JP2009293946A - Power transmission/distribution facility monitoring system, and power transmission/distribution facility monitoring method - Google Patents

Power transmission/distribution facility monitoring system, and power transmission/distribution facility monitoring method Download PDF

Info

Publication number
JP2009293946A
JP2009293946A JP2008144802A JP2008144802A JP2009293946A JP 2009293946 A JP2009293946 A JP 2009293946A JP 2008144802 A JP2008144802 A JP 2008144802A JP 2008144802 A JP2008144802 A JP 2008144802A JP 2009293946 A JP2009293946 A JP 2009293946A
Authority
JP
Japan
Prior art keywords
power transmission
accident
distribution
distribution equipment
monitoring system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008144802A
Other languages
Japanese (ja)
Other versions
JP5468214B2 (en
Inventor
Takao Nakagawa
敬夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2008144802A priority Critical patent/JP5468214B2/en
Publication of JP2009293946A publication Critical patent/JP2009293946A/en
Application granted granted Critical
Publication of JP5468214B2 publication Critical patent/JP5468214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transmission/distribution facility monitoring system, and a power transmission/distribution facility monitoring method for improving the efficiency of a maintenance work in power transmission/distribution facilities. <P>SOLUTION: The power transmission/distribution facility monitoring system for remotely monitoring a plurality of the power transmission/distribution facilities includes: a detecting section for detecting respective sounds or vibrations provided in a plurality of the power transmission/distribution facilities; an obtaining section for obtaining accident information, including an accident time at which an accident occurs in the accidental power transmission/distribution facility; and an identifying section for identifying the accidental power transmission/distribution facility, based on detection data for indicating the sound or vibration detected by the detecting section at the accident time, included in the accident information obtained by the obtaining section or for a predetermined duration including the accident time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、送配電設備監視システム、送配電設備監視方法に関する。   The present invention relates to a power transmission / distribution facility monitoring system and a power transmission / distribution facility monitoring method.

送電鉄塔や配電柱等の支持物に架設された送配電線の故障点(地絡事故点や短絡事故点)を検出する故障点検出システムが提案されている。
例えば、特許文献1には、配電柱の碍子に音響センサを設置し、架空配電線の劣化部の音響放射を検知して伝送する技術が開示されている。
また、特許文献2、3には、送電鉄塔における送電線の故障の際に発生する故障電流と音とを測定した結果に基づいて、故障点を検出する方法およびその装置に係る技術が開示されている。
特開平6−347451号公報 特開平11−125652号公報 特開2002−340967号公報
A failure point detection system that detects a failure point (ground fault point or short-circuit point) of a transmission / distribution line installed on a support such as a transmission tower or distribution pole has been proposed.
For example, Patent Literature 1 discloses a technique in which an acoustic sensor is installed on a lever of a distribution pole, and acoustic radiation at a deteriorated portion of an overhead distribution line is detected and transmitted.
Patent Documents 2 and 3 disclose a method for detecting a failure point based on a result of measuring a failure current and sound generated when a transmission line fails in a transmission tower, and a technique related to the apparatus. ing.
JP-A-6-347451 Japanese Patent Application Laid-Open No. 11-125652 JP 2002-340967 A

ところで、特許文献1に開示された技術では、音響センサの出力に基づいて、風に起因する異常振動により架空配電線内の素線等に生じる疲労クラック(劣化)を検出するものである。従って、音響センサの出力のみに依存しているため、風音、雨音、コロナ雑音等といった暗雑音の影響を受けて故障点を誤検出する虞があり、また、地絡事故や短絡事故等の故障点を検出対象とはしていない。   By the way, in the technique disclosed in Patent Document 1, fatigue cracks (deterioration) that occur in the wires in the overhead distribution line due to abnormal vibration caused by wind are detected based on the output of the acoustic sensor. Therefore, since it depends only on the output of the acoustic sensor, there is a risk of erroneous detection of the failure point due to the influence of dark noise such as wind noise, rain noise, corona noise, etc. The failure point is not targeted for detection.

また、特許文献2、3に開示された技術では、送電鉄塔や配電柱に故障点検出装置および表示装置を設置している。このため、故障発生時に、巡視員が現場に出向いて送電鉄塔や配電柱を逐次点検をして故障点を確認した後、復旧員が必要な道具類を持参して修理対応を行う必要がある。   In the techniques disclosed in Patent Documents 2 and 3, a failure point detection device and a display device are installed on a power transmission tower or distribution pole. For this reason, in the event of a failure, it is necessary for the patrolman to go to the site, check the power transmission towers and distribution poles one after another to confirm the failure point, and then bring the necessary tools to the repair staff for repairs. .

前述した課題を解決する主たる本発明は、複数の送配電設備を遠隔的に監視する送配電設備監視システムにおいて、前記複数の送配電設備毎に設けられる音又は振動を検出する検出部と、事故が発生した事故送配電設備の事故時点を含む事故情報を取得する取得部と、前記取得部により取得した前記事故情報に含まれる事故時点又は当該事故時点を含む所定期間において前記検出部より検出された音又は振動を示す検出データに基づいて、前記事故送配電設備を特定する特定部と、を有することを特徴とする。   The main present invention for solving the above-mentioned problems is a power transmission / distribution facility monitoring system for remotely monitoring a plurality of power transmission / distribution facilities, a detection unit for detecting sound or vibration provided for each of the plurality of power transmission / distribution facilities, and an accident. An acquisition unit that acquires accident information including an accident time point of an accident transmission / distribution facility where the accident occurred, and an accident time point included in the accident information acquired by the acquisition unit or a predetermined period including the accident time point is detected by the detection unit. And a specifying unit for specifying the accident transmission / distribution facility based on detection data indicating noise or vibration.

上記システムにおいて、前記事故情報は、事故区間を含んでおり、前記特定部は、前記事故区間内の前記送配電設備を対象として特定してもよい。   In the above system, the accident information may include an accident section, and the specifying unit may specify the power transmission and distribution equipment in the accident section as a target.

また、前記検出部より検出された音又は振動を示す検出データを、当該検出データの検出時刻並びに前記送配電設備と対応づけて記憶する記憶部を有し、前記特定部は、前記事故時点を含む所定期間並びに前記事故区間における前記送配電設備に対応づけられた、前記記憶部に記憶される時系列の検出データのレベル変化に基づいて前記事故送配電設備を特定してもよい。   Further, the storage unit stores detection data indicating sound or vibration detected by the detection unit in association with the detection time of the detection data and the power transmission / distribution equipment, and the specifying unit stores the accident time point. The accident transmission / distribution facility may be specified based on a level change of time-series detection data stored in the storage unit, which is associated with the power transmission / distribution facility in a predetermined period including the accident section.

また、前記検出部より検出された音又は振動を示す検出データを、当該検出データの検出時刻並びに前記送配電設備と対応づけて記憶する記憶部を有し、前記特定部は、前記事故時点を含む所定期間並びに前記事故区間における前記送配電設備に対応づけられた、前記記憶部に記憶される時系列の検出データの中より、所定のレベル範囲から外れた検出データを検索し、その検索された検出データに対応づけられた前記送配電設備を前記事故送配電設備として特定してもよい。なお、前記所定のレベル範囲は、前記記憶部に記憶された曜日毎又は時間帯毎の検出データに基づいて、曜日毎又は時間帯毎に設定されることが好ましい。   In addition, the storage unit stores the detection data indicating the sound or vibration detected by the detection unit in association with the detection time of the detection data and the power transmission / distribution equipment. The detection data outside the predetermined level range is searched from the time-series detection data stored in the storage unit, which is associated with the power transmission / distribution equipment in the predetermined period including the accident section, and the search is performed. The power transmission / distribution facility associated with the detected data may be specified as the accident power transmission / distribution facility. The predetermined level range is preferably set for each day of the week or for each time period based on detection data for each day of the week or each time period stored in the storage unit.

また、前記送配電設備は、送電鉄塔又は配電柱としてもよく、さらに、前記事故は、前記送電鉄塔に架設された送電線又は前記配電柱に架設された配電線における地絡事故又は短絡事故としてもよい。   The power transmission / distribution facility may be a power transmission tower or a distribution pole, and the accident may be a ground fault or a short-circuit accident in a power transmission line installed on the power transmission tower or a distribution line installed on the power distribution pillar. Also good.

また、前記送配電設備に設けられ前記送配電設備の状況を撮影する撮影部と、前記撮影部により撮影された映像を表示する表示部と、を有してもよい。   Moreover, you may have the imaging | photography part provided in the said power transmission / distribution installation, and the display part which displays the image | video image | photographed by the said imaging | photography part.

本発明によれば、送配電設備の保守作業の効率化を図る送配電設備監視システム、送配電設備監視方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the power transmission / distribution equipment monitoring system and the power transmission / distribution equipment monitoring method which aim at the efficiency improvement of the maintenance work of a power transmission / distribution equipment can be provided.

<<<送配電設備監視システムの全体構成>>>
図1をもとに、図2も参照しつつ本発明の一実施形態に係る送配電設備監視システムの全体構成を説明する。図1に示す送配電設備監視システムは、中央監視制御局(電力会社の中央給電指令所、営業所、支社等)において、送配電系統を構成する送配電設備を遠隔的に監視しており、当該送配電設備に事故が発生した際に生じる音(例えば、閃絡(ショート)音)により、別途取得しておいた事故時点を含む事故情報との照合によって、事故送配電設備を高精度に特定しようとするシステムである。
<<< Overall configuration of power transmission and distribution equipment monitoring system >>>
Based on FIG. 1, the whole structure of the power transmission and distribution equipment monitoring system according to an embodiment of the present invention will be described with reference to FIG. The power transmission / distribution equipment monitoring system shown in FIG. 1 remotely monitors the power transmission / distribution equipment constituting the power transmission / distribution system at a central monitoring control station (central power supply command office, sales office, branch office, etc. of an electric power company) Accident transmission / distribution equipment is highly accurate by collating with accident information including accident time acquired separately by sound (for example, flashing (short) sound) generated when an accident occurs in the transmission / distribution equipment. It is a system to be specified.

図1に示す送配電系統は、発電所や送電用変電所に配設される遮断器9から送電される電力が、複数の送電鉄塔40の間に架設された送電線Cを介して配電用変電所A、Bに供給され、さらに、配電用変電所A、Bにおいて変電された電力が配電線A、Bを介して需要者(不図示)に供給される系統例を表している。   In the power transmission / distribution system shown in FIG. 1, power transmitted from a circuit breaker 9 disposed in a power plant or a power transmission substation is used for power distribution via a power transmission line C installed between a plurality of power transmission towers 40. The example of the system | strain by which the electric power supplied to the substations A and B and further transformed by the distribution substations A and B is supplied to the consumers (not shown) via the distribution lines A and B is shown.

配電用変電所A、Bに設置される変圧器10、10bの2次側には、遮断器11a、11bが接続される。中継装置16a、16bは、中央監視制御局に配設される監視制御装置100の親局103に対する子局として機能し、遮断器11a、11bは、監視制御装置100からの指令により、配電線A、Bの事故発生時に自動開放/自動投入が行われる。   Circuit breakers 11a and 11b are connected to the secondary side of the transformers 10 and 10b installed in the distribution substations A and B. The relay devices 16 a and 16 b function as slave stations for the master station 103 of the monitoring control device 100 disposed in the central monitoring control station, and the circuit breakers 11 a and 11 b are connected to the distribution line A according to a command from the monitoring control device 100. , B is automatically opened / closed when an accident occurs.

また、遮断器11a、11bの2次側には、地絡事故検出用の零相電流検出器18a、18b並びに短絡事故検出用の過電流検出器19a、19bが設置される。これらの検出結果は、中継装置16a、16bを介して監視制御装置100に送信される。   On the secondary side of the circuit breakers 11a and 11b, zero-phase current detectors 18a and 18b for detecting a ground fault and overcurrent detectors 19a and 19b for detecting a short-circuit accident are installed. These detection results are transmitted to the monitoring control device 100 via the relay devices 16a and 16b.

配電線A、Bは、常閉型の区分開閉器12a、12bによって、複数の区間#n(n=0、1、・・・)に区分される。また、配電線Aにおける複数の区間#nのうち少なくともいずれか一区間では、その主幹線の分岐先に設置された常開型の連系用開閉器13を介して、配電線Bとの連系が行われる。尚、区分開閉器12a、12bや連系用開閉器13毎に、子局14a、14bが設置される。   Distribution lines A and B are divided into a plurality of sections #n (n = 0, 1,...) By normally closed section switches 12a and 12b. In addition, in at least any one of the plurality of sections #n in the distribution line A, the connection with the distribution line B is performed via the normally open connection switch 13 installed at the branch destination of the main line. The system is done. The slave stations 14a and 14b are installed for each of the sorting switches 12a and 12b and the interconnection switch 13.

子局14a、14bは、配電用変電所A、Bに設けられた中継装置16a、16bを介して通信線210(光ファイバケーブル、メタル回線)及び通信網200と接続される。子局14a、14bは、区分開閉器12a、12bの開放/投入の状態を示す開閉情報を監視制御装置200に向けて送信する機能と、監視制御装置200からの開放指令若しくは投入指令を受信して区分開閉器12a、12b、連系用開閉器13の開放若しくは投入を制御する機能等を有する。尚、子局14a、14b毎に零相電流検出器18a、18b並びに過電流検出器19a、19bを設けてもよい。   The slave stations 14a and 14b are connected to the communication line 210 (optical fiber cable, metal line) and the communication network 200 via the relay devices 16a and 16b provided in the distribution substations A and B. The slave stations 14a and 14b receive the function of transmitting the opening / closing information indicating the open / closed state of the division switches 12a and 12b to the monitoring control device 200 and the opening command or the closing command from the monitoring control device 200. And the function of controlling the opening or closing of the segment switches 12a and 12b and the interconnection switch 13. Note that the zero-phase current detectors 18a and 18b and the overcurrent detectors 19a and 19b may be provided for each of the slave stations 14a and 14b.

区分開閉器12a、12bによって区分された複数の区間#n毎に配電柱30a、30bが配置される。
配電柱30a、30bには、自配電柱30a、30b及びその周辺の音を検出する音センサ15a、15bが設置される。音センサ15a、15bは、ダイナミック(電磁誘導型)マイクロフォン、コンデンサマイクロフォン、超音波センサ等が用いられ、特に地絡事故や短絡事故によって発生する閃絡音を検出対象としている。閃絡音は、配電柱30a、30bと配電線A、Bとの間で電位差が大きくなり、碍子302のアークホーン間で閃絡(又は逆閃絡)することにより発生する放電音である。また、音センサ15a、15bは、図2に示すように、配電柱30a、30bの上部にある腕金301上に設けられる碍子302又はその周辺の変圧器等といった、閃絡音を感知しやすい箇所に設置される。
Distribution poles 30a and 30b are arranged for each of a plurality of sections #n divided by the division switches 12a and 12b.
The power distribution columns 30a and 30b are provided with sound sensors 15a and 15b that detect the self-distribution columns 30a and 30b and the surrounding sounds. As the sound sensors 15a and 15b, dynamic (electromagnetic induction type) microphones, condenser microphones, ultrasonic sensors, and the like are used. In particular, a flashing sound generated due to a ground fault or a short-circuit accident is targeted for detection. The flashing sound is a discharge sound generated when a potential difference between the distribution poles 30a and 30b and the distribution lines A and B increases and a flashing (or reverse flashing) occurs between the arc horns of the insulator 302. Further, as shown in FIG. 2, the sound sensors 15a and 15b are easy to detect a flashing sound such as an insulator 302 provided on the arm metal 301 above the distribution poles 30a and 30b or a transformer around it. It is installed at the place.

また、配電柱30a、30bには、図2に示すように、配電柱30a、30bの上部と下部それぞれに監視カメラ17a、17bが設置される。尚、上部の監視カメラ17aは、人物接近が稀な位置に設置されるため、配電柱30a、30bの周囲の状況を広範囲に監視するために360度回転可能であることが好ましい。また、下部の監視カメラ17bは、上部の監視カメラ17aによる監視の補完的な役割を果たすものであるが、人物接近の虞がある位置に設置されるため、埋め込み等して目立たない位置に設置する方が好ましい。   In addition, as shown in FIG. 2, monitoring cameras 17a and 17b are installed in the upper and lower portions of the distribution poles 30a and 30b, respectively. Since the upper monitoring camera 17a is installed at a position where human approach is rare, it is preferable that the upper monitoring camera 17a can be rotated 360 degrees in order to monitor the situation around the power distribution poles 30a and 30b over a wide range. The lower monitoring camera 17b plays a complementary role in monitoring by the upper monitoring camera 17a. However, since the lower monitoring camera 17b is installed at a position where there is a possibility of approaching a person, it is installed at an inconspicuous position by embedding or the like. Is preferred.

さらに、配電柱30a、30bには、自配電柱30a、30bの各種状態信号(音、映像等)を監視制御装置200に向けて伝送するデータ伝送装置20a、20bが設置される。尚、データ伝送装置20a、20bは、子局14a、14bと同様に、配電用変電所A、Bに設けられた中継装置16a、16bを介して通信線210及び通信網200と接続される。   Furthermore, data transmission devices 20a and 20b that transmit various status signals (sound, video, etc.) of the self-distribution columns 30a and 30b to the monitoring control device 200 are installed in the distribution columns 30a and 30b. The data transmission devices 20a and 20b are connected to the communication line 210 and the communication network 200 via the relay devices 16a and 16b provided in the distribution substations A and B, similarly to the slave stations 14a and 14b.

送電鉄塔40には、配電柱30a、30bと同様に、自送電鉄塔40周辺の音を検出する音センサ15cと、不図示の監視カメラと、自送電鉄塔40の各種状態信号(音、映像等)を監視制御装置200に伝送するデータ伝送装置20cと、が設置される。   Similarly to the distribution poles 30a and 30b, the power transmission tower 40 includes a sound sensor 15c that detects sound around the power transmission tower 40, a monitoring camera (not shown), and various status signals (sound, video, etc.) of the power transmission tower 40. ) Is transmitted to the monitoring and control apparatus 200.

監視制御装置100は、CPU101と、表示装置102と、親局103と、データベース104と、が相互に通信可能に接続されて構成される。
CPU101は、親局103において子局14a、14bやデータ伝送装置20a〜20cより受信された情報や、データベース104に記憶された情報等に基づいて、システム全体を統括制御する情報処理装置である。
表示装置102は、CPU101により情報処理された結果や、監視カメラ17a、17bで撮影された送配電設備の映像を表示する。
The monitoring control device 100 is configured by connecting a CPU 101, a display device 102, a master station 103, and a database 104 so that they can communicate with each other.
The CPU 101 is an information processing apparatus that performs overall control of the entire system based on information received from the slave stations 14 a and 14 b and the data transmission apparatuses 20 a to 20 c in the master station 103, information stored in the database 104, and the like.
The display device 102 displays the result of information processing by the CPU 101 and the video of the power transmission and distribution equipment taken by the monitoring cameras 17a and 17b.

親局103は、通信線210及び通信網200と中継装置10、16aを介して、子局14a、14bやデータ伝送装置20a〜20cと相互に通信可能に接続される。親局103は、子局14a、14bやデータ伝送装置20a〜20cからの各種状態信号(音、映像、開閉情報等)を受信する機能と、子局14a、14bを介して区分開閉器12a、12bに向けて開放指令若しくは投入指令を送信する機能等、を有する。データベース104は、後述のとおり音圧データを蓄積して記憶する。   The master station 103 is connected to the slave stations 14a and 14b and the data transmission apparatuses 20a to 20c via the communication line 210 and the communication network 200 and the relay apparatuses 10 and 16a so as to be able to communicate with each other. The master station 103 has a function of receiving various status signals (sound, video, opening / closing information, etc.) from the slave stations 14a and 14b and the data transmission devices 20a to 20c, and a section switch 12a via the slave stations 14a and 14b. And a function of transmitting an opening command or a closing command to 12b. The database 104 accumulates and stores sound pressure data as will be described later.

以上のとおり、送配電設備監視システムが構築され、中央監視制御局に配設された監視制御装置100が、区分開閉器12a、12b、配電柱30a、30b、送電鉄塔40等といった送配電設備に設置された子局14a、14b、データ伝送装置20a〜20cからの各種状態信号によって、送電線Cや配電線A、Bを含めた当該送配電設備を遠隔的に監視制御することになる。   As described above, the power transmission and distribution equipment monitoring system is constructed, and the monitoring and control device 100 disposed in the central monitoring and control station is used for power transmission and distribution equipment such as the division switches 12a and 12b, the power distribution columns 30a and 30b, the power transmission tower 40, and the like. The power transmission and distribution facilities including the power transmission line C and the distribution lines A and B are remotely monitored and controlled by various state signals from the installed slave stations 14a and 14b and the data transmission devices 20a to 20c.

<<<事故送配電設備の特定手順>>>
図3に示すフローチャートをもとに、図4乃至図7を適宜参照しながら、事故発生の際に検出される音と、別途取得される事故情報に含まれる事故時点と、の照合に基づく、図1に示した送配電設備監視システムの事故送配電設備の特定手順を以下に説明する。
<<< Specific procedure for accident transmission and distribution facilities >>>
Based on the flowchart shown in FIG. 3 and referring to FIGS. 4 to 7 as appropriate, based on the collation between the sound detected when the accident occurs and the accident time point included in the accident information separately obtained, The procedure for identifying the accident power transmission / distribution facility of the power transmission / distribution facility monitoring system shown in FIG. 1 will be described below.

まず、監視制御装置100は、事前に、配電柱30a、30bに設置された音センサ15a、15bにより検出された音と、送電鉄塔40に設置された音センサ15cにより検出された音と、を親局103とデータ伝送装置20a〜20cとの間の通信(例えば、パケット通信)により取得する(S300)。   First, the monitoring and control apparatus 100, in advance, detects the sound detected by the sound sensors 15a and 15b installed on the distribution poles 30a and 30b and the sound detected by the sound sensor 15c installed on the power transmission tower 40. Obtained by communication (for example, packet communication) between the master station 103 and the data transmission devices 20a to 20c (S300).

尚、監視制御装置100は、音センサ15a〜15cで検出される音を、所定のサンプリング周期(例えば、数秒単位、数分単位)でデジタル量の音圧データ(dB)として取得する。この際、周波数解析により閃絡音の周波数帯域(0〜60kHz)以外の周波数を持つ雑音データを除去しつつ取得する手順が好ましい。   Note that the monitoring control device 100 acquires sound detected by the sound sensors 15a to 15c as digital sound pressure data (dB) at a predetermined sampling period (for example, in units of seconds or units of minutes). At this time, it is preferable to acquire the noise data having a frequency other than the flash band frequency range (0 to 60 kHz) by frequency analysis.

つぎに、監視制御装置100は、図4に示すように、データ伝送装置20a〜20cから取得した音圧データを曜日毎(月曜〜日曜)並びに時間帯毎(例えば、1時間毎)に分類しつつデータベース104に記憶しておく。そして、図5に示すように、事故未発生と見なさせる所定の音圧レベル範囲(同図に示す閾値Aから閾値Bまでの範囲)を、データベース104に記憶された曜日毎又は時間帯毎の音圧データに基づいて、曜日毎又は時間帯毎に設定する。尚、所定の音圧レベル範囲は、例えば、曜日毎又は時間帯毎の音圧データの中で、上限レベルから10%以下のレベル(図5に示す閾値A)から下限レベルから10%以上のレベル(図5に示す閾値B)までの範囲とする。尚、閃絡音の音圧は、暗雑音(風音、雨音、コロナ雑音等)の音圧と対比してレベルの大きな音圧を示していることが知られている。従って、閾値Aは、暗雑音の音圧よりも大きいレベルに設定することが好ましい。   Next, as shown in FIG. 4, the monitoring and control device 100 classifies the sound pressure data acquired from the data transmission devices 20 a to 20 c by day of the week (Monday to Sunday) and by time zone (for example, every hour). However, it is stored in the database 104. Then, as shown in FIG. 5, a predetermined sound pressure level range (range from threshold A to threshold B shown in FIG. 5) to be regarded as no accident has been generated for each day of the week or time period stored in the database 104. Is set for each day of the week or each time period based on the sound pressure data. The predetermined sound pressure level range is, for example, a level of 10% or less from the upper limit level (threshold A shown in FIG. 5) to 10% or more from the lower limit level in the sound pressure data for each day of the week or each time period. The range is up to the level (threshold B shown in FIG. 5). It is known that the sound pressure of the flashing sound shows a sound pressure having a large level compared to the sound pressure of dark noise (wind sound, rain sound, corona noise, etc.). Therefore, it is preferable to set the threshold A to a level larger than the sound pressure of background noise.

上記のように所定の音圧レベル範囲が設定された後、監視制御装置100は、音センサ15a乃至15cから音圧データを常時取得し(S300)、当該音圧データが検出された時刻並びに配電柱30a、30bや送電鉄塔40に付与される識別子と対応づけてデータベース104に蓄積して記憶する。尚、データベース104に記憶する際に、図4に示されるように曜日毎及び時間帯毎に分類しつつ記憶する。   After the predetermined sound pressure level range is set as described above, the monitoring and control apparatus 100 constantly acquires sound pressure data from the sound sensors 15a to 15c (S300), and the time and distribution at which the sound pressure data is detected. They are stored in the database 104 in association with identifiers assigned to the power poles 30a, 30b and the power transmission tower 40. In addition, when storing in the database 104, as shown in FIG. 4, it is stored while being classified for each day of the week and each time zone.

つぎに、監視制御装置100は、少なくとも事故時点を含む事故情報、好ましくは少なくとも事故時点及び事故区間を含む事故情報を取得する(S301)。尚、その他の事故情報としては、事故が発生した配電柱30a、30bや送電鉄塔40に付与される識別子が挙げられる。事故情報の取得手順については、例えば、図6に示されるように、配電線Aの区間#1に地絡事故または短絡事故が発生した場合を例に挙げて、以下その概要を説明する。   Next, the monitoring and control apparatus 100 acquires accident information including at least the accident time point, preferably accident information including at least the accident time point and the accident section (S301). In addition, as other accident information, the identifier provided to the distribution poles 30a and 30b and the power transmission tower 40 where the accident occurred is mentioned. As for the accident information acquisition procedure, for example, as shown in FIG. 6, the outline of the accident information acquisition procedure will be described below by taking as an example a case where a ground fault or a short-circuit accident occurs in the section # 1 of the distribution line A.

事故発生時に、遮断器11aが直ちに開放(初回遮断)されて、事故区間#1を含んだ配電線A全体が停電となり、配電線A全ての区分開閉器12aは開放される。遮断器11aの初回遮断から一定時間経過後、遮断器11aが再投入(再閉路)され、監視制御装置100からの指令又は現場の保護リレーにより区分開閉器12aが電源側から負荷側に向けて順に時限投入される。そして、事故区間#1への送電が行われると、遮断器11aは再び開放(再閉路失敗)されて配電線A全体が再び停電となる。このとき、事故区間#1の区分開閉器12aは以後開放状態へとロックされる。従って、事故時点は、再閉路から再閉路失敗までの時間計測によって検出でき、事故区間#1は、事故時点及び区分開閉器12aのロック状態等に基づいて検出できる。   When the accident occurs, the circuit breaker 11a is immediately opened (first interruption), and the entire distribution line A including the accident section # 1 becomes a power failure, and all the division switches 12a of the distribution line A are opened. After a certain period of time has elapsed since the first break of the circuit breaker 11a, the circuit breaker 11a is turned on again (reclosed). Timed in order. And if power transmission to accident area # 1 is performed, the circuit breaker 11a will be opened again (reclosing failure), and the whole distribution line A will be blacked out again. At this time, the section switch 12a in the accident section # 1 is locked to the open state thereafter. Therefore, the time of the accident can be detected by measuring the time from the reclosing to the reclosing failure, and the accident section # 1 can be detected based on the time of the accident and the locked state of the section switch 12a.

尚、地絡事故の程度(例えば、微地絡事故)によっては遮断器11aが開放されず、上記の手順によって事故時点並びに事故区間が検出できない場合がある。しかし、配電用変電所Aの遮断器11aに設置された地絡検出器(例えば、零相変流器)の検出タイミングによって事故時点の検出は可能である。   Depending on the extent of the ground fault (for example, a micro ground fault), the circuit breaker 11a may not be opened, and the accident time point and the accident section may not be detected by the above procedure. However, the time of the accident can be detected by the detection timing of a ground fault detector (for example, a zero-phase current transformer) installed in the circuit breaker 11a of the distribution substation A.

つぎに、監視制御装置100は、取得した事故情報に含まれる事故時点において検出された音圧データに基づいて、事故送配電設備を特定する(S302)。具体的には、事故情報に含まれる事故時点とデータベース104に記憶された音圧データの検出時刻とを照合し、データベース104に記憶された事故時点を含む所定期間(例えば、前後1秒)内に検出された時系列の音圧データの中から、所定の音圧レベル範囲から外れたデータを検索する。そして、その検索された音圧データに対応づけられた送配電設備を事故送配電設備として特定する。   Next, the monitoring and control apparatus 100 identifies the accident power transmission and distribution equipment based on the sound pressure data detected at the time of the accident included in the acquired accident information (S302). Specifically, the accident time point included in the accident information is compared with the detection time of the sound pressure data stored in the database 104, and within a predetermined period (for example, 1 second before and after) including the accident time point stored in the database 104. Data out of a predetermined sound pressure level range is searched from the time-series sound pressure data detected in the above. Then, the power transmission / distribution equipment associated with the searched sound pressure data is specified as the accident power transmission / distribution equipment.

尚、事故情報として事故時点のみならず事故区間についても検出される場合には、事故時点を含む所定期間並びに事故区間における送配電設備に対応づけられたデータベース104に記憶される音圧データの中から、所定の音圧レベル範囲から外れたデータを検索し、この検索された音圧データに対応づけられた送配電設備を事故送配電設備として特定する手順が好ましい。例えば、図7に示される例では(配電線Aの系統とする。)、事故時点が時刻t4から時刻t6までの範囲内であり、事故区間内で識別子0から4までの配電柱30aが含まれる場合であって、時刻t5における識別子1乃至3の配電柱30aの音センサ15aにより検出された音圧データが所定の音圧レベル範囲から外れる場合を示している。従って、事故送配電設備の候補としては、識別子1乃至3の配電柱30aが特定される。   In addition, when the accident information is detected not only at the time of the accident but also about the accident section, the sound pressure data stored in the database 104 associated with the power transmission / distribution equipment in the predetermined period including the accident point and the accident section is included. Therefore, it is preferable to search for data that is out of the predetermined sound pressure level range and to identify the power transmission / distribution equipment associated with the searched sound pressure data as the accident power transmission / distribution equipment. For example, in the example shown in FIG. 7 (the system of distribution line A is assumed), the accident time point is within the range from time t4 to time t6, and distribution poles 30a with identifiers 0 to 4 are included in the accident section. In this case, the sound pressure data detected by the sound sensor 15a of the distribution pole 30a with the identifiers 1 to 3 at time t5 is out of the predetermined sound pressure level range. Accordingly, the distribution poles 30a having the identifiers 1 to 3 are specified as the candidates for the accident transmission and distribution equipment.

尚、所定の音圧レベル範囲を設定せずに(即ち、事前に音圧データを採取することなしに)、事故送配電設備を特定する手順も考えられる。例えば、データベース104に記憶される音圧データの中で、事故時点を含む所定期間内において音圧が急峻に変化している音圧データ(例えば、所定の音圧変化勾配(単位時間当たりの音圧変化量)が所定の閾値レベルを超える音圧データ)を検索し、その音圧データに対応づけられる送配電設備を事故送配電設備として特定してもよい。   A procedure for specifying an accident transmission / distribution facility without setting a predetermined sound pressure level range (that is, without collecting sound pressure data in advance) is also conceivable. For example, in the sound pressure data stored in the database 104, sound pressure data (for example, a predetermined sound pressure change gradient (sound per unit time) in which the sound pressure changes sharply within a predetermined period including the time of the accident. (Sound pressure data whose pressure change amount) exceeds a predetermined threshold level) may be searched, and the power transmission / distribution equipment associated with the sound pressure data may be specified as the accident power transmission / distribution equipment.

つぎに、監視制御装置100は、特定された事故送配電設備の情報を表示装置102に画面表示する(S303)。この結果、監視員は、事故送配電設備の監視カメラ17a、17bによって撮影された事故現場の映像を表示装置102に画面表示させて、より詳細な事故状況を確認することが可能となる。   Next, the monitoring and control apparatus 100 displays the information on the specified accident transmission / distribution facility on the display device 102 (S303). As a result, the monitor can display the video of the accident site photographed by the monitoring cameras 17a and 17b of the accident transmission / distribution facility on the display device 102, and can confirm a more detailed accident situation.

ところで、送配電設備は、事故の際に異常音(上記の閃絡音)を発生する以外に、異常振動を引き起こす場合がある。異常振動を引き起こす事故の例としては、例えば、強風時による送電線Cや配電線A、Bの断線、降雪により送電線Cや配電線A、Bに積もった雪の加重による断線や腐食等が挙げられる。また、この際、断線等に伴い地絡事故又は短絡事故が発生するので、上記の異常音の場合と同様に、零相電流検出器18a、18b並びに過電流検出器19a、19bによって事故時点を少なくとも含む事故情報が取得される。   By the way, the power transmission / distribution equipment may cause abnormal vibration in addition to generating abnormal sound (the above-mentioned flashing sound) in the event of an accident. Examples of accidents that cause abnormal vibrations include, for example, disconnection of power transmission line C and distribution lines A and B due to strong winds, and disconnection and corrosion due to snow load on power transmission line C and distribution lines A and B due to snowfall. Can be mentioned. At this time, since a ground fault or short circuit accident occurs due to disconnection or the like, the zero point current detectors 18a and 18b and the overcurrent detectors 19a and 19b determine the time of the accident as in the case of the abnormal sound. Accident information including at least is acquired.

そこで、送配電設備の事故の際に生じる異常振動を検出すべく、音センサ15a乃至15cの代わりに静電容量型、渦電流型、圧電素子型等の振動センサ(不図示)を用いても良い。即ち、送配電設備監視システムは、音センサ15a乃至15cの場合における事故送配電設備の上記特定手順並びにその手順を実行するための上記構成を利用して、振動センサにより検出される振動を示す変位データと、別途取得しておいた事故情報に含まれる事故時点との照合により、事故送配電設備を遠隔的に且つ高精度に特定することができる。   Therefore, in order to detect abnormal vibration that occurs in the event of a power transmission / distribution facility, a vibration sensor (not shown) such as a capacitance type, eddy current type, or piezoelectric element type may be used instead of the sound sensors 15a to 15c. good. That is, the power transmission / distribution equipment monitoring system uses the specific procedure of the accident power transmission / distribution equipment in the case of the sound sensors 15a to 15c and the configuration for executing the procedure, and the displacement indicating the vibration detected by the vibration sensor. By collating the data with the accident time point included in the accident information acquired separately, the accident transmission / distribution facility can be specified remotely and with high accuracy.

以上、本発明に係る送配電設備監視システムよって、遠方の送配電設備毎に設けられた音センサ15a乃至15cによって検出される音又は振動センサによって検出される振動のみに依存せず、別途取得しておいた事故情報に含まれる事故時点との照合により事故送配電設備を遠隔的且つ高精度に特定できる。尚、高精度に特定できるとしたのは、風音、雨音、コロナ雑音等といった暗雑音や、事故とはいえない雨風雪等による軽い振動の影響がより確実に抑えられるからである。これらの結果、その後の復旧処理に速やかに移行することができ、保守作業の効率化が図られる。   As described above, the power transmission / distribution facility monitoring system according to the present invention does not depend on only the sound detected by the sound sensors 15a to 15c provided for each remote power transmission / distribution facility or the vibration detected by the vibration sensor, and is separately acquired. The accident transmission / distribution equipment can be identified remotely and with high accuracy by collating with the accident time point included in the accident information. The reason why it can be specified with high accuracy is that the influence of light vibrations caused by background noise such as wind noise, rain noise, corona noise, and rain / snow that cannot be said to be an accident can be more reliably suppressed. As a result, it is possible to promptly move to the subsequent recovery process, and the efficiency of maintenance work can be improved.

また、事故情報として事故時点のみならず事故区間をも取得できる場合には、事故時点並びに事故区間と、音又は振動を示す検出データと、の照合により、事故送配電設備の特定をより高精度に行うことができる。   If accident information can be obtained not only at the time of the accident but also the accident section, the accident transmission / distribution equipment can be identified with higher accuracy by comparing the accident time and section with the detection data indicating sound or vibration. Can be done.

また、事故時点の時刻並びに事故区間における送配電設備に対応づけられた記憶部に記憶される音又は振動を示す時系列の検出データの中でのレベル変化に基づいて、事故送配電設備の特定をより効率的に行うことができる。   In addition, identification of accident transmission / distribution equipment based on the time change at the time of the accident and the level change in the time-series detection data indicating the sound or vibration stored in the storage unit associated with the transmission / distribution equipment in the accident section Can be performed more efficiently.

また、事故未発生の場合における所定の音圧レベル範囲又は所定の変位レベル範囲を定めておくことで、事故時点並びに事故区間と、音又は振動を示す検出データと、の照合による事故送配電設備の特定を、より高精度に且つより効率的に行うことができる。さらに、曜日毎又は時間帯毎に所定の音圧レベル範囲又は所定の変位レベル範囲を定めておけば、事故送配電設備の特定がより現場の状況を加味した形でより高精度に行うことができる。   In addition, by setting a predetermined sound pressure level range or a predetermined displacement level range when no accident has occurred, the accident power transmission / distribution facility by collating the accident time point and accident section with detection data indicating sound or vibration Can be identified with higher accuracy and efficiency. Furthermore, if a predetermined sound pressure level range or a predetermined displacement level range is defined for each day of the week or each time zone, it is possible to specify the accident transmission / distribution equipment more accurately in a form that takes into account the on-site situation. it can.

また、音センサ15a乃至15cや振動センサを設ける送配電設備を送電鉄塔40又は配電柱30a、30bとすることで、送電線Cや配電線A、Bに設ける場合等と対比して、事故の発生しやすい箇所に音センサ15a乃至15cや振動センサを設けることができる。尚、この場合、送電鉄塔40に架設される送電線C又は配電柱30a、30bに架設される配電線A、Bの主要な事故である地絡事故又は短絡事故を検出対象とすることができる。   In addition, the power transmission / distribution equipment provided with the sound sensors 15a to 15c and the vibration sensor is the power transmission tower 40 or the power distribution poles 30a, 30b, so that the accident can be prevented. Sound sensors 15a to 15c and vibration sensors can be provided at places where they are likely to occur. In this case, a ground fault or a short-circuit accident that is a major accident of the transmission line C installed on the transmission tower 40 or the distribution lines A and B installed on the distribution poles 30a and 30b can be detected. .

また、送配電設備に監視カメラ17a、17bを設けることで、事故送配電設備を特定した後に、監視員が、事故の詳細を遠隔的に検証することが可能となる。   Further, by providing the monitoring cameras 17a and 17b in the power transmission / distribution facility, it becomes possible for the monitor to remotely verify the details of the accident after identifying the accident power transmission / distribution facility.

以上、本実施の形態について説明したが、前述した実施例は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。   Although the present embodiment has been described above, the above-described examples are for facilitating the understanding of the present invention, and are not intended to limit the present invention. The present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.

本発明の一実施形態に係る送配電設備監視システムの全体構成を示した図である。It is the figure which showed the whole structure of the power transmission and distribution equipment monitoring system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る音センサ並びに監視カメラの配電柱における設置態様を示した図である。It is the figure which showed the installation aspect in the distribution pole of the sound sensor which concerns on one Embodiment of this invention, and a surveillance camera. 本発明の一実施形態に係る送配電設備監視システムによる事故送配電設備の特定手順を示したフローチャートである。It is the flowchart which showed the specific procedure of the accident transmission / distribution installation by the transmission / distribution installation monitoring system which concerns on one Embodiment of this invention. 本発明の一実施形態に係るデータベースへの音圧データを記憶する際のフォーマットを示した図である。It is the figure which showed the format at the time of memorize | storing the sound pressure data to the database which concerns on one Embodiment of this invention. 本発明の一実施形態に係る所定の音圧レベル範囲を説明するための図である。It is a figure for demonstrating the predetermined sound pressure level range which concerns on one Embodiment of this invention. 本発明の一実施形態に係る事故情報の取得手順を説明するための図である。It is a figure for demonstrating the acquisition procedure of the accident information which concerns on one Embodiment of this invention. 本発明の一実施形態に係る事故送配電設備の特定手順を説明するための図である。It is a figure for demonstrating the specific procedure of the accident transmission and distribution equipment which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

14a、14b 子局(取得部)
15a、15b、15c 音センサ(検出部)
16a、16b 中継装置(取得部)
17a、17b 監視カメラ(撮影部)
18a、18b 零相電流検出器(取得部)
19a、19b 過電流検出器(取得部)
20a〜20c データ伝送装置
30a、30b 配電柱
40 送電鉄塔
100 監視制御装置(コンピュータ)
101 CPU(特定部)
102 表示装置(表示部)
103 親局(取得部)
104 データベース(記憶部)
200 通信網(取得部)
210 通信線(取得部)
14a, 14b Slave station (acquisition part)
15a, 15b, 15c Sound sensor (detection unit)
16a, 16b Relay device (acquiring unit)
17a, 17b Surveillance camera (shooting unit)
18a, 18b Zero-phase current detector (acquisition part)
19a, 19b Overcurrent detector (acquisition part)
20a to 20c Data transmission devices 30a, 30b Distribution pole 40 Transmission tower 100 Monitoring and control device (computer)
101 CPU (specific part)
102 Display device (display unit)
103 Master station (acquisition department)
104 Database (storage unit)
200 Communication network (acquisition part)
210 Communication line (acquisition part)

Claims (9)

複数の送配電設備を遠隔的に監視する送配電設備監視システムにおいて、
前記複数の送配電設備毎に設けられる音又は振動を検出する検出部と、
事故が発生した事故送配電設備の事故時点を含む事故情報を取得する取得部と、
前記取得部により取得した前記事故情報に含まれる事故時点又は当該事故時点を含む所定期間において前記検出部より検出された音又は振動を示す検出データに基づいて、前記事故送配電設備を特定する特定部と、
を有することを特徴とする送配電設備監視システム。
In the power transmission and distribution equipment monitoring system that remotely monitors multiple power transmission and distribution equipment,
A detection unit for detecting sound or vibration provided for each of the plurality of power transmission and distribution facilities;
An acquisition unit that acquires accident information including the accident point of the accident transmission and distribution equipment where the accident occurred;
A specification that identifies the accident transmission / distribution facility based on detection data indicating sound or vibration detected by the detection unit in an accident time point included in the accident information acquired by the acquisition unit or in a predetermined period including the accident time point And
A power transmission and distribution equipment monitoring system characterized by comprising:
請求項1に記載の送配電設備監視システムにおいて、
前記事故情報は、事故区間を含んでおり、
前記特定部は、前記事故区間内の前記送配電設備を対象として特定すること、を特徴とする送配電設備監視システム。
In the power transmission and distribution equipment monitoring system according to claim 1,
The accident information includes an accident section,
The power transmission / distribution equipment monitoring system, wherein the specifying unit specifies the power transmission / distribution equipment in the accident section.
請求項1に記載の送配電設備監視システムにおいて、
前記検出部より検出された音又は振動を示す検出データを、当該検出データの検出時刻並びに前記送配電設備と対応づけて記憶する記憶部を有し、
前記特定部は、前記事故時点を含む所定期間並びに前記事故区間における前記送配電設備に対応づけられた、前記記憶部に記憶される時系列の検出データのレベル変化に基づいて前記事故送配電設備を特定すること
を特徴とする送配電設備監視システム。
In the power transmission and distribution equipment monitoring system according to claim 1,
A storage unit that stores detection data indicating sound or vibration detected by the detection unit in association with the detection time of the detection data and the power transmission and distribution equipment;
The identification unit is configured to correspond to the power transmission / distribution equipment in the predetermined period including the accident time point and the accident section, and the accident power transmission / distribution equipment based on a level change of time-series detection data stored in the storage unit. To identify
Power transmission / distribution equipment monitoring system.
請求項1に記載の送配電設備監視システムにおいて、
前記検出部より検出された音又は振動を示す検出データを、当該検出データの検出時刻並びに前記送配電設備と対応づけて記憶する記憶部を有し、
前記特定部は、前記事故時点を含む所定期間並びに前記事故区間における前記送配電設備に対応づけられた、前記記憶部に記憶される時系列の検出データの中より、所定のレベル範囲から外れた検出データを検索し、その検索された検出データに対応づけられた前記送配電設備を前記事故送配電設備として特定すること、
を特徴とする送配電設備監視システム。
In the power transmission and distribution equipment monitoring system according to claim 1,
A storage unit that stores detection data indicating sound or vibration detected by the detection unit in association with the detection time of the detection data and the power transmission and distribution equipment;
The specific unit is out of a predetermined level range from the time-series detection data stored in the storage unit, which is associated with the power transmission and distribution equipment in the accident period and the predetermined period including the accident time point. Searching for detection data and identifying the power transmission and distribution equipment associated with the detected detection data as the accident power transmission and distribution equipment;
Power transmission / distribution equipment monitoring system.
請求項4に記載の送配電設備監視システムにおいて、
前記所定のレベル範囲は、前記記憶部に記憶された曜日毎又は時間帯毎の検出データに基づいて、曜日毎又は時間帯毎に設定されること、
を特徴とする送配電設備監視システム。
In the power transmission and distribution equipment monitoring system according to claim 4,
The predetermined level range is set for each day of the week or for each time period, based on detection data for each day of the week or time period stored in the storage unit;
Power transmission / distribution equipment monitoring system.
請求項1に記載の送配電設備監視システムにおいて、
前記送配電設備は、送電鉄塔又は配電柱であること、
を特徴とする送配電設備監視システム。
In the power transmission and distribution equipment monitoring system according to claim 1,
The power transmission and distribution equipment is a power transmission tower or distribution pole,
Power transmission / distribution equipment monitoring system.
請求項6に記載の送配電設備監視システムにおいて、
前記事故は、前記送電鉄塔に架設された送電線又は前記配電柱に架設された配電線における地絡事故又は短絡事故であること、
を特徴とする送配電設備監視システム。
In the power transmission and distribution equipment monitoring system according to claim 6,
The accident is a ground fault or a short-circuit accident in a transmission line installed in the transmission tower or a distribution line installed in the distribution pole;
Power transmission / distribution equipment monitoring system.
請求項1に記載の送配電設備監視システムにおいて、
前記送配電設備に設けられ前記送配電設備の状況を撮影する撮影部と、
前記撮影部により撮影された映像を表示する表示部と、
を有することを特徴とする送配電設備監視システム。
In the power transmission and distribution equipment monitoring system according to claim 1,
An imaging unit that is provided in the power transmission and distribution equipment and photographs the status of the power transmission and distribution equipment;
A display unit for displaying an image captured by the imaging unit;
A power transmission and distribution equipment monitoring system characterized by comprising:
複数の送配電設備と通信可能に接続されるコンピュータが当該複数の送配電設備を遠隔的に監視する送配電設備監視方法において、
前記コンピュータが、前記複数の送配電設備毎に設けられる検出部より検出された音又は振動を示す検出データを取得するとともに、事故が発生した事故送配電設備の事故時点を含む事故情報を取得するステップと、
前記コンピュータが、取得した前記事故情報に含まれる事故時点又は当該事故時点を含む所定期間において前記検出部より検出された音又は振動を示す検出データに基づいて、前記事故送配電設備を特定するステップと、
を有することを特徴とする送配電設備監視方法。
In the power transmission / distribution facility monitoring method in which a computer that is communicably connected to a plurality of power transmission / distribution facilities remotely monitors the plurality of power transmission / distribution facilities,
The computer acquires detection data indicating sound or vibration detected by a detection unit provided for each of the plurality of power transmission / distribution facilities, and acquires accident information including an accident time point of the accident power transmission / distribution facility where the accident occurred. Steps,
The computer specifies the accident transmission / distribution facility based on detection data indicating sound or vibration detected by the detection unit in a predetermined period including the accident time point or the accident time point included in the acquired accident information. When,
A power transmission / distribution facility monitoring method characterized by comprising:
JP2008144802A 2008-06-02 2008-06-02 Power transmission / distribution equipment monitoring system, power transmission / distribution equipment monitoring method Expired - Fee Related JP5468214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144802A JP5468214B2 (en) 2008-06-02 2008-06-02 Power transmission / distribution equipment monitoring system, power transmission / distribution equipment monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144802A JP5468214B2 (en) 2008-06-02 2008-06-02 Power transmission / distribution equipment monitoring system, power transmission / distribution equipment monitoring method

Publications (2)

Publication Number Publication Date
JP2009293946A true JP2009293946A (en) 2009-12-17
JP5468214B2 JP5468214B2 (en) 2014-04-09

Family

ID=41542258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144802A Expired - Fee Related JP5468214B2 (en) 2008-06-02 2008-06-02 Power transmission / distribution equipment monitoring system, power transmission / distribution equipment monitoring method

Country Status (1)

Country Link
JP (1) JP5468214B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191756A (en) * 2011-03-10 2012-10-04 Tabuchi Electric Co Ltd Power distribution system
WO2012143892A3 (en) * 2011-04-20 2013-03-14 Somont Gmbh Methods and system for detecting defects of at least a photovoltaic device
CN106093729A (en) * 2016-07-26 2016-11-09 国网福建省电力有限公司 The intelligent analysis method of the transmission line insulator flashover of feature based identification
JP2017146110A (en) * 2016-02-15 2017-08-24 中国電力株式会社 Metal fittings for mounting measuring device
CN111784661A (en) * 2019-12-31 2020-10-16 山东信通电子股份有限公司 Adjusting method, device, equipment and medium of power transmission line detection equipment
CN116381419A (en) * 2023-06-05 2023-07-04 中国南方电网有限责任公司超高压输电公司广州局 Transmission line fault processing method, device, computer equipment and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278769A (en) * 1985-06-03 1986-12-09 Sumitomo Electric Ind Ltd Power transmission and distribution line trouble section locating system
JPS62124467A (en) * 1985-11-26 1987-06-05 Furukawa Electric Co Ltd:The Monitoring method for power transmission line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278769A (en) * 1985-06-03 1986-12-09 Sumitomo Electric Ind Ltd Power transmission and distribution line trouble section locating system
JPS62124467A (en) * 1985-11-26 1987-06-05 Furukawa Electric Co Ltd:The Monitoring method for power transmission line

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191756A (en) * 2011-03-10 2012-10-04 Tabuchi Electric Co Ltd Power distribution system
WO2012143892A3 (en) * 2011-04-20 2013-03-14 Somont Gmbh Methods and system for detecting defects of at least a photovoltaic device
JP2017146110A (en) * 2016-02-15 2017-08-24 中国電力株式会社 Metal fittings for mounting measuring device
CN106093729A (en) * 2016-07-26 2016-11-09 国网福建省电力有限公司 The intelligent analysis method of the transmission line insulator flashover of feature based identification
CN111784661A (en) * 2019-12-31 2020-10-16 山东信通电子股份有限公司 Adjusting method, device, equipment and medium of power transmission line detection equipment
CN111784661B (en) * 2019-12-31 2023-09-05 山东信通电子股份有限公司 Adjustment method, device, equipment and medium of transmission line detection equipment
CN116381419A (en) * 2023-06-05 2023-07-04 中国南方电网有限责任公司超高压输电公司广州局 Transmission line fault processing method, device, computer equipment and storage medium
CN116381419B (en) * 2023-06-05 2023-11-07 中国南方电网有限责任公司超高压输电公司广州局 Transmission line fault processing method, device, computer equipment and storage medium

Also Published As

Publication number Publication date
JP5468214B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
CN110707823B (en) Multi-dimensional intelligent remote inspection system for transformer substation
JP5468214B2 (en) Power transmission / distribution equipment monitoring system, power transmission / distribution equipment monitoring method
AU2020391193A1 (en) Systems and methods for power line fault detection
US20200194991A1 (en) System and method for locating faults and communicating network operational status to a utility crew using an intelligent fuse
CN107328465B (en) Submarine cable vibration monitoring system
CN102096977A (en) Method for video monitoring and prewarning of intrusive external force
KR101755560B1 (en) The smart controlling system
CN114124953A (en) Power communication wisdom computer lab fortune dimension management and control system
CN203733243U (en) Power transmission line on-line monitoring device capable of preventing construction mechanical force damages
CN203104671U (en) Equipment monitoring device for power transmission and transformation system
CN103035104B (en) Preposing electric transmission line long-distance intelligent preventing external loss monitoring system based on digital signal processor (DSP)
CN204425046U (en) The intelligent monitor system of transmission &amp; distribution transformer station
KR20170123295A (en) Forest Fire Monitoring System
KR101219192B1 (en) Water management automation system of remote facility
CN102901910A (en) Monitoring method and system for high-voltage overhead line corridor
KR101752165B1 (en) Power Facility Remote Monitoring System using Fusion Camera
CN112379225A (en) Power equipment corona identification and evaluation alarm system and use method thereof
KR101536533B1 (en) The smart controlling system and the controller
CN108663970B (en) Electric power operation safety monitoring system
CN115297302B (en) Unmanned system of railway substation
CN105656193A (en) High-voltage cabinet protection monitoring system for unattended substation
KR20190046129A (en) Substation facility monitoring apparatus and method of scada event-related real-time rail moving type
KR20180090106A (en) Fault management system for power distribution management system
KR101806360B1 (en) Optical signal transceiving network terminal device for generating trouble prediction data based on environment monitoring and optical network ethernet system including the same
KR20160028346A (en) The smart controlling system and the controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140129

R150 Certificate of patent or registration of utility model

Ref document number: 5468214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees