JP2012191756A - Power distribution system - Google Patents

Power distribution system Download PDF

Info

Publication number
JP2012191756A
JP2012191756A JP2011053303A JP2011053303A JP2012191756A JP 2012191756 A JP2012191756 A JP 2012191756A JP 2011053303 A JP2011053303 A JP 2011053303A JP 2011053303 A JP2011053303 A JP 2011053303A JP 2012191756 A JP2012191756 A JP 2012191756A
Authority
JP
Japan
Prior art keywords
switch
circuit
transformer
short
power distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011053303A
Other languages
Japanese (ja)
Other versions
JP5707184B2 (en
Inventor
Hidehiko Sugimoto
英彦 杉本
Kazuhiko Ushida
和彦 牛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabuchi Electric Co Ltd
Original Assignee
Tabuchi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabuchi Electric Co Ltd filed Critical Tabuchi Electric Co Ltd
Priority to JP2011053303A priority Critical patent/JP5707184B2/en
Publication of JP2012191756A publication Critical patent/JP2012191756A/en
Application granted granted Critical
Publication of JP5707184B2 publication Critical patent/JP5707184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations

Abstract

PROBLEM TO BE SOLVED: To provide a power distribution system in which a distributed power supply device side can detect quickly and surely that the power distribution system is in a state of interruption of electric service and individual operation.SOLUTION: An inventive power distribution system includes: a section switch 3 interposed in a high voltage distribution line 1; and a pole-mounted transformer 7 having primary-side terminals 7a, 7b connected with high voltage distribution lines 1b1, 1c1 and secondary-side terminals 7c to 7e connected with low voltage distribution lines 9a to 9c. In this power distribution system, a transformer primary-side short circuit switch 13 is prepared in parallel between the primary side terminals 7a, 7b of the pole-mounted transformer 7. The transformer primary-side short circuit switch 13 is closed when the section switch 3 is opened, thus short-circuiting between the primary side terminals 7a, 7b of the pole-mounted transformer 7.

Description

本発明は、配電システムに係り、詳しくは、区分開閉器が介装されている高圧配電線に例えば柱上トランス一次側を接続し、この柱上トランス二次側の低圧配電線に太陽光発電等の分散型電源装置を接続した配電システムに関するものである。   The present invention relates to a power distribution system, and more specifically, for example, a primary transformer primary side is connected to a high voltage distribution line interposing a section switch, and a photovoltaic power generation is connected to the low voltage distribution line on the secondary transformer side. The present invention relates to a power distribution system to which a distributed power supply device such as the above is connected.

電力系統における配電用変電所は、一般に、6600Vの高圧を高圧配電線で配電し、この高圧配電線に柱上トランスの一次側を接続し、その二次側に100V、200Vなどの低圧を生成し、低圧配電線を介して例えば家庭内負荷に供給するようにしている。   Distribution substations in the power system generally distribute 6600V high voltage with high-voltage distribution lines, connect the primary side of the pole transformer to this high-voltage distribution line, and generate low voltages such as 100V and 200V on the secondary side For example, it is supplied to a household load via a low-voltage distribution line.

近年では、太陽光発電、風力発電、燃料電池発電などの発電設備、いわゆる分散型電源装置が低圧配電線に接続され、配電系統に連系して、配電系統への電力の逆潮流や家庭内負荷への電力供給ができるようになってきている。   In recent years, power generation facilities such as solar power generation, wind power generation, and fuel cell power generation, so-called distributed power supply devices, are connected to the low-voltage distribution lines and connected to the distribution system. It is now possible to supply power to the load.

分散型電源装置は、一般に、太陽電池等の直流電源と、この直流電源の直流出力を交流出力に変換して出力するパワーコンディショナとを備え、このパワーコンディショナが配電系統との連系運転を制御することができるようになっている。   A distributed power supply device generally includes a DC power source such as a solar battery, and a power conditioner that converts the DC output of the DC power source into an AC output, and the power conditioner is connected to a distribution system. Can be controlled.

このような分散型電源装置は、配電系統に停電が起きると、分散型電源装置を配電系統から解列して分散型電源装置の単独運転を防止することが必要である(例えば、特許文献1参照)。単独運転は、配電系統が停電しているときに、分散型電源装置が負荷に電力を供給している状態である。   In such a distributed power supply device, when a power failure occurs in the power distribution system, it is necessary to disconnect the distributed power supply device from the power distribution system to prevent independent operation of the distributed power supply device (for example, Patent Document 1). reference). Independent operation is a state in which the distributed power supply supplies power to the load when the power distribution system has a power failure.

分散型電源装置の単独運転検出にはその検出条件において各種方式があり、例えば単独運転移行時における周波数や電圧位相等の電気量変化を検出することで単独運転を検出する、いわゆる受動方式(例えば、特許文献2参照)や、常時から微量の電気量の変動を電力系統に与えておき、単独運転に移行した際に生じる周波数変化またはそれから計算されるインピーダンス等の変化を検出することで単独運転を検出する、いわゆる能動方式(例えば、特許文献3参照)がある。   There are various types of detection conditions for detecting the isolated operation of the distributed power supply device. For example, a so-called passive method (for example, detecting an isolated operation by detecting a change in the amount of electricity such as a frequency or a voltage phase at the time of transition to isolated operation) , See Patent Document 2), or by applying a slight amount of electricity fluctuation to the power system from time to time, and detecting a change in the frequency or the impedance calculated from the change that occurs when shifting to a single operation. There is a so-called active method (see Patent Document 3, for example).

特開2007−185079号公報JP 2007-185079 A 特開平08−082646号公報Japanese Patent Laid-Open No. 08-082646 特開平10−248168号公報JP-A-10-248168

いずれの方式でも、配電系統が停電して、分散型電源装置が単独運転すると、その単独運転を高速検出し、分散型電源装置を配電系統から迅速に解列することが必要である。しかしながら、従来から、分散型電源装置においては、単独運転を高速でかつ確実に検出することは難しい。   In any system, when the power distribution system is interrupted and the distributed power supply device is operated independently, it is necessary to detect the isolated operation at high speed and to quickly disconnect the distributed power supply device from the power distribution system. Conventionally, however, it is difficult for a distributed power supply device to detect an isolated operation at high speed and reliably.

本発明が解決しようとする課題は、分散型電源装置側がその単独運転の状態を高速かつ確実に検出可能にすることである。   The problem to be solved by the present invention is to enable the distributed power supply side to detect the state of the isolated operation at high speed and reliably.

本発明による配電システムは、高圧配電線に介装された区分開閉器と、一次側が高圧配電線に接続され、二次側が低圧配電線に接続されたトランスとを含む配電システムにおけるものである。   A power distribution system according to the present invention is a power distribution system including a section switch interposed in a high voltage distribution line, and a transformer having a primary side connected to the high voltage distribution line and a secondary side connected to the low voltage distribution line.

このような配電システムにおいて、従来では、区分開閉器が開路するとトランス一次側への配電が停止されても、前記トランス一次側が短絡されていないから、トランスの一次側両端間は高圧配電線に接続された開放状態であり、電力エネルギは急速には消費されずに残留している。そのため、トランス二次側電圧は急速にゼロには下降しないから、配電系統の停電検出までには時間がかかることとなる。このことが、従来では配電系統が停電しても、分散型電源装置側が単独運転していることを高速で検出することを困難にしていた。   In such a power distribution system, conventionally, even if distribution to the primary side of the transformer is stopped when the section switch is opened, the primary side of the transformer is not short-circuited. In this state, the power energy remains without being consumed rapidly. For this reason, since the transformer secondary voltage does not rapidly drop to zero, it takes time to detect a power failure in the distribution system. This has conventionally made it difficult to detect at high speed that the distributed power supply is operating independently even if the power distribution system fails.

本発明ではそのような配電システムにおいて、前記トランスの一次側に並列にトランス一次側短絡スイッチを設け、前記トランス一次側短絡スイッチは、前記区分開閉器が開路しているときは閉路して、トランス一次側両端間を短絡するようにしたものである。   According to the present invention, in such a power distribution system, a transformer primary-side short-circuit switch is provided in parallel on the primary side of the transformer, and the transformer primary-side short-circuit switch is closed when the section switch is open, The primary side ends are short-circuited.

本発明によれば、区分開閉器が開路するとトランス一次側への配電が停止される。このとき、前記トランス一次側短絡スイッチが閉路して、前記トランスの一次側両端間はこのトランス一次側短絡スイッチにより短絡される。トランスはその一次側両端間が短絡されると、トランス一次側に残留する電力エネルギは急激に消費されてしまう。その結果、トランスの二次側電圧は、急速に、0V(ゼロボルト)に低下する。そのため、分散型電源装置側からは、配電系統の停電を高速で検出することが極めて容易となる。   According to the present invention, power distribution to the primary side of the transformer is stopped when the section switch is opened. At this time, the transformer primary-side short-circuit switch is closed, and both ends of the transformer primary-side are short-circuited by the transformer primary-side short-circuit switch. When both ends of the primary side of the transformer are short-circuited, the power energy remaining on the primary side of the transformer is rapidly consumed. As a result, the secondary voltage of the transformer rapidly decreases to 0V (zero volts). Therefore, it becomes extremely easy to detect a power failure in the distribution system at high speed from the distributed power supply side.

このように、本発明では、区分開閉器が開路して配電系統が停電すると、トランスの一次側両端を短絡して、二次側電圧をゼロ電圧に高速で低下させるようにしたので、分散型電源装置側では、そのトランスの二次側電圧の変化に基づき、単独運転状態を高速で検出することができる。   In this way, in the present invention, when the section switch is opened and the distribution system is cut off, the primary side of the transformer is short-circuited, and the secondary side voltage is reduced to zero voltage at high speed. On the power supply device side, the isolated operation state can be detected at high speed based on the change in the secondary side voltage of the transformer.

本発明の好ましい態様は、親局である電力設備遠隔監視装置からの指令に応答する配電用子局を備え、前記配電用子局は、前記親局からの指令に応答して前記区分開閉器を閉路から開路に切り替えると、前記トランス一次側短絡スイッチを開路から閉路に切り替える、ことである。   A preferred embodiment of the present invention includes a power distribution slave station that responds to a command from a power facility remote monitoring device that is a master station, wherein the power distribution slave station responds to a command from the master station. Is switched from closed to open, the transformer primary short-circuit switch is switched from open to closed.

本発明の別の好ましい態様は、前記トランスの両一次側端子のうちの少なくとも一方の端子と、該一方の端子が接続される前記負荷側高圧配電線との間に、短絡防止スイッチを介装し、前記配電用子局は、前記短絡防止スイッチの開路および閉路を制御して、前記区分開閉器と、前記トランス一次側短絡スイッチとが同時に閉路する期間を無くす、ことである。   According to another preferred aspect of the present invention, a short-circuit prevention switch is interposed between at least one of the primary terminals of the transformer and the load-side high-voltage distribution line to which the one terminal is connected. The power distribution slave station controls the opening and closing of the short-circuit prevention switch so as to eliminate a period during which the section switch and the transformer primary-side short-circuit switch are simultaneously closed.

本発明のさらに別の好ましい態様は、前記配電用子局は、前記短絡防止スイッチを開路の状態に維持して、前記区分開閉器が開路から閉路に切り替え制御してから、一定期間の経過後に、前記トランス一次側短絡スイッチを閉路から開路に切り替え、その後で、前記短絡防止スイッチを開路から閉路に切り替える、ことである。   According to still another preferred aspect of the present invention, the power distribution slave station maintains the short-circuit prevention switch in an open state, and the division switch controls switching from open to closed, and then after a certain period of time has elapsed. The transformer primary-side short-circuit switch is switched from closed to open, and then the short-circuit prevention switch is switched from open to closed.

本発明では、トランスの一次側に並列にトランス一次側短絡スイッチを設け、前記区分開閉器が開路しているときは、前記トランス一次側短絡スイッチを閉路してトランス一次側両端を短絡するので、配電系統が停電するときのトランス二次側電圧を0Vに高速で変化させることができる。そして、分散型電源装置側では、そのトランス二次側電圧の前記変化に基づき、配電系統が停電して単独運転の状態にあることを検出するので、当該単独運転の検出を高速で行うことができる。   In the present invention, a transformer primary-side short-circuit switch is provided in parallel to the primary side of the transformer, and when the section switch is open, the transformer primary-side short-circuit switch is closed to short-circuit both ends of the transformer primary-side. The transformer secondary voltage when the power distribution system fails is changed to 0V at high speed. And on the distributed power supply side, based on the change of the transformer secondary side voltage, it is detected that the distribution system is in a state of power failure due to power failure. it can.

図1は、本発明の実施形態に係る配電システムの概略を示す図である。FIG. 1 is a diagram showing an outline of a power distribution system according to an embodiment of the present invention. 図2は、本発明の他の実施形態に係る配電システムの概略を示す図である。FIG. 2 is a diagram showing an outline of a power distribution system according to another embodiment of the present invention. 図3は、本発明のさらに他の実施形態に係る配電システムの概略を示す図である。FIG. 3 is a diagram showing an outline of a power distribution system according to still another embodiment of the present invention. 図4は、図3の配電システムの動作説明に供するタイミングチャートである。FIG. 4 is a timing chart for explaining the operation of the power distribution system of FIG.

以下、添付した図面を参照して、本発明の実施形態に係る配電システムを説明する。   Hereinafter, a power distribution system according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1を参照して、高圧配電線1は、6600V三相交流の配電線である。高圧配電線1は、区分開閉器3により、電源側の線路1a〜1cと、負荷側の線路1a1〜1c1とに区分される。   Referring to FIG. 1, a high-voltage distribution line 1 is a 6600 V three-phase AC distribution line. The high-voltage distribution line 1 is divided into a power line 1a to 1c and a load line 1a1 to 1c1 by a segment switch 3.

区分開閉器3は、線路1a〜1c側の接点と、線路1a1〜1c1側の接点と、これら両接点間を接続、遮断する開閉接触子3a〜3cとを備える。   The section switch 3 includes contacts on the lines 1a to 1c, contacts on the lines 1a1 to 1c1, and switching contacts 3a to 3c that connect and block between these contacts.

区分開閉器3は、制御システム5からの信号に応じて開閉接触子3a〜3cを開閉駆動される。なお、区分開閉器3は、開閉接触子3a〜3c以外に、その開閉接触子を開閉駆動する励磁コイルや、この励磁コイルに通電するための制御装置や、その他を備えるが、図解の都合でその図示を略している。   The division switch 3 is driven to open and close the open / close contacts 3 a to 3 c in accordance with a signal from the control system 5. In addition to the switching contacts 3a to 3c, the section switch 3 includes an excitation coil that opens and closes the switching contact, a control device for energizing the excitation coil, and others, but for convenience of illustration. The illustration is omitted.

高圧配電線1の負荷側の各線路1a1〜1c1のうち、線路1b1,1c1に、柱上トランス7の一次側端子7a,7bが接続されている。柱上トランス7は、前記交流6600Vの高圧を交流100、交流200Vの低圧に変圧し、二次側端子7c〜7e間に出力する。二次側端子7c,7d間および7d,7e間の各電圧は交流100V、二次側端子7c,7e間の電圧は交流200Vの電圧である。二次側端子7c〜7eは低圧配電線9の各線路9a〜9cに接続される。各線路9a〜9cは、単相3線式の線路を構成する。分散型電源装置11は、各線路9a〜9cに接続される。   Of the lines 1a1 to 1c1 on the load side of the high-voltage distribution line 1, primary terminals 7a and 7b of the pole transformer 7 are connected to the lines 1b1 and 1c1. The pole transformer 7 transforms the high voltage of AC 6600V into the low voltage of AC 100 and AC 200V, and outputs it between the secondary terminals 7c to 7e. Each voltage between the secondary terminals 7c and 7d and between 7d and 7e is an AC voltage of 100V, and a voltage between the secondary terminals 7c and 7e is an AC voltage of 200V. The secondary side terminals 7 c to 7 e are connected to the lines 9 a to 9 c of the low voltage distribution line 9. Each of the lines 9a to 9c constitutes a single-phase three-wire line. The distributed power supply device 11 is connected to the lines 9a to 9c.

分散型電源装置11は、図示例では、連系遮断器11a、インバータ(パワーコンディショナ)11b、太陽電池等の直流電源11cを備える。分散型電源装置11は、柱上トランス7の二次側電圧の情報を、図示略の電圧検出器から得る。分散型電源装置11は、この検出に基づき、区分開閉器3が開路して配電系統に停電が起きて単独運転しているか否かを判断する。分散型電源装置11は、単独運転状態にあると判断すると、連系遮断器11aを開いて配電系統から解列すると共に、必要に応じてインバータ11bを停止するなどして単独運転を停止する。   In the illustrated example, the distributed power supply device 11 includes an interconnection breaker 11a, an inverter (power conditioner) 11b, and a DC power supply 11c such as a solar battery. The distributed power supply device 11 obtains information on the secondary side voltage of the pole transformer 7 from a voltage detector (not shown). Based on this detection, the distributed power supply device 11 determines whether the section switch 3 is opened and a power failure occurs in the power distribution system and is operating independently. When it is determined that the distributed power supply device 11 is in an independent operation state, the interconnection circuit breaker 11a is opened and disconnected from the distribution system, and the independent operation is stopped by stopping the inverter 11b as necessary.

実施形態では、柱上トランス7の一次側端子7a,7b側に並列にトランス一次側短絡スイッチ13を設ける。トランス一次側短絡スイッチ13は、閉路することで、柱上トランス7の一次側端子7a,7b間を短絡することができる。   In the embodiment, the transformer primary-side short-circuit switch 13 is provided in parallel on the primary-side terminals 7a and 7b side of the pole transformer 7. The transformer primary side short-circuit switch 13 can close the primary side terminals 7a and 7b of the pole transformer 7 by closing the circuit.

制御システム5は、例えば区分開閉器3の負荷側を停電させる指令入力に応答して、区分開閉器3を開路する。区分開閉器3が開路すると、配電系統の負荷側線路1a1〜1c1は停電状態となる。制御システム5は、区分開閉器3の開路と同時に、トランス一次側短絡スイッチ13を閉路する。制御システム5における区分開閉器3とトランス一次側短絡スイッチ13の開閉は、該制御システム5に内蔵する励磁コイルにより行うようにしてよい。この励磁コイルは内蔵しないで、区分開閉器3とトランス一次側短絡スイッチ13側に設け、制御システム5はそれら励磁コイルに通電制御して、区分開閉器3、トランス一次側短絡スイッチ13を開閉制御できるようにしてもよい。   The control system 5 opens the section switch 3 in response to, for example, a command input for causing a power failure on the load side of the section switch 3. When the section switch 3 is opened, the load side lines 1a1 to 1c1 of the distribution system are in a power failure state. The control system 5 closes the transformer primary side short-circuit switch 13 simultaneously with the opening of the section switch 3. You may make it perform the opening / closing of the division | segmentation switch 3 and the transformer primary side short circuit switch 13 in the control system 5 with the exciting coil incorporated in this control system 5. FIG. This excitation coil is not built in, but is provided on the section switch 3 and the transformer primary short-circuit switch 13 side, and the control system 5 controls energization of these excitation coils to control the section switch 3 and transformer primary-side short-circuit switch 13 on and off. You may be able to do it.

トランス一次側短絡スイッチ13が閉路すると、前記したように、柱上トランス7の一次側端子7a,7b間が短絡される。柱上トランス7の一次側端子7a,7b間が短絡されると、上記したように、二次側端子7c〜7e間の電圧は0Vに高速で立ち下がる。   When the transformer primary short-circuit switch 13 is closed, the primary terminals 7a and 7b of the pole transformer 7 are short-circuited as described above. When the primary terminals 7a and 7b of the pole transformer 7 are short-circuited, the voltage between the secondary terminals 7c to 7e falls to 0V at a high speed as described above.

上述したように、従来では、区分開閉器3が開路して負荷側の配電が停電しても、柱上トランス7の一次側端子7a,7b間が短絡されずに、高圧配電線の線路1b1,1c1に接続された開放状態であり、柱上トランス7に蓄積の電力エネルギは急速には消費されず残留している。そのため、柱上トランス7の二次側端子7c〜7e間の電圧は急速にゼロには下降することができない。このことが、分散型電源装置11が、配電系統が停電して単独運転していることを高速で検出することを困難にしていた。   As described above, conventionally, even when the section switch 3 is opened and power distribution on the load side is interrupted, the primary terminals 7a and 7b of the pole transformer 7 are not short-circuited, and the line 1b1 of the high-voltage distribution line is used. , 1c1 is in an open state, and the power energy stored in the pole transformer 7 remains without being rapidly consumed. For this reason, the voltage between the secondary side terminals 7c to 7e of the pole transformer 7 cannot rapidly drop to zero. This makes it difficult for the distributed power supply 11 to detect at high speed that the power distribution system is operating independently due to a power failure.

これに対して、本実施例では、柱上トランス7の一次側端子7a,7b間が短絡されるため、柱上トランス7の二次側端子7c〜7e間の電圧が急速に0Vに立ち下がる。これにより、分散型電源装置11側では、配電系統の負荷側線路1a1〜1c1の停電、つまり、分散型電源装置11が単独運転状態にあることを高速で検出することができる。   In contrast, in the present embodiment, the primary terminals 7a and 7b of the pole transformer 7 are short-circuited, so that the voltage between the secondary terminals 7c to 7e of the pole transformer 7 rapidly falls to 0V. . Thereby, on the distributed power supply 11 side, it is possible to detect at high speed that the power failure of the load side lines 1a1 to 1c1 of the power distribution system, that is, that the distributed power supply 11 is in the single operation state.

制御システム5は、区分開閉器3の開路と、トランス一次側短絡スイッチ13の閉路とを同時に行うことが好ましい。   It is preferable that the control system 5 simultaneously opens the section switch 3 and closes the transformer primary short-circuit switch 13.

この際、制御システム5は、トランス一次側短絡スイッチ13の閉路状態を所定時間の間、継続させる。この所定時間は、分散型電源装置11が単独運転を検出し、単独運転を停止させるまでの時間とすることが好ましい。   At this time, the control system 5 continues the closed state of the transformer primary short-circuit switch 13 for a predetermined time. The predetermined time is preferably a time from when the distributed power supply device 11 detects an isolated operation until the isolated operation is stopped.

制御システム5は、分散型電源装置11との間の点線で示すように、分散型電源装置11と通信できるようにしてもよい。通信は配電線を使用してもよいし、配電線とは別の通信線を使用してもよい。   The control system 5 may be able to communicate with the distributed power supply device 11 as indicated by a dotted line between the control system 5 and the distributed power supply device 11. For communication, a distribution line may be used, or a communication line different from the distribution line may be used.

分散型電源装置11は、単独運転を検出し、その検出に基づき、単独運転を停止させると、その停止の情報を制御システム5に通知する。制御システム5は、分散型電源装置11側から単独運転停止の情報を通知されると、トランス一次側短絡スイッチ13を閉路から開路に切り替えるようにしてもよい。   When the distributed power supply 11 detects an isolated operation and stops the isolated operation based on the detection, the distributed power supply device 11 notifies the control system 5 of the information on the stop. The control system 5 may switch the transformer primary-side short-circuit switch 13 from the closed circuit to the open circuit when notified of the information on the independent operation stop from the distributed power supply device 11 side.

図2を参照して本発明の他の実施形態の配電システムを説明する。図2は、本発明の他の実施形態の配電システムの概略を示す図である。図2の配電システムにおいては、親局である電力設備遠隔監視装置5aと、配電用子局5bとを備える。電力設備遠隔監視装置5aは、例えば、配電用変電所に配置される。配電用子局5bは、例えば柱上トランス7側に配置される。電力設備遠隔監視装置5aは、配電用子局5bに負荷側の停電を指令する。配電用子局5bは、この指令に応答して、区分開閉器3を開路側に、また、トランス一次側短絡スイッチ13を閉路側に駆動する制御を行う。これにより、柱上トランス7の一次側両端子7a,7b間は、短絡される。    A power distribution system according to another embodiment of the present invention will be described with reference to FIG. FIG. 2 is a diagram showing an outline of a power distribution system according to another embodiment of the present invention. The power distribution system of FIG. 2 includes a power facility remote monitoring device 5a, which is a master station, and a power distribution slave station 5b. The power facility remote monitoring device 5a is disposed, for example, in a distribution substation. The power distribution slave station 5b is disposed, for example, on the pole transformer 7 side. The power facility remote monitoring device 5a commands a power outage to the power distribution slave station 5b. In response to this command, the power distribution slave station 5b performs control to drive the section switch 3 to the open side and the transformer primary side short-circuit switch 13 to the close side. As a result, the primary side terminals 7a and 7b of the pole transformer 7 are short-circuited.

なお、実施形態では柱上トランス7であるが、これに限定されず、地上設置型トランスや、その他のトランスでもよい。   In addition, although it is the pole top transformer 7 in embodiment, it is not limited to this, A ground installation type transformer and another transformer may be sufficient.

図3および図4を参照して、本発明のさらに他の実施形態にかかる配電システムを説明する。図3は、同実施形態の配電システムの概略を示す図であり、図4はその動作の説明に供するタイミングチャートである。この配電システムにおいては、柱上トランス7の一次側両端子7a,7b間に、トランス一次側短絡スイッチ13と共に短絡電流突入防止のための抵抗15を挿入し、また、柱上トランス7の一次側端子7aと高圧配電線1の負荷側線路1c1との間に、短絡防止スイッチ17を介装している。   With reference to FIG. 3 and FIG. 4, a power distribution system according to still another embodiment of the present invention will be described. FIG. 3 is a diagram showing an outline of the power distribution system of the embodiment, and FIG. 4 is a timing chart for explaining the operation. In this power distribution system, a resistor 15 for preventing short circuit current inrush is inserted between the primary side terminals 7a and 7b of the pole transformer 7 together with the transformer primary short circuit switch 13, and the primary side of the pole transformer 7 is also connected. A short-circuit prevention switch 17 is interposed between the terminal 7 a and the load side line 1 c 1 of the high-voltage distribution line 1.

配電用子局5bは、電力設備遠隔監視装置5aからの指令により、配電用開閉器3、トランス一次側短絡スイッチ13、短絡防止スイッチ17の開路および閉路のタイミングを図4に示すタイミングで制御する。   The power distribution slave station 5b controls the timing of opening and closing of the power distribution switch 3, the transformer primary short circuit switch 13, and the short circuit prevention switch 17 at the timing shown in FIG. 4 according to a command from the power facility remote monitoring device 5a. .

すなわち、図4で示すように、配電用子局5bは、信号S1により区分開閉器3と短絡防止スイッチ17とを開路し、期間T1の経過後に、信号S2によりトランス一次側短絡スイッチ13を開路から閉路に切り替える。配電用子局5bは、信号S3により区分開閉器3を開路から閉路に切り替える。そして、期間T2の経過後に、信号S4によりトランス一次側短絡スイッチ13を閉路から開路に切り替える。配電用子局5bは、トランス一次側短絡スイッチ13を閉路から開路に切り替えてから、期間T3の経過後に、信号S5により短絡防止スイッチ17を開路から閉路に切り替える。   That is, as shown in FIG. 4, the distribution slave station 5b opens the section switch 3 and the short-circuit prevention switch 17 by the signal S1, and opens the transformer primary-side short-circuit switch 13 by the signal S2 after the lapse of the period T1. Switch from to closed. The power distribution slave station 5b switches the section switch 3 from an open circuit to a closed circuit by a signal S3. And after progress of period T2, the transformer primary side short circuit switch 13 is switched from a closed circuit to an open circuit by a signal S4. The power distribution slave station 5b switches the transformer primary short-circuit switch 13 from the closed circuit to the open circuit, and then switches the short-circuit prevention switch 17 from the open circuit to the closed circuit by the signal S5 after the elapse of the period T3.

すなわち、配電用子局5bによる図4で示すタイミング制御により、まず、期間T1の確保、つまり、短絡防止スイッチ17が開路の状態で、区分開閉器3の開路とトランス一次側短絡スイッチ13の開路とが同時に発生する期間T1の確保で、高圧配電線1の電源側線路1b,1cに、トランス一次側が、トランス一次側短絡スイッチ13で短絡された状態で接続されないようにしている。   That is, by the timing control shown in FIG. 4 by the power distribution slave station 5b, first, the period T1 is secured, that is, the short circuit prevention switch 17 is open, and the opening of the section switch 3 and the opening of the transformer primary side short circuit switch 13 are first performed. By ensuring the period T1 in which both of them occur simultaneously, the transformer primary side is not connected to the power source side lines 1b and 1c of the high-voltage distribution line 1 in a state of being short-circuited by the transformer primary-side short-circuit switch 13.

また、期間T2の確保、つまり、短絡防止スイッチ17が開路の状態を維持している状態で、区分開閉器3が開路から閉路に切り替わってから、トランス一次側短絡スイッチ13が閉路から開路に切り替わるまでの期間T2の確保で、一般電気事業者が要求する停電時間が確保される。   In addition, while the period T2 is secured, that is, the short circuit prevention switch 17 is maintained in the open state, the transformer primary side short circuit switch 13 is switched from the closed circuit to the open circuit after the section switch 3 is switched from the open circuit to the closed circuit. By ensuring the period T2 up to, the power failure time required by the general electric utility is secured.

さらに、期間T3の確保、つまり、短絡防止スイッチ17が開路の状態において、区分開閉器3が閉路の状態にあり、この状態で、トランス一次側短絡スイッチ13が閉路から開路に切り替わってから、短絡防止スイッチ17が開路から閉路に切り替わるまでの期間T3の確保で、トランス一次側両端子7a,7b間が開放後に、当該トランス一次側両端子7a,7bが負荷側の高圧配電線1b1,1c1に接続されるようにする。   Furthermore, the period T3 is secured, that is, the short circuit prevention switch 17 is in the open state, the section switch 3 is in the closed state, and in this state, the transformer primary side short-circuit switch 13 is switched from the closed circuit to the open circuit. By securing the period T3 until the prevention switch 17 switches from open to closed, after the transformer primary terminals 7a and 7b are opened, the transformer primary terminals 7a and 7b are connected to the high-voltage distribution lines 1b1 and 1c1 on the load side. Make it connected.

1 高圧配電線
3 区分開閉器
5 制御システム
7 柱上トランス
9 低圧配電線
11 分散型電源装置
13 トランス一次側短絡スイッチ
17 短絡防止スイッチ
DESCRIPTION OF SYMBOLS 1 High voltage distribution line 3 Division switch 5 Control system 7 Pillar transformer 9 Low voltage distribution line 11 Distributed type power supply device 13 Transformer primary side short circuit switch 17 Short circuit prevention switch

Claims (4)

高圧配電線に介装された区分開閉器と、一次側が高圧配電線に接続され、二次側が低圧配電線に接続されたトランスとを含む配電システムにおいて、前記トランスの一次側端子間に並列にトランス一次側短絡スイッチを設け、前記トランス一次側短絡スイッチは、前記区分開閉器が開路しているときは閉路して、前記トランスの一次側端子間を短絡することを特徴とする配電システム。   In a power distribution system including a section switch interposed in a high voltage distribution line and a transformer having a primary side connected to the high voltage distribution line and a secondary side connected to the low voltage distribution line, the transformer is connected in parallel between the primary terminals of the transformer. A power distribution system comprising a transformer primary-side short-circuit switch, wherein the transformer primary-side short-circuit switch is closed when the section switch is open to short-circuit between primary terminals of the transformer. 親局である電力設備遠隔監視装置からの指令に応答する配電用子局を備え、前記配電用子局は、前記親局からの指令に応答して前記区分開閉器を閉路から開路に切り替えると、前記トランス一次側短絡スイッチを開路から閉路に切り替える、ことを特徴とする請求項1に記載の配電システム。   A power distribution slave station that responds to a command from a power facility remote monitoring device that is a master station, and the power distribution slave station switches the segment switch from a closed circuit to an open circuit in response to a command from the master station The power distribution system according to claim 1, wherein the transformer primary-side short-circuit switch is switched from an open circuit to a closed circuit. 前記トランスの両一次側端子のうちの少なくとも一方の端子と、該一方の端子が接続される前記負荷側高圧配電線との間に、短絡防止スイッチを介装し、
前記配電用子局は、前記短絡防止スイッチの開路および閉路を制御して、前記区分開閉器と、前記トランス一次側短絡スイッチとが同時に閉路する期間を無くす、ことを特徴とする請求項1または2に記載の配電システム。
A short-circuit prevention switch is interposed between at least one terminal of both primary terminals of the transformer and the load-side high-voltage distribution line to which the one terminal is connected,
The power distribution slave station controls the opening and closing of the short-circuit prevention switch to eliminate a period during which the section switch and the transformer primary-side short-circuit switch are closed simultaneously. 2. The power distribution system according to 2.
前記配電用子局は、前記短絡防止スイッチを開路に維持した状態で、前記区分開閉器を開路から閉路に切り替え(第1切り替え)、この第1切り替えから、一定期間の経過後に、前記トランス一次側短絡スイッチを閉路から開路に切り替え(第2切り替え)、この第2切り替えから一定期間の経過後に、前記短絡防止スイッチを開路から閉路に切り替える、ことを特徴とする請求項3に記載の配電システム。   The distribution slave station switches the section switch from an open circuit to a closed circuit (first switching) while maintaining the short-circuit prevention switch in an open circuit (first switching), and after a certain period of time has elapsed from the first switching, 4. The power distribution system according to claim 3, wherein the side short-circuit switch is switched from a closed circuit to an open circuit (second switch), and the short-circuit prevention switch is switched from the open circuit to the closed circuit after a lapse of a certain period from the second switch. .
JP2011053303A 2011-03-10 2011-03-10 Power distribution system Active JP5707184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011053303A JP5707184B2 (en) 2011-03-10 2011-03-10 Power distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053303A JP5707184B2 (en) 2011-03-10 2011-03-10 Power distribution system

Publications (2)

Publication Number Publication Date
JP2012191756A true JP2012191756A (en) 2012-10-04
JP5707184B2 JP5707184B2 (en) 2015-04-22

Family

ID=47084336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053303A Active JP5707184B2 (en) 2011-03-10 2011-03-10 Power distribution system

Country Status (1)

Country Link
JP (1) JP5707184B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9405081B2 (en) 2014-03-07 2016-08-02 Fujitsu Optical Components Limited Optical transmitting apparatus
WO2016199380A1 (en) * 2015-06-12 2016-12-15 パナソニックIpマネジメント株式会社 Power storage system, power storage device, and operation method for power storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219247A (en) * 2008-03-11 2009-09-24 Tokyo Electric Power Co Inc:The Standalone operation preventing system and control apparatus
JP2009293946A (en) * 2008-06-02 2009-12-17 Chugoku Electric Power Co Inc:The Power transmission/distribution facility monitoring system, and power transmission/distribution facility monitoring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219247A (en) * 2008-03-11 2009-09-24 Tokyo Electric Power Co Inc:The Standalone operation preventing system and control apparatus
JP2009293946A (en) * 2008-06-02 2009-12-17 Chugoku Electric Power Co Inc:The Power transmission/distribution facility monitoring system, and power transmission/distribution facility monitoring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9405081B2 (en) 2014-03-07 2016-08-02 Fujitsu Optical Components Limited Optical transmitting apparatus
WO2016199380A1 (en) * 2015-06-12 2016-12-15 パナソニックIpマネジメント株式会社 Power storage system, power storage device, and operation method for power storage device

Also Published As

Publication number Publication date
JP5707184B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
AU2018323422B2 (en) Power supply system
CN101478176B (en) Backup electric power system
JP5410837B2 (en) Transformer load switching device
US20080179958A1 (en) Automatic Transfer Switch With Monitor Mode and Method Employing the Same
AU2011289590A1 (en) Semiconductor assisted DC load break contactor
JP5971716B2 (en) Distribution board and distributed power supply system
KR101021598B1 (en) Device of voltage compensation for a momentary power failure
JP2020127357A (en) Charge/discharge device and power supply switching system
CN105490392A (en) System and method for controlling black start of energy storage system
CN114844196A (en) Middle-high voltage direct-hanging device and power supply switching circuit thereof
CN108933431B (en) Starting protection circuit and starting protection system for nuclear power station turning motor
JP2014050292A (en) Distributed power supply system, and autonomous operation control device
CN112072741B (en) Method and device for realizing one-key starting of household energy storage system
JP5707184B2 (en) Power distribution system
CN202712066U (en) Power supply circuit of contactor coil
CN217406243U (en) Middle-high voltage direct-hanging device and power supply switching circuit thereof
CN106602598B (en) A kind of intelligent power supply system of the accessory power supply of grid-connection device
CN210167803U (en) Voltage sag protector for contactor
CN202997690U (en) UPS device
CN101944711A (en) Distribution box
CN102545340B (en) Power on and power off control circuit, power on and power off control method and power supply device
CN204349571U (en) A kind of standby usage power transfer device of power circuit
KR101673619B1 (en) Automatic load transfer switch having battery control circuit
RU2751534C1 (en) Frequency converter
CN217935182U (en) Power supply with automatic change-over switch

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5707184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250