JP2012192331A - Treatment method for aqueous coating material waste liquid - Google Patents

Treatment method for aqueous coating material waste liquid Download PDF

Info

Publication number
JP2012192331A
JP2012192331A JP2011057569A JP2011057569A JP2012192331A JP 2012192331 A JP2012192331 A JP 2012192331A JP 2011057569 A JP2011057569 A JP 2011057569A JP 2011057569 A JP2011057569 A JP 2011057569A JP 2012192331 A JP2012192331 A JP 2012192331A
Authority
JP
Japan
Prior art keywords
waste liquid
water
treatment
coating material
aqueous coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011057569A
Other languages
Japanese (ja)
Inventor
Tsukasa Yamada
司 山田
Hiroyuki Koyo
広行 小要
Juichi Yanagi
寿一 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor East Japan Inc
Japan Enviro Chemicals Ltd
Original Assignee
Toyota Motor East Japan Inc
Japan Enviro Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor East Japan Inc, Japan Enviro Chemicals Ltd filed Critical Toyota Motor East Japan Inc
Priority to JP2011057569A priority Critical patent/JP2012192331A/en
Publication of JP2012192331A publication Critical patent/JP2012192331A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method for aqueous coating material waste liquid, which can simplify treatment steps of waste liquid including an aqueous coating material, reduce treatment cost and recycle the treated waste liquid as plant water for washing or the like of a coating booth.SOLUTION: The waste liquid including the aqueous coating material is recycled as plant water for the coating booth through a reaction step 1 for performing neutralization treatment by adding acid to the waste liquid including the aqueous coating material and then adding alkali, a filtering step 2 for removing a solid content from the treated liquid obtained by the step 1, and an adsorption step 3 for removing water-soluble organic components by adsorbent by means of a merry-go-round method.

Description

本発明は、自動車塗装の材料として使用される水性塗料を含む廃液を、塗装ブース用水としてリサイクル可能とする水性塗料廃液の処理方法に関する。   The present invention relates to a method for treating an aqueous paint waste liquid that makes it possible to recycle a waste liquid containing an aqueous paint used as a material for automobile painting as water for a painting booth.

自動車製造等の塗装工程においては、従来、有機溶剤を使用した塗料が用いられてきたが、環境保全の観点から、揮発性有機化合物(VOC)の排出削減が求められるようになり、近年、有機溶剤を使用しない、あるいはまた、有機溶媒の使用量を大幅に減らして水で代替した、水性塗料を使用することが一般的になってきている。   Conventionally, paints using organic solvents have been used in painting processes such as automobile manufacturing. However, from the viewpoint of environmental protection, volatile organic compounds (VOC) emissions have been required to be reduced. It has become common to use water-based paints that do not use solvents, or that are significantly reduced in the amount of organic solvents replaced with water.

しかしながら、水性塗料は、水質基準とされているBOD(生物化学的酸素要求量)やCOD(化学的酸素要求量)及びSS(浮遊物質)分を増大させる要因となる有機物や還元性物質が水溶性であるため、水に一旦溶解した有機成分の分離除去が困難であるという課題を有していた。
このため、水性塗料廃液の処理においては、従来は、添加剤を加えることにより、有機成分を凝集させて除去する方法が採用されていた(例えば、特許文献1参照)。
However, water-based paints are water-soluble organic substances and reducing substances that increase the BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), and SS (Floating Substance) content, which are standard water quality. Therefore, it has been difficult to separate and remove organic components once dissolved in water.
For this reason, in the treatment of aqueous paint waste liquid, conventionally, a method of agglomerating and removing organic components by adding an additive has been employed (for example, see Patent Document 1).

図2に、従来の水性塗料廃液の処理方法の工程の一例の概要を示す。
図2に示す方法においては、一次凝集工程11において、凝集剤の添加により有機成分である塗料成分が固形化され、処理槽の底部に沈殿する。これらの凝集剤や凝集した塗料成分の沈殿物は、処理槽の底部に付着して溜まるため、処理水を抜き出した後、人手によってスラッジを掻き出さなければならなかった。
また、前記処理水は、有機成分が十分に除去されていないため、さらに、二次凝集工程12、中和工程13を経て、スラッジを除去した後、曝気槽において微生物処理工程14を経てから、工場廃水とされていた。
In FIG. 2, the outline | summary of an example of the process of the processing method of the conventional water-based paint waste liquid is shown.
In the method shown in FIG. 2, in the primary flocculation step 11, the coating component, which is an organic component, is solidified by the addition of the flocculating agent and precipitates at the bottom of the treatment tank. Since these coagulant and aggregated coating component deposits adhere to the bottom of the treatment tank and accumulate, it was necessary to manually remove the sludge after extracting the treated water.
In addition, since the organic component is not sufficiently removed from the treated water, the sludge is further removed through the secondary agglomeration step 12 and the neutralization step 13, and then the microorganism treatment step 14 is performed in the aeration tank. It was considered as factory wastewater.

また、前記一次凝集工程において、凝集剤を添加する代わりに、酸を添加して塗料成分を固形化させ、中和した後、固形分を除去する方法も提案されている(特許文献2参照)。   In addition, in the primary flocculation step, instead of adding a flocculant, a method has been proposed in which an acid is added to solidify a paint component and neutralize, and then the solid content is removed (see Patent Document 2). .

特公昭52−45139号公報Japanese Patent Publication No. 52-45139 特開2001−219176号公報JP 2001-219176 A

しかしながら、上記特許文献1に記載されたような凝集剤等の添加剤を用いた方法は、添加剤等の凝集剤が高価である上に、沈殿物の回収のための人件費がかさみ、コストを要するものであった。しかも、汚水(水性塗料廃液)成分を80%以上含んだ状態のスラッジを処理する必要があった。
また、工場廃水とするためには、凝集工程を2度も経なければならず、微生物処理も必要であり、処理工程数が多く、煩雑であった。
さらに、微生物処理では、界面活性剤を十分に除去することができないため、発泡等の問題が発生し、微生物処理後の廃水は塗装ブースの洗浄用等の工場用水としてリサイクルすることはできなかった。
However, the method using an additive such as an aggregating agent as described in Patent Document 1 is expensive in the cost of an aggregating agent such as an additive, and the labor cost for collecting a precipitate is high. Was necessary. Moreover, it is necessary to treat sludge containing 80% or more of sewage (aqueous paint waste liquid).
In addition, in order to obtain factory wastewater, the agglomeration process has to be performed twice, microbial treatment is necessary, and the number of treatment processes is large and complicated.
Furthermore, in the microbial treatment, the surfactant could not be sufficiently removed, so problems such as foaming occurred, and the wastewater after the microbial treatment could not be recycled as factory water for washing the painting booth. .

これに対して、特許文献2に記載されているように、酸及びアルカリを添加する方法においては、高価な凝集剤を使用せず、安価な酸及びアルカリが用いられ、pH調整は全自動化が可能であり、しかも、同一槽で反応を行うことができるため、処理の簡便化及びコストの低減化が図られるという利点を有している。
しかしながら、この方法においても、廃液中には、未反応の有機成分、特に、有機溶媒等のアルコール系化合物や高分子カルボン酸等の不揮発性分やその他の添加剤が残存しているため、工場廃水とするためには、さらに、二次凝集工程、中和工程、微生物処理工程等を経る必要があった。また、このように、微生物処理工程を経る場合には、上記の方法と同様に、界面活性剤が十分に除去されず、発泡等の問題が生じるため、微生物処理後の廃水は塗装ブースの洗浄用等の工場用水としてリサイクルすることはできなかった。
On the other hand, as described in Patent Document 2, in the method of adding an acid and an alkali, an inexpensive flocculant is not used, an inexpensive acid and alkali are used, and pH adjustment is fully automated. In addition, since the reaction can be performed in the same tank, there is an advantage that the processing can be simplified and the cost can be reduced.
However, in this method as well, unreacted organic components, particularly non-volatile components such as alcohol compounds such as organic solvents, polymer carboxylic acids, and other additives remain in the waste liquid. In order to obtain wastewater, it was necessary to go through a secondary aggregation process, a neutralization process, a microorganism treatment process, and the like. In addition, as described above, when the microbial treatment process is performed, the surfactant is not sufficiently removed, and problems such as foaming occur. Therefore, the waste water after the microbial treatment is washed in the coating booth. It was not possible to recycle it as industrial water.

本発明は、上記技術的課題を解決するためになされたものであり、水性塗料を含む廃液の処理工程を簡略化し、かつ、処理コストの低減化を図り、処理後の廃液を塗装ブースの洗浄用等の工場用水としてリサイクルすることを可能とする水性塗料廃液の処理方法を提供することを目的とするものである。   The present invention has been made in order to solve the above technical problem, simplifying the treatment process of waste liquid containing water-based paint, reducing the treatment cost, and cleaning the waste liquid after treatment to the paint booth. It aims at providing the processing method of the water-based paint waste liquid which makes it possible to recycle as industrial water.

本発明に係る水性塗料廃液の処理方法は、水性塗料を含む廃液に酸を添加した後、アルカリを添加して中和処理する反応工程と、前記工程による処理液から固形分を除去するろ過工程と、水溶性の有機成分を吸着剤により除去する吸着工程とを経て、前記水性塗料を含む廃液を塗装ブース用水としてリサイクルすることを特徴とする。
このような工程によれば、水性塗料を含む廃液を微生物処理する必要がなく、処理工程の簡略化及び処理コストの低減化を図ることができる。
The treatment method of the aqueous paint waste liquid according to the present invention includes a reaction step of adding an alkali to the waste liquid containing the aqueous paint, and then neutralizing by adding an alkali, and a filtration step of removing solids from the treatment liquid by the above step And an adsorption process for removing water-soluble organic components with an adsorbent, and the waste liquid containing the water-based paint is recycled as paint booth water.
According to such a process, it is not necessary to perform microbial treatment on the waste liquid containing the water-based paint, and the treatment process can be simplified and the treatment cost can be reduced.

前記吸着剤は、活性炭、アルミナ、珪藻土、シリカゲル及びゼオライトのうちから選ばれたいずれか1種であることが好ましい。
これらの材質からなる吸着剤によれば、廃液中に残存する添加剤や有機成分を好適に吸着除去することができる。
The adsorbent is preferably any one selected from activated carbon, alumina, diatomaceous earth, silica gel, and zeolite.
According to the adsorbents made of these materials, additives and organic components remaining in the waste liquid can be suitably adsorbed and removed.

また、前記吸着工程は、メリーゴーランド方式で行うことが好ましい。
これにより、廃液中に残存する添加剤や有機成分を、簡便かつ低コストで、効率的に除去することができる。
Moreover, it is preferable to perform the said adsorption | suction process by a merry-go-round system.
Thereby, the additive and organic component which remain | survived in a waste liquid can be removed efficiently simply and at low cost.

本発明に係る水性塗料廃液の処理方法によれば、水性塗料を含む廃液の処理工程を簡略化することができ、かつ、処理コストの低減化が図られる。
また、本発明に係る処理方法においては、従来法で行われていた微生物処理が不要となり、有機成分や添加剤が残留しないため、処理後の廃液を塗装ブースの洗浄用等の工場用水として再利用することができ、水性塗料による塗装工程での洗浄水利用をクローズド化させることも可能となる。
According to the method for treating an aqueous paint waste liquid according to the present invention, it is possible to simplify the process of treating the waste liquid containing the aqueous paint, and to reduce the treatment cost.
In addition, the treatment method according to the present invention eliminates the need for microbial treatment that has been carried out in the conventional method, and no organic components or additives remain, so that the waste liquid after treatment is reused as factory water for painting booth washing and the like. It can be used, and the use of washing water in the coating process with a water-based paint can be closed.

本発明に係る廃液処理方法の概要を示す工程図である。It is process drawing which shows the outline | summary of the waste-liquid processing method which concerns on this invention. 従来の廃液処理方法の概要を示す工程図である。It is process drawing which shows the outline | summary of the conventional waste liquid processing method.

以下、本発明を、より詳細に説明する。
本発明に係る水性塗料の廃液処理方法の処理工程の概要を図1に示す。
図1に示すように、本発明に係る処理方法においては、水性塗料を含む廃液に酸を添加した後、アルカリを添加して中和処理する反応工程1と、前記工程による処理液から固形分を除去するろ過工程2と、水溶性の有機成分を吸着剤により除去する吸着工程を吸着させる工程3とを経る。
すなわち、本発明に係る処理方法は、水性塗料を含む廃液を、微生物処理せずに、最終工程において吸着剤により処理することを特徴とするものである。
Hereinafter, the present invention will be described in more detail.
FIG. 1 shows an outline of the processing steps of the water-based paint waste liquid processing method according to the present invention.
As shown in FIG. 1, in the treatment method according to the present invention, after adding an acid to a waste liquid containing a water-based paint, a reaction step 1 in which an alkali is added and neutralized, and a solid content from the treatment liquid in the above step. A filtration step 2 for removing water and a step 3 for adsorbing an adsorption step for removing water-soluble organic components with an adsorbent.
That is, the treatment method according to the present invention is characterized in that the waste liquid containing the water-based paint is treated with the adsorbent in the final step without being treated with microorganisms.

以下、本発明に係る処理方法を、各工程順に詳細に説明する。
反応工程1においては、まず、廃液に酸を添加して酸性にする。
ここでいう廃液は、水性塗料が含まれているものでよく、前記水性塗料は、特に、自動車塗装用の水性塗料に限定されるものではない。
Hereinafter, the processing method according to the present invention will be described in detail in the order of each step.
In the reaction step 1, first, an acid is added to the waste liquid to make it acidic.
The waste liquid here may contain water-based paint, and the water-based paint is not particularly limited to water-based paint for automobile painting.

廃液に添加する酸は、一般的な無機酸を用いることができ、特に限定されるものではなく、例えば、塩酸、硝酸、硫酸等が挙げられる。酸の濃度は、安全性やpH調整の容易性等の観点から、希酸を用いることが好ましい。
前記酸は、よく撹拌しながら滴下していき、廃液のpHが1〜6程度になるように調整することが好ましい。このようにして、廃液を酸性にすることにより、樹脂塗料成分を固形化させることができる。
The acid added to the waste liquid can be a general inorganic acid, and is not particularly limited, and examples thereof include hydrochloric acid, nitric acid, sulfuric acid and the like. The acid concentration is preferably a dilute acid from the viewpoints of safety and ease of pH adjustment.
It is preferable to adjust the acid so that the pH of the waste liquid is about 1 to 6 by adding dropwise with good stirring. In this way, the resin coating component can be solidified by acidifying the waste liquid.

前記酸を滴下後、酸と廃液との反応を促進するために、廃液を加熱することが好ましい。
このときの加熱温度は、30〜100℃であることが好ましく、より好ましくは40〜80℃である。
前記加熱温度が低すぎる場合、樹脂塗料成分が硬化しないおそれがあり、一方、前記廃液は水系であるため、加熱温度の上限は100℃とする。
After dropping the acid, it is preferable to heat the waste liquid in order to promote the reaction between the acid and the waste liquid.
The heating temperature at this time is preferably 30 to 100 ° C, more preferably 40 to 80 ° C.
If the heating temperature is too low, the resin coating component may not be cured. On the other hand, since the waste liquid is aqueous, the upper limit of the heating temperature is 100 ° C.

上記のように加熱する場合、加熱時間は、20〜120分間であることが好ましく、より好ましくは30〜60分間である。
加熱時間が短すぎる場合、酸と廃液との反応が十分に進行せず、樹脂塗料成分が固化しないおそれがあり、一方、長すぎると、廃液と酸とが共沸して蒸発し、作業性、安全性、環境負荷の点で好ましくない。
When heating as described above, the heating time is preferably 20 to 120 minutes, more preferably 30 to 60 minutes.
If the heating time is too short, the reaction between the acid and the waste liquid does not proceed sufficiently, and the resin coating component may not solidify. On the other hand, if the heating time is too long, the waste liquid and the acid azeotrope to evaporate and workability It is not preferable in terms of safety and environmental load.

次に、上記のようにして酸性化された廃液に、アルカリを添加して中和する。
ここで添加するアルカリは、一般的な無機アルカリを用いることができ、特に限定されるものではなく、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等が挙げられる。これらは、安全性やpH調整の容易性等の観点から、希アルカリを用いることが好ましい。
Next, the waste liquid acidified as described above is neutralized by adding an alkali.
The alkali added here can be a general inorganic alkali, and is not particularly limited, and examples thereof include sodium hydroxide, potassium hydroxide, and calcium hydroxide. From these viewpoints, it is preferable to use a dilute alkali from the viewpoints of safety and ease of pH adjustment.

そして、上記のような酸及びアルカリによる反応工程を経て、固化した樹脂塗料成分は、機械的な脱水により廃スラッジとして分離・回収される。同時に、残留SSの一部も、この時点で捕捉除去することができる。   Then, the resin coating component solidified through the reaction step with acid and alkali as described above is separated and recovered as waste sludge by mechanical dehydration. At the same time, some of the residual SS can also be captured and removed at this point.

除去されずに残ったSSは、別途、次のろ過工程2において捕捉除去される。残留SSは、後の吸着工程3における吸着効率を低下させることとなるため、吸着工程3の前にできる限り除去しておくことが好ましい。
このろ過工程2におけるろ過方法及びろ過材は、特に限定されるものではなく、ろ布やろ紙等を用いることもできるが、効率やコストの点から、砂ろ過により行うことが好ましい。
The SS remaining without being removed is separately captured and removed in the next filtration step 2. Since the residual SS will lower the adsorption efficiency in the subsequent adsorption step 3, it is preferable to remove it as much as possible before the adsorption step 3.
The filtration method and filter material in the filtration step 2 are not particularly limited, and filter cloth, filter paper, and the like can be used, but sand filtration is preferable in terms of efficiency and cost.

次に、前記ろ過工程2においてSSが除去された廃液は、吸着工程3へ送られる。この吸着工程3において、水溶性の有機成分を除去する。
この吸着工程3において用いられる吸着剤は、特に限定されるものではないが、水溶性の有機成分を吸着する観点から、活性炭、アルミナ、珪藻土、シリカゲル又はゼオライトのうちから選ばれた1種であることが好ましく、特に、活性炭を用いることが好ましい。
Next, the waste liquid from which SS has been removed in the filtration step 2 is sent to the adsorption step 3. In this adsorption step 3, water-soluble organic components are removed.
The adsorbent used in the adsorption step 3 is not particularly limited, but is one selected from activated carbon, alumina, diatomaceous earth, silica gel, or zeolite from the viewpoint of adsorbing water-soluble organic components. It is particularly preferable to use activated carbon.

前記吸着剤として活性炭を用いる場合、その種類や形状等は特に限定されるものではないが、例えば、粒径0.1〜100mm程度の破砕状、粒状、粉末状等の植物質、石炭質又は石油質等の原材料からなるものを用いることができる。
また、その量は処理する廃液量に対して0.05〜50重量%であることが好ましく、より好ましくは0.5〜25重量%である。
前記活性炭の量が0.05重量%未満である場合、親水性の有機成分を十分に除去することが困難であり、一方、50重量%を超える場合、それ以上の量に見合った吸着効果は得られず、コスト高になるため好ましくない。
When activated carbon is used as the adsorbent, the type, shape, and the like are not particularly limited. For example, pulverized, granular, powdery, etc. plant material having a particle size of about 0.1 to 100 mm, coal, What consists of raw materials, such as petroleum quality, can be used.
Moreover, it is preferable that the quantity is 0.05 to 50 weight% with respect to the amount of waste liquid to process, More preferably, it is 0.5 to 25 weight%.
When the amount of the activated carbon is less than 0.05% by weight, it is difficult to sufficiently remove hydrophilic organic components. On the other hand, when the amount exceeds 50% by weight, the adsorption effect corresponding to the amount larger than that is Since it is not obtained and the cost is increased, it is not preferable.

前記吸着工程3は、メリーゴーランド方式で行うことが好ましい。
メリーゴーランド方式とは、吸着剤が充填された複数の塔を直列の系で接続し、廃液が流入する最初の塔での吸着能力が低下したとき、この塔を系列から取り外し、最終段に新たな活性炭が充填された塔を付け加えていく方式をいう。
このような方式とすることにより、廃液中に残存する有機成分を除去するための曝気処理や微生物処理を行うことなく、BODやCOD等がほぼ一定の安定した水質の処理液を得ることができ、しかも、全体の廃液処理コストを約1/3低減することが可能となる。また、従来のような微生物処理が不要となるため、処理の制御が簡便となり、かつ、廃液中に含まれる界面活性剤等の添加剤も除去することができる。
The adsorption step 3 is preferably performed by a merry-go-round method.
In the merry-go-round method, multiple towers filled with adsorbent are connected in series, and when the adsorption capacity of the first tower into which the waste liquid flows decreases, this tower is removed from the series and a new one is added to the final stage. A method of adding a tower filled with activated carbon.
By adopting such a system, it is possible to obtain a stable water quality treatment liquid with almost constant BOD, COD, etc. without performing aeration treatment or microbial treatment for removing organic components remaining in the waste liquid. Moreover, it is possible to reduce the total waste liquid treatment cost by about 1/3. Further, since conventional microbial treatment is not required, the control of the treatment becomes simple, and additives such as surfactants contained in the waste liquid can be removed.

上記のような工程を経て処理された廃液は、有機成分や添加剤が残留していないため、塗装ブースの洗浄用等の工場用水としてリサイクルすることが可能である。このようなリサイクルによれば、水性塗料による塗装工程での洗浄水利用をクローズド化させることも可能となる。   The waste liquid processed through the above-described steps does not contain any organic components or additives, and therefore can be recycled as factory water for cleaning a painting booth. According to such recycling, it becomes possible to close the use of the washing water in the coating process with the water-based paint.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記実施例によって制限されるものではない。
[実施例1]
水性塗料を含む廃液10.89kgに、62%硝酸103.0gを滴下してpH1〜2とした。30分間撹拌した後、消石灰14.9gにて中和し、ガーゼでろ過した。
得られたろ液のうち100gを分取し、活性炭(粒状白鷺XS7100−3(日本エンバイロケミカルズ株式会社製))5.0gを添加し、50℃まで昇温して30分間撹拌した後、処理液99.7g(収率72.3%)を得た。
この処理液中のSSは10mg/L、CODは500mg/L未満であった。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Example 1]
103.0 g of 62% nitric acid was added dropwise to 10.89 kg of the waste liquid containing the aqueous paint to adjust the pH to 1-2. After stirring for 30 minutes, the mixture was neutralized with 14.9 g of slaked lime and filtered through gauze.
100 g of the obtained filtrate was collected, 5.0 g of activated carbon (granular white birch XS7100-3 (manufactured by Nippon Enviro Chemicals Co., Ltd.)) was added, the temperature was raised to 50 ° C., and the mixture was stirred for 30 minutes. 99.7 g (yield 72.3%) was obtained.
SS in this treatment solution was 10 mg / L, and COD was less than 500 mg / L.

[実施例2]
水性塗料を含む廃液500.1gに、62%硝酸4.9gを滴下してpH1〜2とした。30分間撹拌した後、ろ紙でろ過し、無色透明なろ液364.2gを得た。
得られたろ液を50%水酸化ナトリウム水溶液0.3gにて中和し、ガーゼでろ過した。
得られたろ液に、活性炭(粒状白鷺WH2C8/32SS(日本エンバイロケミカルズ株式会社製))20.3gを添加し、50℃まで昇温して30分間撹拌した後、処理液364.5g(収率72.8%)を得た。
この処理液中のSSは180mg/L、CODは29000mg/L未満であった。
[Example 2]
4.9 g of 62% nitric acid was added dropwise to 500.1 g of a waste liquid containing an aqueous paint to adjust the pH to 1-2. After stirring for 30 minutes, the solution was filtered with a filter paper to obtain 364.2 g of a colorless and transparent filtrate.
The obtained filtrate was neutralized with 0.3 g of 50% aqueous sodium hydroxide solution and filtered through gauze.
To the obtained filtrate, 20.3 g of activated carbon (granular white birch WH2C8 / 32SS (manufactured by Nippon Enviro Chemicals)) was added, and the temperature was raised to 50 ° C. and stirred for 30 minutes, and then 364.5 g (yield) 72.8%).
SS in this processing liquid was 180 mg / L, and COD was less than 29000 mg / L.

[比較例1]
水性塗料を含む廃液500.3gに、62%硝酸5.7gを滴下してpH2〜3とした。50℃まで昇温して30分間撹拌した後、50%水酸化ナトリウム水溶液1.6gにて中和し、ガーゼでろ過し、さらに、ろ紙でろ過し、薄褐色のろ液351.2g(収率70.2%)を得た。
このろ液(処理液)中のSSは1020mg/L、CODは34000mg/L未満であった。
[Comparative Example 1]
To 500.3 g of a waste liquid containing a water-based paint, 5.7 g of 62% nitric acid was dropped to adjust the pH to 2-3. After heating to 50 ° C. and stirring for 30 minutes, the mixture was neutralized with 1.6 g of 50% aqueous sodium hydroxide solution, filtered with gauze, further filtered with filter paper, and 351.2 g (yield) of a light brown filtrate. 70.2%).
SS in this filtrate (treatment liquid) was 1020 mg / L, and COD was less than 34000 mg / L.

上記実験例の結果から、廃液を酸及びアルカリにより反応処理した後、ろ過処理、次に吸着処理した場合(実施例1,2)、吸着処理を経ない処理廃液(比較例1)と比較して、SS及びCODを効果的に低減させることができ、塗装ブースの洗浄水としてリサイクル可能な水質レベルとすることが可能であることが認められた。   From the results of the above experimental examples, when the waste liquid was subjected to a reaction treatment with acid and alkali, followed by filtration and then adsorption treatment (Examples 1 and 2), compared with the treatment waste liquid not subjected to the adsorption treatment (Comparative Example 1). Thus, it was recognized that SS and COD can be effectively reduced, and it is possible to achieve a water quality level that can be recycled as cleaning water for the painting booth.

Claims (3)

水性塗料を含む廃液に酸を添加した後、アルカリを添加して中和処理する反応工程と、前記工程による処理液から固形分を除去するろ過工程と、水溶性の有機成分を吸着剤により除去する吸着工程とを経て、前記水性塗料を含む廃液を塗装ブース用水としてリサイクルすることを特徴とする水性塗料廃液の処理方法。   After adding acid to waste liquid containing water-based paint, neutralization treatment by adding alkali, filtration process to remove solids from the treatment liquid by the above process, and water-soluble organic components are removed by adsorbent A method for treating an aqueous paint waste liquid, wherein the waste liquid containing the aqueous paint is recycled as water for a coating booth through an adsorption step. 前記吸着剤は、活性炭、アルミナ、珪藻土、シリカゲル及びゼオライトのうちから選ばれたいずれか1種であることを特徴とする請求項1に記載の水性塗料廃液の処理方法。   The method for treating an aqueous paint waste liquid according to claim 1, wherein the adsorbent is any one selected from activated carbon, alumina, diatomaceous earth, silica gel, and zeolite. 前記吸着工程は、メリーゴーランド方式で行うことを特徴とする請求項1又は2に記載の水性塗料廃液の処理方法。   The water-based paint waste liquid treatment method according to claim 1, wherein the adsorption step is performed by a merry-go-round method.
JP2011057569A 2011-03-16 2011-03-16 Treatment method for aqueous coating material waste liquid Pending JP2012192331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011057569A JP2012192331A (en) 2011-03-16 2011-03-16 Treatment method for aqueous coating material waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011057569A JP2012192331A (en) 2011-03-16 2011-03-16 Treatment method for aqueous coating material waste liquid

Publications (1)

Publication Number Publication Date
JP2012192331A true JP2012192331A (en) 2012-10-11

Family

ID=47084776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011057569A Pending JP2012192331A (en) 2011-03-16 2011-03-16 Treatment method for aqueous coating material waste liquid

Country Status (1)

Country Link
JP (1) JP2012192331A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277419B1 (en) * 2012-08-10 2013-08-28 本田技研工業株式会社 Wastewater recycling system
CN113045029A (en) * 2020-12-15 2021-06-29 东江环保股份有限公司 Treatment method of paint spraying wastewater
CN114455768A (en) * 2022-02-25 2022-05-10 赤壁市高质量发展研究院有限公司 Paint spraying wastewater treatment device and treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305300A (en) * 1991-04-02 1992-10-28 Toshiyasu Sato Waste water treating device
JP2001219176A (en) * 2000-02-10 2001-08-14 Tokai Plant Eng Kk Method for treating aqueous paint wastewater
JP2002254076A (en) * 2001-02-28 2002-09-10 Idemitsu Kosan Co Ltd Process for adsorption and system for the same
JP2005314470A (en) * 2004-04-27 2005-11-10 Kansai Paint Co Ltd Water-based coating easy in wastewater treatment and method for treating wastewater containing the coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305300A (en) * 1991-04-02 1992-10-28 Toshiyasu Sato Waste water treating device
JP2001219176A (en) * 2000-02-10 2001-08-14 Tokai Plant Eng Kk Method for treating aqueous paint wastewater
JP2002254076A (en) * 2001-02-28 2002-09-10 Idemitsu Kosan Co Ltd Process for adsorption and system for the same
JP2005314470A (en) * 2004-04-27 2005-11-10 Kansai Paint Co Ltd Water-based coating easy in wastewater treatment and method for treating wastewater containing the coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277419B1 (en) * 2012-08-10 2013-08-28 本田技研工業株式会社 Wastewater recycling system
CN113045029A (en) * 2020-12-15 2021-06-29 东江环保股份有限公司 Treatment method of paint spraying wastewater
CN114455768A (en) * 2022-02-25 2022-05-10 赤壁市高质量发展研究院有限公司 Paint spraying wastewater treatment device and treatment method

Similar Documents

Publication Publication Date Title
Aragaw et al. Biomass-based adsorbents for removal of dyes from wastewater: a review
Lichtfouse et al. Chitosan for direct bioflocculation of wastewater
US9242878B2 (en) Heavy metal removal from waste streams
CN105016530A (en) Comprehensive treatment process of waste water high in concentration and high in salinity
JP2009248006A (en) Adsorption-coagulation type wastewater treatment agent
CN106082502B (en) A kind of method of thallium in removal waste water
CN102963953A (en) Method for treating coal washing wastewater
JP2007319792A (en) Waste water treatment method
CN105884089A (en) Advanced treatment and recycling process for coking wastewater
CN105776726A (en) Treatment process of printing and dyeing wastewater in textile industry
CN102442748B (en) Deep treatment method of naphthenic acid wastewater
JP2012192331A (en) Treatment method for aqueous coating material waste liquid
Zhao et al. Adsorption of congo red onto lignocellulose/montmorillonite nanocomposite
CN104478055A (en) Sewage treatment complexing agent as well as preparation method and application method thereof
CN211419883U (en) Hazardous waste landfill effluent disposal system
JPWO2004045740A1 (en) Purification agent for waste water and sludge water
JP2012006000A (en) Heavy metal treating agent, method of treating heavy-metal-containing liquid, and method of recovering heavy metal
KR101379374B1 (en) Reducing ironsalt processing method of dyeing wastewater
CN114057337A (en) Separation and purification method of aqueous waste solvent
CN103073148A (en) Sewage treating process
CN114620852A (en) Treatment method of wastewater from process for producing rubber vulcanization accelerator CBS by oxidation method
CN103011460A (en) Novel process for removing phosphorus from metal-salt-containing waste phosphoric acid
CN111470696A (en) Treatment method of emulsified oil-containing industrial wastewater
CN204803207U (en) Professional equipment of materialization mud washing resourceful treatment technology
Pangkumhang et al. Optimization of lignin removal from synthesized wastewater by iron (III) trimesate.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140818