の剥離が抑制されることで、すぐれた耐剥離性と耐摩耗性を長期に亘って発揮するようになる、ということを見出したのである。   As a result, the coated tool of this result has excellent oil retention and heat dissipation of the cutting fluid that is excellent in the upper layer in wet high-speed cutting of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys with particularly high heat generation In addition, since the oxynitride layer having welding resistance and the nitride layer having excellent wear resistance corresponding to the untreated portion of the oxygen plasma are compatible with each other, particularly, the hard coating layer is peeled off due to welding. It has been found that by suppressing the above, excellent peeling resistance and wear resistance can be exhibited over a long period of time.

本発明は、前記知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の最表面に(Ti1−XAl)(N1−Y)(ただし、原子比で、Xは0.40〜0.75を示し、Yは0.1〜0.4を示す。)を満足し、0.5〜3.4μmの平均層厚を有するTiとAlの酸窒化物層、下部層に(Ti1−XAl)N(ただし、原子比で、Xは0.40〜0.75を示す。)を満足し、0.8〜4.0μmの平均層厚を有するTiとAlの窒化物層を被覆してなる切削工具であって、
前記酸窒化物層は表面から深さ方向に蛇行経路を持って分布する微細孔を有する多孔質形状を備え、前記酸窒化物層を表面から観察した際の微細孔に内接する円の直径を微細孔の孔径とした場合、微細孔の孔径は0.1〜1.5μmであり、
前記酸窒化物層の比表面積が0.4〜1.0m/gであり、
前記酸窒化物層を表面から観察した場合の基材上面積に対する前記微細孔開口部の面積比が0.05〜0.3であることを特徴とする表面被覆切削工具。」に特徴を有するものである。
The present invention has been made based on the above findings,
“(Ti 1−X Al X ) (N 1−Y O Y ) (wherein the atomic ratio, X is 0.40 to 0.40) on the outermost surface of the tool base made of tungsten carbide based cemented carbide or titanium carbonitride based cermet 0.75 and Y represents 0.1 to 0.4), and an Ti and Al oxynitride layer having an average layer thickness of 0.5 to 3.4 μm, and (Ti 1-X Al X ) N (wherein X is 0.40 to 0.75 in atomic ratio) and Ti and Al nitride having an average layer thickness of 0.8 to 4.0 μm A cutting tool coated with a layer,
The oxynitride layer has a porous shape having micropores distributed in a depth direction from the surface, and has a diameter of a circle inscribed in the micropores when the oxynitride layer is observed from the surface. In the case of the fine pore diameter, the fine pore diameter is 0.1 to 1.5 μm,
The specific surface area of the oxynitride layer is 0.4 to 1.0 m 2 / g,
The surface-coated cutting tool, wherein an area ratio of the micropore opening to an area on the base material when the oxynitride layer is observed from the surface is 0.05 to 0.3. ”.

つぎに、本発明の被覆工具について、詳細に説明する。
最表面の多孔質形状を有するTiとAlの酸窒化物層の組成:
多孔質形状を有する表面酸窒化物層の窒素と酸素の合量に占める平均酸素含有割合Y(ただし、原子比)は、0.1以下であると切削中に形成される潤滑性を向上させる酸化物が十分に形成せず、0.4以上であると酸化物が多く形成してしまい、組織がもろくなる、もしくは大量の酸素の固溶により組織の格子ひずみが大きくなり、壊れやすくなることから、酸窒化物層の平均酸素含有割合Yを0.1〜0.4と定めた。
Next, the coated tool of the present invention will be described in detail.
Composition of Ti and Al oxynitride layer having outermost porous shape:
When the average oxygen content ratio Y (however, the atomic ratio) in the total amount of nitrogen and oxygen of the surface oxynitride layer having a porous shape is 0.1 or less, the lubricity formed during cutting is improved. If the oxide is not formed sufficiently, if it is 0.4 or more, a large amount of oxide is formed and the structure becomes brittle, or the lattice strain of the structure increases due to the solid solution of a large amount of oxygen, and the structure becomes fragile. Therefore, the average oxygen content ratio Y of the oxynitride layer was determined to be 0.1 to 0.4.

また、TiとAlの合量に占めるAlの含有割合X(ただし、原子比)は、0.40未満であるとTiN格子中TiサイトへのAl置換が与える格子歪みに起因する高い硬度及び酸化保護膜による耐酸化性が得られず、0.75以上であると十分な硬さを有さない六方晶構造酸窒化物が形成し、所望の高温靭性、高温強度が得られないことから、Alの含有割合Xを0.40〜0.75と定めた。
最表面の多孔質形状を有するTiとAlの酸窒化物層の平均層厚:
炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の最表面に形成するTiAlNO層は、その平均層厚が0.5μm未満では、十分な切削油剤保持効果が得られず、一方、その平均層厚が3.4μmを越えると、Ni系合金やTi系合金などの硬質難削材の高速切削では溶着に起因する剥離は抑制できるが、切刃部のチッピングが発生し易くなることから、その平均層厚を0.5〜3.4μmと定めた。
下部層の窒化物層の組成:
下部層を構成するTiとAlの窒化物層のTiとAlの合量に占めるAlの含有割合X(ただし、原子比)は、0.40未満であるとTiN格子中TiサイトへのAl置換が与える格子歪みに起因する高い硬度及び切削中に形成する緻密な酸化保護膜による耐酸化性が得られず、0.75以上であると十分な硬さを有さない六方晶構造窒化物が形成し、所望の高温靭性、高温強度が得られないことから、Alの含有割合Xを0.40〜0.75と定めた。
窒化物層の平均層厚:
プラズマ未処理部に相当する窒化物層は、その平均層厚が0.8μm未満では、窒化物層が有する耐摩耗性を発揮することができず、一方、その平均層厚が4.0μmを超えると切刃部のチッピングが発生し易くなることから、その平均層厚を0.8〜4.0μmと定めた。
微細孔の形状と孔径:
酸窒化物層が有する微細孔は、球状の微細孔ではなく酸窒化物層の表面から深さ方向に蛇行経路を有する形状を成している。そして、酸窒化物層を表面から観察した際の微細孔に内接する円の直径を微細孔の孔径とした場合、平均孔径が0.1μm未満では、十分な量の切削油剤が保持しにくくなり、一方、その平均孔径が1.5μmを超えると毛細管現象による切削油剤の保持効果が小さくなるとともに、組織が切削時の負荷に耐えられず破壊することから、その平均孔径を0.1〜1.5μmと定めた。
比表面積:
比表面積、すなわち単位重量あたりの面積が0.4m/g以下であると、十分な切削油剤を保持するための毛管力を与える表面積が十分でないため、高い発熱による溶着が起きやすくなり、剥離してしまう。また、1.0m/g以上を満たすものは、微細孔の孔径が非常に小さく、微細孔の数は多いものであり、耐摩耗性に乏しい酸窒化物層となることから組織が破壊してしまう。また、油剤保持量が少なくなってしまうことから、酸窒化物層の比表面積を0.4〜1.0m/gと定めた。なお、ここでいう比表面積とは、基材上単位面積における酸窒化物層の重量を酸素プラズマ処理により変形したプラズマ処理前の硬質被覆層の重量と同一であると仮定し、原子間力顕微鏡により測定した表面積を前記仮定した重量で除した値である。
Further, when the Al content ratio X (however, the atomic ratio) in the total amount of Ti and Al is less than 0.40, high hardness and oxidation due to lattice distortion caused by Al substitution to Ti sites in the TiN lattice. Since the oxidation resistance by the protective film is not obtained, a hexagonal structure oxynitride that does not have sufficient hardness is formed if it is 0.75 or more, and the desired high-temperature toughness and high-temperature strength cannot be obtained. The Al content ratio X was set to 0.40 to 0.75.
Average layer thickness of Ti and Al oxynitride layers having the outermost porous shape:
The TiAlNO layer formed on the outermost surface of the tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, when the average layer thickness is less than 0.5 μm, a sufficient cutting oil retaining effect cannot be obtained, If the average layer thickness exceeds 3.4 μm, peeling due to welding can be suppressed in high-speed cutting of hard difficult-to-cut materials such as Ni-based alloys and Ti-based alloys, but chipping of the cutting edge portion is likely to occur. Therefore, the average layer thickness was determined to be 0.5 to 3.4 μm.
The composition of the lower nitride layer:
When the Al content ratio X (however, the atomic ratio) in the total amount of Ti and Al of the Ti and Al nitride layer constituting the lower layer is less than 0.40, Al substitution to Ti sites in the TiN lattice The hexagonal structure nitride which does not have sufficient hardness due to the high hardness resulting from the lattice strain imparted by the material and the oxidation resistance due to the dense oxidation protective film formed during cutting, and does not have sufficient hardness when it is 0.75 or more Since the desired high-temperature toughness and high-temperature strength were not obtained, the Al content ratio X was determined to be 0.40 to 0.75.
Average layer thickness of nitride layer:
When the average layer thickness of the nitride layer corresponding to the plasma unprocessed portion is less than 0.8 μm, the wear resistance of the nitride layer cannot be exhibited, while the average layer thickness is 4.0 μm. If it exceeds, chipping of the cutting edge portion is likely to occur, so the average layer thickness was set to 0.8 to 4.0 μm.
Micropore shape and hole diameter:
The micropores of the oxynitride layer are not spherical micropores but have a shape having a meandering path in the depth direction from the surface of the oxynitride layer. When the diameter of the circle inscribed in the micropores when the oxynitride layer is observed from the surface is the pore size of the micropores, if the average pore size is less than 0.1 μm, it is difficult to hold a sufficient amount of cutting fluid. On the other hand, if the average pore diameter exceeds 1.5 μm, the retention effect of the cutting fluid due to capillary action is reduced, and the structure breaks without being able to withstand the load during cutting. .5 μm.
Specific surface area:
When the specific surface area, that is, the area per unit weight is 0.4 m 2 / g or less, there is not enough surface area to provide a capillary force for holding a sufficient cutting fluid, so that welding due to high heat generation is likely to occur and peeling. Resulting in. In addition, those satisfying 1.0 m 2 / g or more have a very small pore diameter and a large number of micropores, and the oxynitride layer having poor wear resistance results in destruction of the structure. End up. Moreover, since the oil agent holding | maintenance amount will decrease, the specific surface area of the oxynitride layer was determined to be 0.4-1.0 m < 2 > / g. Here, the specific surface area is assumed to be the same as the weight of the hard coating layer before the plasma treatment in which the weight of the oxynitride layer in the unit area on the base material is deformed by the oxygen plasma treatment, and an atomic force microscope. Is the value obtained by dividing the surface area measured by the above-mentioned assumed weight.

さらに、先行技術に開示されているような従来の球状に近い微細孔では、重量および表面積を両立させることはできず、本発明に特有な毛細管現象による切削油剤保持効果を奏することができない。   Furthermore, conventional fine pores close to a sphere as disclosed in the prior art cannot achieve both weight and surface area, and cannot provide the cutting oil retaining effect due to the capillary phenomenon unique to the present invention.

すなわち、従来は、ドロップレットの機械的・科学的な除去や硬質皮膜内部に炭素化合物を析出させ、溶解させるなどの方法で微細孔を作製しているが、これらの方法では球状および球に近い形状の孔しか作製できない。しかし、本発明によれば、深さ方向に曲がりながら分布している細長形の微細孔を作製できるため、表面積が大きく、孔径が小さいことに起因する切削油剤の高い保持効果により、従来技術の微細孔より切削寿命の延長効果が期待できる。   That is, in the past, micropores were created by mechanical and scientific removal of droplets or by depositing and dissolving carbon compounds inside the hard coating, but these methods are spherical and nearly spherical. Only holes with a shape can be made. However, according to the present invention, since elongated fine holes distributed while bending in the depth direction can be produced, the high retention effect of the cutting fluid due to the large surface area and small hole diameter, The effect of extending the cutting life can be expected from the fine holes.

一般に、毛細管現象により円柱管に液体を保持した際の液面の高さは管の内径が小さいほど高くなることが知られており、それゆえに内径が小さいほど切削油剤を保持する量は高くなる。しかし、球状および球に近い形状の孔しか作製できなければ球状の孔の内径と体積は単純増加の関係にあるので、切削油剤を保持する十分な力と保持する十分な量を両立できない。   Generally, it is known that the height of the liquid level when a liquid is held in a cylindrical tube by capillarity becomes higher as the inner diameter of the tube is smaller. Therefore, the smaller the inner diameter is, the higher the amount of holding the cutting fluid is. . However, if only spherical and sphere-like holes can be produced, the inner diameter and volume of the spherical holes are in a simple increase relationship, so that it is impossible to achieve both a sufficient force for holding the cutting fluid and a sufficient amount for holding.

つまり、従来技術では、切削油剤をとどめるための毛細管現象による効果は低く、切削油剤の保持が十分にできない。
酸窒化物層を表面から観察した場合の基材上面積に対する前記微細孔開口部の面積比:
微細孔開口部の面積比が小さいと切削油剤の保持効果が小さくなる。一方、大きいと組織が切削時の負荷に耐えられず破壊する。そこで、酸窒化物層を表面から観察した場合の基材上面積に対する前記微細孔開口部の面積比を0.05〜0.3と定めた。
That is, in the prior art, the effect of the capillary action for retaining the cutting fluid is low, and the cutting fluid cannot be sufficiently retained.
Area ratio of the micropore opening to the area on the substrate when the oxynitride layer is observed from the surface:
If the area ratio of the fine hole openings is small, the retention effect of the cutting fluid is reduced. On the other hand, if the size is large, the structure cannot withstand the load during cutting and breaks. Therefore, the area ratio of the micropore opening to the area on the base material when the oxynitride layer is observed from the surface is determined to be 0.05 to 0.3.

本発明の被覆工具の製造方法を次に説明する。   Next, a method for manufacturing the coated tool of the present invention will be described.

前述のような硬質被覆層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング(AIP)装置に基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、装置内に所定組成のTi−Al合金からなるカソード電極(蒸発源)を配置し、アノード電極とカソード電極(蒸発源)との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記基体には、例えば、−100Vのバイアス電圧を印加した条件で蒸着することによってTiAlNからなる硬質皮膜を成膜する。その後、アシストプラズマガンを用い、例えば、放電電圧130V、フィラメント電流36A、コイル電流16A、Ar導入ガス15ml/min.、O導入ガス30ml/min.、バイアス電圧100Vにて酸素プラズマ処理を行い、硬質被覆層表面に正の電荷を蓄えやすい絶縁体である薄い酸化膜を形成させ、基体とその周辺に形成されたプラズマ中の酸素陰イオンまたは電子を媒介としたアーク放電に起因する絶縁破壊を起こすことにより、上層には蛇行経路を持って分布する微細孔を有する酸窒化物層、下層には酸素プラズマ未処理部に相当する窒化物層からなる硬質被覆層を作製することができる。この時、放電電圧、フィラメント電流、バイアスが大きいとアーク放電が強くなり、微細孔が深く、孔径も大きくなる。 The hard coating layer as described above is, for example, charged in an arc ion plating (AIP) apparatus, which is one type of physical vapor deposition apparatus schematically shown in FIG. A cathode electrode (evaporation source) made of a Ti—Al alloy having a predetermined composition is placed in the apparatus while being heated to a temperature of 500 ° C., and, for example, a current flows between the anode electrode and the cathode electrode (evaporation source). : An arc discharge was generated under the condition of 90 A, and simultaneously nitrogen gas was introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of, for example, 2 Pa. On the other hand, a bias voltage of, for example, −100 V was applied to the substrate. A hard film made of TiAlN is formed by vapor deposition under conditions. Thereafter, using an assist plasma gun, for example, a discharge voltage of 130 V, a filament current of 36 A, a coil current of 16 A, an Ar introduction gas of 15 ml / min. , O 2 introduced gas 30 ml / min. Then, oxygen plasma treatment is performed at a bias voltage of 100 V to form a thin oxide film that is an insulator that easily stores positive charges on the surface of the hard coating layer, and oxygen anions or electrons in the plasma formed around the substrate and its periphery. By causing dielectric breakdown caused by arc discharge mediated by oxynitride, the upper layer is formed from an oxynitride layer having fine holes distributed with meandering paths, and the lower layer is formed from a nitride layer corresponding to an oxygen plasma untreated portion. The hard coating layer which becomes can be produced. At this time, if the discharge voltage, filament current, and bias are large, the arc discharge becomes strong, the fine holes are deep, and the hole diameter is also large.

本発明の被覆工具は、硬質被覆層に酸素雰囲気中でプラズマ処理を行うことにより、被膜の表面が微細孔を有する酸窒化物層に改質するために、湿式切削において酸窒化物層に切削油剤が浸透し、切削油剤への放熱効率が大きく向上するため、切削時に発生するきわめて高い発熱による溶着を生じにくく、溶着による被膜の剥離を抑制することができる。また、表面層に酸素を含有させることで、切削時における低摩擦係数を有する酸化物の形成を促し、微細孔に入り込んでくる切りくず等の排出性を向上させ、酸窒化物層の耐摩耗性が向上し、長期にわたって多孔質形状が保持されるとともに、バランスよく酸窒化物層と窒化物層を両立させることができるため、Ti合金などの高熱を発する湿式切削条件において、高熱が発生することによる溶着剥離が抑制され寿命延長の効果が奏される。   In the coated tool of the present invention, the hard coating layer is subjected to plasma treatment in an oxygen atmosphere, so that the surface of the coating is modified to an oxynitride layer having micropores. Since the oil penetrates and the heat radiation efficiency to the cutting oil is greatly improved, welding due to extremely high heat generated during cutting hardly occurs, and peeling of the film due to welding can be suppressed. Also, by adding oxygen to the surface layer, it promotes the formation of oxides with a low coefficient of friction during cutting, improves the evacuation of chips and the like that enter the fine holes, and wear resistance of the oxynitride layer As a result, the porous shape is maintained over a long period of time, and the oxynitride layer and the nitride layer can be compatible with each other in a well-balanced manner, so that high heat is generated in wet cutting conditions that generate high heat such as Ti alloys. As a result, the welding peeling is suppressed, and the effect of extending the life is exhibited.

本発明の被覆工具の硬質被覆層を成膜するのに用いたアークイオンプレーティング(AIP)装置の概略平面図である。It is a schematic plan view of the arc ion plating (AIP) apparatus used for forming the hard coating layer of the coated tool of the present invention. 本発明被覆チップ16の酸窒化物層の表面組織の走査型電子顕微鏡写真(倍率:1000倍)を示す。A scanning electron micrograph (magnification: 1000 times) of the surface texture of the oxynitride layer of the coated chip 16 of the present invention is shown.

つぎに、本発明による被覆工具およびその製造方法を、実施例により具体的に説明する。   Next, the coated tool and the manufacturing method thereof according to the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のスローアウエイチップ形状をもったWC基超硬合金製の工具基体A−1〜A−8を形成した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle diameter of 1 to 3 μm are prepared. , Blended in the composition shown in Table 1, wet-mixed for 72 hours in a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa, and the green compact was vacuumed at 6 Pa, temperature: 1400 ° C. WC-based cemented carbide tool with ISO standard and CNMG120408 throwaway tip shape after sintering under the condition of holding for 1 hour, and then performing honing of R: 0.03 on the cutting edge part after sintering Bases A-1 to A-8 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のスローアウエイチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。
(a)ついで、前記工具基体A−1〜A−8およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)として硬質被覆層形成用のTi−Al合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極のTi−Al合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に(Ti,Al)N層を蒸着形成した後、カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)ついで、装置内のアシストガンを用い、放電電圧130V、フィラメント電流36A、コイル電流16A、Ar導入ガス15ml/min.、O導入ガス30ml/min.、バイアス電圧100Vにて酸素プラズマ処理を行うことにより、同じく表3に示される目標層厚を有し所定の微細孔、平均酸素含有量を有する多孔質形状を有する酸窒化物層を硬質被覆層の表面に形成し、
ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具1〜18(以下、本発明チップ1〜18という)をそれぞれ製造した。
In addition, as raw material powders, all of TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The tool bases B-1 to B-6 made of TiCN base cermet having the shape of the throwaway tip were formed.
(A) Next, each of the tool bases A-1 to A-8 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. It is mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the inner rotary table, and is used for forming a hard coating layer as a cathode electrode (evaporation source) on opposite sides across the rotary table. Ti-Al alloy is placed,
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied and a current of 100 A is passed between the cathode electrode and the anode electrode to generate an arc discharge, thereby bombarding the tool substrate surface,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the Ti—Al alloy of the cathode electrode and the anode electrode to generate an arc discharge, and a (Ti, Al) N layer is deposited on the surface of the tool base, and then the cathode electrode (evaporation source) ) And the anode discharge between the anode electrode and
(D) Next, using an assist gun in the apparatus, a discharge voltage of 130 V, a filament current of 36 A, a coil current of 16 A, an Ar introduction gas of 15 ml / min. , O 2 introduced gas 30 ml / min. By performing the oxygen plasma treatment at a bias voltage of 100 V, the hard coating layer is formed from the oxynitride layer having the porous layer shape having the predetermined layer thickness and the average oxygen content with the target layer thickness shown in Table 3 Formed on the surface of
The present invention coated tools 1 to 18 (hereinafter referred to as the present invention chips 1 to 18) each having a throwaway tip shape defined in ISO / CNMG120408 were manufactured.

比較の目的で、前記工具基体A−1〜A−8およびB−1〜B−6のそれぞれを、本発明と同様な方法でボンバード洗浄し、
ついで、装置内に反応ガスとして、窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極のTi−Al合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表4に示される目標組成、目標層厚の単層としてのTiAlN層を蒸着形成した後、窒素ガスにArガスを添加してTi金属ドロップレットを形成させたTiAlN層を成膜し、ブラスト処理によりTi金属を除去することにより、
ISO・CNMG120408に規定するスローアウエイチップ形状の比較例被覆工具1〜14(以下、比較例チップ1〜14という)をそれぞれ製造した。
For the purpose of comparison, each of the tool bases A-1 to A-8 and B-1 to B-6 is bombarded by the same method as the present invention,
Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and the cathode electrode A current of 120 A is passed between the Ti-Al alloy and the anode electrode to generate an arc discharge, and a TiAlN layer as a single layer having a target composition and target layer thickness shown in Table 4 is deposited on the surface of the tool base. After forming, forming a TiAlN layer formed by adding Ar gas to nitrogen gas to form Ti metal droplets, and removing Ti metal by blasting,
Comparative example coated tools 1 to 14 (hereinafter, referred to as comparative example chips 1 to 14) having a throwaway tip shape defined in ISO · CNMG120408 were manufactured, respectively.

なお、参考のため、図1に示される本発明被覆チップ1〜18を製造した装置と同じ装置で、本発明被覆チップ1〜18と異なる組成、膜厚、アシストプラズマガン条件で成膜することにより、表4に示されるISO・CNMG120408に規定するスローアウエイチップ形状の参考被覆工具(以下、参考被覆チップという)1〜4をそれぞれ製造した。   For reference, the same apparatus as the apparatus for manufacturing the coated chips 1 to 18 of the present invention shown in FIG. 1 is used, and the film is formed with a composition, film thickness, and assist plasma gun conditions different from those of the coated chips 1 to 18 of the present invention. Thus, reference coated tools (hereinafter referred to as reference coated chips) 1 to 4 having a throwaway tip shape defined in ISO · CNMG120408 shown in Table 4 were produced.

つぎに、本発明チップ1〜18の硬質被覆層及び参考被覆チップ1〜4について、走査型電子顕微鏡による断面測定を行い、酸窒化物層の膜厚、窒化物層の膜厚、を求めた。また、走査型電子顕微鏡により表面から観察した場合の微細孔に内接する円の直径を微細孔の孔径として求めた。さらに、基材上単位面積における酸窒化物層の表面積を原子間力顕微鏡により測定するとともに、基材上単位面積における酸窒化物層の重量を酸素プラズマ処理により変形したプラズマ処理前の硬質被覆層の重量と同一であると仮定したうえで求め、比表面積を求めた。さらに、前記酸窒化物層を表面から走査型電子顕微鏡により観察し、その基材上単位面積に存在する前記微細孔開口部の面積を求め、面積比とした。   Next, about the hard coating layer of this invention chip | tip 1-18 and the reference coating | coated chips 1-4, the cross-sectional measurement by a scanning electron microscope was performed, and the film thickness of the oxynitride layer and the film thickness of the nitride layer were calculated | required. . Further, the diameter of a circle inscribed in the fine hole when observed from the surface with a scanning electron microscope was obtained as the hole diameter of the fine hole. Further, the surface area of the oxynitride layer in the unit area on the substrate is measured by an atomic force microscope, and the weight of the oxynitride layer in the unit area on the substrate is deformed by oxygen plasma treatment before the hard coating layer before the plasma treatment The specific surface area was determined on the assumption that the weight was the same as the weight of. Further, the oxynitride layer was observed from the surface with a scanning electron microscope, and the area of the micropore opening existing in a unit area on the substrate was determined to obtain an area ratio.

これらの測定値を表3、表4に示す。   These measured values are shown in Tables 3 and 4.

また、比較例チップ1〜14の硬質被覆層について、走査型電子顕微鏡による断面測定を行い、硬質被覆層全体の膜厚、ポアの位置する深さを求めた。また、走査型電子顕微鏡によりポアに内接する円の直径をポアの幅とした場合のポアの幅を求めた。
これらの測定値を表4に示す。
Moreover, about the hard coating layer of the comparative example chips | tips 14-14, the cross-sectional measurement by a scanning electron microscope was performed, and the film thickness of the whole hard coating layer and the depth in which a pore is located were calculated | required. Further, the width of the pore was determined when the diameter of the circle inscribed in the pore was taken as the width of the pore by a scanning electron microscope.
These measured values are shown in Table 4.

また、本発明チップ1〜18、比較例チップ1〜14及び参考被覆チップ1〜4の硬質被覆層を構成する耐摩耗硬質層の組成を、電子線マイクロアナライザー(EPMA)により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   Moreover, when the composition of the wear-resistant hard layer constituting the hard coating layer of the present invention chips 1 to 18, comparative example chips 1 to 14 and reference coated chips 1 to 4 was measured by an electron beam microanalyzer (EPMA), respectively. The composition was substantially the same as the target composition.

さらに、前記硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the hard coating layer was subjected to cross-sectional measurement using a scanning electron microscope, all of them showed an average value (average value of five locations) substantially the same as the target layer thickness.

つぎに、前記の各種被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明チップ1〜18、比較例チップ1〜14及び参考被覆チップ1〜4について、
被削材:質量%で、Ti−6%Al−4%V合金の丸棒、
切削速度:140m/min.、
切り込み:1.0mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件(切削条件Aという)でのTi系合金の湿式高速切削加工試験(通常の切削速度および送りは、それぞれ、120m/min.、0.2mm/rev.)を行い、切刃の逃げ面摩耗幅を測定した。
Next, in the state where all the above-mentioned various coated chips are screwed to the tip of the tool steel tool with a fixing jig, the present chips 1 to 18, the comparative chips 1 to 14 and the reference coated chips 1 to 1 are used. For 4,
Work material: Ti-6% Al-4% V alloy round bar by mass%,
Cutting speed: 140 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
Wet high-speed cutting test (normal cutting speed and feed are 120 m / min. And 0.2 mm / rev., Respectively) of Ti-based alloy under the above conditions (referred to as cutting condition A), and the flank face of the cutting blade The wear width was measured.

この測定結果を表5に示した。   The measurement results are shown in Table 5.

Figure 2012192513
Figure 2012192513

Figure 2012192513
Figure 2012192513

Figure 2012192513
Figure 2012192513

Figure 2012192513
Figure 2012192513

Figure 2012192513
表5に示される結果から、優れた耐摩耗性を有する窒化物層に加え、蛇行経路を持って分布する微細孔を有する酸窒化物層がすぐれた切削油剤の保油性と耐溶着性を有する本発明被覆工具は、各種のNi系合金やTi系合金などの硬質難削材の高熱発生を伴う高速切削で、すぐれた耐剥離性と耐摩耗性を発揮する。
Figure 2012192513
From the results shown in Table 5, in addition to the nitride layer having excellent wear resistance, the oxynitride layer having fine pores distributed with meandering paths has excellent oil retention and welding resistance of the cutting fluid. The coated tool of the present invention exhibits excellent peeling resistance and wear resistance in high-speed cutting accompanied by high heat generation of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys.

これに対して、従来被覆工具では、表5に示されるように、酸窒化物層を構成する微細孔が蛇行経路を持って分布していないため切削油剤の保油性に劣り、硬質難削材の高熱発生を伴う高速切削条件で硬質被覆層の剥離を抑制することができず、耐摩耗性に劣る。   On the other hand, in the conventional coated tool, as shown in Table 5, since the fine holes constituting the oxynitride layer are not distributed with meandering paths, the oil retaining property of the cutting fluid is inferior, and hard difficult-to-cut materials The peeling of the hard coating layer cannot be suppressed under high-speed cutting conditions accompanied by the generation of high heat, and the wear resistance is poor.

なお、前記実施例では、スローアウエイチップを用いて硬質被覆層の性能を評価したが、ドリルやミニチュアドリル、エンドミルなどでも同様の結果が得られることはいうまでもない。   In the above embodiment, the performance of the hard coating layer was evaluated using a throwaway tip, but it goes without saying that the same result can be obtained with a drill, a miniature drill, an end mill, or the like.

前述のように、本発明の被覆工具およびその製造方法によれば、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高い発熱を伴う前記硬質難削材の高速切削加工でもすぐれた耐剥離性と耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化および自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, according to the coated tool and the manufacturing method thereof of the present invention, not only cutting under normal cutting conditions such as various steels and cast irons, but also high speeds of the hard difficult-to-cut materials with particularly high heat generation. Since it exhibits excellent peeling resistance and wear resistance even in cutting processing, and exhibits excellent cutting performance over a long period of time, higher performance and automation of cutting equipment, and labor saving and energy saving of cutting processing In addition, it can cope with the cost reduction sufficiently satisfactorily.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の最表面に(Ti1−XAl)(N1−Y)(ただし、原子比で、Xは0.40〜0.75を示し、Yは0.1〜0.4を示す。)を満足し、0.5〜3.4μmの平均層厚を有するTiとAlの酸窒化物層、下部層に(Ti1−XAl)N(ただし、原子比で、Xは0.40〜0.75を示す。)を満足し、0.8〜4.0μmの平均層厚を有するTiとAlの窒化物層を被覆してなる切削工具であって、
前記酸窒化物層は表面から深さ方向に蛇行経路を持って分布する微細孔を有する多孔質形状を備え、前記酸窒化物層を表面から観察した際の微細孔に内接する円の直径を微細孔の孔径とした場合、微細孔の孔径は0.1〜1.5μmであり、
前記酸窒化物層の比表面積が0.4〜1.0m/gであり、
前記酸窒化物層を表面から観察した場合の基材上面積に対する前記微細孔開口部の面積比が0.05〜0.3であることを特徴とする表面被覆切削工具。
(Ti 1-X Al X ) (N 1-Y O Y ) (wherein atomic ratio, X is 0.40 to 0) on the outermost surface of the tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet .75 and Y represents 0.1 to 0.4), and an Ti and Al oxynitride layer having an average layer thickness of 0.5 to 3.4 μm, and (Ti 1 -X Al X ) N (wherein X is 0.40 to 0.75 in atomic ratio), and a Ti and Al nitride layer having an average layer thickness of 0.8 to 4.0 μm A cutting tool coated with
The oxynitride layer has a porous shape having micropores distributed in a depth direction from the surface, and has a diameter of a circle inscribed in the micropores when the oxynitride layer is observed from the surface. In the case of the fine pore diameter, the fine pore diameter is 0.1 to 1.5 μm,
The specific surface area of the oxynitride layer is 0.4 to 1.0 m 2 / g,
The surface-coated cutting tool, wherein an area ratio of the micropore opening to an area on the base material when the oxynitride layer is observed from the surface is 0.05 to 0.3.
JP2011097775A 2011-02-28 2011-04-26 Surface coated cutting tool excellent in peel resistance and wear resistance Withdrawn JP2012192513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097775A JP2012192513A (en) 2011-02-28 2011-04-26 Surface coated cutting tool excellent in peel resistance and wear resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011041471 2011-02-28
JP2011041471 2011-02-28
JP2011097775A JP2012192513A (en) 2011-02-28 2011-04-26 Surface coated cutting tool excellent in peel resistance and wear resistance

Publications (1)

Publication Number Publication Date
JP2012192513A true JP2012192513A (en) 2012-10-11

Family

ID=47084917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097775A Withdrawn JP2012192513A (en) 2011-02-28 2011-04-26 Surface coated cutting tool excellent in peel resistance and wear resistance

Country Status (1)

Country Link
JP (1) JP2012192513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013005437A1 (en) 2013-03-29 2014-10-02 Empa Hard material layers with selected thermal conductivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013005437A1 (en) 2013-03-29 2014-10-02 Empa Hard material layers with selected thermal conductivity
US9869015B2 (en) 2013-03-29 2018-01-16 Oerlikon Surface Solutions Ag, Pfäffikon Hard material layers with selected thermal conductivity

Similar Documents

Publication Publication Date Title
JP5488824B2 (en) Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3928480B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2009125832A (en) Surface-coated cutting tool
JP5196122B2 (en) Surface coated cutting tool
JP4702535B2 (en) Cutting tool made of high-speed tool steel with a surface coating that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2012192513A (en) Surface coated cutting tool excellent in peel resistance and wear resistance
JP4535249B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting
JP4706918B2 (en) Surface coated high speed tool steel cutting tool with excellent chipping resistance in high speed heavy cutting of difficult-to-cut materials
JP2005028474A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2007307691A (en) Surface coated cutting tool with hard coated layer exhibiting excellent abrasion resistance in high speed cutting work
JP2007007765A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of high-hardness steel
JP2007307690A (en) Surface-coated cutting tool having hard coating layer exhibiting superior wear resistance during high speed cutting operation
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP5077743B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP4697659B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2009095916A (en) Surface-coated cutting tool
JP4211509B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2007105843A (en) Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut
JP2007007742A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of high-hardness steel
JP3962913B2 (en) A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting
JP4379912B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701