JP2012191742A - Fault line select relay - Google Patents

Fault line select relay Download PDF

Info

Publication number
JP2012191742A
JP2012191742A JP2011052781A JP2011052781A JP2012191742A JP 2012191742 A JP2012191742 A JP 2012191742A JP 2011052781 A JP2011052781 A JP 2011052781A JP 2011052781 A JP2011052781 A JP 2011052781A JP 2012191742 A JP2012191742 A JP 2012191742A
Authority
JP
Japan
Prior art keywords
current
power transmission
transmission line
line
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011052781A
Other languages
Japanese (ja)
Inventor
Shota Nishimura
翔太 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011052781A priority Critical patent/JP2012191742A/en
Publication of JP2012191742A publication Critical patent/JP2012191742A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent erratic operation in a receive side substation caused by an internal fault therein, even when power transmission lines operated in parallel have greatly different ratios of line constants.SOLUTION: A current I1B output from a power receiving side first current transformer 15, a current I2B output from a power receiving side second current transformer 16, and a voltage for instruments VB output from a power receiving side transformer 14 are taken. A differential current IdB between these currents I1B and I2B, as well as a sum current IσB and a differential current ratio kIdB are calculated, and then a correction differential current IdkB and a differential current impedance ZdB are calculated. On the basis of the correction differential current IdkB and the differential current impedance ZdB, determination is made regarding whether a first power transmission line 4 and a second power transmission line 5 have gone wrong, and which line, the first power transmission line 4 or the second power transmission line 5, has gone wrong.

Description

本発明の実施形態は、平行二回線受電方式の送電系統において平行運用されている送電線の故障を検知する故障回線選択継電器に関する。   Embodiments described herein relate generally to a fault line selection relay that detects a fault in a power transmission line that is operated in parallel in a parallel two-line power receiving power transmission system.

従来、複数の送電線を平行して運用する送電系統として、平行二回線受電方式の送電系統が知られている。   Conventionally, a parallel two-line power receiving transmission system is known as a transmission system that operates a plurality of transmission lines in parallel.

この平行二回線受電方式では、送電側の母線と受電側の母線との間を第1送電線と第2送電線の2回線で平行に接続して構成している。もし、どちらか一方の回線で地絡や短絡などの事故が発生すると、事故が発生した回線を切り離し、他方の健全な回線を介して電力を供給するようにしている。   In this parallel two-line power receiving system, a power transmission side bus and a power receiving side bus are connected in parallel by two lines of a first power transmission line and a second power transmission line. If an accident such as a ground fault or short circuit occurs on one of the lines, the line where the accident occurred is disconnected and power is supplied via the other healthy line.

従来、回線の故障が発生した場合、どちらの回線に故障が発生したかを選択する故障回線選択継電器として、インピーダンス平衡保護継電装置が知られている。   Conventionally, when a line failure occurs, an impedance balanced protection relay device is known as a failed line selection relay that selects which line the failure has occurred.

特開平7−67243号公報JP-A-7-67243

しかしながら、このような平行二回線受電方式の送電系統で使用される従来の故障回線選択継電器においては、送電線相互間で線路定数比が大きく異なる場合には誤動作を起こし、故障回線を確実に選択することができないという課題がある。   However, in the conventional fault line selection relay used in such a parallel two-line power receiving type transmission system, if the line constant ratio greatly differs between the transmission lines, malfunction occurs and the fault line is selected reliably. There is a problem that can not be done.

本発明の実施形態は上記の事情に鑑み、各送電線の線路定数比が大きく異なっている平行二回線受電方式の送電系統に適用しても、受電側変電所内での構内故障に起因する誤動作を防止でき、健全な各送電線が遮断されるのを防止することができる故障回線選択継電器を提供することを目的としている。   In view of the above circumstances, the embodiment of the present invention may be applied to a power transmission system of a parallel two-line power receiving system in which the line constant ratio of each power transmission line is greatly different, but malfunction due to a premises failure in the power receiving side substation. It is an object of the present invention to provide a faulty line selection relay that can prevent the failure of each of the sound transmission lines.

上記の目的を達成するために、実施形態では、平行二回線送電系統を構成する各送電線の母線に設けられた計器用変圧器から出力される分岐点電圧と、前記各送電線に設けられた計器用変流器から出力される各電流とを取り込む入力手段と、前記入力手段で取り込まれた各電流に対し、所定の演算を施して各電流の差を示す差電流および各電流の和を示す和電流を生成する電流演算手段と、前記電流演算手段で得られた差電流および和電流と、予め設定されている送電線相互の定数比とを用いて差電流比率を演算し、この差電流比率を用いて前記差電流を補正して補正済み差電流を生成する差電流補正手段と、前記分岐点電圧および前記補正済み差電流に基づき、前記各送電線の故障を判定し、いずれかの送電線が故障しているとき、故障している送電線に対する送電線遮断信号を生成する故障判定手段と、を備えたことを特徴としている。   In order to achieve the above object, in the embodiment, a branch point voltage output from an instrument transformer provided on a bus of each transmission line constituting a parallel two-line transmission system, and provided on each transmission line. Input means for capturing each current output from the current transformer, and a difference between each of the currents captured by the input means by performing a predetermined calculation and a difference between the currents and the sum of the currents. The current calculation means for generating the sum current indicating the difference current, the difference current and the sum current obtained by the current calculation means, and a preset constant ratio between the transmission lines, to calculate the difference current ratio, A differential current correction unit that corrects the differential current using a differential current ratio to generate a corrected differential current, and determines a failure of each transmission line based on the branch point voltage and the corrected differential current, When one of the transmission lines is broken, Is the failure determining means for generating a transmission line cutoff signal, comprising the relative transmission lines are.

図1は故障回線選択継電器の第1実施形態を適用した、平行二回線受電方式の送電系統を示す回路図である。FIG. 1 is a circuit diagram showing a parallel two-line power receiving power transmission system to which a first embodiment of a fault line selection relay is applied. 図1に示す送電側故障回線選択継電器の詳細な回路構成例を示すブロック図である。It is a block diagram which shows the detailed circuit structural example of the power transmission side failure line selection relay shown in FIG. 図1に示す送電側故障回線選択継電器の故障判定動作例を示す説明図である。It is explanatory drawing which shows the example of failure determination operation | movement of the power transmission side failure line selection relay shown in FIG. 図1に示す受電側故障回線選択継電器の詳細な回路構成例を示すブロック図である。It is a block diagram which shows the detailed circuit structural example of the receiving side failure line selection relay shown in FIG. 図1に示す送電側故障回線選択継電器の故障判定動作例を示す説明図である。It is explanatory drawing which shows the example of failure determination operation | movement of the power transmission side failure line selection relay shown in FIG. 図1に示す送電側故障回線選択継電器、受電側故障回線選択継電器の差動電流インピーダンスと、送電線定数比との関係を表す等価回路図である。It is an equivalent circuit diagram showing the relationship between the differential current impedance of the power transmission side fault line selection relay and power reception side fault line selection relay shown in FIG. 1, and a power transmission line constant ratio. 故障回線選択継電器を使用した一般的な平行二回線受電方式の送電系統を示す回路図である。It is a circuit diagram which shows the power transmission system of the general parallel two line power receiving system which uses a failure line selection relay. 図7に示す送電系統の送電線故障例と、送電側故障回線選択継電器、受電側故障回線選択継電器の差電流例との関係を示す説明図である。It is explanatory drawing which shows the relationship between the transmission line failure example of the power transmission system shown in FIG. 7, and the difference electric current example of a power transmission side failure line selection relay and a power receiving side failure line selection relay. 図7に示す送電側故障回線選択継電器、受電側故障回線選択継電器の差動電流インピーダンスと、送電線定数比との関係を表す等価回路図である。It is an equivalent circuit diagram showing the relationship between the differential current impedance of the power transmission side fault line selection relay and the power reception side fault line selection relay shown in FIG. 7, and a power transmission line constant ratio.

<実施形態の−原理的な説明>
実施形態の説明に先立って、平行二回線受電方式における故障回線選択について説明する。
<Principle Description of Embodiment>
Prior to the description of the embodiment, failure line selection in the parallel two-line power receiving system will be described.

一般に、平行二回線受電方式の送電系統としては、図7に示す構成が知られている。なお、以下の説明では、説明を簡単にするために、電源側を送電側変電所とし、負荷側を受電側変電所としている。   In general, a configuration shown in FIG. 7 is known as a parallel two-line power receiving type power transmission system. In the following description, for simplicity of explanation, the power source side is a power transmission side substation and the load side is a power reception side substation.

この図に示す送電系統1は、送電側変電所2と、受電側変電所3と、第1送電線4と、第2送電線5と、送電側の母線6に接続された送電側変圧器7と、送電側第1変流器8と、送電側第2変流器9と、送電側故障回線選択継電器10と、送電側第1開閉器11と、送電側第2開閉器12とを備えている。また、この送電系統1は、受電側の母線13に接続された受電側変圧器14と、受電側第1変流器15と、受電側第2変流器16と、受電側故障回線選択継電器17と、受電側第1開閉器18と、受電側第2開閉器19とを備えて構成されている。   A power transmission system 1 shown in this figure includes a power transmission side substation 2, a power reception side substation 3, a first power transmission line 4, a second power transmission line 5, and a power transmission side transformer connected to a power transmission side bus 6. 7, a power transmission side first current transformer 8, a power transmission side second current transformer 9, a power transmission side fault line selection relay 10, a power transmission side first switch 11, and a power transmission side second switch 12. I have. The power transmission system 1 also includes a power receiving side transformer 14 connected to the power receiving side bus 13, a power receiving side first current transformer 15, a power receiving side second current transformer 16, and a power receiving side fault line selection relay. 17, a power receiving side first switch 18, and a power receiving side second switch 19.

そして、送電側変電所2から電力が送り出されているとき、送電側変電所2→送電側の母線6→第1送電線4→受電側の母線13→受電側変電所3なる経路と、送電側変電所2→送電側の母線6→第2送電線5→受電側の母線13→受電側変電所3なる経路とによって、受電側変電所3に電力を供給する。   When power is sent from the power transmission side substation 2, the power transmission side substation 2 → the power transmission side bus 6 → the first power transmission line 4 → the power reception side bus 13 → the power reception side substation 3 Electric power is supplied to the power receiving side substation 3 by the route of the side substation 2 → the power transmission side bus 6 → the second power transmission line 5 → the power receiving side bus 13 → the power receiving side substation 3.

また、この動作と並行し、送電側故障回線選択継電器10は、送電側変圧器7から出力される電圧VAと、送電側第1変流器8から出力される電流I1Aと送電側第2変流器9から出力される電流I2Aとの差電流IdA(IdA=I1A−I2A)とを取り込んで差電流インピーダンスZdAを算出し、その値と方向に基づき、第1送電線4、第2送電線5が故障しているかどうか、これら第1送電線4、第2送電線5のどちらが故障したかを判定する。第1送電線4が故障していれば、第1送電線4に設けられた送電側第1開閉器11を動作させて、送電側の母線6から第1送電線4を切り離す。また第2送電線5が故障していれば、第2送電線5に設けられた送電側第2開閉器12を動作させて、送電側の母線6から第2送電線5を切り離す。   In parallel with this operation, the power transmission side fault line selection relay 10 includes the voltage VA output from the power transmission side transformer 7, the current I1A output from the power transmission side first current transformer 8, and the power transmission side second transformer. The difference current IdA (IdA = I1A-I2A) with respect to the current I2A output from the current collector 9 is taken in to calculate the difference current impedance ZdA, and based on the value and direction, the first transmission line 4 and the second transmission line It is determined whether 5 is out of order and which of the first power transmission line 4 and the second power transmission line 5 is out of order. If the first power transmission line 4 is out of order, the first power transmission side switch 11 provided in the first power transmission line 4 is operated to disconnect the first power transmission line 4 from the bus 6 on the power transmission side. If the second power transmission line 5 is out of order, the second power transmission side switch 12 provided in the second power transmission line 5 is operated to disconnect the second power transmission line 5 from the power transmission side bus 6.

同様に、受電側故障回線選択継電器17は、受電側変圧器14から出力される電圧VBと、受電側第1変流器15から出力される電流I1Bと受電側第2変流器16から出力される電流I2Bとの差電流IdB(IdB=I1B−I2B)とを取り込んで差電流インピーダンスZdBを算出し、その値と方向に基づき、第1送電線4、第2送電線5が故障しているかどうか、これら第1送電線4、第2送電線5のどちらが故障したか判定する。第1送電線4が故障していれば、第1送電線4に設けられた受電側第1開閉器18を動作させて、受電側の母線13から第1送電線4を切り離し、また第2送電線5が故障していれば、第2送電線5に設けられた受電側第2開閉器19を動作させて、受電側の母線13から第2送電線5を切り離す。   Similarly, the power receiving side fault line selection relay 17 outputs the voltage VB output from the power receiving side transformer 14, the current I 1B output from the power receiving side first current transformer 15, and the power receiving side second current transformer 16. The difference current impedance ZdB is calculated by taking in the difference current IdB (IdB = I1B-I2B) from the current I2B, and the first transmission line 4 and the second transmission line 5 are broken based on the value and direction. Whether the first power transmission line 4 or the second power transmission line 5 has failed is determined. If the first power transmission line 4 is out of order, the power receiving side first switch 18 provided in the first power transmission line 4 is operated to disconnect the first power transmission line 4 from the power receiving side bus 13, and the second If the power transmission line 5 has failed, the power receiving side second switch 19 provided in the second power transmission line 5 is operated to disconnect the second power transmission line 5 from the power receiving side bus 13.

次に、図7を参照しながら、このような平行二回線受電方式の送電系統1で使用される送電側故障回線選択継電器10、受電側故障回線選択継電器17の故障回線選択動作について、具体的に説明する。   Next, with reference to FIG. 7, the failure line selection operation of the power transmission side failure line selection relay 10 and the power reception side failure line selection relay 17 used in such a parallel two-line power reception type power transmission system 1 will be described in detail. Explained.

まず、第1送電線4、第2送電線5のいずれか一方、例えば図7に示すように、第1送電線4が故障(送電側近端P1の故障、受電側近端P2の故障、または送電線中間点P3の故障)した場合には、電流の流れる方向が変化し、送電側変電所2から送り出された電流IAが、送電側の母線6で分流され、その一方(故障電流I1A)が第1送電線4の故障地点に流れるとともに、他方(故障電流I2A)が健全側である第2送電線5を迂回して、第1送電線4の故障地点に流れる。   First, one of the first power transmission line 4 and the second power transmission line 5, for example, as shown in FIG. 7, the first power transmission line 4 is broken (failure at the power transmission side near end P1, failure at the power reception side near end P2, or transmission). In the case of failure of the electric wire intermediate point P3, the direction of current flow changes, and the current IA sent from the power transmission side substation 2 is shunted by the power transmission side bus 6, and one of them (fault current I1A) is While flowing to the failure point of the first transmission line 4, the other (failure current I2A) flows around the second transmission line 5 on the healthy side and flows to the failure point of the first transmission line 4.

また、受電側変電所3から送り出される電流IBが、受電側変電所3→受電側の母線13で分流され、その一方(故障電流I1B)が第1送電線4の故障地点に流れるとともに、他方(故障電流I2B)が健全側である第2送電線5を迂回して、第1送電線4の故障地点に流れる。   Further, the current IB sent out from the power receiving side substation 3 is shunted by the power receiving side substation 3 → the power receiving side bus 13, and one of them (failure current I 1 B) flows to the failure point of the first power transmission line 4 while the other. The (failure current I2B) bypasses the second transmission line 5 on the healthy side and flows to the failure point of the first transmission line 4.

これにより、送電側故障回線選択継電器10には、下記(1)式の差電流IdAが入力され、また受電側故障回線選択継電器17には、(2)式の差電流IdBが入力される。   As a result, the differential current IdA of the following equation (1) is input to the power transmission side fault line selection relay 10, and the differential current IdB of formula (2) is input to the power reception side fault line selection relay 17.

〔数1〕
IdA=I1A−I2A+2・I2B …(1)
IdB=I1B−I2B+2・I2A …(2)
(1)式、(2)式において、簡略のため第1送電線4、第2送電線5以外のインピーダンスを無視し、第1送電線4の線路定数をZ1と、第2送電線5の線路定数をZ2とし、これら線路定数Z1、線路定数Z2が同じ値であると仮定すると、故障地点と、故障電流分布と、差電流とが図8に示す関係になる。
[Equation 1]
IdA = I1A-I2A + 2.I2B (1)
IdB = I1B-I2B + 2.I2A (2)
In equations (1) and (2), for simplicity, impedances other than the first power transmission line 4 and the second power transmission line 5 are ignored, the line constant of the first power transmission line 4 is Z1, and the second power transmission line 5 Assuming that the line constant is Z2, and assuming that the line constant Z1 and the line constant Z2 have the same value, the failure point, the failure current distribution, and the difference current have the relationship shown in FIG.

図8から明らかなように、例えば送電側変電所2の近端P1で、第1送電線4が故障したとき、送電側変電所2から送り出される電流IAのほとんどが第1送電線4側に流れることから、送電側第1変流器8から出力される電流I1Aが電流IAと同じ値になるとともに、送電側第2変流器9から出力される電流I2Aがほぼ零になって、差電流IdAがIdA=IA(正常時には、IdA=0)に変化し、差電流インピーダンスZdAが変化する。   As is apparent from FIG. 8, for example, when the first power transmission line 4 fails at the near end P1 of the power transmission side substation 2, most of the current IA sent from the power transmission side substation 2 is directed to the first power transmission line 4 side. As a result, the current I1A output from the power transmission side first current transformer 8 becomes the same value as the current IA, and the current I2A output from the power transmission side second current transformer 9 becomes substantially zero. The current IdA changes to IdA = IA (normally IdA = 0), and the differential current impedance ZdA changes.

これにより、送電側故障回線選択継電器10によって、送電側変電所2の近傍P1で第1送電線4が故障したと判定されて、第1送電線遮断信号が出力され、第1送電線4の送電側に設けられた送電側第1開閉器11によって、送電側の母線6と第1送電線4との間の回線が遮断され、送電側の母線6から第1送電線4が切り離される。   Thereby, it is determined by the power transmission side failure line selection relay 10 that the first power transmission line 4 has failed in the vicinity P1 of the power transmission side substation 2, and the first power transmission line cutoff signal is output. The power transmission side first switch 11 provided on the power transmission side cuts off the line between the power transmission side bus 6 and the first power transmission line 4 and disconnects the first power transmission line 4 from the power transmission side bus 6.

送電側の母線6から第1送電線4が切り離されると、送電側変電所2から送り出される電流IAが健全な第2送電線5、受電側の母線13を迂回して、故障した第1送電線4の故障地点P1に流れることから、受電側第1変流器15から出力される電流I1Bと、送電側第2変流器16から出力される電流I2Bとが変化して、差電流インピーダンスZdBが変化する。   When the first power transmission line 4 is disconnected from the power transmission side bus 6, the current IA sent from the power transmission side substation 2 bypasses the healthy second power transmission line 5 and the power reception side bus 13, and the failed first transmission The current I1B output from the power receiving side first current transformer 15 and the current I2B output from the power transmitting side second current transformer 16 are changed due to the flow to the failure point P1 of the electric wire 4, and the differential current impedance. ZdB changes.

これにより、受電側故障回線選択継電器17によって、第1送電線4が故障したと判定されて、第1送電線遮断信号が出力されるとともに、第1送電線4の受信側に設けられた受電側第1開閉器18によって、受電側の母線13と第1送電線4との間の回線が遮断され、受電側の母線13から第1送電線4が切り離される。   Thereby, it is determined by the power receiving side failure line selection relay 17 that the first power transmission line 4 has failed, the first power transmission line cutoff signal is output, and the power reception provided on the reception side of the first power transmission line 4 The first first switch 18 cuts off the line between the power receiving side bus 13 and the first power transmission line 4 and disconnects the first power transmission line 4 from the power receiving side bus 13.

また、受電側変電所3の構内P4で、故障が発生した場合には、送電側変電所2から送り出された電力が第1送電線4、第2送電線5によって、相互に同方向で均等に分流し、受電側変電所3内で、外部に流れ出ることから、送電側第1変流器8から出力される電流I1Aと、送電側第2変流器9から出力される電流I2Aとが相殺されて、差電流IdAがほぼ零に維持されるとともに、受電側第1変流器15から出力される電流I1Bと、受電側第2変流器16から出力される電流I2Bとが相殺されて、差電流IdBがほぼ零に維持される。   In addition, when a failure occurs in the premises P4 of the power receiving side substation 3, the power sent from the power transmission side substation 2 is evenly distributed in the same direction by the first power transmission line 4 and the second power transmission line 5. Therefore, the current I1A output from the power transmission side first current transformer 8 and the current I2A output from the power transmission side second current transformer 9 are generated. As a result, the difference current IdA is maintained at substantially zero, and the current I1B output from the power receiving side first current transformer 15 and the current I2B output from the power receiving side second current transformer 16 are canceled out. Thus, the difference current IdB is maintained at substantially zero.

これにより、送電側故障回線選択継電器10で得られる差電流インピーダンスZdAがほぼ極限値(理論的には、無限大)に維持されるとともに、受電側故障回線選択継電器17で得られる差電流インピーダンスZdBがほぼ極限値(理論的には無限大)に維持されて、送電側故障回線選択継電器10、受電側故障回線選択継電器17が不動作となり第1送電線4、第2送電線5が送電側の母線6、受電側の母線13に接続された状態を継続する。   As a result, the differential current impedance ZdA obtained by the power transmission side fault line selection relay 10 is maintained at an almost limit value (theoretically, infinite), and the differential current impedance ZdB obtained by the power reception side fault line selection relay 17 is maintained. Is maintained at almost the limit value (theoretically infinite), the power transmission side fault line selection relay 10 and the power reception side fault line selection relay 17 become inoperative, and the first power transmission line 4 and the second power transmission line 5 are on the power transmission side. The state of being connected to the bus 6 and the power-receiving-side bus 13 is continued.

そして、受電側変電所3内に設けられた他の継電器によって、故障内容に対応した処置が行われる。   And the countermeasure corresponding to the content of a failure is performed by the other relay provided in the power receiving side substation 3.

ところで、このような平行二回線受電方式の送電系統で使用される送電側故障回線選択継電器10、受電側故障回線選択継電器17においては、次に述べるような課題がある。   By the way, the power transmission side fault line selection relay 10 and the power reception side fault line selection relay 17 used in such a parallel two-line power reception type power transmission system have the following problems.

まず、説明を簡単にするため、送電系統、回路定数が以下に示す7つの条件を満たすものと仮定する。   First, to simplify the explanation, it is assumed that the power transmission system and circuit constants satisfy the following seven conditions.

(1)送電側変電所2を電源端とし、受電側変電所3を負荷端とする。 (1) The power transmission side substation 2 is a power supply end, and the power reception side substation 3 is a load end.

(2)送電側変電所2の上位電源インピーダンスをZpとする。 (2) The upper power supply impedance of the power transmission side substation 2 is Zp.

(3)第1送電線4と第2送電線5の線路定数Z1、Z2の和を2Zとする。 (3) The sum of the line constants Z1, Z2 of the first power transmission line 4 and the second power transmission line 5 is 2Z.

(4)第1送電線4の第2送電線5に対する線路定数比をkとする。 (4) Let k be the line constant ratio of the first power transmission line 4 to the second power transmission line 5.

(5)第1送電線4の送電端を起点とする故障点比率をdfとし、このdf故障点比率を第1送電線4と第2送電線5の総和線路長IPUに対する比率として使用する。また第1送電線4、第2送電線5の線路長を均等とする。 (5) The failure point ratio starting from the power transmission end of the first transmission line 4 is df, and this df failure point ratio is used as the ratio of the first transmission line 4 and the second transmission line 5 to the total line length IPU. The line lengths of the first power transmission line 4 and the second power transmission line 5 are made equal.

(6)故障点比率df=0.5は第1送電線4、第2送電線5の外部である受電側変電所3内での構内故障とする。 (6) The failure point ratio df = 0.5 is a local failure in the power receiving side substation 3 outside the first transmission line 4 and the second transmission line 5.

(7)故障インピーダンスをZfとする。 (7) The fault impedance is Zf.

図7に示す平行二回線受電方式の送電系統にこれらの条件を適用すると、図9に示す等価回路図で差動電流インピーダンスZdA、ZdBと、送電線定数比kとの関係を表すことができる。   When these conditions are applied to the parallel two-line power receiving transmission system shown in FIG. 7, the relationship between the differential current impedances ZdA and ZdB and the transmission line constant ratio k can be represented by the equivalent circuit diagram shown in FIG. .

この等価回路図から分かるように、第1送電線4、第2送電線5の外部である受電側変電所3内で故障が発生し、故障点比率df=0.5であるときには、下記(3)式で故障電流Ifを表すことができる。   As can be seen from this equivalent circuit diagram, when a failure occurs in the power receiving side substation 3 outside the first transmission line 4 and the second transmission line 5 and the failure point ratio df = 0.5, the following ( The fault current If can be expressed by the equation (3).

〔数2〕
If=V/{Zp+k・(2−k)・Z/2+Zf} …(3)
但し、V:送電側変電所2から送り出される電力の電圧値
また、下記(4)式、(5)式で、送電側故障回線選択継電器10に入力される送電側の差電流IdA、分岐点電圧VfAを表すことができることから、送電側故障回線選択継電器10で、(6)式で示される差電流インピーダンスZdAを用いて、第1送電線4、第2送電線5の故障有無を判定することができる。
[Equation 2]
If = V / {Zp + k. (2-k) .Z / 2 + Zf} (3)
However, V: Voltage value of the electric power sent from the power transmission side substation 2 Also, in the following formulas (4) and (5), the differential current IdA on the power transmission side inputted to the power transmission side fault line selection relay 10 and the branch point Since the voltage VfA can be expressed, the power transmission side fault line selection relay 10 determines whether or not the first power transmission line 4 and the second power transmission line 5 have a fault using the differential current impedance ZdA expressed by the equation (6). be able to.

〔数3〕
IdA=I1−I2
=(1−k)・If …(4)
VfA=If・(k・(2−k)・Z/2+Zf) …(5)
ZdA=VfA/IdA
={k・(1−k/2)・Z+Zf}/(1−k) …(6)
同様に、下記(7)式、(8)式で、受電側故障回線選択継電器17に入力される受電側の差電流IdB、分岐点電圧VfB、を表すことができることから、受電側故障回線選択継電器17によって、(9)式で示される差電流インピーダンスZdAを演算し、第1送電線4、第2送電線5の故障有無を判定することができる。
[Equation 3]
IdA = I1-I2
= (1-k) · If (4)
VfA = If. (K. (2-k) .Z / 2 + Zf) (5)
ZdA = VfA / IdA
= {K. (1-k / 2) .Z + Zf} / (1-k) (6)
Similarly, the following equation (7) and equation (8) can represent the power-receiving-side differential current IdB and branch point voltage VfB input to the power-receiving-side faulty line selection relay 17, so that the power-receiving-side faulty line selection The relay 17 can calculate the differential current impedance ZdA shown by the equation (9) and determine whether the first power transmission line 4 and the second power transmission line 5 are faulty.

〔数4〕
IdB=−I1+I2
=(k−1)・If …(7)
VfB=If・Zf …(8)
ZdB=VfB/IdB
=Zf/(k−1) …(9)
そして、(4)式〜(9)式から分かるように、従来の送電側故障回線選択継電器10、受電側故障回線選択継電器17に入力される差電流IdA、差電流IdB、分岐点電圧VfA、分岐点電圧VfBが第1送電線4、第2送電線5の相互関係を示す線路定数比kに大きく影響される。
[Equation 4]
IdB = -I1 + I2
= (K-1) .If (7)
VfB = If · Zf (8)
ZdB = VfB / IdB
= Zf / (k-1) (9)
As can be seen from the equations (4) to (9), the differential current IdA, the differential current IdB, the branch point voltage VfA, which are input to the conventional power transmission side fault line selection relay 10 and the power reception side fault line selection relay 17, The branch point voltage VfB is greatly influenced by the line constant ratio k indicating the mutual relationship between the first transmission line 4 and the second transmission line 5.

この結果、送電側故障回線選択継電器10、受電側故障回線選択継電器17で得られる差電流インピーダンスZdA、差電流インピーダンスZdBも、第1送電線4、第2送電線5の相互関係を示す線路定数比kに大きく影響される。   As a result, the differential current impedance ZdA and the differential current impedance ZdB obtained by the power transmission side fault line selection relay 10 and the power reception side fault line selection relay 17 are also line constants indicating the mutual relationship between the first power transmission line 4 and the second power transmission line 5. It is greatly influenced by the ratio k.

このため、特定の条件、例えば第1送電線4、第2送電線5の線路定数比kが均等(k=1)であれば、受電側変電所3内で構内故障が発生しても、(4)式、(7)式から明らかなように、原理上、差電流IdA、IdBは共に、零となり、(6)式、(9)式で示される差電流インピーダンスZdA、ZdBが極限値(ほぼ無限大)として算出され、これによって、送電側故障回線選択継電器10、受電側故障回線選択継電器17は第1送電線4、第2送電線5が健全であると判定することができる。   For this reason, even if a local failure occurs in the power receiving side substation 3 if the line constant ratio k of the first transmission line 4 and the second transmission line 5 is equal (k = 1), for example, As apparent from the equations (4) and (7), in principle, the difference currents IdA and IdB are both zero, and the difference current impedances ZdA and ZdB shown in the equations (6) and (9) are the limit values. (Substantially infinite), whereby the power transmission side fault line selection relay 10 and the power reception side fault line selection relay 17 can determine that the first power transmission line 4 and the second power transmission line 5 are healthy.

しかしながら、第1送電線4、第2送電線5の線路定数比kが不均等(kが1より十分に大きい、すなわち、k>>1)になると、受電側変電所3内で構内故障が発生したとき、(4)式、(7)式から明らかなように、原理上、差電流IdA、IdBが共に、零から離れた値になり、(6)式、(9)式で示される差電流インピーダンスZdA、ZdBが極限値(ほぼ無限大)から零に近づいた値として算出され、第1送電線4、第2送電線5が健全であるにもかかわらず、送電側故障回線選択継電器10、受電側故障回線選択継電器17によって、第1送電線4、第2送電線5のいずれかが故障した判定されて、第1送電線遮断信号、または第2送電線遮断信号が出力されてしまうことがある。   However, if the line constant ratio k between the first power transmission line 4 and the second power transmission line 5 becomes uneven (k is sufficiently larger than 1, that is, k >> 1), an internal failure occurs in the power receiving side substation 3. When this occurs, as is apparent from the equations (4) and (7), in principle, the difference currents IdA and IdB are both values away from zero, and are expressed by equations (6) and (9). The differential current impedance ZdA, ZdB is calculated as a value approaching zero from the limit value (nearly infinite), and the faulty line selection relay is selected even though the first transmission line 4 and the second transmission line 5 are healthy. 10. The power receiving side failure line selection relay 17 determines that either the first power transmission line 4 or the second power transmission line 5 has failed, and the first power transmission line cutoff signal or the second power transmission line cutoff signal is output. May end up.

よって、第1送電線4、第2送電線5の線路定数比kが大きく異なる場合には、送電側故障回線選択継電器10、受電側故障回線選択継電器17を使用することができない。   Therefore, when the line constant ratio k between the first power transmission line 4 and the second power transmission line 5 is greatly different, the power transmission side fault line selection relay 10 and the power reception side fault line selection relay 17 cannot be used.

<実施形態の説明>
《実施形態の構成》
図1は故障回線選択継電器の第1実施形態を適用した平行二回線受電方式の送電系統を示す回路図である。なお、図7と同一構成部分には同一番号を付している。また、以下の説明では、説明を簡単にするために、電源側を送電側変電所2とし、負荷側を受電側変電所3としている。
<Description of Embodiment>
<< Configuration of Embodiment >>
FIG. 1 is a circuit diagram showing a parallel two-line power receiving power transmission system to which a first embodiment of a fault line selection relay is applied. In addition, the same number is attached | subjected to the same component as FIG. Moreover, in the following description, in order to simplify the description, the power supply side is the power transmission side substation 2 and the load side is the power reception side substation 3.

この図に示す送電系統1は、送電側変電所2と、受電側変電所3と、送電側変電所2と受電側変電所3との間を架設された第1送電線4および第2送電線5とを備えている。送電側は、母線6と、送電側変圧器7と、送電側第1変流器8と、送電側第2変流器9と、送電側故障回線選択継電器110と、送電側第1開閉器11と、送電側第2開閉器12とを備えている。また、受電側は、母線13と、受電側変圧器14と、受電側第1変流器15と、受電側第2変流器16と、受電側故障回線選択継電器117と、受電側第1開閉器18と、受電側第2開閉器19とを備えている。   The power transmission system 1 shown in this figure includes a power transmission side substation 2, a power reception side substation 3, and a first transmission line 4 and a second transmission line installed between the power transmission side substation 2 and the power reception side substation 3. An electric wire 5 is provided. The power transmission side includes a bus 6, a power transmission side transformer 7, a power transmission side first current transformer 8, a power transmission side second current transformer 9, a power transmission side fault line selection relay 110, and a power transmission side first switch. 11 and a power transmission-side second switch 12. In addition, the power receiving side includes a bus 13, a power receiving side transformer 14, a power receiving side first current transformer 15, a power receiving side second current transformer 16, a power receiving side fault line selection relay 117, and a power receiving side first. A switch 18 and a power receiving side second switch 19 are provided.

送電側故障回線選択継電器110は、図2に示すように、入力部20と、電流演算部30と、差電流補正部40と、故障判定部50とを備えている。   As shown in FIG. 2, the power transmission side fault line selection relay 110 includes an input unit 20, a current calculation unit 30, a difference current correction unit 40, and a failure determination unit 50.

入力部20は、送電側第1変流器8から出力される電流I1Aを取り込む第1送電線電流入力回路21と、送電側第2変流器9から出力される電流I2Aを取り込む第2送電線電流入力回路22と、送電側変圧器7から出力される計器用の電圧VAを取り込む分岐点電圧入力回路23を有する。   The input unit 20 includes a first transmission line current input circuit 21 that captures the current I1A output from the power transmission side first current transformer 8, and a second transmission that captures the current I2A output from the power transmission side second current transformer 9. It has a wire current input circuit 22 and a branching point voltage input circuit 23 for taking in the voltage VA for the meter output from the power transmission side transformer 7.

電流演算部30は、入力部20ら出力される電流I1A、電流I2Aを取り込み、下記(10)式に示す演算を行って差電流IdAを演算する差電流演算回路31と、入力部20から出力される電流I1A、電流I2Aを取り込み、下記(11)式に示す演算を行って和電流IσAを演算する和電流演算回路32とを有する。   The current calculation unit 30 takes in the currents I1A and I2A output from the input unit 20, performs the calculation shown in the following equation (10), and calculates the difference current IdA, and outputs from the input unit 20 A sum current calculation circuit 32 that takes in the current I1A and the current I2A to be calculated and performs the calculation shown in the following equation (11) to calculate the sum current IσA.

差電流補正部40は、電流演算部30から出力される差電流IdA、和電流IσA、予め設定されている定数αを用いて、下記(12)式に示す演算を行って差電流比率kIdAを演算する差電流比率演算回路41と、差電流比率演算回路41から出力される差電流比率kIdAを取り込むとともに、下記(13)式に示す演算を行って、電流演算部30から出力される差電流IdAを補正し、補正差電流IdkAを生成する補正差電流演算回路42とを有する。   The difference current correction unit 40 performs the calculation shown in the following equation (12) using the difference current IdA, the sum current IσA, and the preset constant α output from the current calculation unit 30 to obtain the difference current ratio kIdA. The difference current ratio calculation circuit 41 to be calculated and the difference current ratio kIdA output from the difference current ratio calculation circuit 41 are taken in, and the calculation shown in the following equation (13) is performed to output the difference current output from the current calculation unit 30. And a correction difference current calculation circuit 42 that corrects IdA and generates a correction difference current IdkA.

故障判定部50は、差電流補正部40から出力される補正差電流IdkAと予め設定されている基準差電流KIAとを比較し、下記(14)式を満たすIdkA≧KIAであるとき、差電流異常信号を出力する差電流値判定回路51と、差電流補正部40から出力される補正差電流IdkAと入力部20から出力される電圧VAとを取り込んで、下記(15)式に示す演算を行い、差電流インピーダンスZdAを演算する差電流インピーダンス演算回路52と、差電流インピーダンス演算回路52から出力される差電流インピーダンスZdAと予め設定されている基準差電流インピーダンスkZとを比較し、下記(16)式を満たすとき、第1送電線異常信号を出力し、また下記(17)式を満たすとき、第2送電線異常信号を出力する差電流インピーダンス判定回路53と、図3に示す故障判定条件が満たされているとき、すなわち差電流値判定回路51から差電流異常信号が出力され、差電流インピーダンス判定回路53から第1送電線異常信号が出力されているとき、第1送電線が故障していると判定して第1送電線遮断信号を出力し、また差電流値判定回路51から差電流異常信号が出力され、差電流インピーダンス判定回路53から第2送電線異常信号が出力されているとき、第2送電線が故障していると判定して第2送電線遮断信号を出力する送電線故障判定回路54とを有する。   The failure determination unit 50 compares the corrected difference current IdkA output from the difference current correction unit 40 with a preset reference difference current KIA, and when IdkA ≧ KIA satisfying the following equation (14), The differential current value determination circuit 51 that outputs an abnormal signal, the corrected differential current IdkA that is output from the differential current correction unit 40, and the voltage VA that is output from the input unit 20 are taken in, and the calculation shown in the following equation (15) is performed. The difference current impedance calculation circuit 52 for calculating the difference current impedance ZdA is compared with the difference current impedance ZdA output from the difference current impedance calculation circuit 52 and a preset reference difference current impedance kZ. ) When the expression is satisfied, the first transmission line abnormality signal is output, and when the following expression (17) is satisfied, the second current transmission line abnormality signal is output. 3 and when the failure determination condition shown in FIG. 3 is satisfied, that is, the difference current value determination circuit 51 outputs a difference current abnormality signal, and the difference current impedance determination circuit 53 outputs a first transmission line abnormality signal. The first transmission line is faulty and outputs a first transmission line cutoff signal, and a differential current abnormality signal is output from the differential current value determination circuit 51 and the differential current impedance determination circuit 53 A power transmission line failure determination circuit that determines that the second power transmission line is faulty and outputs a second power transmission line cutoff signal when the power transmission line abnormality signal is output;

〔数5〕
IdA=I1A−I2A …(10)
IσA=I1A+I2A …(11)
kIdA=|α・IσA/IdA| …(12)
IdkA=IdA・e−kIdA …(13)
IdkA≧KIA …(14)
ZdA=VA/IdkA …(15)
0≦ZdA |ZdA|≦kZ (16)
0>ZdA |ZdA|≦kZ (17)
但し、e:自然対数の底
|ZdA|:差電流インピーダンスZdAの絶対値
また、受電側故障回線選択継電器117も送電側故障回線選択継電器110と同様、図4に示すように、入力部60と、電流演算部70と、差電流補正部80と、故障判定部90とを備えている。
[Equation 5]
IdA = I1A-I2A (10)
IσA = I1A + I2A (11)
kIdA = | α · IσA / IdA | (12)
IdkA = IdA · e− kIdA (13)
IdkA ≧ KIA (14)
ZdA = VA / IdkA (15)
0 ≦ ZdA | ZdA | ≦ kZ (16)
0> ZdA | ZdA | ≦ kZ (17)
However, e: base of natural logarithm | ZdA |: absolute value of differential current impedance ZdA Similarly to the power transmission side fault line selection relay 110, the power receiving side fault line selection relay 117 is connected to the input unit 60 as shown in FIG. A current calculation unit 70, a differential current correction unit 80, and a failure determination unit 90.

入力部60は、受電側第1変流器15から出力される電流I1Bを取り込む第1受電線電流入力回路61と、受電側第2変流器16から出力される電流I2Bを取り込む第2送電線電流入力回路62と、受電側変圧器14から出力される計器用の電圧VBを取り込む分岐点電圧入力回路63とを有する。   The input unit 60 includes a first power receiving line current input circuit 61 that takes in the current I1B output from the power receiving side first current transformer 15 and a second transmission that takes in the current I2B output from the power receiving side second current transformer 16. It has a wire current input circuit 62 and a branch point voltage input circuit 63 for taking in the voltage VB for the meter output from the power receiving side transformer 14.

電流演算部70は、入力部60から出力される電流I1B、電流I2Bを取り込み、下記(18)式に示す演算を行って差電流IdBを演算する差電流演算回路71と、入力部60から出力される電流I1B、電流I2Bを取り込み、下記(19)式に示す演算を行って和電流IσBを演算する和電流演算回路72とを有する。   The current calculation unit 70 takes in the current I1B and current I2B output from the input unit 60, performs the calculation shown in the following equation (18), and calculates the difference current IdB, and outputs from the input unit 60. And a sum current calculation circuit 72 for calculating the sum current IσB by taking the current I1B and the current I2B to be calculated and performing the calculation shown in the following equation (19).

差電流補正部80は、電流演算部70から出力される差電流IdB、和電流IσB、予め設定されている定数αを用いて、下記(20)式に示す演算を行って差電流比率kIdBを演算する差電流比率演算回路81と、差電流比率演算回路81から出力される差電流比率kIdBを取り込むとともに、下記(21)式に示す演算を行って、電流演算部70から出力される差電流IdBを補正し、補正差電流IdkBを生成する補正差電流演算回路82とを有する。   The difference current correction unit 80 performs the calculation shown in the following equation (20) using the difference current IdB, the sum current IσB, and a preset constant α output from the current calculation unit 70 to obtain the difference current ratio kIdB. The difference current ratio calculation circuit 81 to be calculated and the difference current ratio kIdB output from the difference current ratio calculation circuit 81 are fetched and the calculation shown in the following equation (21) is performed to output the difference current output from the current calculation unit 70. A correction difference current calculation circuit 82 that corrects IdB and generates a correction difference current IdkB.

故障判定部90は、差電流補正部40から出力される補正差電流IdkBと予め設定されている基準差電流KIBとを比較し、下記(22)式を満たすIdkB≧KIBであるとき、差電流異常信号を出力する差電流値判定回路91と、差電流補正部80から出力される補正差電流IdkBと入力部60から出力される電圧VBとを取り込んで、下記(23)式に示す演算を行い、差電流インピーダンスZdBを演算する差電流インピーダンス演算回路92と、差電流インピーダンス演算回路92から出力される差電流インピーダンスZdBと予め設定されている基準差電流インピーダンスkZとを比較し、下記(24)式を満たすとき、第1送電線異常信号を出力し、また下記(25)式を満たすとき、第2送電線異常信号を出力する差電流インピーダンス判定回路93と、図5に示す故障判定条件が満たされているとき、すなわち差電流値判定回路91から差電流異常信号が出力され、差電流インピーダンス判定回路93から第1送電線異常信号が出力されているとき、第1送電線が故障していると判定して第1送電線遮断信号を出力し、また差電流値判定回路91から差電流異常信号が出力され、差電流インピーダンス判定回路93から第2送電線異常信号が出力されているとき、第2送電線が故障していると判定して第2送電線遮断信号を出力する送電線故障判定回路94とを有する。   The failure determination unit 90 compares the corrected difference current IdkB output from the difference current correction unit 40 with a preset reference difference current KIB, and when IdkB ≧ KIB that satisfies the following equation (22), The differential current value determination circuit 91 that outputs an abnormal signal, the corrected differential current IdkB that is output from the differential current correction unit 80, and the voltage VB that is output from the input unit 60 are captured, and the calculation shown in the following equation (23) is performed. The difference current impedance calculation circuit 92 for calculating the difference current impedance ZdB is compared with the difference current impedance ZdB output from the difference current impedance calculation circuit 92 and a preset reference difference current impedance kZ. ) When the expression is satisfied, the first transmission line abnormality signal is output, and when the following expression (25) is satisfied, the second transmission line abnormality signal is output. 3 and when the failure determination condition shown in FIG. 5 is satisfied, that is, the difference current value determination circuit 91 outputs a difference current abnormality signal, and the difference current impedance determination circuit 93 outputs a first transmission line abnormality signal. The first power transmission line is faulty and the first power transmission line cutoff signal is output, the difference current value determination circuit 91 outputs a difference current abnormality signal, and the difference current impedance determination circuit 93 A power transmission line failure determination circuit 94 that determines that the second power transmission line is faulty and outputs a second power transmission line cutoff signal when the power transmission line abnormality signal is output;

〔数6〕
IdB=−I1B+I2B …(18)
IσB=I1B+I2B …(19)
kIdB=|α・IσB/IdB| …(20)
IdkB=IdB・e−kIdB …(21)
IdkB≧KIB …(22)
ZdB=VB/IdkB …(23)
0≦ZdB |ZdB|≦kZ …(24)
0>ZdB |ZdB|≦kZ …(25)
但し、e:自然対数の底
|ZdB|:差電流インピーダンスZdBの絶対値
《実施形態の全体動作》
次に、図1から図5を参照しつつ、送電系統1の正常時動作と、故障した送電線の開放動作を順番に説明する。
[Equation 6]
IdB = -I1B + I2B (18)
IσB = I1B + I2B (19)
kIdB = | α · IσB / IdB | (20)
IdkB = IdB · e −kIdB (21)
IdkB ≧ KIB (22)
ZdB = VB / IdkB (23)
0 ≦ ZdB | ZdB | ≦ kZ (24)
0> ZdB | ZdB | ≦ kZ (25)
Where e: base of natural logarithm | ZdB |: absolute value of differential current impedance ZdB << Overall Operation of Embodiment >>
Next, a normal operation of the power transmission system 1 and an operation of opening a failed power transmission line will be described in order with reference to FIGS.

まず、送電側変電所2、第1送電線4、第2送電線5、受電側変電所3が正常に動作しているときには、送電側変電所2から送り出された電力が送電側の母線6で分岐されて、送電側の母線6→第1送電線4→受電側の母線13→受電側変電所3なる経路と、送電側の母線6→第2送電線5→受電側の母線13→受電側変電所3なる経路とを介して、受電側変電所3に供給される。   First, when the power transmission side substation 2, the first power transmission line 4, the second power transmission line 5, and the power reception side substation 3 are operating normally, the power sent from the power transmission side substation 2 is transmitted to the power transmission side bus 6 The power transmission side bus 6 → the first power transmission line 4 → the power receiving side bus 13 → the power receiving side substation 3 and the power transmission side bus 6 → the second power transmission line 5 → the power receiving side bus 13 → The power is supplied to the power receiving side substation 3 via the route of the power receiving side substation 3.

また、この動作と並行し、送電側故障回線選択継電器110によって、送電側変圧器7から出力される電圧VAと、送電側第1変流器8から出力される電流I1Aと、送電側第2変流器9から出力される電流I2Aとが取り込まれて、補正差電流IdkAと、差電流インピーダンスZdAとが演算される。次いで、これら補正差電流IdkA、差電流インピーダンスZdAが前記(14)式、(16)式または(17)式を満たしているかどうかがチェックされる。   In parallel with this operation, the power transmission side fault line selection relay 110 outputs the voltage VA output from the power transmission side transformer 7, the current I1A output from the power transmission side first current transformer 8, and the power transmission side second. The current I2A output from the current transformer 9 is taken in, and the corrected difference current IdkA and the difference current impedance ZdA are calculated. Next, it is checked whether or not the corrected difference current IdkA and the difference current impedance ZdA satisfy the expression (14), (16) or (17).

そして、第1送電線4、第2送電線5、送電側変電所2が正常に機能していれば、第1送電線4のインピーダンスZ1、第2送電線5のインピーダンスZ2に応じて、送電側変電所2から送り出された電力が送電側の母線6で分岐されて、送電側故障回線選択継電器110の電流演算部30から出力される和電流IσAが一定の値となる。そして、(12)式から明らかなように、差電流比率kIdAが予め決められた一定の値以上となり、(13)式に示す補正差電流IdkAを抑圧させて、(14)式に示すIdkA≧kIAの条件を満たさないようにすることから、送電側故障回線選択継電器110の差電流値判定回路51、送電線故障判定回路54によって、第1送電線4、第2送電線5が健全であると判定されて、送電側第1開閉器11、送電側第2開閉器12が閉状態を継続する。   And if the 1st power transmission line 4, the 2nd power transmission line 5, and the power transmission side substation 2 are functioning normally, according to the impedance Z1 of the 1st power transmission line 4, and the impedance Z2 of the 2nd power transmission line 5, power transmission The electric power sent from the side substation 2 is branched by the bus 6 on the power transmission side, and the sum current IσA output from the current calculation unit 30 of the power transmission side fault line selection relay 110 becomes a constant value. As apparent from the equation (12), the difference current ratio kIdA becomes equal to or greater than a predetermined value, and the corrected difference current IdkA shown in the equation (13) is suppressed, so that IdkA ≧ equation shown in the equation (14) ≧ Since the kIA condition is not satisfied, the first transmission line 4 and the second transmission line 5 are healthy by the differential current value determination circuit 51 and the transmission line failure determination circuit 54 of the transmission side failure line selection relay 110. And the power transmission side first switch 11 and the power transmission side second switch 12 are kept closed.

また、この動作と並行し、受電側故障回線選択継電器117によって、受電側変圧器14から出力される電圧VBと、受電側第1変流器15から出力される電流I1Bと、受電側第2変流器16から出力される電流I2Bとが取り込まれて、補正差電流IdkBと、差電流インピーダンスZdBとが演算され、これら補正差電流IdkB、差電流インピーダンスZdBを演算が前記(22)式、(24)式または(25)式を満たしているかどうかがチェックされる。   In parallel with this operation, the power receiving side fault line selection relay 117 causes the voltage VB output from the power receiving side transformer 14, the current I1B output from the power receiving side first current transformer 15, and the power receiving side second. The current I2B output from the current transformer 16 is taken in, the corrected differential current IdkB and the differential current impedance ZdB are calculated, and the corrected differential current IdkB and the differential current impedance ZdB are calculated using the above equation (22). It is checked whether the expression (24) or the expression (25) is satisfied.

そして、第1送電線4、第2送電線5、受電側変電所3が正常に機能していれば、第1送電線4のインピーダンスZ1、第2送電線5のインピーダンスZ2に応じた比率で、送電側変電所2から送り出された電力が第1送電線4、第2送電線5に分岐されて供給されることから、受電側故障回線選択継電器117の電流演算部70から出力される和電流IσBが一定の値となる。そして、(20)式から明らかなように、差電流比率kIdBが予め決められた一定の値以上となり、(21)式で示される補正差電流IdkB抑圧させて、(22)式に示すIdkB≧KIBの条件を満たさないことから、受電側故障回線選択継電器117の差電流値判定回路91、送電線故障判定回路94によって、第1送電線4、第2送電線5が健全であると判定され、受電側第1開閉器18、受電側第2開閉器19が閉状態を継続する。   And if the 1st power transmission line 4, the 2nd power transmission line 5, and the receiving side substation 3 are functioning normally, it will be in the ratio according to the impedance Z1 of the 1st power transmission line 4, and the impedance Z2 of the 2nd power transmission line 5. Since the power sent from the power transmission side substation 2 is branched and supplied to the first power transmission line 4 and the second power transmission line 5, the sum output from the current calculation unit 70 of the power receiving side fault line selection relay 117 The current IσB becomes a constant value. As apparent from the equation (20), the difference current ratio kIdB becomes equal to or greater than a predetermined value, and the corrected difference current IdkB represented by the equation (21) is suppressed, so that IdkB ≧ Since the KIB condition is not satisfied, the first transmission line 4 and the second transmission line 5 are determined to be healthy by the differential current value determination circuit 91 and the transmission line failure determination circuit 94 of the power receiving side failure line selection relay 117. The power receiving side first switch 18 and the power receiving side second switch 19 continue to be closed.

この状態で、図1に示すように、送電側変電所2の近端P1、あるいは受電側変電所3の近端P2のいずれか、例えば送電側変電所2の近端P1で、第1送電線4が故障すると、送電側変電所2から送り出される電流のほとんどが第1送電線4側に流れることから、送電側第1変流器8から出力される電流I1Aが電流IAとほぼ同じ値になるとともに、送電側第2変流器9から出力される電流I2Aがほぼ零になる。   In this state, as shown in FIG. 1, the first transmission is performed at either the near end P1 of the power transmission side substation 2 or the near end P2 of the power reception side substation 3, for example, the near end P1 of the power transmission side substation 2. When the electric wire 4 breaks down, most of the current sent from the power transmission side substation 2 flows to the first power transmission line 4 side, so that the current I1A output from the power transmission side first current transformer 8 is almost the same value as the current IA. And the current I2A output from the power transmission side second current transformer 9 becomes substantially zero.

これにより、送電側故障回線選択継電器110の電流演算部30から出力される和電流IσAが一定の値のまま、(10)式で示す差電流IdAが大きくなり、(12)式で示す差電流比率kIdAが予め決められた一定の値以下になる。   As a result, the difference current IdA expressed by the equation (10) is increased while the sum current IσA output from the current calculation unit 30 of the power transmission side fault line selection relay 110 remains constant, and the difference current expressed by the equation (12) is increased. The ratio kIdA is equal to or less than a predetermined value.

この結果、(13)式で示される補正差電流IdkAの抑圧が解除されて、(14)式に示すIdkA≧KIAの条件を満たすとともに、(15)式で示される差動インピーダンスZdAが(16)式に示す0≦ZdA、|ZdA|≦kZを満たすことから、送電側故障回線選択継電器110の差電流値判定回路51、送電線故障判定回路54によって、第1送電線4が故障であると判定されて、第1送電線遮断信号が出力される。   As a result, the suppression of the corrected differential current IdkA shown in the equation (13) is released, the condition of IdkA ≧ KIA shown in the equation (14) is satisfied, and the differential impedance ZdA shown in the equation (15) is (16 Since 0 ≦ ZdA and | ZdA | ≦ kZ shown in the equation (1) are satisfied, the first transmission line 4 is in failure due to the differential current value determination circuit 51 and the transmission line failure determination circuit 54 of the transmission side failure line selection relay 110. And the first power transmission line cutoff signal is output.

これにより、第1送電線4の送電側に設けられた送電側第1開閉器11によって、送電側の母線6と第1送電線4との間の回線が遮断されて、送電側の母線6から第1送電線4が切り離される。   Thus, the power transmission side first switch 11 provided on the power transmission side of the first power transmission line 4 blocks the line between the power transmission side bus 6 and the first power transmission line 4, and the power transmission side bus 6 The first power transmission line 4 is disconnected.

また、この動作と並行し、送電側変電所2の近端P1で第1送電線4が故障したとき、送電側変電所2から送り出される電流のほとんどが第1送電線4の故障地点に流れるとともに、その残りが送電側の母線6→健全な第2送電線5→受電側の母線13→第1送電線4→第1送電線4の故障地点なる経路で、故障地点に流れる。   In parallel with this operation, when the first power transmission line 4 fails at the near end P1 of the power transmission side substation 2, most of the current sent from the power transmission side substation 2 flows to the failure point of the first power transmission line 4. At the same time, the remainder flows through the failure point of the power transmission side bus 6 → the sound second transmission line 5 → the power reception side bus 13 → the first power transmission line 4 → the first power transmission line 4.

これにより、受電側第1変流器15から出力される電流I1Bと、受電側第2変流器16から出力される電流I2Bが同じ値で、逆の極性になることから、受電側故障回線選択継電器117の電流演算部70から出力される和電流IσBが零になり、(18)式で示す差電流IdBが2・I1B(または、2・I2B)となり、(20)式で示す差電流比率kIdAが予め決められた一定の値以下になる。   As a result, the current I1B output from the power receiving side first current transformer 15 and the current I2B output from the power receiving side second current transformer 16 have the same value and opposite polarities. The sum current IσB output from the current calculation unit 70 of the selective relay 117 becomes zero, the difference current IdB expressed by the equation (18) becomes 2 · I1B (or 2 · I2B), and the difference current expressed by the equation (20) The ratio kIdA is equal to or less than a predetermined value.

この結果、(21)式で示される補正差電流IdkBの抑圧が解除されて、(22)式に示すIdkB≧kIの条件を満たすとともに、(23)式で示される差動インピーダンスZdBが(24)式に示す0≦ZdB、|ZdB|≦kZを満たすことから、受電側故障回線選択継電器117の差電流値判定回路91、送電線故障判定回路94によって、第1送電線4が故障であると判定されて、第1送電線遮断信号が出力される。   As a result, the suppression of the correction difference current IdkB expressed by equation (21) is canceled, the condition of IdkB ≧ kI expressed by equation (22) is satisfied, and the differential impedance ZdB expressed by equation (23) is (24 ) Satisfying 0 ≦ ZdB and | ZdB | ≦ kZ shown in the equation (1), the first transmission line 4 is in failure due to the difference current value determination circuit 91 and the transmission line failure determination circuit 94 of the power receiving side failure line selection relay 117. And the first power transmission line cutoff signal is output.

これにより、第1送電線4の受電側に設けられた受電側第1開閉器18によって、受電側の母線13と第1送電線4との間の回線が遮断されて、受電側の母線13から第1送電線4が切り離される。   As a result, the power receiving side first switch 18 provided on the power receiving side of the first power transmission line 4 blocks the line between the power receiving side bus 13 and the first power transmission line 4, and the power receiving side bus 13. The first power transmission line 4 is disconnected.

《受電側変電所で構内故障が発生したときの動作》
次に、図6に示す等価回路図を参照しながら、受電側変電所3で、構内故障が発生したときの送電側故障回線選択継電器110、受電側故障回線選択継電器117の動作について説明する。なお、以下の説明では、説明を簡単にするため、送電系統、回路定数が先に示した条件(1)〜(7)の7つの条件を満たすものと仮定する。
《Operation when a local fault occurs at the receiving substation》
Next, operations of the power transmission side fault line selection relay 110 and the power reception side fault line selection relay 117 when a local fault occurs in the power receiving side substation 3 will be described with reference to an equivalent circuit diagram shown in FIG. In the following description, to simplify the description, it is assumed that the power transmission system and the circuit constant satisfy the seven conditions (1) to (7) described above.

7)故障インピーダンスをZfとする。 7) Let Zf be the fault impedance.

まず、図1に示す平行二回線受電方式の送電系統にこれらの条件を適用すると、図6に示す等価回路図で、差動電流インピーダンスZdA、ZdBと、送電線定数比kとの関係を表すことができる。   First, when these conditions are applied to the parallel two-line power receiving transmission system shown in FIG. 1, the equivalent circuit diagram shown in FIG. 6 shows the relationship between the differential current impedances ZdA and ZdB and the transmission line constant ratio k. be able to.

この等価回路図から分かるように、第1送電線4、第2送電線5の外部である受電側変電所3内で故障し、故障点比率df=0.5であるときには、下記(26)式で故障電流Ifを表すことができる。   As can be seen from this equivalent circuit diagram, when a failure occurs in the power receiving side substation 3 outside the first transmission line 4 and the second transmission line 5 and the failure point ratio df = 0.5, the following (26) The fault current If can be expressed by the equation.

〔数7〕
If=V/{Zp+k・(2−k)・Z/2+Zf} …(26)
但し、V:送電側変電所2から送り出される電力の電圧値
また、下記(27)式で、送電側故障回線選択継電器110に入力される送電側の分岐点電圧VfAを表すことができる。
[Equation 7]
If = V / {Zp + k. (2-k) .Z / 2 + Zf} (26)
However, V: Voltage value of electric power sent from the power transmission side substation 2 Further, the transmission side branch point voltage VfA inputted to the power transmission side fault line selection relay 110 can be expressed by the following equation (27).

〔数8〕
VfA=If・{k・(2−k)/2+Zf} …(27)
また、送電側故障回線選択継電器110では、下記(28)式、(29)式で、送電側故障回線選択継電器110の電流演算部30から出力される差電流IdA、和電流IσAを表すことができる。
[Equation 8]
VfA = If. {K. (2-k) / 2 + Zf} (27)
Further, in the power transmission side fault line selection relay 110, the following formulas (28) and (29) represent the difference current IdA and the sum current IσA output from the current calculation unit 30 of the power transmission side fault line selection relay 110. it can.

〔数9〕
IdA=I1−I2
=(1−k)If …(28)
IσA=If …(29)
これにより、下記(30)式で、送電側故障回線選択継電器110の差電流補正部40で演算される差電流比率KIdAを表すことができる。
[Equation 9]
IdA = I1-I2
= (1-k) If (28)
IσA = If (29)
As a result, the difference current ratio KIdA calculated by the difference current correction unit 40 of the power transmission side fault line selection relay 110 can be expressed by the following equation (30).

〔数10〕
kIdA=α・IσA/IdA …(30)
さらに、下記(31)式、(32)式で、送電側故障回線選択継電器110の差電流補正部40で演算される補正差電流IdkA、送電側故障回線選択継電器の故障判定部で演算される差電流インピーダンスZdAを表すことができる。
[Equation 10]
kIdA = α · IσA / IdA (30)
Further, in the following formulas (31) and (32), the corrected differential current IdkA calculated by the differential current correction unit 40 of the power transmission side fault line selection relay 110 and the fault determination unit of the power transmission side fault line selection relay are calculated. The differential current impedance ZdA can be represented.

〔数11〕
IdkA=(1−k)・If・e−α/(1−k) …(31)
ZdA=VA/IdA
={k・(1−k/2)Z+Zf}/{(1−k)・e−α/(1−k)} …(32)
そして、これら(31)式、(32)式から明らかなように、送電側故障回線選択継電器110では、(30)式で示される差電流比率kIdAを用いて、補正差電流IdkAを抑制させ、対数曲線特性(差電流Idに対する和電流Iσの倍率の拡大につれて対数曲線で増加する特性)で、差動インピーダンスZdAが小さくならないようにしているので、第1送電線4の第2送電線5に対する線路定数比kがk>>1であるとき、受電側変電所3の構内P4で故障が発生しても、送電側故障回線選択継電器110が誤動作しないようにすることができる。
[Equation 11]
IdkA = (1-k) · If · e -α / (1-k) ... (31)
ZdA = VA / IdA
= {K. (1-k / 2) Z + Zf} / {(1-k) .e-.alpha ./ (1-k) } (32)
As is clear from these equations (31) and (32), the power transmission side fault line selection relay 110 uses the difference current ratio kIdA expressed by equation (30) to suppress the corrected difference current IdkA, Since the logarithmic curve characteristic (characteristic that increases in the logarithmic curve as the magnification of the sum current Iσ with respect to the difference current Id increases), the differential impedance ZdA is not reduced. When the line constant ratio k is k >> 1, even if a failure occurs in the premises P4 of the power receiving side substation 3, the power transmission side failed line selection relay 110 can be prevented from malfunctioning.

同様に、受電側故障回線選択継電器117では、下記(33)式で、受電側故障回線選択継電器117の電流演算部70から出力される差電流IdBを表すことができる。   Similarly, in the power receiving side fault line selection relay 117, the difference current IdB output from the current calculation unit 70 of the power receiving side fault line selection relay 117 can be expressed by the following equation (33).

〔数12〕
IdB=−I1+I2
=(k−1)・If …(33)
さらに、下記(34)式で、受電側故障回線選択継電器117の故障判定部90で演算される差電流インピーダンスZdBを表すことができる。
[Equation 12]
IdB = -I1 + I2
= (K-1) .If (33)
Furthermore, the differential current impedance ZdB calculated by the failure determination unit 90 of the power receiving side failure line selection relay 117 can be represented by the following equation (34).

〔数13〕
ZdB=Zf/{(k−1)・e−α/(1−k)} …(34)
そして、この(34)式から明らかなように、受電側故障回線選択継電器117では、対数曲線特性(差電流Idに対する和電流Iσの倍率の拡大につれて対数曲線で増加する特性)で、差動インピーダンスZdBが小さくならないようにしているので、第1送電線4と、第2送電線5との間の線路定数比kがk>>1であるとき、受電側変電所3の構内P4で故障が発生しても、受電側故障回線選択継電器117が誤動作しないようにすることができる。
[Equation 13]
ZdB = Zf / {(k−1) · e− α / (1-k) } (34)
As is apparent from the equation (34), the power receiving side fault line selection relay 117 has a differential curve characteristic (a characteristic that increases with a logarithmic curve as the magnification of the sum current Iσ with respect to the difference current Id increases), and a differential impedance Since ZdB is not reduced, when the line constant ratio k between the first transmission line 4 and the second transmission line 5 is k >> 1, a failure occurs in the premises P4 of the power receiving side substation 3. Even if it occurs, it is possible to prevent the power receiving side fault line selection relay 117 from malfunctioning.

《実施形態の効果》
このように、この実施形態では、受電側第1変流器15から出力される電流IBAと受電側第2変流器16から出力される電流I2Bと受電側変圧器14から出力される計器用の電圧VBとを取り込み、これら電流I1B、電流I2Bの差電流IdB、和電流IσB、差電流比率kIdBを演算して、補正差電流IdkB、差電流インピーダンスZdBを算出し、これら差電流インピーダンスZdB、補正差電流IdkBに基づき、第1送電線4、第2送電線5が故障しているかどうか、これら第1送電線4、第2送電線5のどちらが故障しているかを判定し、第1送電線4が故障していれば、第1送電線遮断信号を生成し、また第2送電線5が故障していれば、第2送電線遮断信号を生成するようにしている。このため、第1送電線4、第2送電線5の線路定数比kが大きく異なっている場合でも、回路構成を簡素化させつつ、受電側変電所3内で構内故障が発生したとき、健全な第1送電線4、第2送電線5が遮断されるの防止でき、他の継電器による構内故障対処を行わせることができる。
<< Effects of the Embodiment >>
Thus, in this embodiment, the current IBA output from the power receiving side first current transformer 15, the current I2B output from the power receiving side second current transformer 16, and the instrument output from the power receiving side transformer 14. The current I1B, the difference current IdB of the current I2B, the sum current IσB, and the difference current ratio kIdB are calculated to calculate the corrected difference current IdkB and the difference current impedance ZdB. Based on the corrected difference current IdkB, it is determined whether the first power transmission line 4 and the second power transmission line 5 are out of order and whether the first power transmission line 4 and the second power transmission line 5 are out of order. If the electric wire 4 is out of order, a first power transmission line cutoff signal is generated. If the second power transmission line 5 is out of order, a second transmission line cutoff signal is generated. For this reason, even when the line constant ratio k between the first power transmission line 4 and the second power transmission line 5 is greatly different, when a local failure occurs in the power receiving side substation 3 while simplifying the circuit configuration, Therefore, it is possible to prevent the first power transmission line 4 and the second power transmission line 5 from being interrupted, and to deal with the on-site failure by other relays.

また、この実施形態では、第1送電線4、第2送電線5の送電端に近い場所で故障した場合にも、また受電端に近い場所で故障した場合でも、送電側故障回線選択継電器110、受電側故障回線選択継電器117によって、これを同時に検知させるようにしている。このため、送電側故障回線選択継電器110と、受電側故障回線選択継電器117との間に通信回線を敷設していない場合でも、第1送電線4、第2送電線5のどこが故障したときでも、送電側故障回線選択継電器110と、受電側故障回線選択継電器117とを同時に動作させて、故障した送電線の上流側、下流側を同時に遮断させることができる。   Further, in this embodiment, even when a failure occurs near a power transmission end of the first power transmission line 4 and the second power transmission line 5 or when a failure occurs near a power reception end, the power transmission side fault line selection relay 110 The power receiving side fault line selection relay 117 detects this simultaneously. For this reason, even when a communication line is not laid between the power transmission side failure line selection relay 110 and the power reception side failure line selection relay 117, no matter where the first power transmission line 4 or the second power transmission line 5 fails. The power transmission side fault line selection relay 110 and the power reception side fault line selection relay 117 can be operated simultaneously, and the upstream side and the downstream side of the faulty transmission line can be simultaneously cut off.

さらに、この実施形態では、補正差電流IdkBと基準差電流KIとを比較するとともに、差電流インピーダンスZdBと基準差電流インピーダンスkZとを比較し、これらの比較結果に基づいて、第1送電線4、第2送電線5が故障しているかどうか、これら第1送電線4、第2送電線5のどちらが故障しているかを判定し、第1送電線4が故障していれば、第1送電線遮断信号を生成し、また第2送電線5が故障していれば、第2送電線遮断信号を生成するようにしている。このため、回路構成を簡素化させるとともに、判定時間を短くさせて、第1送電線4、第2送電線5が故障したとき、短い時間で、故障した送電線を遮断させることができる。   Further, in this embodiment, the corrected difference current IdkB and the reference difference current KI are compared, and the difference current impedance ZdB and the reference difference current impedance kZ are compared. Based on the comparison results, the first transmission line 4 It is determined whether the second power transmission line 5 is broken, which one of the first power transmission line 4 and the second power transmission line 5 is broken, and if the first power transmission line 4 is broken, the first transmission line 4 An electric wire interruption signal is generated, and if the second transmission line 5 is broken, a second transmission line interruption signal is generated. For this reason, while simplifying a circuit structure and shortening determination time, when the 1st power transmission line 4 and the 2nd power transmission line 5 fail, the failed power transmission line can be interrupted in a short time.

1:送電系統
2:送電側変電所
3:受電側変電所
4:第1送電線
5:第2送電線
6:送電側の母線
7:送電側変圧器
8:送電側第1変流器
9:送電側第2変流器
10:送電側故障回線選択継電器
11:送電側第1開閉器
12:送電側第2開閉器
13:受電側の母線
14:受電側変圧器
15:受電側第1変流器
16:受電側第2変流器
17、117:受電側故障回線選択継電器
18:受電側第1開閉器
19:受電側第2開閉器
20、60:入力部
21、61:第1送電線電流入力回路
22、62:第2送電線電流入力回路
23、63:分岐点電圧入力回路
30、70:電流演算部
31、71:差電流演算回路
32、72:和電流演算回路
40、80:差電流補正部
41、81:差電流比率演算回路
42、82:補正差電流演算回路
50、90:故障判定部
51、91:差電流値判定回路
52、92:差電流インピーダンス演算回路
53、93:差電流インピーダンス判定回路
54、94:送電線故障判定回路
1: Power transmission system 2: Power transmission side substation 3: Power reception side substation 4: First power transmission line 5: Second power transmission line 6: Power transmission side bus 7: Power transmission side transformer 8: Power transmission side first current transformer 9 : Power-transmission-side second current transformer 10: Power-transmission-side fault line selection relay 11: Power-transmission-side first switch 12: Power-transmission-side second switch 13: Power-receiving-side bus 14: Power-receiving-side transformer 15: Power-receiving-side first Current transformer 16: Power receiving side second current transformer 17, 117: Power receiving side fault line selection relay 18: Power receiving side first switch 19: Power receiving side second switch 20, 60: Input unit 21, 61: First Transmission line current input circuit 22, 62: Second transmission line current input circuit 23, 63: Branch point voltage input circuit 30, 70: Current calculation unit 31, 71: Difference current calculation circuit 32, 72: Sum current calculation circuit 40, 80: Difference current correction unit 41, 81: Difference current ratio calculation circuit 42, 82: Correction difference current operation Arithmetic circuits 50 and 90: Failure determination unit 51 and 91: Difference current value determination circuit 52 and 92: Difference current impedance calculation circuit 53 and 93: Difference current impedance determination circuit 54 and 94: Transmission line failure determination circuit

Claims (2)

平行二回線送電系統を構成する各送電線の母線に設けられた計器用変圧器から出力される分岐点電圧と、前記各送電線に設けられた計器用変流器から出力される各電流とを取り込む入力手段と、
前記入力手段で取り込まれた各電流に対し、所定の演算を施して各電流の差を示す差電流および各電流の和を示す和電流を生成する電流演算手段と、
前記電流演算手段で得られた差電流および和電流と、予め設定されている送電線相互の定数比とを用いて差電流比率を演算し、この差電流比率を用いて前記差電流を補正して補正済み差電流を生成する差電流補正手段と、
前記分岐点電圧および前記補正済み差電流に基づき、前記各送電線の故障を判定し、いずれかの送電線が故障しているとき、故障している送電線に対する送電線遮断信号を生成する故障判定手段と、
を備えたことを特徴とする故障回線選択継電器。
A branching point voltage output from an instrument transformer provided on a bus of each transmission line constituting a parallel two-line transmission system, and each current output from an instrument current transformer provided in each of the transmission lines Input means for capturing,
Current calculation means for performing a predetermined calculation on each current captured by the input means to generate a difference current indicating a difference between the currents and a sum current indicating a sum of the currents;
A difference current ratio is calculated using the difference current and sum current obtained by the current calculation means and a preset constant ratio between the transmission lines, and the difference current is corrected using the difference current ratio. Differential current correction means for generating a corrected differential current,
A failure that determines a failure of each transmission line based on the branch point voltage and the corrected difference current, and generates a transmission line cutoff signal for the failed transmission line when any one of the transmission lines has failed A determination means;
A fault line selection relay comprising:
請求項1に記載の故障回線選択継電器において、
前記故障判定手段は、前記差電流補正手段で得られた前記補正済み差電流と予め設定されている基準差電流とを比較して、前記各送電線の故障有無を判定するとともに、前記入力手段で得られた前記分岐点電圧、前記差電流補正手段で得られた前記補正済み差電流を用いて得られた差電流インピーダンスと予め設定されている基準差電流インピーダンスとを比較して、前記各送電線のどちらが故障しているかを判定する、
ことを特徴とする故障回線選択継電器。
In the fault line selection relay according to claim 1,
The failure determination means compares the corrected difference current obtained by the difference current correction means with a preset reference difference current to determine the presence / absence of a failure in each transmission line, and the input means Comparing the difference voltage impedance obtained by using the corrected difference current obtained by the branch point voltage obtained by the difference current correction means and a reference difference current impedance set in advance, Determine which of the transmission lines is faulty,
Fault line selection relay characterized by that.
JP2011052781A 2011-03-10 2011-03-10 Fault line select relay Withdrawn JP2012191742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011052781A JP2012191742A (en) 2011-03-10 2011-03-10 Fault line select relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052781A JP2012191742A (en) 2011-03-10 2011-03-10 Fault line select relay

Publications (1)

Publication Number Publication Date
JP2012191742A true JP2012191742A (en) 2012-10-04

Family

ID=47084325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052781A Withdrawn JP2012191742A (en) 2011-03-10 2011-03-10 Fault line select relay

Country Status (1)

Country Link
JP (1) JP2012191742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117875946A (en) * 2024-03-11 2024-04-12 国网安徽省电力有限公司合肥供电公司 Man-machine collaborative autonomous infrared inspection method for operation and maintenance of transformer substation equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117875946A (en) * 2024-03-11 2024-04-12 国网安徽省电力有限公司合肥供电公司 Man-machine collaborative autonomous infrared inspection method for operation and maintenance of transformer substation equipment
CN117875946B (en) * 2024-03-11 2024-06-04 国网安徽省电力有限公司合肥供电公司 Man-machine collaborative autonomous infrared inspection method for operation and maintenance of transformer substation equipment

Similar Documents

Publication Publication Date Title
US10739414B2 (en) Determining status of electric power transmission lines in an electric power transmission system
US9929558B2 (en) Electrical protective device and method for selective disconnection of a subsystem in case of a second fault in an IT power supply system
CN106066450B (en) Insulation monitoring device with voltage monitoring and method based on same
US8866487B2 (en) Directional fault sectionalizing system
US20090147414A1 (en) Ground fault detection in an ungrounded electrical system
US8736297B2 (en) Method for production of a fault signal, and an electrical protective device
MX2012011015A (en) Fault location electric power delivery systems.
US10067517B2 (en) Method and devices for extended insulation-fault search using a multifunctional test current
US20160020601A1 (en) Power bay protection device and a method for portecting power bays
CN104535882A (en) Direct-current insulation monitoring device
RU2356151C1 (en) METHOD FOR AUTOMATIC CONTROL OF 0,4 kV OVERHEAD LINE NEUTRAL WIRE
RU2581607C1 (en) Method of protection from breaks of phase and neutral wires of four-wire overhead line of electric mains voltage of 380 v and device therefor
US8451570B2 (en) Method for production of an oscillating signal and of an electrical protection device or measurement instrument having an oscillation identification device
JP2012191742A (en) Fault line select relay
US9362736B2 (en) Method for improving power distribution protection
EP2645114A2 (en) Current measurement and comparing assembly for a power distribution system and method for measuring and comparing current
JP2019507573A (en) Improvements in or related to power systems
JP4921246B2 (en) Ground fault distance relay
JP2017060249A (en) System stabilization system
JP2011155723A (en) Power transmission line protection relay system
JP3879067B2 (en) Distribution line short circuit protection relay device
US9830291B2 (en) Connecting device, method for the operation thereof, and bus communication device
KR20200000747A (en) Protecting and interlocking system for plurality of circuit breakers
US11962140B2 (en) Coordination of protective elements in an electric power system
JP5303375B2 (en) Voltage / current power train detection system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513