JP2012191885A - Method for producing ethanol - Google Patents

Method for producing ethanol Download PDF

Info

Publication number
JP2012191885A
JP2012191885A JP2011057852A JP2011057852A JP2012191885A JP 2012191885 A JP2012191885 A JP 2012191885A JP 2011057852 A JP2011057852 A JP 2011057852A JP 2011057852 A JP2011057852 A JP 2011057852A JP 2012191885 A JP2012191885 A JP 2012191885A
Authority
JP
Japan
Prior art keywords
strain
yeast
gene
ethanol
rim15
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011057852A
Other languages
Japanese (ja)
Other versions
JP5828447B2 (en
Inventor
Daisuke Watanabe
大輔 渡辺
Yuya Araki
悠矢 荒木
Susumu Shu
延 周
Tomomi Iuchi
智美 井内
Takeshi Akao
健 赤尾
Hitoshi Shimoii
仁 下飯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute of Brewing
Original Assignee
National Research Institute of Brewing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute of Brewing filed Critical National Research Institute of Brewing
Priority to JP2011057852A priority Critical patent/JP5828447B2/en
Publication of JP2012191885A publication Critical patent/JP2012191885A/en
Application granted granted Critical
Publication of JP5828447B2 publication Critical patent/JP5828447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing ethanol in high productivity by using yeast.SOLUTION: The method for the ethanol using the gene-disrupted strain of the yeast formed by destroying a gene encoding a stationary phase transfer promoting factor.

Description

本発明はエタノールの製造方法に関する。さらに詳しくは、高発酵性酵母を用いた、清酒、ビール、ワイン等の酒類やバイオエタノール等を含むエタノールの製造方法に関する。   The present invention relates to a method for producing ethanol. More specifically, the present invention relates to a method for producing ethanol including liquor such as sake, beer and wine, bioethanol and the like using highly fermentable yeast.

酒類や燃料用のバイオエタノールに含まれているエタノールは、一般に、ブドウ糖などの糖類をサッカロミセス属に属する酵母により発酵させて製造する。   In general, ethanol contained in bioethanol for liquor and fuel is produced by fermenting sugars such as glucose with yeast belonging to the genus Saccharomyces.

発酵中の酵母細胞は、初めのうちは環境中の栄養源を勢いよく消費しながら増殖し細胞数を増加させるが、栄養源が枯渇し、生育に適さない環境になると、そのことを感知して増殖抑制のためのシグナル伝達経路が速やかに働き、増殖が停止した定常期と呼ばれる状態に移行する。このシグナル伝達経路の中心的役割を果たすのが、定常期移行を促進する因子(「定常期移行促進因子」と表記する。)である。定常期移行促進因子としては、これまでのところRim15pが知られている。   At first, yeast cells during fermentation proliferate and increase the number of cells while consuming the nutrients in the environment vigorously, but when the nutrients are depleted and the environment becomes unsuitable for growth, it is detected. Thus, the signal transduction pathway for suppressing growth works quickly, and the state shifts to a state called stationary phase where growth has stopped. A factor that plays a central role in this signal transduction pathway is a factor that promotes stationary phase transition (referred to as “stationary phase transition promoting factor”). So far, Rim15p is known as a stationary phase transition promoting factor.

Rim15pとはPASキナーゼファミリーに属するプロテインキナーゼであり、TORキナーゼやプロテインキナーゼA等を介したシグナル伝達経路により活性化され、RNA結合タンパク質であるIgo1p、Igo2pをリン酸化することにより定常期への移行に必要な遺伝子の発現を正に制御することが、非特許文献1及び2に記載されている。従って、Igo1p及びIgo2pも定常期移行促進因子の範囲に含まれる。   Rim15p is a protein kinase belonging to the PAS kinase family. It is activated by a signal transduction pathway via TOR kinase, protein kinase A, etc., and enters the stationary phase by phosphorylating Igo1p and Igo2p RNA binding proteins. Non-Patent Documents 1 and 2 describe that the expression of genes necessary for the control is positively controlled. Therefore, Igo1p and Igo2p are also included in the range of stationary phase transition promoting factors.

Rim15pによって発現調節を受ける遺伝子は、炭素代謝関連、脂質代謝関連、ミトコンドリアタンパク質、細胞防御反応関連、細胞内シグナル伝達関連等多岐にわたっており、Rim15pは、細胞外の環境に応答してこれらの遺伝子の発現を総合的に変化させることによって、定常期移行に寄与すると考えられている。   Genes that are regulated by Rim15p are diverse, including carbon metabolism, lipid metabolism, mitochondrial proteins, cell defense reactions, and intracellular signal transduction, and Rim15p is responsible for these genes in response to the extracellular environment. It is thought that it contributes to stationary phase transition by changing expression comprehensively.

したがって、Rim15pの機能が異常になると、増殖期から定常期への切り換えに欠損が生じる。そのため、酵母が増殖を終えた後の生命維持に影響が現れ、例えば、非特許文献3では、RIM15遺伝子破壊株は、酵母細胞の経時的寿命が短くなることが報告されている。   Therefore, when the function of Rim15p becomes abnormal, a defect occurs in switching from the growth phase to the stationary phase. For this reason, there is an effect on life support after yeast has finished growing. For example, Non-Patent Document 3 reports that RIM15 gene-disrupted strains have a short lifetime over time of yeast cells.

Pedruzzi I., Dubouloz F., Cameroni E., Wanke V., Roosen J., Winderickx J., De Virgilio C., Mol. Cell, 12(6), 1607-1613 (2003).Pedruzzi I., Dubouloz F., Cameroni E., Wanke V., Roosen J., Winderickx J., De Virgilio C., Mol. Cell, 12 (6), 1607-1613 (2003). Talarek N., Cameroni E., Jaquenoud M., Luo X., Bontron S., Lippman S., Devgan G., Snyder M., Broach J. R., De Virgilio C., Mol. Cell, 38, 345-355 (2010).Talarek N., Cameroni E., Jaquenoud M., Luo X., Bontron S., Lippman S., Devgan G., Snyder M., Broach JR, De Virgilio C., Mol. Cell, 38, 345-355 ( 2010). Wei M., Fabrizio P., Hu J., Ge H., Cheng C., Li L., Longo V. D., PLoS Genet., 4(1), 139-149 (2008).Wei M., Fabrizio P., Hu J., Ge H., Cheng C., Li L., Longo V. D., PLoS Genet., 4 (1), 139-149 (2008).

酵母を用いたエタノール生産において、エタノール生産速度を上げることは、エタノール発酵の生産性を高めるために極めて重要である。しかしながら、エタノール生産速度の観点から、酵母の増殖期から定常期への切り換えに着目したという発想は従来には無く、しかも、定常期移行促進因子をコードするRIM15遺伝子に変異を導入することにより改変し、高発酵性を獲得した例も知られていない。   In ethanol production using yeast, increasing the ethanol production rate is extremely important for enhancing the productivity of ethanol fermentation. However, from the viewpoint of ethanol production rate, there has never been a concept of focusing on switching from the growth phase of yeast to the stationary phase, and it was modified by introducing mutations into the RIM15 gene encoding the stationary phase transition promoting factor. However, there are no known examples of high fermentability.

本発明の課題は、酵母を用いて、生産性高くエタノールを製造する方法を提供することにある。   An object of the present invention is to provide a method for producing ethanol with high productivity using yeast.

本発明者らは、従来の知見から、酵母のエタノール発酵は増殖停止後の定常期でも継続するので、効率的なエタノール発酵のためには定常期移行が正常に行われ、発酵環境における酵母の寿命が長期間維持されることが必要であると考えた。そして、そのことを証明するために、RIM15遺伝子を破壊した形質転換酵母を用いて発酵試験を行い、遺伝子破壊がエタノール発酵に与える影響を解析したところ、意外なことに、RIM15遺伝子を破壊した形質転換酵母が著しく高い発酵性を示すことが判明した。これは、従来の知見から全く予想できない結果であった。そこで、本発明者らは、この現象は酵母のエタノール発酵性を改善させるために利用可能であると考え、RIM15遺伝子の破壊とエタノール発酵についてさらに詳細な研究を行うことにより、本発明を完成するに至った。   From the conventional knowledge, the present inventors continue the ethanol fermentation of yeast even in the stationary phase after the growth is stopped. Therefore, for efficient ethanol fermentation, the stationary phase transition is normally performed, and the yeast in the fermentation environment We thought it necessary to maintain a long life. In order to prove this, a fermentation test was conducted using a transformed yeast in which the RIM15 gene was disrupted, and the effect of the gene disruption on ethanol fermentation was analyzed. It was found that the converted yeast exhibits a remarkably high fermentability. This was an unexpected result from conventional knowledge. Therefore, the present inventors consider that this phenomenon can be used to improve the ethanol fermentability of yeast, and complete the present invention by conducting further detailed research on the disruption of RIM15 gene and ethanol fermentation. It came to.

すなわち、本発明の要旨は、
定常期移行促進因子をコードする遺伝子が破壊されてなる酵母の遺伝子破壊株を用いた、エタノールの製造方法に関するものである。
That is, the gist of the present invention is as follows.
The present invention relates to a method for producing ethanol using a yeast gene disruption strain in which a gene encoding a stationary phase transition promoting factor is disrupted.

本発明により、酵母のエタノール発酵において、従来より顕著に速い生産速度でエタノールを生産することができる。   According to the present invention, ethanol can be produced at a significantly faster production rate than before in ethanol fermentation of yeast.

図1は、親株である実験室酵母BY4743株及び遺伝子破壊株(BY4743 Δrim15)を用いて清酒製造を行った際の二酸化炭素発生速度(左)及び二酸化炭素総発生量(右)を示す図である。点線が親株、実線がRIM15遺伝子破壊株のデータを示す。FIG. 1 is a graph showing carbon dioxide generation rate (left) and total carbon dioxide generation amount (right) when sake production is performed using the parent strain laboratory yeast BY4743 strain and gene disruption strain (BY4743 Δrim15). is there. The dotted line shows the parent strain, and the solid line shows the RIM15 gene disrupted strain. 図2は、親株である実験室酵母BY4743株及び遺伝子破壊株(BY4743 Δrim15)を用いてエタノール発酵試験を行った際の二酸化炭素発生速度(左)及び二酸化炭素総発生量(右)を示す図である。点線が親株、実線がRIM15遺伝子破壊株のデータを示す。FIG. 2 is a graph showing the carbon dioxide generation rate (left) and the total carbon dioxide generation amount (right) when an ethanol fermentation test was conducted using the parent strain laboratory yeast BY4743 strain and gene disruption strain (BY4743 Δrim15). It is. The dotted line shows the parent strain, and the solid line shows the RIM15 gene disrupted strain. 図3は、親株である実験室酵母BY4743株及び遺伝子破壊株(BY4743 Δigo1及びBY4743 Δigo2)を用いてエタノール発酵試験を行った際の二酸化炭素発生速度(左)及び二酸化炭素総発生量(右)を示す図である。白丸印が親株、白四角印がBY4743 Δigo1株、黒四角印がBY4743 Δigo2株のデータを示す。Fig. 3 shows the carbon dioxide generation rate (left) and total carbon dioxide generation amount (right) when the ethanol fermentation test was conducted using the parent strains laboratory yeast BY4743 strain and gene disruption strains (BY4743 Δigo1 and BY4743 Δigo2). FIG. The white circle indicates the parent strain, the white square indicates the BY4743 Δigo1 strain, and the black square indicates the BY4743 Δigo2 strain. 図4は、親株であるバイオエタノール酵母由来NCYC3233-27c株及び遺伝子破壊株(NCYC3233-27c rim15Δ株)を用いて廃糖蜜培地からのエタノール製造を行った際の二酸化炭素発生速度(上段左)、二酸化炭素総発生量(上段右)及びエタノール濃度の時間経過(下段)を示す図である。いずれも、点線が親株、実線がRIM15遺伝子破壊株のデータを示す。FIG. 4 shows the carbon dioxide generation rate (upper left) when ethanol was produced from a waste molasses medium using the parent strain NCYC3233-27c derived from bioethanol yeast and the gene disruption strain (NCYC3233-27c rim15Δ strain). It is a figure which shows the time passage (lower stage) of carbon dioxide total generation amount (upper stage right) and ethanol concentration. In both cases, the dotted line indicates data of the parent strain, and the solid line indicates data of the RIM15 gene disrupted strain.

本発明のエタノールの製造方法は、酵母を用いてエタノールを製造するものであって、定常期移行促進因子をコードする遺伝子、例えばRIM15遺伝子、IGO1遺伝子及びIGO2遺伝子の少なくとも一つの破壊株を用いることに大きな特徴を有する。   The ethanol production method of the present invention is a method for producing ethanol using yeast, and uses a gene encoding a stationary phase transition promoting factor, for example, at least one disrupted strain of RIM15 gene, IGO1 gene and IGO2 gene. Has major features.

RIM15遺伝子については、SGD(Saccharomyces Genome Database)のホームページ(http://genome-www.stanford.edu/Saccharomyces)に配列が記載されており、かかる配列に基づいて、PCRプライマーを設計して遺伝子破壊や部位特異的変異を行うことができる。例えば、RIM15を破壊するために用いるDNAのプライマーとしては、RIM15+URA3-Fw(配列表の配列番号4)、RIM15+URA3-Rv(配列表の配列番号5)等が例示される。   The RIM15 gene is described on the SGD (Saccharomyces Genome Database) website (http://genome-www.stanford.edu/Saccharomyces). Based on this sequence, PCR primers are designed to disrupt the gene. And site-specific mutations can be made. For example, RIM15 + URA3-Fw (SEQ ID NO: 4 in the sequence listing), RIM15 + URA3-Rv (SEQ ID NO: 5 in the sequence listing), and the like are exemplified as DNA primers used to destroy RIM15.

本発明における酵母とは、サッカロミセス属に属するエタノール発酵に用いることのできる酵母であって、例えば、実験室酵母、清酒酵母、ワイン酵母、ビール酵母、焼酎酵母、パン酵母、及びバイオエタノール酵母が挙げられる。実験室酵母としては、サッカロミセス・セレビシエに属するBY4743株が好ましい。バイオエタノール酵母としては、サッカロミセス・セレビシエに属するNCYC3233株が好ましい。エタノールとしては、清酒又はバイオエタノールが挙げられる。   The yeast in the present invention is a yeast that can be used for ethanol fermentation belonging to the genus Saccharomyces, and includes, for example, laboratory yeast, sake yeast, wine yeast, beer yeast, shochu yeast, baker's yeast, and bioethanol yeast. It is done. The laboratory yeast is preferably BY4743 strain belonging to Saccharomyces cerevisiae. The bioethanol yeast is preferably NCYC3233 strain belonging to Saccharomyces cerevisiae. Examples of ethanol include sake or bioethanol.

本明細書において、「破壊」とは、破壊される遺伝子の機能を喪失させたり、失活させたりするような遺伝子操作のことをいい、目的遺伝子領域の全遺伝子を喪失させる遺伝子操作や正常な機能に必要な部位を欠失又は変異させる遺伝子操作のことをいう。具体的には、定常期移行促進因子をコードするRIM15遺伝子を全喪失させる遺伝子操作が例示される。かかる遺伝子操作を行う方法としては、特に限定はなく公知の方法を用いることができ、例えば、変異剤処理による突然変異、遺伝子工学を用いた遺伝子破壊、遺伝子工学を用いた部位特異的変異などが挙げられる。なお、本発明においては、自然突然変異により破壊が生じた遺伝子破壊株も用いることができる。   In this specification, “disruption” refers to genetic manipulation that causes the function of the disrupted gene to be lost or inactivated, such as genetic manipulation that causes loss of all genes in the target gene region or normal operation. This refers to genetic manipulation that deletes or mutates a site necessary for function. Specifically, genetic manipulation that completely loses the RIM15 gene encoding the stationary phase transition promoting factor is exemplified. A method for performing such genetic manipulation is not particularly limited, and a known method can be used. For example, mutation by treatment with a mutation agent, gene disruption using genetic engineering, site-specific mutation using genetic engineering, etc. Can be mentioned. In the present invention, a gene disrupted strain in which disruption has occurred due to spontaneous mutation can also be used.

なお、上記遺伝子操作を行う際には、アミノ酸などの栄養要求マーカーや、薬剤に対する耐性マーカーなどを選択マーカーとして使用してもよい。   When performing the above-described genetic manipulation, an auxotrophic marker such as an amino acid, a drug resistance marker, or the like may be used as a selection marker.

IGO1遺伝子及びIGO2遺伝子については、SGD(Saccharomyces Genome Database)のホームページ(http://genome-www.stanford.edu/Saccharomyces)に配列が記載されている。従って、上記で説明したようなRIM15遺伝子と同様の方法によって、このような遺伝子の破壊株を得ることができる。   The sequences of the IGO1 gene and the IGO2 gene are described on the SGD (Saccharomyces Genome Database) website (http://genome-www.stanford.edu/Saccharomyces). Therefore, a disrupted strain of such a gene can be obtained by the same method as the RIM15 gene described above.

定常期移行促進因子をコードする遺伝子の破壊株の代表株としては、BY4743 Δrim15株及びNCYC3233-27c rim15Δ株が挙げられる。前者はEUROSCARF(http://web.uni-frankfurt.de/fb15/mikro/euroscarf/index.html)からY37281として入手可能であり、後者は独立行政法人製品評価技術基盤機構特許微生物寄託センターに、受託番号NITE P-1017(寄託日:2010年12月13日)として寄託されている。さらに、IGO1遺伝子が破壊された破壊株の代表株としてはBY4743 Δigo1株が、及びIGO2遺伝子が破壊された破壊株の代表株としてはBY4743 Δigo2株が挙げられる。これらはEUROSCARF(http://web.uni-frankfurt.de/fb15/mikro/euroscarf/index.html)からY32055及びY37298としてそれぞれ入手可能である。所望の遺伝子破壊株が上記のような寄託機関に寄託されている場合、そのような寄託されている株を用いることができる。   Representative strains of disrupted genes encoding the stationary phase transition promoting factor include BY4743 Δrim15 strain and NCYC3233-27c rim15Δ strain. The former is available as Y37281 from EUROSCARF (http://web.uni-frankfurt.de/fb15/mikro/euroscarf/index.html), and the latter is Deposit number NITE P-1017 (Deposit date: December 13, 2010). Furthermore, BY4743 Δigo1 strain is exemplified as a representative strain of the disrupted strain in which the IGO1 gene is disrupted, and BY4743 Δigo2 strain is exemplified as a representative strain of the disrupted strain in which the IGO2 gene is disrupted. These are available as EUR32055 and Y37298 respectively from EUROSCARF (http://web.uni-frankfurt.de/fb15/mikro/euroscarf/index.html). When the desired gene-disrupted strain is deposited with the depositary as described above, such a deposited strain can be used.

本発明のエタノールの製造方法は、上記で説明された酵母の遺伝子破壊株を用いて実施されるが、酵母が特定のものである以外は、公知の方法や条件を採用することができる。   The ethanol production method of the present invention is carried out using the yeast gene-disrupted strain described above, but known methods and conditions can be employed except that the yeast is a specific one.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例等によりなんら制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not restrict | limited at all by these Examples.

〔実施例1〕
サッカロミセス・セレビシエBY4743株及びこれを親株としたRIM15遺伝子破壊株を用いた清酒製造試験を行った。なお、BY4743株、BY4743 Δrim15株については、いずれもEUROSCARFから、それぞれY20000、Y37281として入手可能である。
[Example 1]
Sake production test using Saccharomyces cerevisiae BY4743 strain and RIM15 gene-disrupted strain which was the parent strain was conducted. The BY4743 strain and BY4743 Δrim15 strain are both available from EUROSCARF as Y20000 and Y37281, respectively.

親株であるBY4743株とBY4743 Δrim15株を用いて、以下に示す方法で清酒を製造した。   Sake was produced using the parent strains BY4743 and BY4743 Δrim15 in the following manner.

掛米40g、麹米10g、水80mL、90%乳酸17.8μL混合による一段仕込を実施した。掛米として精米歩合70%のアルファー化米、麹米として精白歩合70%の乾燥麹を用いた。各酵母は、YPD培地(酵母エキス1%、ペプトン2%、ブドウ糖2%含有)において一晩振とう培養した後、滅菌蒸留水により洗浄し、酵母数が1×107cells/mLになるように仕込時に添加した。発酵温度は15℃とした。仕込試験は各株について4回ずつ繰り返した。仕込後、発酵モニター装置(アトー株式会社製ファーモグラフII)を用いて発酵に伴う二酸化炭素発生量を求め、各株について平均二酸化炭素発生量を算出した。結果を図1に示す。 One-stage charging was performed by mixing 40 g of rice, 10 g of glutinous rice, 80 mL of water, and 17.8 μL of 90% lactic acid. Alpha rice with a 70% polishing rate was used as the hanging rice, and dried rice with a 70% polishing rate was used as the polished rice. Each yeast is cultured overnight in a YPD medium (containing 1% yeast extract, 2% peptone, 2% glucose) and then washed with sterilized distilled water so that the yeast count becomes 1 × 10 7 cells / mL. Was added at the time of charging. The fermentation temperature was 15 ° C. The preparation test was repeated four times for each strain. After the preparation, the amount of carbon dioxide generated during fermentation was determined using a fermentation monitor device (Farmograph II manufactured by Ato Co., Ltd.), and the average amount of carbon dioxide generated for each strain was calculated. The results are shown in FIG.

二酸化炭素発生速度のピーク値及び二酸化炭素総発生量について、親株と遺伝子破壊株における値の有意差検定も行った。さらに、仕込後20日目には、遠心分離によって回収した清酒におけるエタノール濃度を測定し、各株について平均エタノール濃度を算出した。また、得られた平均エタノール濃度について、親株と遺伝子破壊株における濃度の有意差検定も行った。なお、エタノール濃度の測定は、株式会社島津製作所製ガスクロマトグラフGC-17Aを用いて行った。   For the peak value of the carbon dioxide generation rate and the total amount of carbon dioxide generation, a significant difference test was also performed between the parent strain and the gene-disrupted strain. Furthermore, on the 20th day after preparation, the ethanol concentration in sake recovered by centrifugation was measured, and the average ethanol concentration was calculated for each strain. In addition, the obtained average ethanol concentration was also subjected to a significant difference test between the parent strain and the gene-disrupted strain. The ethanol concentration was measured using a gas chromatograph GC-17A manufactured by Shimadzu Corporation.

RIM15遺伝子破壊株は、親株に比べて発酵に伴う二酸化炭素発生速度のピーク値が大きく(親株:14.7±0.8mg/30min、RIM15遺伝子破壊株:20.5±0.7mg/30min、0.1%未満の危険率で有意に親株より大きい)、二酸化炭素総発生量の値も大きかった(親株:5.60±0.00g、RIM15遺伝子破壊株:10.07±0.24g、0.1%未満の危険率で有意に親株より大きい)。さらに、最終的なエタノール濃度も、親株が11.2±0.3%であるのに対し、RIM15遺伝子破壊株が17.0±0.2%と著しく高い(0.1%未満の危険率で有意に親株より高い)ことから、RIM15遺伝子破壊株を用いた場合、エタノール発酵速度が速く、エタノール生産性に優れることが分かった。   RIM15 gene-disrupted strain has a higher peak carbon dioxide generation rate during fermentation than the parent strain (parent strain: 14.7 ± 0.8mg / 30min, RIM15 gene-disrupted strain: 20.5 ± 0.7mg / 30min, risk rate less than 0.1% And significantly larger than the parent strain), and the total amount of carbon dioxide generation was also large (parent strain: 5.60 ± 0.00 g, RIM15 gene disruption strain: 10.07 ± 0.24 g, significantly higher than the parent strain with a risk rate of less than 0.1%). Furthermore, the final ethanol concentration is 11.2 ± 0.3% for the parent strain, whereas the RIM15 gene disruption strain is significantly higher at 17.0 ± 0.2% (significantly higher than the parent strain at a risk rate of less than 0.1%). When the RIM15 gene disrupted strain was used, it was found that the ethanol fermentation rate was fast and the ethanol productivity was excellent.

〔実施例2〕
上述のサッカロミセス・セレビシエBY4743株及びBY4743 Δrim15株を用いてエタノール発酵試験を実施した。
[Example 2]
An ethanol fermentation test was performed using the above Saccharomyces cerevisiae BY4743 strain and BY4743 Δrim15 strain.

高濃度ブドウ糖含有YPD培地(酵母エキス1%、ペプトン2%、ブドウ糖20%含有)50mLを用いたエタノール発酵試験を実施した。各酵母は、YPD培地において一晩振とう培養した後、酵母密度がOD660=0.1/mLになるように高濃度ブドウ糖含有YPD培地に添加し、5日間静置培養した。発酵温度は30℃とした。発酵試験は各株について4回ずつ繰り返した。培養開始後、発酵モニター装置(アトー株式会社製ファーモグラフII)を用いて発酵に伴う二酸化炭素発生量を求め、各株について平均二酸化炭素発生量を算出した。結果を図2に示す。二酸化炭素発生速度のピーク値及び二酸化炭素総発生量については、親株と遺伝子破壊株における値の有意差検定も行った。 An ethanol fermentation test using 50 mL of a high concentration glucose-containing YPD medium (yeast extract 1%, peptone 2%, glucose 20%) was carried out. Each yeast was cultured overnight in a YPD medium by shaking and then added to a high-concentration glucose-containing YPD medium so that the yeast density was OD 660 = 0.1 / mL, followed by stationary culture for 5 days. The fermentation temperature was 30 ° C. The fermentation test was repeated four times for each strain. After the start of culture, the amount of carbon dioxide generated during fermentation was determined using a fermentation monitor device (Farmograph II manufactured by Ato Co., Ltd.), and the average amount of carbon dioxide generated for each strain was calculated. The results are shown in FIG. The peak value of carbon dioxide generation rate and the total amount of carbon dioxide generation were also tested for significant differences between the parent strain and the gene-disrupted strain.

RIM15遺伝子破壊株は、親株に比べて発酵に伴う二酸化炭素発生速度のピーク値が大きく(親株:11.3±1.5mg/15min、RIM15遺伝子破壊株:16.3±2.7mg/15min、5%未満の危険率で有意に親株より大きい)二酸化炭素総発生量の値も大きいことから(親株:2.74±0.13g、RIM15遺伝子破壊株:3.23±0.21g、0.1%未満の危険率で有意に親株より大きい)、RIM15遺伝子破壊株を用いた場合、エタノール発酵速度が速く、エタノール生産性に優れることが分かった。   RIM15 gene-disrupted strain has a higher peak carbon dioxide generation rate during fermentation than the parent strain (parent strain: 11.3 ± 1.5mg / 15min, RIM15 gene-disrupted strain: 16.3 ± 2.7mg / 15min, less than 5% risk rate Because the total amount of carbon dioxide generated is significantly larger than the parent strain (parent strain: 2.74 ± 0.13g, RIM15 gene disruption strain: 3.23 ± 0.21g, significantly larger than the parent strain with a risk rate of less than 0.1%), When the RIM15 gene disrupted strain was used, it was found that the ethanol fermentation rate was fast and the ethanol productivity was excellent.

〔実施例3〕
サッカロミセス・セレビシエBY4743株、並びにこれを親株としたIGO1遺伝子破壊株及びIGO2遺伝子破壊株のそれぞれを用いたエタノール発酵試験を行った。なお、BY4743株、BY4743 Δigo1株、BY4743 Δigo2株については、いずれもEUROSCARFから、それぞれY20000、Y32055、Y37298として入手可能である。
Example 3
An ethanol fermentation test was performed using Saccharomyces cerevisiae BY4743 strain, and the IGO1 gene-disrupted strain and IGO2 gene-disrupted strain, each of which was the parent strain. The BY4743 strain, BY4743 Δigo1 strain, and BY4743 Δigo2 strain are all available from EUROSCARF as Y20000, Y32055, and Y37298, respectively.

実施例2と同じ条件でエタノール発酵試験を行い、各株について3回ずつ繰り返した。培養開始後、発酵モニター装置(アトー株式会社製ファーモグラフII)を用いて発酵に伴う二酸化炭素発生量を求め、各株について平均二酸化炭素発生量を算出した。結果を図3に示す。二酸化炭素発生速度のピーク値については、親株と遺伝子破壊株における値の有意差検定も行った。   An ethanol fermentation test was performed under the same conditions as in Example 2 and repeated three times for each strain. After the start of culture, the amount of carbon dioxide generated during fermentation was determined using a fermentation monitor device (Farmograph II manufactured by Ato Co., Ltd.), and the average amount of carbon dioxide generated for each strain was calculated. The results are shown in FIG. About the peak value of the carbon dioxide generation rate, the significant difference test of the value in a parent strain and a gene-disrupted strain was also performed.

IGO1遺伝子破壊株及びIGO2遺伝子破壊株は、親株に比べて発酵に伴う二酸化炭素発生速度のピーク値が大きく(親株:301±38mg/6h、IGO1遺伝子破壊株:359±23mg/6h、IGO2遺伝子破壊株:420±71mg/6h、5%未満の危険率で有意に親株より大きい)二酸化炭素総発生量の値も大きいことから(親株:3.06±0.28g、IGO1遺伝子破壊株:3.41±0.13g、IGO2遺伝子破壊株:3.55±0.08g)、IGO1遺伝子破壊株及びIGO2遺伝子破壊株を用いた場合、エタノール発酵速度が速く、エタノール生産性に優れることが分かった。実施例2及び3の結果は、定常期移行促進因子をコードする遺伝子が破壊された酵母の遺伝子破壊株が優れたエタノール生産性を発揮することを強く示唆する。   IGO1 gene disruption strain and IGO2 gene disruption strain have a larger peak value of carbon dioxide generation rate during fermentation than parent strain (parent strain: 301 ± 38mg / 6h, IGO1 gene disruption strain: 359 ± 23mg / 6h, IGO2 gene disruption Strains: 420 ± 71mg / 6h, significantly higher than the parent strain with a risk rate of less than 5%) Because of the large amount of carbon dioxide generation (parent strain: 3.06 ± 0.28g, IGO1 gene disruption strain: 3.41 ± 0.13g, IGO2 gene-disrupted strain: 3.55 ± 0.08 g), IGO1 gene-disrupted strain and IGO2 gene-disrupted strain were found to have a high ethanol fermentation rate and excellent ethanol productivity. The results of Examples 2 and 3 strongly suggest that the yeast gene-disrupted strain in which the gene encoding the stationary phase transition promoting factor is disrupted exhibits excellent ethanol productivity.

〔実施例4〕
サッカロミセス・セレビシエ二倍体バイオエタノール酵母NCYC3233株由来の一倍体ウラシル要求性株を親株としてRIM15遺伝子の破壊株を作成し、エタノール製造試験を行った。なお、NCYC3233株は、NCYC(National Collection of Yeast Cultures; http://www.ncyc.co.uk/)より入手可能である。
Example 4
A haploid uracil auxotrophic strain derived from Saccharomyces cerevisiae diploid bioethanol yeast strain NCYC3233 was used as a parent strain, and a RIM15 gene-disrupted strain was prepared, and an ethanol production test was conducted. The NCYC3233 strain is available from NCYC (National Collection of Yeast Cultures; http://www.ncyc.co.uk/).

〔NCYC3233一倍体株の作成〕
まず、遺伝子操作を容易にするために、二倍体として知られるNCYC3233株由来の一倍体株を作成した。NCYC3233株をYPD寒天培地にて30℃で一晩培養後、胞子形成寒天培地(酢酸カリウム1%含有)に菌体を移し、30℃で約3日間培養することにより、一倍体胞子の形成を誘導した。顕微鏡にて胞子形成を確認した後、マイクロマニピュレータを用いて胞子分離を行った。MAT遺伝子座のPCR及びフローサイトメトリーによるDNA含量解析により、正常な一倍体が得られたことを確認した。このうち、増殖が良好な1株を選抜し、NCYC3233-27c株と命名した。この株は、独立行政法人製品評価技術基盤機構特許微生物寄託センターに、受託番号NITE P-1061(寄託日:2011年1月19日)として寄託された。
[Create NCYC3233 haploid strain]
First, in order to facilitate genetic manipulation, a haploid strain derived from NCYC3233 strain known as diploid was prepared. After culturing NCYC3233 strain on YPD agar medium at 30 ° C overnight, transfer the cells to sporulation agar medium (containing 1% potassium acetate) and culture at 30 ° C for about 3 days to form haploid spores. Induced. After confirming spore formation with a microscope, spore separation was performed using a micromanipulator. It was confirmed that a normal haploid was obtained by PCR and flow cytometry analysis of the MAT locus. Among these, one strain having good growth was selected and named NCYC3233-27c strain. This strain was deposited with the Patent Microorganisms Depositary Center of the National Institute of Technology and Evaluation as Deposit Number NITE P-1061 (Deposit Date: January 19, 2011).

〔NCYC3233一倍体ウラシル要求性株の作成〕
次に、得られた一倍体株を宿主として、選択マーカーとしてウラシル要求性を付与した。本例では、ウラシル要求性を付与するため、ウラシル合成に必須なURA3遺伝子のORF領域を完全に欠失したura3Δ0アレルを有する実験室酵母BY4743株のゲノムDNAを鋳型としたPCRによってURA3遺伝子破壊用DNA断片を作成した。具体的には、プライマーURA3(-2045)-Fw(配列表の配列番号1)及びURA3下流-Rv(配列表の配列番号2)を用いてPCRを行い、BY4743株のura3Δ0アレルを増幅した。このPCR産物を用いてNCYC3233-27c株を形質転換し、5-FOA含有寒天培地(yeast nitrogen base without amino acids 0.67%、complete supplement mixture 0.79g/L、5-FOA 0.1%、ブドウ糖2%含有)で増殖するコロニーを選抜した。
[Creation of NCYC3233 haploid uracil-requiring strain]
Next, using the obtained haploid strain as a host, uracil requirement was imparted as a selection marker. In this example, in order to confer uracil requirement, PCR for URA3 gene disruption is performed by PCR using the genomic DNA of laboratory yeast BY4743 strain having ura3Δ0 allele that has completely deleted the ORF region of URA3 gene essential for uracil synthesis as a template. A DNA fragment was created. Specifically, PCR was performed using primers URA3 (-2045) -Fw (SEQ ID NO: 1 in the sequence listing) and URA3 downstream-Rv (SEQ ID NO: 2 in the sequence listing) to amplify the ura3Δ0 allele of BY4743 strain. NCYC3233-27c strain was transformed with this PCR product, and agar medium containing 5-FOA (yeast nitrogen base without amino acids 0.67%, complete supplement mixture 0.79g / L, 5-FOA 0.1%, glucose 2%) Colonies that grow on were selected.

これらの各コロニーからゲノムDNAを抽出し、プライマーURA3(-2045)-Fw及びURA3下流-Rvを用いてPCRを行い、得られた産物のサイズを測定することによって、URA3遺伝子が破壊されていることを確認した。このうちURA3遺伝子破壊が確認された株については、SD-Ura寒天培地(yeast nitrogen base without amino acids 0.67%、complete supplement mixture minus uracil 0.77g/L、ブドウ糖2%含有)での生育を調べ、ウラシル要求性の表現型を示すことを確認した。この株は、NCYC3233-27c ura3Δ0株と命名され、独立行政法人製品評価技術基盤機構特許微生物寄託センターに、受託番号NITE P-1016(寄託日:2010年12月13日)として寄託された。   Genomic DNA is extracted from each of these colonies, PCR is performed using primers URA3 (-2045) -Fw and URA3 downstream-Rv, and the size of the resulting product is measured to destroy the URA3 gene. It was confirmed. Of these strains, the URA3 gene disruption was confirmed for growth on SD-Ura agar medium (yeast nitrogen base without amino acids 0.67%, complete supplement mixture minus uracil 0.77g / L, containing 2% glucose). Confirmed to show a phenotype of requirement. This strain was named NCYC3233-27c ura3Δ0 strain, and was deposited with the Patent Microorganism Deposit Center of the National Institute of Technology and Evaluation as Deposit Number NITE P-1016 (Deposit Date: December 13, 2010).

〔RIM15遺伝子破壊株の作成〕
RIM15遺伝子の破壊は、URA3マーカー遺伝子をRIM15遺伝子のORF領域と置換することにより行った。具体的には、まず、URA3遺伝子を有するサッカロミセス・セレビシエのゲノムを鋳型として、プライマーURA3上流-Fw(配列表の配列番号3)及びURA3下流-Rvを用いてPCRを行い、URA3遺伝子のORF領域の全長を含むDNA断片を増幅した。次に、このPCR産物を鋳型として、プライマーRIM15+URA3-Fw(配列表の配列番号4)及びRIM15+URA3-Rv(配列表の配列番号5)を用いてPCRを行い、マーカーであるURA3の両側に、RIM15のORFに隣接する上流部分及び下流部分のDNA配列を持つ遺伝子破壊用DNA断片を作成した。このPCR産物を用いてNCYC3233-27c ura3Δ0株を形質転換し、SD-Ura寒天培地で増殖するコロニーを選抜した。
[Create RIM15 gene disruption strain]
The RIM15 gene was disrupted by replacing the URA3 marker gene with the ORF region of the RIM15 gene. Specifically, using the Saccharomyces cerevisiae genome carrying the URA3 gene as a template, PCR was performed using primers URA3 upstream-Fw (SEQ ID NO: 3 in the sequence listing) and URA3 downstream-Rv, and the ORF region of the URA3 gene A DNA fragment containing the full length of was amplified. Next, using this PCR product as a template, PCR was performed using primers RIM15 + URA3-Fw (SEQ ID NO: 4 in the sequence listing) and RIM15 + URA3-Rv (SEQ ID NO: 5 in the sequence listing), and the marker URA3 On both sides, DNA fragments for gene disruption having upstream and downstream DNA sequences adjacent to the ORF of RIM15 were prepared. The PCR product was used to transform the NCYC3233-27c ura3Δ0 strain, and colonies that grew on the SD-Ura agar medium were selected.

これらの各コロニーからゲノムDNAを抽出し、プライマーRIM15上流-Fw(配列表の配列番号6)及びURA3 ORF-Rv(配列表の配列番号7)を用いてPCRを行い、得られた産物のサイズを測定することによって、RIM15遺伝子が破壊されていることを確認した。この株は、NCYC3233-27c rim15Δ株と命名され、独立行政法人製品評価技術基盤機構特許微生物寄託センターに、受託番号NITE P-1017(寄託日:2010年12月13日)として寄託された。   Genomic DNA was extracted from each of these colonies, PCR was performed using primers RIM15 upstream-Fw (SEQ ID NO: 6 in the sequence listing) and URA3 ORF-Rv (SEQ ID NO: 7 in the sequence listing), and the size of the resulting product Was measured to confirm that the RIM15 gene was disrupted. This strain was named NCYC3233-27c rim15Δ strain, and was deposited with the Patent Microorganism Deposit Center of the National Institute of Technology and Evaluation as Deposit Number NITE P-1017 (Deposit Date: December 13, 2010).

〔エタノールの製造〕
バイオエタノール酵母由来一倍体株である親株NCYC3233-27c株と、上記で得られたRIM15遺伝子破壊株であるNCYC3233-27c rim15Δ株を用いて、以下に示す方法でエタノールを製造した。
[Production of ethanol]
Using the parent strain NCYC3233-27c which is a haploid strain derived from bioethanol yeast and the NIMC3233-27c rim15Δ strain which is the RIM15 gene disruption strain obtained above, ethanol was produced by the method described below.

廃糖蜜培地(ケーンモラセス原液を蒸留水にてBrix 24.8%に調整後、0.025%硫酸アンモニウムを添加したもの)50mLを用いたエタノール発酵試験を実施した。各酵母は、YPD培地において一晩振とう培養した後、滅菌蒸留水により洗浄し、酵母密度がOD660=0.1/mLになるように両培地に添加し、54時間振とう培養した。発酵温度は35℃とした。発酵試験は各株について4回繰り返した。培養開始後、発酵モニター装置(アトー株式会社製ファーモグラフII)を用いて発酵に伴う二酸化炭素発生量を求め、各株について平均二酸化炭素発生量を算出した。二酸化炭素発生速度が0となった時点を発酵終了とした。各時点における二酸化炭素発生速度及びそのピーク値について、親株と遺伝子破壊株における値の有意差検定も行った。また、培養開始から12、24、30、36、54時間後には、遠心分離によって回収した培養液上清におけるエタノール濃度を測定し、各株について平均エタノール濃度及び標準偏差を算出した。また、得られた平均エタノール濃度について、親株と遺伝子破壊株における濃度の有意差検定も行った。なお、エタノール濃度の測定は、株式会社島津製作所製ガスクロマトグラフGC-17Aを用いて行った。結果を図4に示す。 An ethanol fermentation test using 50 mL of waste molasses medium (Ken molasses stock solution adjusted to Brix 24.8% with distilled water and added with 0.025% ammonium sulfate) was performed. Each yeast was cultured overnight in a YPD medium after shaking, washed with sterilized distilled water, added to both media so that the yeast density was OD 660 = 0.1 / mL, and cultured with shaking for 54 hours. The fermentation temperature was 35 ° C. The fermentation test was repeated 4 times for each strain. After the start of culture, the amount of carbon dioxide generated during fermentation was determined using a fermentation monitor device (Farmograph II manufactured by Ato Co., Ltd.), and the average amount of carbon dioxide generated for each strain was calculated. The time when the carbon dioxide generation rate reached 0 was regarded as the end of fermentation. The significant difference test of the value in the parent strain and the gene-disrupted strain was also performed for the carbon dioxide generation rate and the peak value at each time point. In addition, 12, 24, 30, 36, and 54 hours after the start of the culture, the ethanol concentration in the culture supernatant collected by centrifugation was measured, and the average ethanol concentration and standard deviation were calculated for each strain. In addition, the obtained average ethanol concentration was also subjected to a significant difference test between the parent strain and the gene-disrupted strain. The ethanol concentration was measured using a gas chromatograph GC-17A manufactured by Shimadzu Corporation. The results are shown in FIG.

RIM15遺伝子破壊株は、発酵初期には親株と同様の二酸化炭素発生速度を示すが、二酸化炭素発生速度のピーク値が親株より大きく(親株:108.3±1.6mL/h、RIM15遺伝子破壊株:113.9±3.7mL/h、5%未満の危険率で有意に親株より大きい)、ピーク値からの急激な二酸化炭素発生速度減少が抑えられていた(16〜30時間においてはRIM15遺伝子破壊株の二酸化炭素発生速度が5%未満の危険率で有意に親株より大きい)。さらに、トータルで発酵終了までにかかる時間が短いことから(親株:53.3±0.8時間、RIM15遺伝子破壊株:43.8±0.7時間、0.1%未満の危険率で有意に親株より短い)、RIM15遺伝子破壊株を用いた場合、エタノール発酵速度が速く、エタノール生産性に優れることが分かった。   The RIM15 gene-disrupted strain shows the same carbon dioxide generation rate as the parent strain at the beginning of fermentation, but the peak value of the carbon dioxide generation rate is larger than that of the parent strain (parent strain: 108.3 ± 1.6 mL / h, RIM15 gene-disrupted strain: 113.9 ± 3.7mL / h, significantly higher than the parent strain at a risk rate of less than 5%, and the rapid decrease in carbon dioxide generation rate from the peak value was suppressed (carbon dioxide generation of RIM15 gene-disrupted strain in 16 to 30 hours) Speed is significantly greater than the parent strain with a risk rate of less than 5%). In addition, since the time taken to complete the fermentation is short (parent strain: 53.3 ± 0.8 hours, RIM15 gene disruption strain: 43.8 ± 0.7 hours, significantly less than the parent strain at a risk rate of less than 0.1%), the RIM15 gene disruption strain It was found that ethanol fermentation rate was high and ethanol productivity was excellent.

エタノール濃度について平均値の差の検定を行った結果、培養開始24、30、36時間後において、RIM15遺伝子破壊株は親株と比較して0.1%未満の危険率で有意にエタノール濃度が高いことから(親株:6.04±0.06vol%(24時間後)/7.24±0.03vol%(30時間後)/8.23±0.06vol%(36時間後)、RIM15遺伝子破壊株:6.80±0.06vol%(24時間後)/8.36±0.05vol%(30時間後)/9.16±0.07vol%(36時間後))、エタノール発酵速度が速く、エタノール生産性に優れることが確認された。   As a result of testing the difference in mean value for ethanol concentration, the ethanol concentration of RIM15 gene-disrupted strain was significantly higher than the parent strain at a risk rate of less than 0.1% at 24, 30, and 36 hours after the start of culture. (Parent strain: 6.04 ± 0.06vol% (24 hours later) /7.24±0.03vol% (30 hours later) /8.23±0.06vol% (36 hours later), RIM15 gene disrupted strain: 6.80 ± 0.06vol% (24 hours later) ) /8.36±0.05 vol% (after 30 hours) /9.16±0.07 vol% (after 36 hours)), it was confirmed that the ethanol fermentation rate was fast and the ethanol productivity was excellent.

本発明の製造方法は、清酒、ビール、ワイン、焼酎等の酒類や、バイオエタノール等を含むエタノールの製造に好適に用いられる。   The production method of the present invention is suitably used for producing alcoholic beverages such as sake, beer, wine, shochu, and ethanol including bioethanol.

配列表の配列番号1は、URA3破壊用DNA作成・URA3増幅用プライマーである。
配列表の配列番号2は、URA3破壊用DNA作成・URA3増幅用プライマーである。
配列表の配列番号3は、URA3増幅用プライマーである。
配列表の配列番号4は、RIM15破壊用DNA作成用プライマーである。
配列表の配列番号5は、RIM15破壊用DNA作成用プライマーである。
配列表の配列番号6は、RIM15破壊確認用プライマーである。
配列表の配列番号7は、RIM15破壊確認用プライマーである。
SEQ ID NO: 1 in the Sequence Listing is a primer for URA3 disruption DNA preparation / URA3 amplification.
Sequence number 2 of a sequence table is a primer for DNA preparation and URA3 amplification for URA3 destruction.
Sequence number 3 of a sequence table is a primer for URA3 amplification.
Sequence number 4 of a sequence table is a primer for DNA preparation for RIM15 destruction.
Sequence number 5 of a sequence table is a primer for DNA preparation for RIM15 destruction.
Sequence number 6 of a sequence table is a primer for RIM15 destruction confirmation.
Sequence number 7 of a sequence table is a primer for RIM15 destruction confirmation.

Claims (6)

定常期移行促進因子をコードする遺伝子が破壊されてなる酵母の遺伝子破壊株を用いた、エタノールの製造方法。   A method for producing ethanol using a yeast gene disruption strain in which a gene encoding a stationary phase transition promoting factor is disrupted. 定常期移行促進因子をコードする遺伝子がRIM15遺伝子、IGO1遺伝子及びIGO2遺伝子からなる群より選択される少なくとも一種である、請求項1に記載の製造方法。   The production method according to claim 1, wherein the gene encoding the stationary phase transition promoting factor is at least one selected from the group consisting of the RIM15 gene, the IGO1 gene, and the IGO2 gene. 酵母が、実験室酵母、清酒酵母、ワイン酵母、ビール酵母、焼酎酵母、パン酵母及びバイオエタノール酵母からなる群より選択される少なくとも1種である、請求項1又は2に記載の製造方法。   The production method according to claim 1 or 2, wherein the yeast is at least one selected from the group consisting of laboratory yeast, sake yeast, wine yeast, beer yeast, shochu yeast, baker's yeast, and bioethanol yeast. 実験室酵母がBY4743株である、請求項3に記載の製造方法。   The production method according to claim 3, wherein the laboratory yeast is BY4743 strain. バイオエタノール酵母がNCYC3233株である、請求項3に記載の製造方法。   The manufacturing method of Claim 3 whose bioethanol yeast is NCYC3233 strain | stump | stock. エタノールが清酒又はバイオエタノールである、請求項1〜5のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 1-5 whose ethanol is sake or bioethanol.
JP2011057852A 2011-03-16 2011-03-16 Ethanol production method Active JP5828447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011057852A JP5828447B2 (en) 2011-03-16 2011-03-16 Ethanol production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011057852A JP5828447B2 (en) 2011-03-16 2011-03-16 Ethanol production method

Publications (2)

Publication Number Publication Date
JP2012191885A true JP2012191885A (en) 2012-10-11
JP5828447B2 JP5828447B2 (en) 2015-12-09

Family

ID=47084427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011057852A Active JP5828447B2 (en) 2011-03-16 2011-03-16 Ethanol production method

Country Status (1)

Country Link
JP (1) JP5828447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160074235A (en) * 2014-12-18 2016-06-28 삼성전자주식회사 Yeast cell producing lactate comprising reduced activity of rim15 and igo2, method of producing yeast cell and method of producing lactate using the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6015005483; 野白喜久雄他編: 醸造の事典 初版, 1988, p. 228-229 *
JPN6015005485; 'PEET KC, Optimizing microbial ethanol:carbon source influence and dertimental genes for ethanol prod' Degree of Bachelor of Science *
JPN6015005487; WATANABE D. et al: Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response *
JPN6015005489; SWINNEN E. et al: Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae, Cell Div., 20 *
JPN6015005491; LUO X. et at: Initiation of the yeast G0 program requires Igo1 and Igo2, which antagonize activation of decapping *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160074235A (en) * 2014-12-18 2016-06-28 삼성전자주식회사 Yeast cell producing lactate comprising reduced activity of rim15 and igo2, method of producing yeast cell and method of producing lactate using the same
US9677098B2 (en) 2014-12-18 2017-06-13 Samsung Electronics Co., Ltd. Yeast cell-producing lactate with reduced activity of rim15 and igo2, method of producing the yeast cell, and method of producing lactate by using the yeast cell
KR102287347B1 (en) 2014-12-18 2021-08-06 삼성전자주식회사 Yeast cell producing lactate comprising reduced activity of rim15 and igo2, method of producing yeast cell and method of producing lactate using the same

Also Published As

Publication number Publication date
JP5828447B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
Lane et al. Kluyveromyces marxianus: a yeast emerging from its sister's shadow
JP5772594B2 (en) Transformant, method for producing the same, and method for producing lactic acid
Filho et al. Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation
US9982269B2 (en) Mortierella alpine uracil auxotroph with URA5 gene knocked out through homologous recombination, and construction method thereof
CN101983240B (en) Flocculent yeast and method for production thereof
Varela et al. Targeted gene deletion in Brettanomyces bruxellensis with an expression-free CRISPR-Cas9 system
JP5813977B2 (en) Mutant yeast belonging to the genus Kluyveromyces and method for producing ethanol using the same
US20180237789A1 (en) Mortierella alpine uracil auxotroph with ura5 gene knocked out through homologous recombination
JP2009034036A (en) Yeast for transformation, transformation method, and method of producing substance
CA2950221A1 (en) Causative genes conferring acetic acid tolerance in yeast
JP5828447B2 (en) Ethanol production method
Hou et al. Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains
Štafa et al. Novel Approach in the Construction of Bioethanol-Producing Saccharomyces cerevisiae Hybrids §
Kotaka et al. Efficient generation of recessive traits in diploid sake yeast by targeted gene disruption and loss of heterozygosity
JP2016140343A (en) Aspergillus variant and transformant
JP5585952B2 (en) Ethanol production method
WO2020023890A1 (en) Increased alcohol production from yeast producing an increased amount of active crz1 protein
JP6360787B2 (en) Neisseria gonorrhoeae mutants and transformants
US20210269832A1 (en) Methods and compositions for enhanced ethanol production
EP3162896B1 (en) Transformant, method for producing same, and method for producing c4-dicarboxylic acid
JP2009178104A (en) Method for homogenizing specific region of diploid cell chromosome using lose of heterozygosity
JP5700564B2 (en) Ethanol-fermenting yeast with excellent salt resistance, heat resistance, ethanol resistance, and coagulation sedimentation, and use thereof
Hirota et al. Novel breeding method, matα2-PBT, to construct isogenic series of polyploid strains of Saccharomyces cerevisiae
JP6273518B2 (en) Gene-deficient ethanol-producing bacteria
CN109161565B (en) Method for producing ethanol by using whey

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151013

R150 Certificate of patent or registration of utility model

Ref document number: 5828447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250