JP5585952B2 - Ethanol production method - Google Patents

Ethanol production method Download PDF

Info

Publication number
JP5585952B2
JP5585952B2 JP2009278555A JP2009278555A JP5585952B2 JP 5585952 B2 JP5585952 B2 JP 5585952B2 JP 2009278555 A JP2009278555 A JP 2009278555A JP 2009278555 A JP2009278555 A JP 2009278555A JP 5585952 B2 JP5585952 B2 JP 5585952B2
Authority
JP
Japan
Prior art keywords
yeast
strain
msn2
gene
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009278555A
Other languages
Japanese (ja)
Other versions
JP2011120486A (en
Inventor
大輔 渡辺
健 赤尾
仁 下飯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute of Brewing
Original Assignee
National Research Institute of Brewing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute of Brewing filed Critical National Research Institute of Brewing
Priority to JP2009278555A priority Critical patent/JP5585952B2/en
Publication of JP2011120486A publication Critical patent/JP2011120486A/en
Application granted granted Critical
Publication of JP5585952B2 publication Critical patent/JP5585952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、エタノールの製造方法に関する。さらに詳しくは、高発酵性酵母を用いた、清酒、ビール、ワイン等の酒類やバイオエタノール等を含むエタノールの製造方法に関する。   The present invention relates to a method for producing ethanol. More specifically, the present invention relates to a method for producing ethanol including liquor such as sake, beer and wine, bioethanol and the like using highly fermentable yeast.

酒類や燃料用のバイオエタノールに含まれているエタノールは、一般に、ブドウ糖などの糖類をサッカロミセス属に属する酵母により発酵させて製造する。   In general, ethanol contained in bioethanol for liquor and fuel is produced by fermenting sugars such as glucose with yeast belonging to the genus Saccharomyces.

したがって、エタノール発酵中の酵母細胞は、高濃度のエタノールにさらされることになる。酵母細胞は、エタノール等の環境ストレスに速やかに応答して遺伝子発現を変化させ、酵母細胞の生命を維持するための分子機構を備えている。このシステムの中心的役割を果たすのが、ストレス応答転写因子Msn2p及びMsn4pである。   Thus, yeast cells undergoing ethanol fermentation are exposed to high concentrations of ethanol. Yeast cells have a molecular mechanism for rapidly changing gene expression in response to environmental stresses such as ethanol and maintaining the life of yeast cells. The stress-responsive transcription factors Msn2p and Msn4p play a central role in this system.

Msn2p及びMsn4pは互いに相同性を有するジンク・フィンガー型転写因子であり、いずれも熱ショック、酸化ストレス、浸透圧ストレス、エタノールストレス等の様々な環境ストレス下において、細胞質から核内に移行し、様々な遺伝子のプロモーター領域に結合し、下流の遺伝子の転写を活性化するものである。Msn2p及びMsn4pによって発現調節を受ける遺伝子は、炭素代謝関連、タンパク質の保護・分解関連、細胞防御反応関連、細胞内シグナル伝達関連等多岐にわたっており、Msn2p及びMsn4pは、これらの遺伝子の発現を総合的に変化させることによって、環境ストレスに対する耐性に寄与すると考えられている。したがって、これらのストレス応答転写因子の機能が異常になると、ストレス条件下での生命維持に影響が現れ、例えば、非特許文献1では、MSN2/MSN4遺伝子二重破壊株は、様々なストレス条件下での生存率が低下することが報告されている。   Msn2p and Msn4p are zinc-finger transcription factors that are homologous to each other, and all migrate from the cytoplasm into the nucleus under various environmental stresses such as heat shock, oxidative stress, osmotic stress, and ethanol stress. It binds to the promoter region of a gene and activates transcription of a downstream gene. Genes whose expression is regulated by Msn2p and Msn4p are diverse, such as those related to carbon metabolism, protein protection / degradation, cell defense response, intracellular signal transduction, etc. Msn2p and Msn4p comprehensively express the expression of these genes It is thought that it contributes to tolerance to environmental stress by changing to. Therefore, when the functions of these stress response transcription factors become abnormal, life-sustaining under stress conditions is affected. For example, in Non-Patent Document 1, the MSN2 / MSN4 gene double disruption strain is under various stress conditions. It has been reported that the survival rate is reduced.

Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F., EMBO J., 15(9), 2227-35 (1996).Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F., EMBO J., 15 (9), 2227-35 (1996).

酵母を用いたエタノール生産において、エタノール生産速度を上げることは、エタノール発酵の生産性を高めるために極めて重要であるが、酵母のストレス応答転写因子に変異を導入することにより改変し、高発酵性を獲得した例は知られていない。   In ethanol production using yeast, increasing the rate of ethanol production is extremely important to increase the productivity of ethanol fermentation, but it can be modified by introducing mutations into the stress-responsive transcription factor of yeast, resulting in high fermentability. No example of winning is known.

本発明の課題は、酵母を用いて、生産性高くエタノールを製造する方法を提供することにある。   An object of the present invention is to provide a method for producing ethanol with high productivity using yeast.

本発明者らは、従来の知見から、酵母によるエタノール発酵には正常なストレス応答機構が機能することが必要であると考え、そのことを証明するために、実験室酵母又は清酒酵母のストレス応答転写因子の遺伝子を破壊した形質転換酵母を用いて清酒製造試験又はエタノール製造試験を行い、遺伝子破壊がエタノール発酵に与える影響を解析した。その結果、意外にも、ストレス応答転写因子の遺伝子を破壊した形質転換酵母はいずれも、高い発酵性を示すことが判明した。そこで、本発明者らは、この現象は酵母のエタノール発酵性を改善させるために利用可能であると考え、ストレス応答転写因子の遺伝子の破壊とエタノール発酵についてさらに詳細な研究を行うことにより、本発明を完成するに至った。   From the conventional knowledge, the present inventors consider that a normal stress response mechanism is required for ethanol fermentation by yeast, and in order to prove that, the stress response of laboratory yeast or sake yeast A sake production test or an ethanol production test was conducted using transformed yeast in which the gene of the transcription factor was disrupted, and the effect of the gene disruption on ethanol fermentation was analyzed. As a result, it was surprisingly found that any transformed yeast in which the gene of the stress response transcription factor was disrupted showed high fermentability. Therefore, the present inventors consider that this phenomenon can be used to improve the ethanol fermentability of yeast, and by conducting further detailed research on the destruction of the gene of stress response transcription factor and ethanol fermentation, The invention has been completed.

即ち、本発明の要旨は、
ストレス応答転写因子をコードする遺伝子が破壊されてなる酵母の遺伝子破壊株を用いた、エタノールの製造方法、に関する。
That is, the gist of the present invention is as follows.
The present invention relates to a method for producing ethanol using a gene-disrupted strain of yeast obtained by disrupting a gene encoding a stress response transcription factor.

本発明により、酵母のエタノール発酵において、速いエタノール生産速度でエタノールを生産することができる。   According to the present invention, ethanol can be produced at a high ethanol production rate in ethanol fermentation of yeast.

図1は、親株である実験室酵母X2180−1A、及び遺伝子破壊株(MSN2、MSN4、MSN2/MSN4)を用いて清酒製造を行った際の二酸化炭素発生量を示す図である。白丸印が親株、黒丸印がMSN2遺伝子破壊株、黒三角印がMSN4遺伝子破壊株、黒四角印がMSN2/4遺伝子破壊株のデータを示す。FIG. 1 is a diagram showing the amount of carbon dioxide generated when sake production is performed using laboratory yeast X2180-1A as a parent strain and gene disruption strains (MSN2, MSN4, MSN2 / MSN4). White circles indicate data of the parent strain, black circles indicate the MSN2 gene disruption strain, black triangles indicate the MSN4 gene disruption strain, and black squares indicate the data of the MSN2 / 4 gene disruption strain. 図2は、親株である清酒酵母きょうかい7号、及びMSN2遺伝子破壊株を用いて2種類の条件でエタノール製造を行った際の二酸化炭素発生量を示す図である。左が廃糖蜜培地、右がYPD培地での結果を示す。いずれも、白丸印が親株、黒丸印がMSN2遺伝子破壊株のデータを示す。FIG. 2 is a diagram showing the amount of carbon dioxide generated when ethanol production was carried out under two types of conditions using the sake yeast 7 as a parent strain and the MSN2 gene disruption strain. The left shows the results with molasses medium and the right shows with YPD medium. In both cases, white circles indicate data of the parent strain, and black circles indicate data of the MSN2 gene disruption strain.

本発明のエタノールの製造方法は、酵母を用いてエタノールを製造するものであって、ストレス応答転写因子(例えばMsn2p及びMsn4p)をコードする遺伝子のうち少なくとも1種が破壊されている酵母の遺伝子破壊株を用いることに、一つの特徴を有する。   The method for producing ethanol according to the present invention comprises producing yeast using yeast, wherein at least one of genes encoding a stress response transcription factor (for example, Msn2p and Msn4p) is disrupted. Using a strain has one feature.

ストレス応答転写因子をコードする遺伝子としては、MSN2及びMSN4が挙げられる。これらの遺伝子は、SGD(Saccharomyces Genome Database)のホームページ(http://genome-www.stanford.edu/Saccharomyces)に配列が記載されており、かかる配列に基づいて、PCRプライマーを設計して遺伝子破壊や部位特異的変異を行うことができる。例えば、MSN2を破壊するために用いるDNAのプライマーとしては、MSN2−DF(配列表の配列番号1)、MSN4−DR(配列表の配列番号2)、MSN4を破壊するために用いるDNAのプライマーとしては、MSN4−DF(配列表の配列番号3)、MSN4−DR(配列表の配列番号4)等が例示される。   Examples of genes encoding a stress response transcription factor include MSN2 and MSN4. The sequences of these genes are described on the SGD (Saccharomyces Genome Database) website (http://genome-www.stanford.edu/Saccharomyces). Based on such sequences, PCR primers are designed to disrupt the gene. And site-specific mutations can be made. For example, as a primer for DNA used for destroying MSN2, as a primer for DNA used for destroying MSN2-DF (SEQ ID NO: 1 in the sequence listing), MSN4-DR (SEQ ID NO: 2 in the sequence listing), and MSN4 Examples include MSN4-DF (SEQ ID NO: 3 in the sequence listing), MSN4-DR (SEQ ID NO: 4 in the sequence listing), and the like.

本発明における酵母とは、サッカロミセス属に属するエタノール発酵に用いることのできる酵母であって、例えば、実験室酵母、清酒酵母、ワイン酵母、ビール酵母、焼酎酵母、パン酵母、及びバイオエタノール酵母が挙げられる。これらの酵母は一種類を単独で用いてもよく、複数種の酵母を用いてもよい。実験室酵母としては、サッカロミセス・セレビシエに属するX2180−1A株が好ましい。清酒酵母としては、サッカロミセス・セレビシエに属するきょうかい7号株が好ましい。   The yeast in the present invention is a yeast that can be used for ethanol fermentation belonging to the genus Saccharomyces, and includes, for example, laboratory yeast, sake yeast, wine yeast, beer yeast, shochu yeast, baker's yeast, and bioethanol yeast. It is done. One kind of these yeasts may be used alone, or a plurality of kinds of yeasts may be used. As the laboratory yeast, the X2180-1A strain belonging to Saccharomyces cerevisiae is preferable. As the sake yeast, the No. 7 strain belonging to Saccharomyces cerevisiae is preferred.

本明細書において、「破壊」とは、破壊される遺伝子の機能を喪失させたり、失活させたりするような遺伝子操作のことをいい、目的遺伝子領域の全遺伝子を喪失させる遺伝子操作や正常な機能に必要な部位を欠失又は変異させる遺伝子操作のことをいう。具体的には、ストレス応答転写因子をコードするMSN2又はMSN4遺伝子を全喪失させる遺伝子操作が例示される。かかる遺伝子操作を行う方法としては、特に限定はなく公知の方法を用いることができ、例えば、変異剤処理による突然変異、遺伝子工学を用いた遺伝子破壊、遺伝子工学を用いた部位特異的変異などが挙げられる。これらの遺伝子破壊株の作成方法については、Saccharomyces Genome Deletion Projectのホームページ(http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html)を参考にすることができる。なお、本発明においては、自然突然変異により破壊が生じた遺伝子破壊株も用いることができる。   In this specification, “disruption” refers to genetic manipulation that causes the function of the disrupted gene to be lost or inactivated, such as genetic manipulation that causes loss of all genes in the target gene region or normal operation. This refers to genetic manipulation that deletes or mutates a site necessary for function. Specifically, genetic manipulation that completely loses the MSN2 or MSN4 gene encoding a stress response transcription factor is exemplified. A method for performing such genetic manipulation is not particularly limited, and a known method can be used. For example, mutation by treatment with a mutation agent, gene disruption using genetic engineering, site-specific mutation using genetic engineering, etc. Can be mentioned. About the production method of these gene-disrupted strains, the Saccharomyces Genome Deletion Project website (http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html) can be referred to. In the present invention, a gene disrupted strain in which disruption has occurred due to spontaneous mutation can also be used.

なお、上記遺伝子操作を行う際には、アミノ酸などの栄養要求マーカーや、薬剤に対する耐性マーカーなどを選択マーカーとして使用してもよい。   When performing the above-described genetic manipulation, an auxotrophic marker such as an amino acid, a drug resistance marker, or the like may be used as a selection marker.

ストレス応答転写因子の遺伝子破壊株の代表株については、X2180−1A msn2、X2180−1A msn4、X2180−1A msn2/4、及びK7 msn2と命名、表示され、独立行政法人製品評価技術基盤機構特許微生物寄託センターに、それぞれ、NITE P−813、NITE P−814、NITE P−815、及びNITE P−816として寄託されている。   The representative strains of the stress-responsive transcription factor gene-disrupted strains are named and displayed as X2180-1A msn2, X2180-1A msn4, X2180-1A msn2 / 4, and K7 msn2, and are independent administrative corporation product evaluation technology infrastructure mechanism patent microorganism NITE P-813, NITE P-814, NITE P-815, and NITE P-816 are deposited at the depository centers, respectively.

本発明は、上記で得られた酵母の遺伝子破壊株を用いてエタノールを製造するが、酵母が特定のものである以外は、公知の方法を用いて、エタノールを製造することができる。   Although this invention manufactures ethanol using the yeast gene-disrupted strain obtained above, ethanol can be manufactured using a well-known method except that yeast is a specific thing.

本発明の製造方法は、例えば、清酒、ビール、ワイン等の酒類やバイオエタノール等の製造に適用することができるが、好ましくは、清酒又はバイオエタノールの製造に適用することができる。   The production method of the present invention can be applied, for example, to the production of alcoholic beverages such as sake, beer, wine, and bioethanol, but is preferably applicable to the production of sake or bioethanol.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例等によりなんら制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not restrict | limited at all by these Examples.

実施例1
サッカロミセス・セレビシエX2180−1A株のMSN2遺伝子及びMSN4遺伝子のいずれか1種又は両者を破壊した株を作成し、清酒製造試験を行った。なお、X2180−1A株は、American Type Culture Collection(ATCC)から、ATCC26786として入手可能である。
Example 1
A Saccharomyces cerevisiae X2180-1A strain in which one or both of the MSN2 gene and the MSN4 gene were disrupted was prepared, and a sake production test was conducted. The X2180-1A strain is available as ATCC 26786 from the American Type Culture Collection (ATCC).

〔遺伝子破壊株の作成〕
X2180−1A株の遺伝子破壊は、マーカー遺伝子としてnat1及びkanMXを用いて行った。まず、nat1を含むプラスミドpAG25(EUROSCARFから入手可能、http://web.uni-frankfurt.de/fb15/mikro/euroscarf/index.html)を鋳型として、プライマーMSN2−DF(配列表の配列番号1)及びMSN2−DR(配列表の配列番号2)を用いてPCRを行い、マーカーであるnat1の両側に、MSN2のORFに隣接する上流部分及び下流部分のDNA配列を持つDNAを作成した。このDNAを用いてX2180−1A株を形質転換して、ノーセオスリシン含有培地で増殖した酵母を、形質転換体1とした。形質転換体1からゲノムDNAを抽出し、プライマーMSN2−F(配列表の配列番号5)及びMSN2−R(配列表の配列番号6)を用いてPCRを行い、得られた産物のサイズを測定することによって、MSN2が遺伝子破壊されていることを確認し、これをX2180−1A株のMSN2遺伝子破壊株(X2180−1A msn2)とした。
[Generation of gene disruption strain]
The gene disruption of the X2180-1A strain was performed using nat1 and kanMX as marker genes. First, using a plasmid pAG25 containing nat1 (available from EUROS CARF, http://web.uni-frankfurt.de/fb15/mikro/euroscarf/index.html) as a template, primer MSN2-DF (SEQ ID NO: 1 in the sequence listing) ) And MSN2-DR (SEQ ID NO: 2 in the sequence listing), and DNA having DNA sequences of upstream and downstream portions adjacent to the ORF of MSN2 on both sides of the marker nat1 was prepared. A transformant 1 was obtained by transforming the X2180-1A strain using this DNA and growing in a culture medium containing noseoslysin. Genomic DNA is extracted from transformant 1, PCR is performed using primers MSN2-F (SEQ ID NO: 5 in the sequence listing) and MSN2-R (SEQ ID NO: 6 in the sequence listing), and the size of the resulting product is measured. As a result, it was confirmed that MSN2 was gene-disrupted, and this was designated as an MSN2 gene-disrupted strain (X2180-1A msn2) of the X2180-1A strain.

次に、kanMXを含むプラスミドpUG6(EUROSCARFから入手可能、http://web.uni-frankfurt.de/fb15/mikro/euroscarf/index.html)を鋳型として、プライマーMSN4−DF(配列表の配列番号3)及びMSN4−DR(配列表の配列番号4)を用いてPCRを行い、マーカーであるkanMXの両側に、MSN4のORFに隣接する上流部分及び下流部分のDNA配列を持つDNAを作成した。このDNAを用いてX2180−1A株及びMSN2遺伝子破壊株を形質転換して、ジェネティシン含有培地で増殖した酵母を、それぞれ形質転換体2及び3とした。形質転換体2及び3からゲノムDNAを抽出し、プライマーMSN4−F(配列表の配列番号7)及びMSN4−R(配列表の配列番号8)を用いてPCRを行い、得られた産物のサイズを測定することによって、MSN4が遺伝子破壊されていることを確認し、これらをそれぞれ、X2180−1A株のMSN4遺伝子破壊株(X2180−1A msn4)及びMSN2/MSN4遺伝子二重破壊株(X2180−1A msn2/4)とした。   Next, using the plasmid pUG6 containing kanMX (available from EUROSCARF, http://web.uni-frankfurt.de/fb15/mikro/euroscarf/index.html) as a template, primer MSN4-DF (SEQ ID NO: SEQ ID NO: PCR was performed using 3) and MSN4-DR (SEQ ID NO: 4 in the Sequence Listing) to prepare DNA having DNA sequences of upstream and downstream portions adjacent to the ORF of MSN4 on both sides of the marker kanMX. Transformants 2 and 3 were obtained by transforming the X2180-1A strain and the MSN2 gene disruption strain using this DNA and growing in a geneticin-containing medium, respectively. Genomic DNA was extracted from transformants 2 and 3, and PCR was performed using primers MSN4-F (SEQ ID NO: 7 in the sequence listing) and MSN4-R (SEQ ID NO: 8 in the sequence listing). To confirm that MSN4 has been genetically disrupted, and these are identified as MSN4 gene disruption strain (X2180-1A msn4) and MSN2 / MSN4 gene double disruption strain (X2180-1A) of X2180-1A strain, respectively. msn2 / 4).

〔清酒の製造〕
親株であるX2180−1Aと、上記で得られたMSN2遺伝子破壊株、MSN4遺伝子破壊株、及びMSN2/MSN4遺伝子二重破壊株を用いて、以下に示す方法で清酒を製造した。
[Production of sake]
Using the parent strain X2180-1A and the MSN2 gene disrupted strain, MSN4 gene disrupted strain, and MSN2 / MSN4 gene double disrupted strain obtained above, sake was produced by the method described below.

掛米80g、麹米20g、水160mL、90%乳酸40μL混合による一段仕込を実施した。掛米として精米歩合70%のアルファー化米、麹米として精白歩合70%の乾燥麹を用いた。各酵母は、YPD培地(酵母エキス1%、ペプトン2%、ブドウ糖2%含有)において一晩振とう培養した後、酵母数が2×107cells/mLになるように仕込時に添加した。発酵温度は15℃とした。仕込試験は各株について3回ずつ繰り返した。仕込後、毎日重量を測定することにより、重量減少分から発酵に伴う二酸化炭素発生量を求め、各株について平均二酸化炭素発生量を算出した。結果を図1に示す。また、仕込後20日目には、遠心分離によって回収した清酒におけるエタノール濃度を測定し、各株について平均エタノール濃度を算出した。また、得られた平均エタノール濃度について、親株における濃度に対する遺伝子破壊株における濃度の有意差検定も同時に行った。なお、エタノール濃度の測定は、アルコール濃度計(理研計器社製アルコメイトAL−3)を用いて行った。 One-stage charging was performed by mixing 80 g of rice, 20 g of glutinous rice, 160 mL of water, and 40 μL of 90% lactic acid. Alpha rice with a 70% polishing rate was used as the rice, and dried rice with a 70% polishing rate was used as the polished rice. Each yeast was cultured overnight in a YPD medium (containing 1% yeast extract, 2% peptone, and 2% glucose), and then added at the time of charging so that the number of yeasts was 2 × 10 7 cells / mL. The fermentation temperature was 15 ° C. The preparation test was repeated three times for each strain. After the preparation, the weight was measured every day to obtain the carbon dioxide generation amount accompanying fermentation from the weight loss, and the average carbon dioxide generation amount was calculated for each strain. The results are shown in FIG. On the 20th day after the preparation, the ethanol concentration in sake collected by centrifugation was measured, and the average ethanol concentration was calculated for each strain. Moreover, about the obtained average ethanol concentration, the significant difference test of the density | concentration in a gene disruption strain | stump | stock with respect to the density | concentration in a parent strain was also performed simultaneously. The ethanol concentration was measured using an alcohol concentration meter (Alcomate AL-3 manufactured by Riken Keiki Co., Ltd.).

いずれの遺伝子破壊株も、親株に比べて二酸化炭素発生量が多く(図1)、エタノール発酵速度が速いこと、また、最終的なエタノール濃度も、親株が15.4±0.2%であるのに対し、MSN2遺伝子破壊株が16.0±0.1%、MSN4遺伝子破壊株が15.7±0.1%、MSN2/MSN4遺伝子二重破壊株が16.0±0.2%と高く、エタノール生産性に優れることが分かった。エタノール濃度について平均値の差の検定を行った結果、いずれの遺伝子破壊株も親株と比較して5%未満の危険率で有意であった。   All of the gene-disrupted strains generate more carbon dioxide than the parent strain (FIG. 1), have a fast ethanol fermentation rate, and the final ethanol concentration is 15.4 ± 0.2% for the parent strain. In contrast, the MSN2 gene disruption strain was 16.0 ± 0.1%, the MSN4 gene disruption strain was 15.7 ± 0.1%, and the MSN2 / MSN4 gene double disruption strain was 16.0 ± 0.2%. It was found to be high and excellent in ethanol productivity. As a result of testing the difference in mean values for the ethanol concentration, all of the gene-disrupted strains were significant at a risk rate of less than 5% compared to the parent strain.

実施例2
サッカロミセス・セレビシエ二倍体清酒酵母きょうかい7号株の2個のMSN2遺伝子を両者共に破壊した株を作成し、清酒製造試験を行った。なお、きょうかい7号株は、財団法人日本醸造協会より入手可能である。
Example 2
A strain in which both MSN2 genes of Saccharomyces cerevisiae diploid sake yeast No. 7 were disrupted together was tested for sake production. Kyokai No. 7 is available from the Japan Brewing Association.

〔遺伝子破壊株の作成〕
きょうかい7号株の遺伝子破壊は、マーカー遺伝子としてnat1及びkanMXを用いて行った。きょうかい7号株は二倍体であることから、まず、1コピー目のMSN2遺伝子をnat1をマーカーとして遺伝子破壊した。nat1を含むプラスミドpAG25(EUROSCARFから入手可能http://web.uni-frankfurt.de/fb15/mikro/euroscarf/index.html)を鋳型として、プライマーMSN2−DF(配列表の配列番号1)及びMSN2−DR(配列表の配列番号2)を用いてPCRを行い、マーカーであるnat1の両側に、MSN2のORFに隣接する上流部分及び下流部分のDNA配列を持つDNAを作成した。このDNAを用いてきょうかい7号株を形質転換して、ノーセオスリシン含有培地で増殖した酵母を、形質転換体4とした。形質転換体4からゲノムDNAを抽出し、プライマーMSN2−F(配列表の配列番号5)及びMSN2−R(配列表の配列番号6)を用いてPCRを行い、得られた産物のサイズを測定することによって、1コピー目のMSN2が遺伝子破壊されていることを確認した。
[Generation of gene disruption strain]
The gene disruption of Kyokai No. 7 strain was performed using nat1 and kanMX as marker genes. Since the Kyokai No. 7 strain is diploid, the first copy of the MSN2 gene was first disrupted using nat1 as a marker. Using plasmid pAG25 containing nat1 (available from EUROSCARF http://web.uni-frankfurt.de/fb15/mikro/euroscarf/index.html) as a template, primers MSN2-DF (SEQ ID NO: 1 in the sequence listing) and MSN2 PCR was performed using -DR (SEQ ID NO: 2 in the sequence listing) to prepare DNA having DNA sequences of the upstream and downstream portions adjacent to the ORF of MSN2 on both sides of the marker nat1. Transformant 4 was obtained by transforming yeast strain No. 7 using this DNA and growing in a culture medium containing noseoslysin. Genomic DNA is extracted from the transformant 4, PCR is performed using the primers MSN2-F (SEQ ID NO: 5 in the sequence listing) and MSN2-R (SEQ ID NO: 6 in the sequence listing), and the size of the resulting product is measured. By doing this, it was confirmed that the first copy of MSN2 was gene disrupted.

次に、2コピー目のMSN2をkanMXをマーカーとして遺伝子破壊した。kanMXを含むプラスミドpUG6(EUROSCARFから入手可能、http://web.uni-frankfurt.de/fb15/mikro/euroscarf/index.html)を鋳型として、プライマーMSN2−DF(配列表の配列番号1)及びMSN2−DR(配列表の配列番号2)を用いてPCRを行い、マーカーであるkanMXの両側に、MSN2のORFに隣接する上流部分及び下流部分のDNA配列を持つDNAを作成した。このDNAを用いて、上記で得られた形質転換体4を形質転換して、ジェネティシン含有培地で増殖した酵母を形質転換体5とした。形質転換体5からゲノムDNAを抽出し、プライマーMSN2−F(配列表の配列番号5)及びMSN2−R(配列表の配列番号6)を用いてPCRを行い、得られた産物のサイズを測定することによって、2コピー分のMSN2が遺伝子破壊されていることを確認し、これを、きょうかい7号株のMSN2遺伝子破壊株(K7 msn2)とした。   Next, the second copy of MSN2 was gene disrupted using kanMX as a marker. Using plasmid pUG6 containing kanMX (available from EUROSCARF, http://web.uni-frankfurt.de/fb15/mikro/euroscarf/index.html) as a template, primer MSN2-DF (SEQ ID NO: 1 in the sequence listing) and PCR was performed using MSN2-DR (SEQ ID NO: 2 in the sequence listing) to prepare DNA having DNA sequences of the upstream and downstream portions adjacent to the ORF of MSN2 on both sides of the marker kanMX. Using this DNA, transformant 4 obtained above was transformed, and yeast grown in a geneticin-containing medium was designated as transformant 5. Genomic DNA is extracted from the transformant 5, PCR is performed using the primers MSN2-F (SEQ ID NO: 5 in the sequence listing) and MSN2-R (SEQ ID NO: 6 in the sequence listing), and the size of the resulting product is measured. As a result, it was confirmed that two copies of MSN2 had been genetically disrupted, and this was designated as an MSN2 gene disruption strain (K7 msn2) of Kyoto No. 7.

〔エタノールの製造〕
親株であるきょうかい7号株と、上記で得られたMSN2遺伝子破壊株を用いて、以下に示す方法でエタノールを製造した。
[Production of ethanol]
Ethanol was produced by the following method using the parent strain, Kyoto No. 7 strain, and the MSN2 gene disruption strain obtained above.

廃糖蜜培地(ケーンモラセス原液を蒸留水にてBrix25%に調整後、0.025%硫酸アンモニウムを添加したもの)及び高濃度ブドウ糖含有YPD培地(酵母エキス1%、ペプトン2%、ブドウ糖20%含有)を用いたエタノール発酵試験を実施した。各酵母は、YPD培地(酵母エキス1%、ペプトン2%、ブドウ糖2%含有)において一晩振とう培養した後、酵母数が2×106cells/mLになるように両培地に添加し、72時間静置培養した。発酵温度は30℃とした。発酵試験は各株について3回以上繰り返した。培養開始後、発酵モニター装置(アトー株式会社製ファーモグラフII)を用いて発酵に伴う二酸化炭素発生量を求め、各株について平均二酸化炭素発生量を算出した。結果を図2に示す。 Waste molasses medium (Ken molasses stock solution adjusted to Brix 25% with distilled water and 0.025% ammonium sulfate added) and high concentration glucose-containing YPD medium (1% yeast extract, 2% peptone, 20% glucose) The ethanol fermentation test using was carried out. Each yeast is cultured overnight in a YPD medium (containing 1% yeast extract, 2% peptone, 2% glucose) and then added to both mediums so that the number of yeasts is 2 × 10 6 cells / mL. The culture was stationary for 72 hours. The fermentation temperature was 30 ° C. The fermentation test was repeated 3 times or more for each strain. After the start of culture, the amount of carbon dioxide generated during fermentation was determined using a fermentation monitor device (Farmograph II manufactured by Ato Co., Ltd.), and the average amount of carbon dioxide generated for each strain was calculated. The results are shown in FIG.

MSN2遺伝子破壊株は、廃糖蜜培地及びYPD培地のいずれの条件においても、親株に比べて二酸化炭素発生量が多く(図2)、エタノール発酵速度が速く、エタノール生産性に優れることが分かった。   It was found that the MSN2 gene-disrupted strain had a larger amount of carbon dioxide generation than the parent strain (FIG. 2), the ethanol fermentation rate was high, and the ethanol productivity was excellent in both the molasses medium and the YPD medium.

本発明の製造方法は、清酒、ビール、ワイン、焼酎等の酒類や、バイオエタノール等を含むエタノールの製造に好適に用いられる。   The production method of the present invention is suitably used for producing alcoholic beverages such as sake, beer, wine, shochu, and ethanol including bioethanol.

配列表の配列番号1は、MSN2破壊用DNA作成用プライマーである。
配列表の配列番号2は、MSN2破壊用DNA作成用プライマーである。
配列表の配列番号3は、MSN4破壊用DNA作成用プライマーである。
配列表の配列番号4は、MSN4破壊用DNA作成用プライマーである。
配列表の配列番号5は、MSN2増幅用プライマーである。
配列表の配列番号6は、MSN2増幅用プライマーである。
配列表の配列番号7は、MSN4増幅用プライマーである。
配列表の配列番号8は、MSN4増幅用プライマーである。
Sequence number 1 of a sequence table is a primer for DNA preparation for MSN2 destruction.
Sequence number 2 of a sequence table is a primer for DNA preparation for MSN2 destruction.
Sequence number 3 of a sequence table is a primer for DNA preparation for MSN4 destruction.
Sequence number 4 of a sequence table is a primer for DNA preparation for MSN4 destruction.
Sequence number 5 of a sequence table is a primer for MSN2 amplification.
Sequence number 6 of a sequence table is a primer for MSN2 amplification.
Sequence number 7 of a sequence table is a primer for MSN4 amplification.
Sequence number 8 of a sequence table is a primer for MSN4 amplification.

Claims (5)

Msn2pをコードする遺伝子及び/又はMsn4pをコードする遺伝子が破壊されてなる酵母の遺伝子破壊株を用いた、エタノールの製造方法。 A method for producing ethanol using a yeast gene-disrupted strain in which a gene encoding Msn2p and / or a gene encoding Msn4p is disrupted. 酵母が、実験室酵母、清酒酵母、ワイン酵母、ビール酵母、焼酎酵母、パン酵母及びバイオエタノール酵母からなる群より選択される少なくとも1種である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the yeast is at least one selected from the group consisting of laboratory yeast, sake yeast, wine yeast, beer yeast, shochu yeast, baker's yeast, and bioethanol yeast. 実験室酵母がX2180−1A株である、請求項に記載の製造方法。 The manufacturing method of Claim 2 whose laboratory yeast is X2180-1A strain | stump | stock. 清酒酵母がきょうかい7号株である、請求項に記載の製造方法。 The production method according to claim 2 , wherein the sake yeast is No. 7 strain. エタノールが清酒又はバイオエタノールである、請求項1〜のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4 , wherein ethanol is sake or bioethanol.
JP2009278555A 2009-12-08 2009-12-08 Ethanol production method Active JP5585952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009278555A JP5585952B2 (en) 2009-12-08 2009-12-08 Ethanol production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009278555A JP5585952B2 (en) 2009-12-08 2009-12-08 Ethanol production method

Publications (2)

Publication Number Publication Date
JP2011120486A JP2011120486A (en) 2011-06-23
JP5585952B2 true JP5585952B2 (en) 2014-09-10

Family

ID=44285089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009278555A Active JP5585952B2 (en) 2009-12-08 2009-12-08 Ethanol production method

Country Status (1)

Country Link
JP (1) JP5585952B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102287810B1 (en) 2014-07-28 2021-08-09 삼성전자주식회사 Genetically engineered and stress resistant yeast cell with enhanced activity of MSN2 and method for producing lactate using the same
KR20210032972A (en) * 2018-06-27 2021-03-25 베링거 인겔하임 에르체파우 게엠베하 운트 코 카게 Means and methods for increasing protein expression using transcription factors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280268A (en) * 2005-03-31 2006-10-19 Chiba Univ Method for improving alcohol production efficiency by promoting cell proliferation
EP2407541A1 (en) * 2006-12-07 2012-01-18 Massachusetts Institute of Technology Global transcription machinery engineering
JP2009240185A (en) * 2008-03-28 2009-10-22 Toyota Central R&D Labs Inc Highly productive transformant of exogenous protein and its use
KR20100048224A (en) * 2008-10-30 2010-05-11 삼성전자주식회사 Gene increasing metabolic availability of galactose, recombinant vector and recombinant microorganism containing the same
KR20100117465A (en) * 2009-04-24 2010-11-03 삼성전자주식회사 Isolated polynucleotides increasing alcohol tolerance, vector and host cell containing the same, and method of producing alcohol using the same

Also Published As

Publication number Publication date
JP2011120486A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
Lian et al. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains
Filho et al. Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation
Hubmann et al. Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering
Hubmann et al. Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation
JP2000509988A (en) Stable recombinant yeast for fermenting xylose to ethanol
Zhang et al. Adaptive evolution relieves nitrogen catabolite repression and decreases urea accumulation in cultures of the Chinese rice wine yeast strain Saccharomyces cerevisiae XZ-11
Wang et al. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae
He et al. Engineering industrial Saccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production
CA2968726C (en) Causative genes conferring acetic acid tolerance in yeast
JP2020501595A (en) Xylitol-producing Methinicobia species
Kuanyshev et al. Domesticating a food spoilage yeast into an organic acid‐tolerant metabolic engineering host: Lactic acid production by engineered Zygosaccharomyces bailii
EP2900690B1 (en) Mutant yeast strain with decreased glycerol production
De Valk et al. Engineering proton-coupled hexose uptake in Saccharomyces cerevisiae for improved ethanol yield
Zheng et al. Highly efficient rDNA‐mediated multicopy integration based on the dynamic balance of rDNA in Saccharomyces cerevisiae
JP5585952B2 (en) Ethanol production method
US20100190223A1 (en) Yeast for transformation, transformation method, and method for producing substance
Pribylova et al. The salt tolerant yeast Zygosaccharomyces rouxii possesses two plasma-membrane Na+/H+-antiporters (ZrNha1p and ZrSod2–22p) playing different roles in cation homeostasis and cell physiology
Štafa et al. Novel Approach in the Construction of Bioethanol-Producing Saccharomyces cerevisiae Hybrids §
Pribylova et al. Tools for the genetic manipulation of Zygosaccharomyces rouxii
Gao et al. Global transcription engineering of brewer’s yeast enhances the fermentation performance under high-gravity conditions
Karpel et al. Analysis of the major hexose transporter genes in wine strains of Saccharomyces cerevisiae
JP5828447B2 (en) Ethanol production method
BR112021001577A2 (en) increased alcohol production from yeast that produces an increased amount of active crz1 protein
US20220348966A1 (en) System and method for increased alcohol tolerance and production in yeast
EP3162896B1 (en) Transformant, method for producing same, and method for producing c4-dicarboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5585952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250