JP2012192450A - Method of manufacturing metallic double pipe - Google Patents

Method of manufacturing metallic double pipe Download PDF

Info

Publication number
JP2012192450A
JP2012192450A JP2012039917A JP2012039917A JP2012192450A JP 2012192450 A JP2012192450 A JP 2012192450A JP 2012039917 A JP2012039917 A JP 2012039917A JP 2012039917 A JP2012039917 A JP 2012039917A JP 2012192450 A JP2012192450 A JP 2012192450A
Authority
JP
Japan
Prior art keywords
tube
pipe
contact
cold drawing
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012039917A
Other languages
Japanese (ja)
Other versions
JP5796516B2 (en
Inventor
Takuya Hanada
拓也 花田
Takashi Nakajima
崇 中島
Koichi Kuroda
浩一 黒田
Tatsuya Okui
達也 奥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2012039917A priority Critical patent/JP5796516B2/en
Publication of JP2012192450A publication Critical patent/JP2012192450A/en
Application granted granted Critical
Publication of JP5796516B2 publication Critical patent/JP5796516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a metallic double pipe, by which surface pressure is generated in the interface between the external pipe and an internal pipe of the obtained metallic double pipe and adhesiveness is secured.SOLUTION: In this method of manufacturing the metallic double pipe 1, the metallic double pipe 1 is manufactured by bringing the outer surface of the internal pipe 12 into contact with the inner surface of the external pipe 11 by cold drawing where a tapered die 2 is used as a working die. With a condition that the length L (mm) which is calculated by the next formula (1) and in which the external pipe 11 and the internal pipe 12 are brought into contact with each other in the approaching part 2a of the tapered die 2 satisfies the next formula (2), idle drawing is performed. Where, do1 is the outside diameter (mm) of the external pipe 11 before the cold drawing; z is the clearance (mm) between the external pipe 11 and the internal pipe 12 before the cold drawing; d1 is the outside diameter (mm) of the metallic double pipe 1 obtained by the cold drawing; and α is the angle (°) of the approaching part 2a of the tapered die 2. L=(do1-d1-2z)/2sinα (1). 1.35≤1/L≤10 (2).

Description

本発明は、テーパーダイスを用いた空引きの冷間引抜きによる金属二重管の製造方法に関する。さらに詳しくは、本発明は、得られる金属二重管の外管と内管の界面に面圧を発生させ、密着性を確保できるとともに、金属二重管の生産性を向上できる金属二重管の製造方法に関する。   The present invention relates to a method of manufacturing a metal double pipe by cold drawing of an empty drawing using a taper die. More specifically, the present invention is a metal double tube that can generate surface pressure at the interface between the outer tube and the inner tube of the resulting metal double tube to ensure adhesion and improve the productivity of the metal double tube. It relates to the manufacturing method.

なお、別に記載がない限り、本明細書における用語の定義は次のとおりである。
「面圧」:外管と内管の界面に発生する圧力であって、後述する算出式を用いた方法により測定することができる。
Unless otherwise stated, the definitions of terms in this specification are as follows.
“Surface pressure”: a pressure generated at the interface between the outer tube and the inner tube, and can be measured by a method using a calculation formula described later.

高速増殖炉プラントでは、原子炉内の冷却に用いた高温の液体金属ナトリウムを蒸気発生器に導入し、水と熱交換して蒸気を発生させる。この際、上記の蒸気発生器を構成する伝熱管には、外管と内管とを機械的に密着させた二重壁構造の管材(以下、「二重管」という)が用いられる。蒸気発生器を構成する伝熱管に二重管を用いるのは、次の理由による。   In a fast breeder reactor plant, high-temperature liquid metal sodium used for cooling the reactor is introduced into a steam generator, and heat is exchanged with water to generate steam. At this time, a pipe material having a double wall structure (hereinafter referred to as “double pipe”) in which the outer pipe and the inner pipe are mechanically adhered is used for the heat transfer pipe constituting the steam generator. The double pipe is used as the heat transfer tube constituting the steam generator for the following reason.

蒸気発生器内では、伝熱管の内部に水が通され、その外部に液体金属ナトリウムが通される。このとき、伝熱管に肉厚方向へ貫通する亀裂が発生して液体金属ナトリウムが水と接触すると、爆発的な反応を起こすことから、伝熱管の肉厚方向に貫通する亀裂は、極めて危険である。   In the steam generator, water is passed through the heat transfer tube and liquid metal sodium is passed through the outside. At this time, if a crack penetrating in the thickness direction occurs in the heat transfer tube and liquid metal sodium comes into contact with water, an explosive reaction occurs. is there.

一重壁で構成されるソリッド管材は、内外面のいずれか一方面に発生した表面欠陥が他方面に伝播して肉厚方向に貫通した亀裂が発生しやすい。一方、二重管は、外管内面と内管外面とが機械的に接している構成であるから、壁面に発生した亀裂が他方の壁面に直ちに伝播して内管と外管の両方の肉厚を貫通する亀裂を発生するおそれがない。このように、二重管は耐亀裂性に優れることから、蒸気発生器を構成する伝熱管には二重管が用いられる。   In a solid tube composed of a single wall, a surface defect generated on either one of the inner and outer surfaces tends to propagate to the other surface and a crack penetrating in the thickness direction is likely to occur. On the other hand, the double pipe has a configuration in which the inner surface of the outer tube and the outer surface of the inner tube are in mechanical contact with each other. There is no risk of cracking through the thickness. Thus, since a double pipe is excellent in crack resistance, a double pipe is used for the heat exchanger tube which comprises a steam generator.

一方、二重管は伝熱管として用いられるので、熱伝導性が優れていることが求められる。外管と内管に隙間が生じると、隙間に入り込んだ雰囲気が熱交換に介在することになり、熱伝導性が大きく損なわれる。このため、二重管では、外管と内管の界面に面圧を発生させることにより密着性を確保する。また、蒸気発生器に用いられた二重管の使用温度は、450℃〜500℃となることから、この温度域を含めた広範囲の温度域で二重管の外管と内管の密着性を確保する必要がある。   On the other hand, since a double tube is used as a heat transfer tube, it is required to have excellent thermal conductivity. If a gap is generated between the outer tube and the inner tube, the atmosphere that has entered the gap is interposed in the heat exchange, and the thermal conductivity is greatly impaired. For this reason, in a double pipe, adhesion is secured by generating a surface pressure at the interface between the outer pipe and the inner pipe. Moreover, since the operating temperature of the double pipe used in the steam generator is 450 ° C. to 500 ° C., the adhesion between the outer pipe and the inner pipe of the double pipe in a wide temperature range including this temperature range. It is necessary to ensure.

二重管に面圧を発生させて密着性を確保する方法に関して従来から種々の提案がなされており、例えば特許文献1がある。特許文献1で提案される二重管の製造方法では、外管と内管の隙間を0.02mm以下になるよう空引きやプラグ引きにより縮径加工して二重管とした後、中拡げプラグにより二重管の内管を拡径加工する。特許文献1で提案される二重管の製造方法では、中拡げプラグにより二重管の内管を拡管する際、内管を塑性変形により拡径させるのに対し、外管を弾性変形の範囲内で変形させることにより、外管に縮径方向の残留応力を生じさせて密着性を確保するとしている。   Various proposals have heretofore been made with respect to a method of generating a surface pressure in a double pipe to ensure adhesion, and for example, there is Patent Document 1. In the method for manufacturing a double pipe proposed in Patent Document 1, a double pipe is formed by reducing the diameter by empty drawing or plug drawing so that the gap between the outer pipe and the inner pipe is 0.02 mm or less. The inner pipe of the double pipe is expanded with a plug. In the method of manufacturing a double pipe proposed in Patent Document 1, when the inner pipe of the double pipe is expanded by the intermediate expansion plug, the inner pipe is expanded by plastic deformation, whereas the outer pipe is elastically deformed. By deforming the inner tube, residual stress in the reduced diameter direction is generated in the outer tube to ensure adhesion.

しかし、特許文献1に提案される二重管の製造方法では、空引きやプラグ引きによる縮径加工を行った後、別の工程で中拡げプラグにより拡径加工する必要があることから、工程の増加により生産性が悪化する。また、特許文献1に提案される二重管の製造方法では、中拡げプラグにより拡径加工する際に内管内面と中拡げプラグが接触することから、内管内面に潤滑処理を施す内面潤滑工程が必要となる。ここで、高速増殖炉の蒸気発生器で伝熱管として用いられる二重管は、一般的に長さが15m以上である長尺管であることから、二重管の内管および外管も長尺となる。このため、内管内面の潤滑処理で作業性が低下するので、二重管の生産性がさらに悪化する。また、内管内面の潤滑処理を施すことができる長さには限界があることから、より長尺な二重管を製造するのは困難である。   However, in the method of manufacturing a double pipe proposed in Patent Document 1, after performing diameter reduction processing by empty drawing or plug drawing, it is necessary to perform diameter expansion processing by a medium expansion plug in another step. Productivity deteriorates due to the increase of. Further, in the method of manufacturing a double pipe proposed in Patent Document 1, since the inner pipe inner surface and the middle spread plug come into contact with each other when the diameter is expanded by the middle spread plug, the inner pipe lubrication is performed to lubricate the inner pipe inner surface. A process is required. Here, since the double pipe used as the heat transfer pipe in the steam generator of the fast breeder reactor is a long pipe generally having a length of 15 m or more, the inner pipe and the outer pipe of the double pipe are also long. Measure. For this reason, the workability is lowered by the lubrication treatment of the inner surface of the inner pipe, so that the productivity of the double pipe is further deteriorated. Moreover, since there is a limit to the length that can be lubricated on the inner surface of the inner tube, it is difficult to manufacture a longer double tube.

特開昭58−41611号公報JP 58-41611 A

前述の通り、従来の金属二重管の製造方法では、外管と内管の界面に面圧を発生させるため、縮径加工を行った後に中拡げプラグによる拡径加工したり、長尺な内管内面に潤滑処理を施したりする必要があることから、生産性が悪化する。   As described above, in the conventional method for producing a metal double pipe, a surface pressure is generated at the interface between the outer pipe and the inner pipe. Since it is necessary to lubricate the inner surface of the inner tube, productivity is deteriorated.

本発明は、このような状況に鑑みてなされたものであり、得られる金属二重管の外管と内管の界面に面圧を発生させ、密着性を確保できるとともに、金属二重管の生産性を向上できる金属二重管の製造方法を提供することを目的とする。   The present invention has been made in view of such a situation, and it is possible to generate a surface pressure at the interface between the outer tube and the inner tube of the obtained metal double tube to ensure adhesion, and It aims at providing the manufacturing method of the metal double pipe which can improve productivity.

本発明者らは、上記問題を解決するため、加工用ダイスとしてテーパーダイスを用いた冷間引抜きであって、プラグを用いない空引きにより、得られる二重管の外管と内管の界面に面圧を発生させる方法について検討した。   In order to solve the above problems, the inventors of the present invention are cold drawing using a taper die as a processing die, and an interface between an outer tube and an inner tube of a double tube obtained by empty drawing without using a plug. The method of generating the surface pressure was investigated.

図1は、テーパーダイスを用いた空引きによる金属二重管の冷間引抜きの一例を示す模式図である。同図には、被加工材である外管11および内管12と、加工用ダイスであるテーパーダイス2とを示し、ハッチングを施した矢印で被加工材の引抜き方向を示す。テーパーダイス2は、外管11および内管12をダイスの入側から出側に案内するため、入側のアプローチ部2aと、一定の内径を有し管材の加工形状を決定するベアリング部2bと、出側の逃げ部2cとを備える。テーパーダイス2のアプローチ部2aの形状は、内径が縮小するテーパー状であり、両角で規定される。アプローチ部2aの両角は、アプローチ部2aの角度α(°)により、2αで表すことができる。   FIG. 1 is a schematic diagram showing an example of cold drawing of a metal double tube by empty drawing using a taper die. In the figure, an outer tube 11 and an inner tube 12 that are workpieces and a taper die 2 that is a machining die are shown, and the drawing direction of the workpiece is indicated by hatched arrows. The taper die 2 guides the outer tube 11 and the inner tube 12 from the entrance side to the exit side of the die, so that the approach portion 2a on the entrance side and the bearing portion 2b having a constant inner diameter and determining the processing shape of the pipe material are provided. And an exit-side escape portion 2c. The shape of the approach portion 2a of the taper die 2 is a tapered shape whose inner diameter is reduced, and is defined by both angles. Both angles of the approach part 2a can be represented by 2α by the angle α (°) of the approach part 2a.

このようなテーパーダイスを用いた空引きの冷間引抜きにより、得られる二重管の外管と内管の界面に面圧を発生させるため、本発明者らは、冷間引抜き前の外管と内管とのクリアランスzに注目した。ここで、外管と内管とのクリアランスzは、図1に示すように、冷間引抜き前の外管内面と内管外面との間隔であり、冷間引抜き前の外管内径do2と、冷間引抜き前の内管外径di1とから、下記(3)式により求めることができる。
z=(do2−di1)/2 ・・・(3)
In order to generate a surface pressure at the interface between the outer tube and the inner tube of the obtained double tube by cold drawing using such a taper die, the present inventors have obtained the outer tube before cold drawing. We focused on the clearance z between the inner tube and the inner tube. Here, as shown in FIG. 1, the clearance z between the outer tube and the inner tube is the distance between the inner surface of the outer tube and the outer surface of the inner tube before cold drawing, and the inner diameter do2 of the outer tube before cold drawing, From the inner pipe outer diameter di1 before cold drawing, it can be obtained by the following equation (3).
z = (do2-di1) / 2 (3)

本発明者らは、後述する実施例の表2の試験番号1〜7に示すように外管と内管とのクリアランスzを変更し、アプローチ部の両角(2α)が30°であるテーパーダイスを用いた空引きの冷間引抜きにより二重管を得る試験を行った。   The present inventors changed the clearance z between the outer tube and the inner tube as shown in Test Nos. 1 to 7 in Table 2 of Examples to be described later, and the taper die in which both angles (2α) of the approach portion are 30 °. A test was conducted to obtain a double tube by cold drawing using emptying.

図2は、冷間引抜き前の外管と内管とのクリアランスと冷間引抜きにより得られた二重管に発生した面圧との関係を示す図である。同図から、クリアランスが0.5mm未満と小さい場合は得られた二重管に発生した面圧がいずれも20MPaを超え、クリアランスを0.5〜0.7mmと中程度の場合は得られた二重管に発生した面圧がいずれも30MPaを超え、クリアランスが0.7mmを超えた場合は得られた二重管に発生した面圧はいずれも5MPa以下であった。   FIG. 2 is a diagram showing the relationship between the clearance between the outer tube and the inner tube before cold drawing and the surface pressure generated in the double tube obtained by cold drawing. From the figure, when the clearance is as small as less than 0.5 mm, the surface pressure generated in the obtained double pipe exceeds 20 MPa, and when the clearance is intermediate between 0.5 and 0.7 mm, it was obtained. When the surface pressure generated in the double pipe exceeded 30 MPa and the clearance exceeded 0.7 mm, the surface pressure generated in the obtained double pipe was 5 MPa or less.

このように、本発明者らは、クリアランスを変更することにより得られた二重管に発生する面圧が変化し、クリアランスには最適値が存在することを明らかにした。本発明者らは、クリアランスを変更することにより得られる二重管の面圧が変化する現象を解明するため、テーパーダイスのアプローチ部およびベアリング部で外管および内管が変形するメカニズムを調査した。変形メカニズムの調査は、冷間引抜きを途中で中止し、この冷間引抜き途中の二重管を長手方向に平行な断面で切断し、切断面の形状を観察することにより行った。   Thus, the present inventors have clarified that the surface pressure generated in the double pipe obtained by changing the clearance changes, and that there is an optimum value for the clearance. In order to elucidate the phenomenon in which the surface pressure of the double pipe obtained by changing the clearance changes, the present inventors investigated the mechanism by which the outer pipe and the inner pipe are deformed at the approach portion and the bearing portion of the taper die. . The investigation of the deformation mechanism was performed by stopping the cold drawing in the middle, cutting the double tube in the middle of the cold drawing in a cross section parallel to the longitudinal direction, and observing the shape of the cut surface.

図3は、長手方向に平行な断面で切断した冷間引抜き途中の二重管の切断面を示す模式図であり、同図(a)はクリアランスが小さい場合、同図(b)はクリアランスが中程度の場合、同図(c)はクリアランスが大きい場合をそれぞれ示す。同図には冷間引抜き途中の二重管1の外管11および内管12を示し、冷間引抜きを途中で中止した際にテーパーダイスのアプローチ部とベアリング部の境界と接触していた外管外面の位置を破線矢印で指し示す。同図では、左側がテーパーダイスの入側、右側がテーパーダイスの出側であり、冷間引抜きを途中で中止した際に破線矢印の左側の外管外面はアプローチ部と、破線矢印の右側の外管外面はベアリング部とそれぞれ接触していた。   FIG. 3 is a schematic view showing a cut surface of a double pipe that is being cold drawn and cut in a cross section parallel to the longitudinal direction. FIG. 3A shows a case where the clearance is small, and FIG. In the middle case, FIG. 5C shows the case where the clearance is large. The figure shows the outer tube 11 and the inner tube 12 of the double tube 1 in the middle of cold drawing, and the outside that was in contact with the taper die approach and bearing boundary when cold drawing was interrupted. The position of the outer surface of the tube is indicated by a dashed arrow. In this figure, the left side is the taper die entry side and the right side is the taper die exit side. The outer surface of the outer tube was in contact with the bearing portion.

変形メカニズムの調査では、テーパーダイスのアプローチ部およびベアリング部で外管および内管が変形する際のクリアランスの変化に着目し、クリアランスが0(ゼロ)となって外管内面と内管外面とが接触する位置1aを確認した。その結果、クリアランスが小さい場合は、同図(a)に示すように、外管と内管の接触位置1aは、アプローチ部とベアリング部の境界の前(左側)であり、アプローチ部による加工途中であった。また、クリアランスが小さい場合、内管の変形が大きいことが確認される。   In the investigation of the deformation mechanism, paying attention to the change in clearance when the outer tube and inner tube are deformed in the approach part and bearing part of the taper die, the clearance becomes 0 (zero) and the inner surface of the outer tube and the outer surface of the inner tube are separated. The contact position 1a was confirmed. As a result, when the clearance is small, the contact position 1a between the outer tube and the inner tube is in front of the boundary between the approach portion and the bearing portion (left side) as shown in FIG. Met. Further, when the clearance is small, it is confirmed that the deformation of the inner tube is large.

また、クリアランスが中程度の場合、同図(b)に示すように、外管と内管の接触位置1aは、アプローチ部とベアリング部の境界の直前であり、アプローチ部とベアリング部の境界とほぼ同位置となった。クリアランスが大きい場合、同図(c)に示すように、外管と内管の接触位置1aは、アプローチ部とベアリング部の境界の後(右側)であり、アプローチ部による加工の際には外管と内管とは接触することがなかった。また、クリアランスが大きい場合、内管の変形はほとんど認められなかった。   When the clearance is medium, the contact position 1a between the outer tube and the inner tube is immediately before the boundary between the approach portion and the bearing portion, as shown in FIG. It became almost the same position. When the clearance is large, the contact position 1a between the outer tube and the inner tube is after the boundary between the approach portion and the bearing portion (right side) as shown in FIG. There was no contact between the tube and the inner tube. Further, when the clearance was large, the inner tube was hardly deformed.

このようにクリアランスを変更することにより、テーパーダイスのアプローチ部およびベアリング部で外管および内管が変形する際に外管と内管とが接触する位置が移動し、得られる二重管に発生する面圧が増減することが明らかとなった。そこで、本発明者らは、外管と内管の接触位置の移動を、テーパーダイスのアプローチ部で外管と内管とが接触する長さ(以下、単に「接触長さ」ともいう)により評価することを試みた。   By changing the clearance in this way, the position where the outer tube and inner tube come into contact with each other when the outer tube and inner tube are deformed in the approach section and bearing section of the taper die moves, resulting in the resulting double pipe It became clear that the surface pressure to increase and decrease. Therefore, the present inventors determine the movement of the contact position between the outer tube and the inner tube by the length of contact between the outer tube and the inner tube at the approach portion of the taper die (hereinafter also simply referred to as “contact length”). Tried to evaluate.

本発明で規定する外管と内管とが接触する長さLは、前記図1に示すように、テーパーダイス2のアプローチ部2aで外管11の内面と内管12の外面とが接触する長さである。この接触長さLは、後述する(1)式(近似式)により算出することができるので、本発明者らは、接触長さと二重管に発生する面圧との関係を調査した。   As shown in FIG. 1, the length L of contact between the outer tube and the inner tube defined in the present invention is such that the inner surface of the outer tube 11 and the outer surface of the inner tube 12 are in contact with each other at the approach portion 2 a of the taper die 2. Length. Since this contact length L can be calculated by equation (1) (approximate equation) described later, the present inventors investigated the relationship between the contact length and the surface pressure generated in the double pipe.

後述する図4は、テーパーダイスのアプローチ部における外管と内管との接触長さと二重管に発生した面圧との関係を示す図である。同図から、テーパーダイスのアプローチ部で接触長さが短いほど、得られる二重管に発生する面圧が増加することが確認される(同図の破線矢印参照)。しかし、接触長さが0、すなわち、テーパーダイスのアプローチ部で外管と内管とが接触しない場合、得られる二重管に発生する面圧が著しく減少することが確認される。   FIG. 4 to be described later is a diagram showing the relationship between the contact length between the outer tube and the inner tube in the approach portion of the taper die and the surface pressure generated in the double tube. From this figure, it is confirmed that the surface pressure generated in the resulting double pipe increases as the contact length becomes shorter at the approach portion of the taper die (see the broken line arrow in the figure). However, when the contact length is 0, that is, when the outer tube and the inner tube do not contact at the approach portion of the taper die, it is confirmed that the surface pressure generated in the obtained double tube is remarkably reduced.

また、接触長さが0.1以下になると外管および内管の部分的な真円度不良(楕円化)や偏肉の影響で円周方向で部分的に外管と内管が接触しない箇所が発生し始める。そのため、面圧が低下するおそれがある。従って、接触長さLは0.1以上が必要である。   In addition, when the contact length is 0.1 or less, the outer tube and the inner tube do not partially contact in the circumferential direction due to partial roundness failure (ellipticalization) or uneven thickness of the outer tube and the inner tube. Locations begin to occur. For this reason, the surface pressure may be reduced. Therefore, the contact length L needs to be 0.1 or more.

本発明者らは、接触長さが0を超える場合、すなわち、テーパーダイスのアプローチ部で外管と内管とが接触する場合について、さらに接触長さの逆数(1/L)と二重管に発生する面圧との関係を確認した。   In the case where the contact length exceeds 0, that is, in the case where the outer tube and the inner tube are in contact with each other at the taper die approach portion, the reciprocal of the contact length (1 / L) and the double tube are further obtained. The relationship with the surface pressure generated was confirmed.

後述する図5は、接触長さの逆数と二重管に発生した面圧との関係を示す図である。同図から、接触長さの逆数(1/L)と二重管の面圧とが相関関係を有し、接触長さの逆数が増加するとともに二重管の面圧が向上することが確認される。すなわち、本発明者らは、テーパーダイスを用いた空引きの冷間引抜きにおいて、接触長さの逆数を適正化することにより、得られる金属二重管の外管と内管の界面に面圧を発生させ、密着性を確保できることを明らかにした。また、接触長さの逆数を調整することにより、得られる二重管に発生する面圧を所望の値に制御できることを明らかにした。   FIG. 5 described later is a diagram showing the relationship between the reciprocal of the contact length and the surface pressure generated in the double pipe. The figure confirms that the reciprocal of contact length (1 / L) has a correlation with the surface pressure of the double pipe, and the surface pressure of the double pipe improves as the reciprocal of the contact length increases. Is done. That is, the present inventors have made surface pressure at the interface between the outer tube and the inner tube of the obtained metal double tube by optimizing the reciprocal of the contact length in the cold drawing of the empty drawing using the taper die. It has been clarified that adhesion can be secured. It was also clarified that the surface pressure generated in the obtained double pipe can be controlled to a desired value by adjusting the reciprocal of the contact length.

本発明は、これらの知見に基づいて完成したものであり、下記の(1)および(2)に示す金属二重管の製造方法を要旨とする:   The present invention has been completed based on these findings, and the gist of the method for producing a metal double tube shown in the following (1) and (2):

(1)加工用ダイスとしてテーパーダイスを用いる冷間引抜きによって、外管の内面に内管の外面が接してなる金属二重管を製造する方法であって、
下記(1)式により算出され、テーパーダイスのアプローチ部で外管と内管とが接触する長さL(mm)が、下記(2)式を満たす条件とし、空引きすることを特徴とする金属二重管の製造方法。
L=(do1−d1−2z)/2sinα ・・・(1)
1.35≦1/L≦10 ・・・(2)
ただし、do1は冷間引抜き前の外管外径(mm)、zは冷間引抜き前における外管と内管とのクリアランス(mm)、d1は冷間引抜きにより得られた金属二重管の外径(mm)、αはテーパーダイスのアプローチ部の角度(°)である。
(1) A method of manufacturing a metal double tube in which the outer surface of the inner tube is in contact with the inner surface of the outer tube by cold drawing using a taper die as a processing die,
Calculated by the following equation (1), the length L (mm) at which the outer tube and the inner tube contact at the approach portion of the taper die is a condition that satisfies the following equation (2), and is voided: A method of manufacturing a metal double pipe.
L = (do1-d1-2z) / 2sin α (1)
1.35 ≦ 1 / L ≦ 10 (2)
Where do1 is the outer diameter (mm) of the outer tube before cold drawing, z is the clearance (mm) between the outer tube and the inner tube before cold drawing, and d1 is the metal double tube obtained by cold drawing. The outer diameter (mm) and α are the angle (°) of the approach portion of the taper die.

(2)前記外管および前記内管の材質を9Cr−1Mo鋼とすることを特徴とする上記(1)に記載の金属二重管の製造方法。 (2) The method for producing a metal double tube according to (1) above, wherein the material of the outer tube and the inner tube is 9Cr-1Mo steel.

本発明の金属二重管の製造方法は、下記の顕著な効果を有する。
(1)テーパーダイスを用いた空引きの冷間引抜きにおいて、前記(1)式により算出される接触長さの逆数を適正化することにより、得られる二重管に面圧を発生させて密着性を確保できる。
(2)接触長さの逆数を調整することにより、得られる二重管に発生する面圧を所望の値に制御できる。
(3)プラグを用いない空引きにより、得られる二重管の外管と内管に面圧を発生させることから、別工程による拡径加工や内管内面に潤滑処理が不要であり、生産性を向上できる。
The method for producing a metal double tube of the present invention has the following remarkable effects.
(1) In cold drawing of empty drawing using a taper die, by optimizing the reciprocal of the contact length calculated by the above equation (1), surface pressure is generated in the resulting double pipe to achieve close contact. Can be secured.
(2) By adjusting the reciprocal of the contact length, the surface pressure generated in the resulting double pipe can be controlled to a desired value.
(3) Since the surface pressure is generated in the outer and inner pipes of the double pipe obtained by emptying without using a plug, there is no need for diameter expansion processing in a separate process or lubrication treatment on the inner pipe inner surface. Can be improved.

テーパーダイスを用いた空引きによる金属二重管の冷間引抜きの一例を示す模式図である。It is a schematic diagram which shows an example of the cold drawing of the metal double tube by the empty drawing using a taper die. 冷間引抜き前の外管と内管とのクリアランスと冷間引抜きにより得られた二重管に発生した面圧との関係を示す図である。It is a figure which shows the relationship between the surface pressure which generate | occur | produced in the double tube | pipe obtained by the clearance between the outer tube | pipe before cold drawing and an inner tube, and cold drawing. 長手方向に平行な断面で切断した冷間引抜き途中の二重管の切断面を示す模式図であり、同図(a)はクリアランスが小さい場合、同図(b)はクリアランスが中程度の場合、同図(c)はクリアランスが大きい場合をそれぞれ示す。It is a schematic diagram which shows the cut surface of the double pipe in the middle of cold drawing cut | disconnected by the cross section parallel to a longitudinal direction, The figure (a) is a case where clearance is small, The figure (b) is a case where clearance is medium FIG. 4C shows the case where the clearance is large. テーパーダイスのアプローチ部における外管と内管との接触長さと二重管に発生した面圧との関係を示す図である。It is a figure which shows the relationship between the contact length of the outer tube | pipe and the inner tube | pipe in the approach part of a taper die, and the surface pressure which generate | occur | produced in the double tube. 接触長さの逆数と二重管に発生した面圧との関係を示す図である。It is a figure which shows the relationship between the reciprocal number of contact length, and the surface pressure which generate | occur | produced in the double pipe.

上述のとおり、本発明の金属二重管の製造方法は、加工用ダイスとしてテーパーダイスを用いる冷間引抜きによって、外管の内面に内管の外面が接してなる金属二重管を製造する方法であって、前記(1)式により算出され、テーパーダイスのアプローチ部で外管と内管とが接触する長さL(mm)が、前記(2)式を満たす条件とし、空引きすることを特徴とする。以下に、本発明の金属二重管の製造方法を、上記のように規定した理由および好ましい範囲について説明する。   As described above, the metal double tube manufacturing method of the present invention is a method of manufacturing a metal double tube in which the outer surface of the inner tube is in contact with the inner surface of the outer tube by cold drawing using a taper die as a processing die. In this case, the length L (mm) calculated by the above equation (1) and contacting the outer tube and the inner tube at the approach portion of the taper die is set as a condition satisfying the above equation (2). It is characterized by. Below, the reason and preferable range which prescribed | regulated the manufacturing method of the metal double tube of this invention as mentioned above are demonstrated.

前記図3を用いて説明したとおり、テーパーダイスを用いた空引きの冷間引抜きでは、クリアランスを変更することによって、外管と内管との接触位置が移動する。すなわち、クリアランスを変更することによって、テーパーダイスのアプローチ部で外管と内管とが接触する長さが変化する。このような外管と内管とが接触する長さLは、クリアランスzやテーパーダイスのアプローチ部の角度αを用い、近似式である前記(1)式により簡易に算出することができる。   As described with reference to FIG. 3, in the cold drawing of the empty drawing using the taper die, the contact position between the outer tube and the inner tube is moved by changing the clearance. That is, by changing the clearance, the length of contact between the outer tube and the inner tube at the approach portion of the taper die changes. The length L in which the outer tube and the inner tube are in contact with each other can be easily calculated by the above equation (1) using the clearance z and the angle α of the approach portion of the taper die.

この外管と内管とが接触する長さLは、前記図1に示すように、テーパーダイス2のアプローチ部2aでの接触長さである。接触長さL(mm)は、冷間引抜き前の内管外径di1(mm)と、冷間引抜き後の内管外径di1’(mm)と、テーパーダイスのアプローチ部の角度α(°)とを用いて下記(4)式により表すことができる。
L=(di1−di1’)/2sinα ・・・(4)
The length L at which the outer tube and the inner tube are in contact is the contact length at the approach portion 2a of the taper die 2 as shown in FIG. The contact length L (mm) depends on the outer diameter di1 (mm) of the inner tube before cold drawing, the outer diameter di1 ′ (mm) of the inner tube after cold drawing, and the angle α (° of the taper die approach portion. ) And the following equation (4).
L = (di1-di1 ′) / 2sin α (4)

ここで、冷間引抜き前の内管外径di1は、冷間引抜き前の外管外径do1(mm)、外管肉厚to(mm)およびクリアランスzを用いて表すことができる。また、冷間引抜き後の内管外径di1’は、冷間引抜き後の外管外径d1、外管肉厚to’(mm)を用いて表すことができる。したがって、上記式(4)は下記式(5)に変形できる。
L=[(do1−2to−2z)−(d1−2to’)]/2sinα ・・・(5)
この上記(5)式において、to≒to’とすることにより、近似式として前記(1)式を導き出すことができる。
Here, the inner tube outer diameter di1 before cold drawing can be expressed by using the outer tube outer diameter do1 (mm), the outer tube thickness to (mm), and the clearance z before cold drawing. Further, the inner tube outer diameter di1 ′ after the cold drawing can be expressed by using the outer tube outer diameter d1 and the outer tube thickness to ′ (mm) after the cold drawing. Therefore, the above formula (4) can be transformed into the following formula (5).
L = [(do1-2to-2z) − (d1-2to ′)] / 2sin α (5)
In the above equation (5), by setting to≈to ′, the equation (1) can be derived as an approximate equation.

本発明の金属二重管の製造方法は、前記(1)式により外管と内管との接触長さを算出し、前記(2)式を満たす条件、すなわち、接触長さの逆数を1.35以上10以下とする。後述する図5に示すとおり、接触長さの逆数が大きいほど、すなわち、接触長さが短いほど得られる二重管に発生する面圧が向上することから、得られる二重管に30MPa以上の面圧を発生させることができる。これは、テーパーダイスのアプローチ部で外管と内管が接触する長さが短いと、外管との接触により内管が変形する量が減少し、冷間引抜き後の内管に生じる拡径方向の残留応力が増大することによるものと推測される。   In the method for producing a metal double tube of the present invention, the contact length between the outer tube and the inner tube is calculated by the equation (1), and the condition satisfying the equation (2), that is, the reciprocal of the contact length is set to 1. .35 to 10 As shown in FIG. 5 to be described later, the larger the reciprocal of the contact length, that is, the shorter the contact length, the higher the surface pressure generated in the obtained double tube, so that the obtained double tube has a pressure of 30 MPa or more. Surface pressure can be generated. This is because, when the length of contact between the outer tube and the inner tube is short at the approach part of the taper die, the amount of deformation of the inner tube due to contact with the outer tube is reduced, and the diameter expansion generated in the inner tube after cold drawing is reduced. It is presumed that the residual stress in the direction increases.

あるいは、引抜加工中のせん断変形により、未接触領域において外管の軸方向伸びが先行し、加工後に外管が内管よりも伸びていた分、より縮もうとするが、界面の摩擦抵抗拘束のため、軸方向応力が解放されず、外管に引張方向、内管に圧縮方向の残留応力が残り面圧が発生すると考えられる。このとき、外管と内管の接触領域が長いと内外管の間の相対すべりが起こりやすくなり、その前の未接触領域で発生した内外管の伸び量の差が縮まるため、面圧が低くなると推測される。   Alternatively, due to shear deformation during drawing, the axial extension of the outer tube precedes in the non-contact area, and the outer tube is stretched more than the inner tube after processing. For this reason, it is considered that the axial stress is not released, and the residual stress in the tensile direction and the compressive direction remains in the outer tube and the surface pressure is generated in the inner tube. At this time, if the contact area between the outer pipe and the inner pipe is long, relative slip between the inner and outer pipes is likely to occur, and the difference in elongation between the inner and outer pipes generated in the previous non-contact area is reduced, so the surface pressure is low. Presumed to be.

一方、接触長さの逆数が1.35未満であると、得られる二重管に発生する面圧が30MPa未満となる場合があり、蒸気発生器の伝熱管として450〜500℃の高温下で長時間使用した場合に、密着性が不十分となり熱伝導性が悪化するおそれがある。   On the other hand, if the reciprocal of the contact length is less than 1.35, the surface pressure generated in the resulting double pipe may be less than 30 MPa, and the heat transfer pipe of the steam generator is at a high temperature of 450 to 500 ° C. When used for a long time, the adhesion may be insufficient and the thermal conductivity may deteriorate.

また、後述する図4に示すとおり、前記(1)式により算出される接触長さが0(ゼロ)、すなわち、テーパーダイスのアプローチ部で外管と内管が接触しない場合、得られる二重管に発生する面圧が著しく低下する。この場合、テーパーダイスのアプローチ部で外管と内管が接触せず、その後のベアリング部で外管と内管が接触するので、内管にほとんど変形が認められない。これにより、冷間引抜き後の内管に生じる拡径方向の残留応力が著しく低下し、二重管に発生する面圧が低下すると推測される。   In addition, as shown in FIG. 4 to be described later, when the contact length calculated by the equation (1) is 0 (zero), that is, when the outer tube and the inner tube do not contact at the approach portion of the taper die, the obtained double The surface pressure generated in the pipe is significantly reduced. In this case, the outer tube and the inner tube are not in contact with each other at the approach portion of the taper die, and the outer tube and the inner tube are in contact with each other at the bearing portion thereafter, so that the inner tube is hardly deformed. Thereby, it is estimated that the residual stress in the diameter expanding direction generated in the inner pipe after cold drawing is significantly reduced, and the surface pressure generated in the double pipe is reduced.

接触長さの逆数が10以上、すなわち、接触長さが0.1以下になると外管および内管の部分的な真円度不良(楕円化)や偏肉の影響で円周方向で部分的に外管と内管が接触しない箇所が発生し始める。そのため、面圧が低下するおそれがある。従って、接触長さLは0.1以上が必要である。   When the reciprocal of the contact length is 10 or more, that is, when the contact length is 0.1 or less, it is partially in the circumferential direction due to partial roundness failure (ellipticalization) or uneven thickness of the outer tube and the inner tube. The part where the outer tube and inner tube do not come into contact begins to occur. For this reason, the surface pressure may be reduced. Therefore, the contact length L needs to be 0.1 or more.

本発明の金属二重管の製造方法は、テーパーダイスを用いた空引きの冷間引抜きにおいて、前記(1)式により算出される接触長さを適正化することにより、二重管に面圧を発生させて密着性を確保できる。したがって、本発明の金属二重管の製造方法は、二重管の密着性を確保するために、冷間引抜きを行った後に別工程で中拡げプラグを用いて内管を拡管する必要がない。また、プラグを用いないことから、内管内面に潤滑処理を施す必要がない。このため、本発明の金属二重管の製造方法は、生産性を向上することができるとともに、内管内面に潤滑処理を施すことが困難な長尺の二重管を製造できる。   In the method for producing a metal double pipe of the present invention, the surface pressure is applied to the double pipe by optimizing the contact length calculated by the above formula (1) in the cold drawing of the empty drawing using the taper die. It is possible to secure adhesion by generating. Therefore, in the manufacturing method of the metal double pipe of the present invention, in order to ensure the adhesion of the double pipe, it is not necessary to expand the inner pipe using the intermediate expansion plug in a separate process after cold drawing. . Moreover, since no plug is used, it is not necessary to lubricate the inner surface of the inner tube. For this reason, the manufacturing method of the metal double pipe of this invention can improve productivity, and can manufacture the elongate double pipe for which it is difficult to lubricate an inner pipe inner surface.

また、後述する図5に示すとおり、接触長さの逆数と、得られる二重管に発生する面圧とは相関関係を有する。このため、本発明の金属二重管の製造方法は、クリアランスやテーパーダイスのアプローチ部の角度を変更して接触長さの逆数を調整することにより、得られる二重管に発生する面圧を所望の値に制御できる。   Further, as shown in FIG. 5 described later, the reciprocal of the contact length has a correlation with the surface pressure generated in the resulting double pipe. For this reason, the metal double pipe manufacturing method of the present invention changes the contact angle of the contact length by changing the clearance and the angle of the approach portion of the taper die, thereby reducing the surface pressure generated in the resulting double pipe. It can be controlled to a desired value.

本発明の金属二重管の製造方法は、外管および内管の材質を9Cr−1Mo鋼とするのが好ましい。9Cr−1Mo鋼に相当する鋼として、例えば、発電用火力設備の技術基準の解釈に記載される火STBA28やASME SA−213Gr.T91を採用するのが一般的である。9Cr−1Mo鋼の具体的な化学組成例として、火STBA28の化学組成を示すと、次のとおりである。すなわち、質量%で、C:0.08〜0.12%、Si:0.20〜0.50%、Mn:0.30〜0.60%、P≦0.020%、S≦0.010%、Ni≦0.40%、Cr:8.00〜9.50%、Mo:0.85〜1.05%、V:0.10〜0.25%を含有(残部はFe)する鋼である。   In the method for producing a metal double pipe of the present invention, the material of the outer pipe and the inner pipe is preferably 9Cr-1Mo steel. Examples of steel corresponding to 9Cr-1Mo steel include Fire STBA28 and ASME SA-213Gr. Described in the interpretation of technical standards for thermal power generation facilities. In general, T91 is adopted. As a specific chemical composition example of 9Cr-1Mo steel, the chemical composition of fire STBA28 is as follows. That is, in mass%, C: 0.08 to 0.12%, Si: 0.20 to 0.50%, Mn: 0.30 to 0.60%, P ≦ 0.020%, S ≦ 0. Contains 010%, Ni ≦ 0.40%, Cr: 8.00 to 9.50%, Mo: 0.85 to 1.05%, V: 0.10 to 0.25% (the balance is Fe) It is steel.

9Cr−1Mo鋼は、高温特性(降伏点、クリープ強度)に優れていることから、ボイラ・熱交換器用合金鋼鋼管として広範囲に用いられており、金属二重管の内管および外管の材質がこの9Cr−1Mo鋼の場合には、本発明の製造方法の特徴が最大限に発揮される。   9Cr-1Mo steel is widely used as an alloy steel pipe for boilers and heat exchangers because of its high temperature characteristics (yield point, creep strength). However, in the case of this 9Cr-1Mo steel, the characteristics of the production method of the present invention are exhibited to the maximum.

加工用ダイスとしてテーパーダイスを用いた空引きの冷間引抜きにより二重管を作製し、その際に前記(1)式により接触長さを算出するとともに、得られた二重管の面圧を測定する試験を行い、本発明の効果を検証した。   A double pipe is produced by cold drawing using a taper die as a processing die, and the contact length is calculated by the above equation (1), and the surface pressure of the obtained double pipe is calculated. A test for measurement was conducted to verify the effect of the present invention.

[試験方法]
本試験では、以下の手順により、外管または内管として用いる素管を作製した。
(1)熱間製管により中空素管を得た。
(2)得られた中空素管に冷間引抜き加工を施して所定寸法の素管に仕上げた。
(3)所望寸法に仕上げた素管に、焼ならし後焼戻しの熱処理を施した。
上記(2)の冷間引抜き加工の条件を変更することにより、外径および肉厚を調整して寸法が異なる素管を作製した。
[Test method]
In this test, a raw tube used as an outer tube or an inner tube was prepared by the following procedure.
(1) A hollow shell was obtained by hot pipe making.
(2) The obtained hollow shell was subjected to cold drawing to finish a blank with a predetermined size.
(3) The base tube finished to a desired size was subjected to heat treatment for tempering after normalization.
By changing the conditions of the cold drawing process (2) above, the outer diameter and the wall thickness were adjusted to produce the elementary pipes having different dimensions.

上記の手順および条件により得られた素管を外管として用いる場合は、二重管とする際に合わせ面となる内面を一定の研磨量で研磨することにより表面スケールを除去した。また、素管を内管として用いる場合は、二重管とする際に合わせ面となる外面を一定の研磨量で研磨することにより表面スケールを除去した。本試験では、内管として用いる素管は、作業性が悪化することから内面に研磨を施すことなく用いた。このようにして寸法が異なる外管および内管を3種類ずつ準備した。   When the raw tube obtained by the above procedure and conditions was used as the outer tube, the surface scale was removed by polishing the inner surface, which becomes the mating surface when using a double tube, with a constant polishing amount. Moreover, when using a raw pipe | tube as an inner pipe | tube, when making it a double pipe | tube, the surface scale was removed by grind | polishing the outer surface used as a mating surface with a fixed grinding | polishing amount. In this test, the raw tube used as the inner tube was used without polishing the inner surface because workability deteriorated. Thus, three types of outer tubes and inner tubes having different dimensions were prepared.

準備した外管と内管とを管あわせした後、前記図1に示すように、加工用ダイスとしてテーパーダイスを用いた空引きの冷間引抜きを行い、外径19.00mmの二重管を得た。この際、それぞれ3種類を準備した外管および内管の組み合わせを変更し、外管と内管のクリアランスを調整した。表1に、試験条件として、テーパーダイスの寸法ならびに外管および内管とした素管の材質を示す。   After the prepared outer tube and inner tube are combined, as shown in FIG. 1, cold drawing using a taper die is performed as a processing die, and a double tube having an outer diameter of 19.00 mm is obtained. Obtained. At this time, the combination of the outer tube and the inner tube, each of which was prepared in three types, was changed to adjust the clearance between the outer tube and the inner tube. Table 1 shows the dimensions of the taper dies and the material of the base pipe used as the outer pipe and the inner pipe as test conditions.

Figure 2012192450
Figure 2012192450

また、表2に、試験区分、外管および内管の種類および寸法、冷間引抜きの際に用いたテーパーダイスのアプローチ部の角度α、外管と内管とのクリアランスz、前記(1)式により算出した接触長さLならびに接触長さの逆数(1/L)をそれぞれ示す。表2に示すクリアランスz、接触長さLおよび接触長さの逆数(1/L)は、冷間引抜き前に測定した外管および内管の外径および内径を用いてそれぞれ算出した。   Table 2 also shows the test category, the types and dimensions of the outer and inner tubes, the angle α of the approach portion of the taper die used for cold drawing, the clearance z between the outer tube and the inner tube, (1) The contact length L calculated by the equation and the reciprocal of the contact length (1 / L) are shown respectively. The clearance z, the contact length L, and the reciprocal of the contact length (1 / L) shown in Table 2 were calculated using the outer diameter and inner diameter of the outer tube and inner tube measured before cold drawing, respectively.

Figure 2012192450
Figure 2012192450

[評価基準]
得られた二重管の外管と内管の界面に発生した面圧(MPa)は、以下の手順により外管の周方向および軸方向の歪みを測定し、算出した。
(a)二重管の外面に歪みゲージを貼り付ける。
(b)内管を切削加工により除去する。
(c)除去により生じる外管の円周方向および長手方向の歪みを測定し、下記(6)式および(7)式より面圧P(MPa)を算出する。
[Evaluation criteria]
The surface pressure (MPa) generated at the interface between the outer tube and the inner tube of the obtained double tube was calculated by measuring the circumferential and axial strains of the outer tube according to the following procedure.
(A) A strain gauge is attached to the outer surface of the double pipe.
(B) The inner tube is removed by cutting.
(C) The distortion in the circumferential direction and the longitudinal direction of the outer tube caused by the removal is measured, and the surface pressure P (MPa) is calculated from the following formulas (6) and (7).

σc=E/(1−μ2)×(εc+μεa) ・・・(6)
P=(b2−a2)/2b2×σc ・・・(7)
ただし、外管の円周方向の応力をσc、外管のヤング率をE(GPa)、外管のポアソン比をμ、外管の円周方向の歪みをεc、外管の長手方向の歪みをεa、外管の内径をa(mm)、および外管の外径をb(mm)とする。
σc = E / (1−μ 2 ) × (εc + μεa) (6)
P = (b 2 −a 2 ) / 2b 2 × σc (7)
However, the outer tube circumferential stress is σc, the outer tube Young's modulus is E (GPa), the outer tube Poisson's ratio is μ, the outer tube circumferential strain is εc, and the outer tube longitudinal strain is Is εa, the inner diameter of the outer tube is a (mm), and the outer diameter of the outer tube is b (mm).

[試験結果]
図4は、テーパーダイスのアプローチ部における外管と内管との接触長さと二重管に発生した面圧との関係を示す図である。同図で破線矢印を用いて示すように、テーパーダイスのアプローチ部の角度にかかわらず、テーパーダイスのアプローチ部で外管と内管とが接触する長さが短いほど、得られる二重管に発生した面圧が増加した。しかし、外管と内管とが接触する長さが0、すなわち、テーパーダイスのアプローチ部で外管と内管とが接触しない場合、得られる二重管に発生した面圧が著しく減少した。
[Test results]
FIG. 4 is a diagram illustrating the relationship between the contact length between the outer tube and the inner tube in the approach portion of the taper die and the surface pressure generated in the double tube. As shown by the dashed arrows in the figure, regardless of the angle of the taper die approach part, the shorter the length of contact between the outer pipe and the inner pipe in the taper die approach part, The generated surface pressure increased. However, when the length of contact between the outer tube and the inner tube is 0, that is, when the outer tube and the inner tube are not in contact with each other at the tapered die approach portion, the surface pressure generated in the resulting double tube is significantly reduced.

図5は、接触長さの逆数と二重管に発生した面圧との関係を示す図である。同図から、テーパーダイスのアプローチ部の角度にかかわらず、接触する長さの逆数と二重管の面圧とが相関関係を有することが確認でき、接触長さの逆数が増加するとともに二重管の面圧が向上した。また、接触長さの逆数を1.35以上とすることにより、得られる二重管に発生する面圧を30MPa以上にできることが明らかになった。   FIG. 5 is a diagram showing the relationship between the reciprocal of the contact length and the surface pressure generated in the double pipe. From this figure, it can be confirmed that the reciprocal of the contact length and the surface pressure of the double pipe have a correlation irrespective of the angle of the approach portion of the taper die, and the reciprocal of the contact length increases and doubles. The surface pressure of the pipe was improved. It has also been clarified that the surface pressure generated in the resulting double pipe can be increased to 30 MPa or more by setting the reciprocal of the contact length to 1.35 or more.

これらから、本発明の金属二重管の製造方法は、前記(1)式により算出され、テーパーダイスのアプローチ部で外管と内管とが接触する長さL(mm)が、前記(2)式を満たす条件とすることにより、得られる二重管に面圧を発生させて密着性を確保できることが明らかになった。   From these, the metal double pipe manufacturing method of the present invention is calculated by the above formula (1), and the length L (mm) at which the outer pipe and the inner pipe are in contact with each other at the approach portion of the taper die is (2 It has been clarified that, by satisfying the condition (), a contact pressure can be secured by generating a surface pressure in the obtained double pipe.

本発明の金属二重管の製造方法は、下記の顕著な効果を有する。
(1)テーパーダイスを用いた空引きの冷間引抜きにおいて、前記(1)式により算出される接触長さの逆数を適正化することにより、得られる二重管に面圧を発生させて密着性を確保できる。
(2)接触長さの逆数を調整することにより、得られる二重管に発生する面圧を所望の値に制御できる。
(3)プラグを用いない空引きにより、得られる二重管の外管と内管に面圧を発生させることから、別工程による拡径加工や内管内面に潤滑処理が不要であり、生産性を向上できる。
The method for producing a metal double tube of the present invention has the following remarkable effects.
(1) In cold drawing of empty drawing using a taper die, by optimizing the reciprocal of the contact length calculated by the above equation (1), surface pressure is generated in the resulting double pipe to achieve close contact. Can be secured.
(2) By adjusting the reciprocal of the contact length, the surface pressure generated in the resulting double pipe can be controlled to a desired value.
(3) Since the surface pressure is generated in the outer and inner pipes of the double pipe obtained by emptying without using a plug, there is no need for diameter expansion processing in a separate process or lubrication treatment on the inner pipe inner surface. Can be improved.

したがって、本発明の製造方法によれば、高速増殖炉プラントの蒸気発生器に用いる伝熱管に好適な金属二重管を提供できる。   Therefore, according to the manufacturing method of the present invention, a metal double tube suitable for a heat transfer tube used in a steam generator of a fast breeder reactor plant can be provided.

1:金属二重管、 11:外管、 12:内管、 1a:外管と内管の接触位置、
2:テーパーダイス、 2a:アプローチ部、 2b:ベアリング部、
2c:逃げ部、 L:外管と内管との接触長さ、 z:外管と内管とのクリアランス、
α:テーパーダイスのアプローチ部の角度
1: metal double pipe, 11: outer pipe, 12: inner pipe, 1a: contact position of outer pipe and inner pipe,
2: taper die, 2a: approach part, 2b: bearing part,
2c: relief portion, L: contact length between outer tube and inner tube, z: clearance between outer tube and inner tube,
α: Angle of taper die approach

Claims (2)

加工用ダイスとしてテーパーダイスを用いる冷間引抜きによって、外管の内面に内管の外面が接してなる金属二重管を製造する方法であって、
下記(1)式により算出され、テーパーダイスのアプローチ部で外管と内管とが接触する長さL(mm)が、下記(2)式を満たす条件とし、空引きすることを特徴とする金属二重管の製造方法。
L=(do1−d1−2z)/2sinα ・・・(1)
1.35≦1/L≦10 ・・・(2)
ただし、do1は冷間引抜き前の外管外径(mm)、zは冷間引抜き前における外管と内管とのクリアランス(mm)、d1は冷間引抜きにより得られた金属二重管の外径(mm)、αはテーパーダイスのアプローチ部の角度(°)である。
A method of manufacturing a metal double tube in which the outer surface of the inner tube is in contact with the inner surface of the outer tube by cold drawing using a taper die as a processing die,
Calculated by the following equation (1), the length L (mm) at which the outer tube and the inner tube contact at the approach portion of the taper die is a condition that satisfies the following equation (2), and is voided: A method of manufacturing a metal double pipe.
L = (do1-d1-2z) / 2sin α (1)
1.35 ≦ 1 / L ≦ 10 (2)
Where do1 is the outer diameter (mm) of the outer tube before cold drawing, z is the clearance (mm) between the outer tube and the inner tube before cold drawing, and d1 is the metal double tube obtained by cold drawing. The outer diameter (mm) and α are the angle (°) of the approach portion of the taper die.
前記外管および前記内管の材質を9Cr−1Mo鋼とすることを特徴とする請求項1に記載の金属二重管の製造方法。   The method for producing a metal double pipe according to claim 1, wherein the outer pipe and the inner pipe are made of 9Cr-1Mo steel.
JP2012039917A 2011-03-03 2012-02-27 Metal double pipe manufacturing method Active JP5796516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012039917A JP5796516B2 (en) 2011-03-03 2012-02-27 Metal double pipe manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011045868 2011-03-03
JP2011045868 2011-03-03
JP2012039917A JP5796516B2 (en) 2011-03-03 2012-02-27 Metal double pipe manufacturing method

Publications (2)

Publication Number Publication Date
JP2012192450A true JP2012192450A (en) 2012-10-11
JP5796516B2 JP5796516B2 (en) 2015-10-21

Family

ID=47084871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012039917A Active JP5796516B2 (en) 2011-03-03 2012-02-27 Metal double pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP5796516B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531134B1 (en) * 2014-06-19 2015-06-24 현대하이스코 주식회사 Method for manufacturing of duplex pipe in drawing way
KR101531133B1 (en) * 2014-06-19 2015-06-24 현대하이스코 주식회사 Method for manufacturing of duplex pipe in drawing way
JP2018051604A (en) * 2016-09-29 2018-04-05 矢崎エナジーシステム株式会社 Manufacturing method of composite conductor wire
JP2019503868A (en) * 2015-12-18 2019-02-14 サンドヴィック マテリアルズ テクノロジー ドイチュラント ゲーエムベーハー Manufacturing method of high-pressure pipe

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125924A (en) * 1977-04-04 1978-11-21 United States Steel Corporation Method of producing composite metal pipe
JPS5841611A (en) * 1981-09-02 1983-03-10 Sumitomo Metal Ind Ltd Manufacture of double-pipe
JPS61283414A (en) * 1985-06-07 1986-12-13 Kawasaki Heavy Ind Ltd Manufacture of wear resistant double pipe
JPS6427716A (en) * 1987-07-21 1989-01-30 Nippon Steel Corp Manufacture of corrosion resistant duplex tube
JPS6475114A (en) * 1987-09-18 1989-03-20 Shinnichi Kogyo Co Ltd Drawing method for composite bar or composite pipe
JPH03234314A (en) * 1990-02-09 1991-10-18 Nippon Steel Corp Manufacture of double tube
JPH09119791A (en) * 1995-10-25 1997-05-06 Toshiba Corp Double heat transfer tube for vapor generator and manufacture thereof
JPH1082501A (en) * 1996-09-05 1998-03-31 Sumitomo Metal Ind Ltd Double tube for fast breeder reactor and manufacture thereof
JPH11166463A (en) * 1997-09-30 1999-06-22 Usui Internatl Ind Co Ltd Manufacture of high pressure fuel injection pipe and high pressure fuel injection pipe
US20050251987A1 (en) * 2004-04-12 2005-11-17 Urech Bowman A System and method for producing bimetallic line pipe
JP2011073059A (en) * 2009-09-02 2011-04-14 Sumitomo Metal Ind Ltd Method of manufacturing metallic double pipe
JP2012076129A (en) * 2010-10-04 2012-04-19 Sumitomo Metal Ind Ltd Method for manufacturing metallic double wall pipe

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125924A (en) * 1977-04-04 1978-11-21 United States Steel Corporation Method of producing composite metal pipe
JPS5841611A (en) * 1981-09-02 1983-03-10 Sumitomo Metal Ind Ltd Manufacture of double-pipe
JPS61283414A (en) * 1985-06-07 1986-12-13 Kawasaki Heavy Ind Ltd Manufacture of wear resistant double pipe
JPS6427716A (en) * 1987-07-21 1989-01-30 Nippon Steel Corp Manufacture of corrosion resistant duplex tube
JPS6475114A (en) * 1987-09-18 1989-03-20 Shinnichi Kogyo Co Ltd Drawing method for composite bar or composite pipe
JPH03234314A (en) * 1990-02-09 1991-10-18 Nippon Steel Corp Manufacture of double tube
JPH09119791A (en) * 1995-10-25 1997-05-06 Toshiba Corp Double heat transfer tube for vapor generator and manufacture thereof
JPH1082501A (en) * 1996-09-05 1998-03-31 Sumitomo Metal Ind Ltd Double tube for fast breeder reactor and manufacture thereof
JPH11166463A (en) * 1997-09-30 1999-06-22 Usui Internatl Ind Co Ltd Manufacture of high pressure fuel injection pipe and high pressure fuel injection pipe
US20050251987A1 (en) * 2004-04-12 2005-11-17 Urech Bowman A System and method for producing bimetallic line pipe
JP2011073059A (en) * 2009-09-02 2011-04-14 Sumitomo Metal Ind Ltd Method of manufacturing metallic double pipe
JP2012076129A (en) * 2010-10-04 2012-04-19 Sumitomo Metal Ind Ltd Method for manufacturing metallic double wall pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531134B1 (en) * 2014-06-19 2015-06-24 현대하이스코 주식회사 Method for manufacturing of duplex pipe in drawing way
KR101531133B1 (en) * 2014-06-19 2015-06-24 현대하이스코 주식회사 Method for manufacturing of duplex pipe in drawing way
JP2019503868A (en) * 2015-12-18 2019-02-14 サンドヴィック マテリアルズ テクノロジー ドイチュラント ゲーエムベーハー Manufacturing method of high-pressure pipe
JP2021181120A (en) * 2015-12-18 2021-11-25 サンドヴィック マテリアルズ テクノロジー ドイチュラント ゲーエムベーハー High pressure pipe production method
JP2018051604A (en) * 2016-09-29 2018-04-05 矢崎エナジーシステム株式会社 Manufacturing method of composite conductor wire

Also Published As

Publication number Publication date
JP5796516B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP4807409B2 (en) Pipe straightening method and pipe manufacturing method using the straightening method
JP4453657B2 (en) Cold-finished seamless steel pipe
JP5273036B2 (en) Cold-finished seamless steel pipe for integrally formed drive shaft, drive shaft using the same, and method for manufacturing the cold-finished seamless steel pipe
JP2011073059A (en) Method of manufacturing metallic double pipe
JP5796516B2 (en) Metal double pipe manufacturing method
JP2003311317A (en) Method for manufacturing seamless tube
JP5378522B2 (en) Manufacturing method of heat transfer tube for steam generator
Haneklaus et al. Tube expansion and diffusion bonding of 316L stainless steel tube-to-tube sheet joints using a commercial roller tube expander
JP5472480B2 (en) Manufacturing method of double pipe with braided wire
JP5333401B2 (en) Metal double pipe manufacturing method
CN100408905C (en) Manufacturing method of seamless steel pipe for pressure pipeline
JP4862972B1 (en) Crevice double pipe and its manufacturing method
CN108517478A (en) A kind of manufacturing process of the small-bore accurate pipe of 718 alloy
WO2013171935A1 (en) Method for manufacturing seamless pipe
JP7239019B2 (en) Seamless steel pipe and its manufacturing method
JP4192970B2 (en) Cold rolling method for metal tubes
JP2013103238A (en) Method of evaluating surface machining crack susceptibility and device therefor
CN100393433C (en) Cold rolling process for metal tubes
JP2018034201A (en) Necking method and method for manufacturing duplex stainless steel pipe
CN104388653A (en) Post-processing process of hot-rolled 12Cr1MoV seamless steel tube and processed steel tube
JP2019141864A (en) Squeezing method for end of duplex stainless steel pipe, and production method for duplex stainless steel pipe
JP2012187625A (en) Method of cold-rolling seamless tube
JP7156514B2 (en) Seamless pipe and its manufacturing method
JP5966441B2 (en) Welded steel pipe excellent in pressure crushing performance and internal pressure fracture resistance and manufacturing method thereof
JP2017020063A (en) Copper and copper alloy tube for flare processing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R151 Written notification of patent or utility model registration

Ref document number: 5796516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350