JP2012191182A - Sheet material for radio wave absorber and radio wave absorber - Google Patents

Sheet material for radio wave absorber and radio wave absorber Download PDF

Info

Publication number
JP2012191182A
JP2012191182A JP2012033624A JP2012033624A JP2012191182A JP 2012191182 A JP2012191182 A JP 2012191182A JP 2012033624 A JP2012033624 A JP 2012033624A JP 2012033624 A JP2012033624 A JP 2012033624A JP 2012191182 A JP2012191182 A JP 2012191182A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
straight line
rectangle
sheet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012033624A
Other languages
Japanese (ja)
Other versions
JP5953799B2 (en
Inventor
Toru Sugawara
透 菅原
Takashi Tagami
貴士 田上
Tetsuya Sunahara
鉄弥 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012033624A priority Critical patent/JP5953799B2/en
Publication of JP2012191182A publication Critical patent/JP2012191182A/en
Application granted granted Critical
Publication of JP5953799B2 publication Critical patent/JP5953799B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sheet material for a radio wave absorber which has an excellent absorbing performance and an excellent handleability such as transportability and constructibility on site, and can sample the seat material at high yield, and a radio wave absorber.SOLUTION: A seat material of dodecagonal C is fabricated from a rectangular A as follows. The four vertices of the rectangular A are cut out in right triangle shape to generate an octagonal B. Within the octagonal B, there is a straight line segment F that is parallel with one of the two pairs of sides of the starting shape, rectangular A. In the octagonal B, there are four pairs of straight lines each connecting corresponding one of the two apexes resulting from the cutting out in one corresponding right triangle shape and the closer one of both the ends of the line segment F. In each pair, the two straight lines have the same length. In the octagonal B, there are also two pairs of opposing sides originating from the respective sides of the starting shape, rectangular A, and the opposing sides in each pair have the same length. At each of those four sides of the octagonal B resulting from the cutting out in the corresponding right triangle shape, an isosceles triangle portion with its bottom side equal to that side is cut out from the octagonal B, or added to the octagonal B so that the dodecagonal C is generated.

Description

本発明は、たとえば、電波暗室や電波暗箱、電波吸収衝立等に用いられる電波吸収体用シート材及び電波吸収体に関する。   The present invention relates to a sheet material for a radio wave absorber and a radio wave absorber used for, for example, an anechoic chamber, an anechoic box, a radio wave absorption partition, and the like.

電波暗室とは、電子機器から放射される電磁ノイズ評価、外来電磁ノイズに対する電子機器のイミュニティ評価や、アンテナ特性の評価等を行う測定施設である。電波暗室の壁面や天井面には電波吸収体が用いられており、電波吸収体に要求される吸収周波数帯域は数十MHz〜数GHzである。電波吸収体としては、一般的に、数十〜数百MHzの吸収を担うフェライトタイルと、GHz帯域の吸収を担うカーボンやグラファイト等を含有する発泡ウレタン、発泡ポリスチレンからなるピラミッド型やクサビ型吸収体等の立体型吸収体とが組み合わせて使用されている。   An anechoic chamber is a measurement facility that performs evaluation of electromagnetic noise radiated from electronic devices, immunity evaluation of electronic devices against external electromagnetic noise, evaluation of antenna characteristics, and the like. A radio wave absorber is used on the wall or ceiling surface of the anechoic chamber, and the absorption frequency band required for the radio wave absorber is several tens of MHz to several GHz. In general, as a radio wave absorber, a ferrite tile that absorbs tens to several hundreds of MHz, a foamed urethane containing carbon or graphite that supports absorption in the GHz band, a pyramid type or wedge type absorption made of expanded polystyrene. It is used in combination with a three-dimensional absorber such as a body.

尚、近年は、情報伝達量の高密度化に伴い電子機器は高周波化の一途を辿っており、それを評価する電波暗室の要求性能も数GHzから数十GHzと高周波に伸びており、高周波帯域の吸収を担う電波吸収体の役割はますます重要性になってきている。   In recent years, electronic devices have been increasing in frequency with the increase in the amount of information transmitted, and the required performance of an anechoic chamber for evaluating it has increased from several GHz to several tens of GHz. The role of radio wave absorbers responsible for band absorption is becoming increasingly important.

数GHz〜数十GHz帯域の電波吸収体として用いられているカーボン等含有発泡樹脂吸収体は、その容積が嵩高いため、莫大な輸送・保管コストがかかる、また、重量が重く、暗室壁面への装着工事に手間がかかるといった、ハンドリング性に問題があった。   Carbon and other foamed resin absorbers used as radio wave absorbers in the range of several GHz to several tens of GHz have a large volume, which entails enormous transportation and storage costs. There was a problem in handling such that it took a lot of work to install.

かかる問題に対し、断面形状として波形に加工した中芯と平面状のライナを積層した段ボール構造からなる電波吸収体用シート材とそれを中空の立体とした電波吸収体が提案されている(特許文献1)。このシート材からなる電波吸収体は、コンパクトに折り畳んだ状態で輸送、保管可能であることに加え、中空であるため軽量である。しかし、高周波帯域における吸収特性の高度化要求に関しては、カーボン等含有発泡樹脂吸収体よりも高度な吸収特性を得るのは困難であった。   To solve this problem, a sheet material for a radio wave absorber having a corrugated cardboard structure in which a core processed into a corrugated cross-sectional shape and a planar liner are laminated, and a radio wave absorber having a hollow three-dimensional structure (Patent) Reference 1). In addition to being able to be transported and stored in a compactly folded state, the radio wave absorber made of this sheet material is lightweight because it is hollow. However, regarding the demand for advanced absorption characteristics in the high frequency band, it has been difficult to obtain higher absorption characteristics than the foamed resin absorbent containing carbon and the like.

高周波帯域の吸収特性を高度化すべく、電波吸収性薄材からなる中空の外部構造体の中に、同じく電波吸収性薄材からなる格子形状や多角錘形状の内部損失体を装着するものが提案されている(特許文献2、3)。この電波吸収体は高周波帯域における吸収性能は向上するものの、外部構造体と内部構造体が異なるパーツからなるため、組立作業が煩雑であった。また個々のパーツが長方形もしくは正方形に近い形状になるわけではないため、もとの薄材からパーツを抜取りするときに捨てる部分が多くなるといった問題があった。   In order to improve the absorption characteristics in the high-frequency band, it is proposed that a hollow external structure made of a radio wave absorbing thin material is fitted with a lattice-shaped or polygonal pyramid-shaped internal loss body made of the same radio wave absorbing thin material (Patent Documents 2 and 3). Although this radio wave absorber has improved absorption performance in the high frequency band, the assembly work is complicated because the external structure and the internal structure are made of different parts. In addition, since each part does not have a rectangular or square shape, there is a problem that a lot of parts are discarded when the part is extracted from the original thin material.

特開2004−253760号公報JP 2004-253760 A 特開2004−335985号公報JP 2004-335985 A 特開2006−128454号公報JP 2006-128454 A

本発明の課題は、上述した従来の問題を解決し、倉庫から組み立て場所へは平面で輸送でき、現場で施工できるというハンドリング性に優れ、廃棄部分が少なく、更には高度な吸収性能、特に数GHz〜数十GHzの高周波帯域の電波に対し優れた吸収性能を有する電波吸収体用シート材及び電波吸収体を提供することにある。   The object of the present invention is to solve the above-mentioned conventional problems, and is excellent in handling property that can be transported from a warehouse to an assembly place on a flat surface and can be constructed on site, has few waste parts, and further has a high absorption performance, particularly a few. An object of the present invention is to provide a radio wave absorber sheet material and a radio wave absorber having excellent absorption performance for radio waves in a high frequency band of GHz to several tens of GHz.

上記目的を達成するため、本発明の電波吸収体用シート材は、十二角形Cの電波吸収体用シート材であって、長方形Aの四隅から、それぞれ直角三角形を切り欠いた結果生じる八角形Bが、八角形Bの内部に元の長方形Aの二組のいずれかの辺に平行な直線Fを有し、ひとつの直角三角形を切り欠いたことにより生じる二つの頂点と、直線Fの二つの端点のうち最も近接した端点とを結んだ二本の直線を一組としたとき、四組いずれも各々の組の二本の直線が同じ長さであり、
かつ、八角形Bは元の長方形Aの辺に由来する対向する二辺を一組とし、二組いずれも各々の組の二辺が同じ長さであり、十二角形Cが、八角形Bにおける直角三角形を切り欠いたことにより生じる四つの辺から、これらの辺を底辺とする二等辺三角形を八角形Bから切り欠くか、もしくは八角形Bに足した形状であることを特徴とする。
To achieve the above object, the radio wave absorber sheet material of the present invention is a dodecagon C radio wave absorber sheet material, which is an octagon formed as a result of cutting out right-angled triangles from the four corners of the rectangle A, respectively. B has a straight line F parallel to one of the two sides of the original rectangle A inside the octagon B, two vertices generated by cutting out one right triangle, and two of the straight line F When two straight lines connecting the end points closest to one of the two end points are taken as a set, the four straight lines in each of the four sets have the same length.
And the octagon B is a set of two opposite sides derived from the sides of the original rectangle A, and the two sides of each set have the same length, and the dodecagon C is an octagon B From the four sides generated by cutting out the right-angled triangle in, an isosceles triangle having these sides as the base is cut out from the octagon B or added to the octagon B.

また、前記電波吸収体用シート材は、十二角形Cにおいて、元の八角形Bの八つの頂点と、八角形B内部の直線Fの二つの端点のうち最も近接した端点とを結んだそれぞれ八本の直線がいずれも山折り線であり、かつ、八角形Bから二等辺三角形を切り欠くか、もしくは八角形Bに足すことにより生じる四つの頂点と、上記の直線Fの二つの端点のうち最も近接した端点とを結んだ四本の直線が谷折り線であり、かつ、直線Fが山折り線であるシート材であってもよい。   In the dodecagon C, the radio wave absorber sheet material connects the eight vertices of the original octagon B and the two end points of the straight line F inside the octagon B, respectively. All of the eight straight lines are mountain fold lines, and four vertices generated by cutting an isosceles triangle from the octagon B or adding it to the octagon B and the two end points of the straight line F are Of these, a sheet material in which the four straight lines connecting the closest end points are valley fold lines and the straight line F is a mountain fold line may be used.

更に、本発明の電波吸収体は、前記電波吸収体用シート材の谷折り線及び山折り線を、谷折り線に隣接する二本の山折り線同士が重なるよう四組いずれも折り曲げ、かつ直線Fも山折りで折り曲げ、内部に四枚の折り返し三角形Eを有する、底面が長方形の中空立体とすることを特徴とする。   Furthermore, the radio wave absorber of the present invention is configured to bend the valley fold line and the mountain fold line of the radio wave absorber sheet material so that two mountain fold lines adjacent to the valley fold line overlap each other, and The straight line F is also folded in a mountain fold and has a folded solid E having four folded triangles E inside, and having a rectangular bottom.

本発明によれば、薄いシート材を折り曲げて中空の立体とするため、軽量で施工性に優れる、かつ薄いシートの状態で取扱が可能であり輸送や保管を容易にできる。また、シート材の形状が長方形もしくは正方形をベースとしているため、歩留まりよくシート材を採取できることに加え、多数のパーツを組み立てて電波吸収体とする必要がないため、組立作業が容易である。更に、中空内部の折り返し三角形Eにより、高度な吸収性能、特に数GHz〜数十GHzの高周波帯域の電波に対し優れた吸収性能を有する電波吸収体を得ることができる。   According to the present invention, since a thin sheet material is bent into a hollow solid body, it is lightweight and excellent in workability, and can be handled in a thin sheet state, and can be easily transported and stored. Further, since the sheet material is based on a rectangle or a square, it is possible to collect the sheet material with a high yield, and it is not necessary to assemble a large number of parts into a radio wave absorber, so that the assembling work is easy. Furthermore, by the folded triangle E inside the hollow, it is possible to obtain a radio wave absorber having high absorption performance, particularly excellent absorption performance for radio waves in a high frequency band of several GHz to several tens of GHz.

(a)本発明にかかる電波吸収体用シート材の一例の平面図。(b)前記(a)のシート材における長方形A及び八角形Bの形状を示す平面図。(A) The top view of an example of the sheet | seat material for electromagnetic wave absorbers concerning this invention. (B) The top view which shows the shape of the rectangle A and the octagon B in the sheet | seat material of the said (a). 本発明にかかる電波吸収体用シート材の一例の平面図と、前記シート材から得られる電波吸収体の斜視図。(a)は直線Fが内部長方形Dの内部にある場合、(b)は直線Fの一部が内部長方形Dの外部にある場合である。The top view of an example of the sheet | seat material for electromagnetic wave absorbers concerning this invention, and the perspective view of the electromagnetic wave absorber obtained from the said sheet | seat material. (A) is a case where the straight line F is inside the internal rectangle D, and (b) is a case where a part of the straight line F is outside the internal rectangle D. 本発明にかかる電波吸収体用シート材の一例の平面図。長方形Aのうち四隅のひとつを拡大した図。(a)は辺Soを底辺とする二等辺三角形を八角形Bから切り欠いた場合、(b)は辺Soを底辺とする二等辺三角形を八角形Bに足した場合である。The top view of an example of the sheet | seat material for electromagnetic wave absorbers concerning this invention. The figure which expanded one of the four corners of the rectangle A. FIG. (A) is a case where an isosceles triangle having the base of the side So is cut out from the octagon B, and (b) is a case where an isosceles triangle having the base of the side So is added to the octagon B. 図3の前記シート材から得られる電波吸収体の一部を示す斜視図。The perspective view which shows a part of electromagnetic wave absorber obtained from the said sheet | seat material of FIG. 本発明にかかる電波吸収体の一例の斜視図。The perspective view of an example of the electromagnetic wave absorber concerning this invention. 本発明にかかる電波吸収体の一例の斜視図。(a)、(b)ともに電波吸収体内部の折り返し三角形Eの一部を示したものである。The perspective view of an example of the electromagnetic wave absorber concerning this invention. Both (a) and (b) show part of the folded triangle E inside the radio wave absorber. 本発明にかかる電波吸収体の一例の斜視図であり、底面が長方形の中空立体形状を保持、固定する方法の例を示したものである。It is a perspective view of an example of the electromagnetic wave absorber concerning this invention, and shows the example of the method of hold | maintaining and fixing the hollow solid shape whose bottom face is a rectangle. 電波吸収体の電波吸収量を測定する方法の模式図。The schematic diagram of the method of measuring the radio wave absorption of a radio wave absorber. 実施例1に示した本発明の電波吸収体用シート材の平面図と、それから得られる電波吸収体の斜視図。The top view of the sheet | seat material for electromagnetic wave absorbers of this invention shown in Example 1, and the perspective view of the electromagnetic wave absorber obtained from it. 実施例1で電波吸収体を配置した際の俯瞰図An overhead view when the electromagnetic wave absorber is disposed in the first embodiment 比較例1に示した電波吸収体用シート材の平面図と、それから得られる電波吸収体の斜視図。The top view of the sheet | seat material for electromagnetic wave absorbers shown in the comparative example 1, and the perspective view of the electromagnetic wave absorber obtained from it. 実施例4に示した電波吸収体用シート材の平面図。The top view of the sheet | seat material for electromagnetic wave absorbers shown in Example 4. FIG. 実施例5に示した電波吸収体用シート材の平面図。The top view of the sheet | seat material for electromagnetic wave absorbers shown in Example 5. FIG.

以下、本発明の実施形態の例を説明する。   Hereinafter, examples of embodiments of the present invention will be described.

本発明の電波吸収体用シート材の材料としては、樹脂や繊維構造物等の基材中に導電性材料や磁性材料を含有させシート化したものが例示される。   Examples of the material of the sheet material for a radio wave absorber according to the present invention include a sheet formed by containing a conductive material or a magnetic material in a substrate such as a resin or a fiber structure.

導電性材料としては例えば、金属粒子、カーボンブラック、カーボンナノチューブ粒子、カーボンマイクロコイル粒子、グラファイト粒子等の導電性粒子や、炭素繊維、ステンレス、銅、金、銀、ニッケル、アルミニウム、鉄等の金属繊維等の導電性繊維を挙げることができる。また、非導電性の粒子もしくは繊維に金属をメッキ、蒸着、溶射する等して導電性を付与したものを挙げることもできる。   Examples of the conductive material include conductive particles such as metal particles, carbon black, carbon nanotube particles, carbon microcoil particles, and graphite particles, and metals such as carbon fiber, stainless steel, copper, gold, silver, nickel, aluminum, and iron. Examples thereof include conductive fibers such as fibers. Moreover, what gave electroconductivity by plating, vapor-depositing, and spraying a metal to the nonelectroconductive particle or fiber can also be mentioned.

また、磁性材料としては例えば、鉄、ニッケル、クロム等の金属、パーマロイやセンダスト等の合金、ハードフェライト、ソフトフェライト等のフェライト系、カルボニル鉄等の金属化合物等の粒子やこの粒子を樹脂等に含有させ繊維化したものを挙げることができる。また、非導電性の粒子もしくは繊維にこれら磁性材料をメッキ、蒸着、溶射する等して導電性を付与したものも挙げることもできる。   Examples of magnetic materials include metals such as iron, nickel, and chromium, alloys such as permalloy and sendust, ferrites such as hard ferrite and soft ferrite, metal compounds such as carbonyl iron, and the like. The thing made into a fiber is mentioned. Moreover, what gave electroconductivity by plating, vapor-depositing, and spraying these magnetic materials to nonelectroconductive particle or fiber can also be mentioned.

電波吸収体用シート材に用いる材料としては、低コスト化や軽量化、基材に均一に分散させやすいといった点から導電性材料を用いることが好ましい。導電性材料の中でも、導電性短繊維を用いることがより好ましい。導電性繊維はアスペクト比が大きいので、繊維同士が接触しやすく、粉体に比べて少量でも効果的に電波吸収性能を得ることができる。また、導電性繊維の中でも、炭素繊維は、繊維自体が剛着であり基材内に配向させやすいこと、長期間の使用においてほとんど性能の変化がないことから、更に好ましい。   As a material used for the sheet material for the radio wave absorber, it is preferable to use a conductive material from the viewpoints of cost reduction, weight reduction, and easy dispersion on the base material. Among conductive materials, it is more preferable to use conductive short fibers. Since the conductive fiber has a large aspect ratio, the fibers are easily in contact with each other, and the radio wave absorption performance can be effectively obtained even in a small amount as compared with the powder. Among the conductive fibers, carbon fibers are more preferable because the fibers themselves are rigid and can be easily oriented in the substrate, and there is almost no change in performance over a long period of use.

これら導電性材料や磁性材料を含有させる基材としては、樹脂膜やフィルムである場合には、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム等のジエン系ゴムや、ブチルゴム、エチレンプロピレンゴム、ウレタンゴム、シリコーンゴム等の非ジエン系ゴム等のゴム材料や、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリシロキサン樹脂、フェノール樹脂、エポキシ樹脂、アクリル樹脂、ユリア樹脂、メラミン樹脂、フッ素樹脂、ポリ塩化ビニル樹脂、ポリフェニレンサルファイド樹脂等の樹脂材料が挙げられる。   As a base material containing these conductive materials and magnetic materials, in the case of a resin film or film, diene rubber such as natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, butyl rubber, ethylene propylene rubber, Non-diene rubber such as urethane rubber and silicone rubber, polyolefin resin, polyamide resin, polyester resin, polyether resin, polyimide resin, polyurethane resin, polysiloxane resin, phenol resin, epoxy resin, acrylic resin, urea Examples thereof include resin materials such as resin, melamine resin, fluororesin, polyvinyl chloride resin, and polyphenylene sulfide resin.

また、織物、編物、不織布、紙等の繊維を主体とする構造体の場合には、ガラス繊維やセラミック繊維等の無機繊維、合成繊維、綿、麻、ウール、木材パルプといった天然繊維、レーヨン等の半合成繊維が挙げられる。更に、合成繊維を形成するポリマーとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、およびそれらのポリエステルの酸成分にイソフタル酸、5−ナトリウムスルホイソフタル酸、アジピン酸等を共重合した共重合ポリエステル等のポリエステルや、ナイロン6、ナイロン66、ナイロン12、ナイロン46、ナイロン6とナイロン66とを共重合した共重合ポリアミド等のポリアミドや、ポリビニルアルコールや、芳香族ポリアミドや、ポリエーテルエーテルケトンや、ポリパラフェニレンベンゾビスオキサゾールや、ポリフェニレンサルファイドや、ポリエチレンや、ポリプロピレン等を挙げることができる。   In the case of structures mainly composed of fibers such as woven fabrics, knitted fabrics, nonwoven fabrics and paper, inorganic fibers such as glass fibers and ceramic fibers, synthetic fibers, natural fibers such as cotton, hemp, wool and wood pulp, rayon, etc. Semi-synthetic fiber. Furthermore, examples of the polymer forming the synthetic fiber include polyethylene terephthalate, polybutylene terephthalate, polylactic acid, and copolymer polyester obtained by copolymerizing the acid component of those polyesters with isophthalic acid, 5-sodium sulfoisophthalic acid, adipic acid, and the like. Polyester, nylon 6, nylon 66, nylon 12, nylon 46, polyamide such as copolymerized polyamide obtained by copolymerizing nylon 6 and nylon 66, polyvinyl alcohol, aromatic polyamide, polyether ether ketone, Examples include paraphenylene benzobisoxazole, polyphenylene sulfide, polyethylene, and polypropylene.

難燃性向上の観点からは、ガラス繊維、芳香族ポリアミド繊維、ポリエーテルエーテルケトン繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ポリフェニレンサルファイド繊維等を用いることが好ましい。   From the viewpoint of improving flame retardancy, it is preferable to use glass fibers, aromatic polyamide fibers, polyether ether ketone fibers, polyparaphenylene benzobisoxazole fibers, polyphenylene sulfide fibers, and the like.

また、導電性材料含有層には、酸化チタン、硫酸バリウム、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム等の無機粉体を含有せしめてもよい。   The conductive material-containing layer may contain inorganic powder such as titanium oxide, barium sulfate, calcium carbonate, aluminum hydroxide, magnesium hydroxide.

例えば水酸化アルミニウムや水酸化マグネシウム等を添加することにより、難燃性を向上させることができる。   For example, flame retardance can be improved by adding aluminum hydroxide or magnesium hydroxide.

本発明の電波吸収体用シート材は、折り曲げて中空立体形状の電波吸収体とするため、折り曲げ加工のやり易さの点から、フィルムや不織布、特に紙を基材とすることが好ましい。また、導電性材料や磁性材料を含有した樹脂を、導電性材料や磁性材料を含有しないフィルムや紙等にコーティングしたものや、導電性材料や磁性材料を含有した樹脂シートやフィルム、織物、編物、不織布等の繊維構造体を、導電性材料や磁性材料を含有しないフィルムや紙等に積層したものでもよい。更に、中空立体形状において良好な強度を得るため、基材を厚紙や段ボールとすることが好ましい。中でも、段ボールはシート中に空隙を有するため軽量であることに加え、立体形状とするのに十分なシート強度を有しているため、更に好ましい。一般的に段ボールは波型に加工された中芯紙と、上下面のライナー紙の三枚の紙で構成されるが、三枚の紙いずれにも導電性材料や磁性材料を含有しても良いし、三枚のうちいずれか一枚もしくは二枚だけ含有しても良い。一枚だけに導電性材料や磁性材料を含有した紙を用いる場合には、中芯紙に用いるのが好ましい。   Since the sheet material for a radio wave absorber of the present invention is folded into a hollow solid radio wave absorber, it is preferable to use a film or a nonwoven fabric, particularly paper, as a base material from the viewpoint of easy folding. In addition, resin containing conductive material or magnetic material coated on film or paper that does not contain conductive material or magnetic material, resin sheet or film containing conductive material or magnetic material, woven fabric, knitted fabric A fiber structure such as a nonwoven fabric may be laminated on a film or paper that does not contain a conductive material or a magnetic material. Furthermore, in order to obtain good strength in the hollow three-dimensional shape, the base material is preferably made of cardboard or cardboard. Among these, corrugated cardboard is more preferable because it has a sheet strength sufficient to obtain a three-dimensional shape in addition to being lightweight because it has voids in the sheet. Generally, corrugated cardboard is composed of three sheets of corrugated core paper and upper and lower liner sheets, but any of the three sheets of paper may contain conductive or magnetic materials. It may be good, or only one or two of the three may be contained. When using a paper containing a conductive material or a magnetic material for only one sheet, it is preferably used for the core paper.

本発明の電波吸収体用シート材の厚さは0.2mm〜10mmの範囲にあることが好ましく、0.3〜6mmの範囲にあることが更に好ましい。厚さをこの範囲とすることにより、中空立体形状の電波吸収体としたときに良好な強度が得られるとともに、折り曲げ加工が容易にできるためである。   The thickness of the sheet material for a radio wave absorber of the present invention is preferably in the range of 0.2 mm to 10 mm, and more preferably in the range of 0.3 to 6 mm. This is because, by setting the thickness within this range, good strength can be obtained when the hollow three-dimensional wave absorber is formed, and bending can be easily performed.

また、本発明の電波吸収体用シート材の1GHzにおける複素比誘電率の実部εr’が5〜30、かつ虚部εr”が2〜25の範囲にあることが好ましく、実部εr’が6〜15、かつ虚部εr”が4〜15の範囲にあることがより好ましい。一般的に、電波暗室では、数十〜数百MHzの低周波帯域の吸収を担うフェライトタイルと、GHzの高周波帯域の吸収を担うピラミッド型やクサビ型吸収体等の立体型吸収体とが組み合わせて用いられる。立体型吸収体の複素比誘電率が高すぎると、低周波帯域の反射が大きくなりフェライトタイルでの吸収が低下し、低すぎると立体型吸収体における高周波帯域を十分に吸収できないといった傾向にある。本発明の電波吸収体用シート材の複素比誘電率を上述の範囲とすることで、低周波、高周波ともに十分な電波吸収性能を実現できるようになるため、好ましい。   Further, the real part εr ′ of the complex relative permittivity at 1 GHz of the sheet material for radio wave absorber of the present invention is preferably 5 to 30, and the imaginary part εr ″ is preferably in the range of 2 to 25, and the real part εr ′ is More preferably, it is 6 to 15 and the imaginary part εr ″ is in the range of 4 to 15. Generally, in an anechoic chamber, a ferrite tile that is responsible for absorption in the low frequency band of several tens to several hundreds of MHz is combined with a three-dimensional type absorber such as a pyramid type or wedge type absorber that is responsible for absorption in the high frequency band of GHz. Used. If the complex relative permittivity of the three-dimensional absorber is too high, reflection in the low frequency band increases and the absorption in the ferrite tile decreases, and if it is too low, the high-frequency band in the three-dimensional absorber does not sufficiently absorb. . It is preferable to set the complex relative dielectric constant of the sheet material for a radio wave absorber of the present invention within the above-mentioned range since sufficient radio wave absorption performance can be realized for both low frequency and high frequency.

次に、本発明の電波吸収体用シート材の実施形態の例を、図面を参照しながら説明する。   Next, an example of an embodiment of the sheet material for a radio wave absorber of the present invention will be described with reference to the drawings.

図1(a)は本発明の電波吸収体用シート材の一例を示したものである。図1(b)は長方形A及び八角形Bの形状を説明したものである。長方形Aを想定し、その四隅からそれぞれ直角三角形を切り欠いた結果八角形Bが生じる。図1(a)に目を移し、八角形Bはその内部に元の長方形Aの二組のいずれかの辺に平行な直線Fを有しており、長方形Aからひとつの直角三角形を切り欠いたことにより生じる二つの頂点Pn1とPn2(n=a〜d)と、直線Fの二つの端点のうち最も近接した端点とを結んだ二本の直線Ln1とLn2(n=a〜d)を一組としたとき、四組(La1,La2)、(Lb1,Lb2)、(Lc1,Lc2)、(Ld1,Ld2)のいずれも各々の組の二本の直線が同じ長さとなり、かつ八角形Bにおいて元の長方形Aの辺に由来する対向する二辺SrαとSrγ、及びSrβとSrδをそれぞれ一組とし、二組いずれも各々の組の二辺が同じ長さである(Srα=Srγ、Srβ=Srδ)。更に、元の長方形Aの四隅からそれぞれ直角三角形を切り欠いた結果生じる四辺Soa、Sob、Soc、Sodから、これらの辺を底辺とする二等辺三角形を八角形Bから切り欠くか、もしくは八角形Bに足した形状の十二角形Cのシート材が本発明の電波吸収体用シート材である。この電波吸収体用シート材は所定の形状とされた後、施工現場において中空立体構造の電波吸収体に組み立てられ、電波暗室等の壁面や天井面に施工される(この電波吸収体用シートを用いた電波吸収体の詳細については後述する)。この施工前の輸送、保管の際には、平面状のシート状態で取扱えるため、嵩張らず、輸送、保管コストを低減することができる。また、シート材の形状が長方形もしくは正方形をベースとしているため、歩留まりよくシート材を採取できる。更に、多数のパーツを組み立てる必要がなく、一枚のシート材を折り曲げて電波吸収体とすることが可能であるため、組立を容易にできる。   Fig.1 (a) shows an example of the sheet | seat material for electromagnetic wave absorbers of this invention. FIG. 1B illustrates the shapes of the rectangle A and the octagon B. FIG. Assuming a rectangle A, octagons B are formed as a result of cutting out right triangles from the four corners. Turning to FIG. 1A, the octagon B has a straight line F parallel to one of the two sides of the original rectangle A, and a right triangle is cut out from the rectangle A. Two straight lines Ln1 and Ln2 (n = a to d) connecting two vertices Pn1 and Pn2 (n = a to d) generated by having been connected to the closest end point of the two end points of the straight line F When one set is used, in each of the four sets (La1, La2), (Lb1, Lb2), (Lc1, Lc2), (Ld1, Ld2), two straight lines of each set have the same length, and eight In the square B, two opposing sides Srα and Srγ and Srβ and Srδ originating from the side of the original rectangle A are set as a pair, and the two sides of each set have the same length (Srα = Srγ). , Srβ = Srδ). Further, from the four sides Soa, Sob, Soc, and Sod resulting from cutting out right-angled triangles from the four corners of the original rectangle A, an isosceles triangle with these sides as the base is cut out from the octagon B, or an octagon The dodecagon C sheet material added to B is the sheet material for a radio wave absorber of the present invention. This electromagnetic wave absorber sheet material is formed into a predetermined shape, and then assembled into a hollow three-dimensional electromagnetic wave absorber at the construction site and applied to a wall surface or ceiling surface of an electromagnetic wave anechoic chamber or the like (this electromagnetic wave absorber sheet is Details of the radio wave absorber used will be described later). During transportation and storage before construction, the sheet can be handled in a flat sheet state, so that it is not bulky, and transportation and storage costs can be reduced. Further, since the sheet material is based on a rectangle or a square, the sheet material can be collected with a high yield. Furthermore, it is not necessary to assemble a large number of parts, and it is possible to fold a single sheet material into a radio wave absorber, so that the assembly can be facilitated.

また、十二角形Cにおいて、元の八角形Bの八つの頂点と、八角形B内部の直線Fの二つの端点のうち最も近接した端点とをそれぞれ結んだ八本の直線La1、La2、Lb1、Lb2、Lc1、Lc2、Ld1、Ld2をいずれも山折り線とし、八角形Bから二等辺三角形を切り欠くか、もしくは八角形Bに足すことにより生じる頂点と、上記の直線Fの二つの端点のうち最も近接した端点とを結んだ四本の直線Ma、Mb、Mc、Mdを谷折り線とし、かつ直線Fを山折り線として示すことにより、折り曲げて底面が長方形の中空立体形状の電波吸収体とすることが簡単になるため、好ましい。   In the dodecagon C, the eight straight lines La1, La2, and Lb1 connecting the eight vertices of the original octagon B and the closest end points of the two end points of the straight line F inside the octagon B, respectively. , Lb2, Lc1, Lc2, Ld1, and Ld2 are all mountain fold lines, and a vertex formed by cutting an isosceles triangle from the octagon B or adding to the octagon B, and the two end points of the straight line F described above The four straight lines Ma, Mb, Mc, and Md connecting the closest end points of these are shown as valley fold lines, and the straight line F is shown as a mountain fold line. Since it becomes easy to set it as an absorber, it is preferable.

図2において、八角形Bの八つの頂点のうち互いに隣接しない二つの頂点を通り、長方形Aの辺に由来する対向する二辺に直交する四本の直線Kα、Kβ、Kγ、Kδで囲まれた内部長方形D(図中斜線部)の内部に、直線Fがあることが好ましい。電波吸収体用シートを用いた電波吸収体の詳細は後述するが、電波吸収体用シート材を折り曲げて底面が長方形の中空立体形状の電波吸収体する。このとき、中空立体の上辺を直線Fが形成し、この中空立体の上辺である直線Fの二つの端点(f1,f2)から中空立体の底面方向に降ろした垂線と中空立体の底面との交点をそれぞれ(h1,h2)とする。図2(a)は直線Fが内部長方形Dの内部にある場合を示したものだが、交点h1及びh2が中空立体の底面内となる。一方、図2(b)は直線Fの一部が内部長方形Dの外部にある場合を示したものだが、二つの交点h1、h2のうち、一方(ここではh1)が中空立体の底面の外側となる。電波吸収体は電波暗室の壁面や天井面に電波吸収体同士が隣接して規則正しく設置されるが、図2(a)のように交点h1及びh2がいずれも四角錘の底面内部にあれば、隣接した電波吸収体の設置を邪魔することなく取り付けることができるため、好ましい。   In FIG. 2, the eight vertices of the octagon B are surrounded by four straight lines Kα, Kβ, Kγ, and Kδ that pass through two vertices that are not adjacent to each other and are orthogonal to two opposite sides derived from the side of the rectangle A. It is preferable that a straight line F is present inside the internal rectangle D (shaded portion in the figure). Although details of the radio wave absorber using the radio wave absorber sheet will be described later, the radio wave absorber sheet material is bent to form a hollow solid wave absorber having a rectangular bottom surface. At this time, a straight line F is formed on the upper side of the hollow solid, and the intersection of the perpendicular drawn from the two end points (f1, f2) of the straight line F, which is the upper side of the hollow solid, toward the bottom of the hollow solid and the bottom of the hollow solid. Are (h1, h2), respectively. FIG. 2A shows a case where the straight line F is inside the internal rectangle D, but the intersections h1 and h2 are within the bottom surface of the hollow solid. On the other hand, FIG. 2B shows a case where a part of the straight line F is outside the internal rectangle D, and one of the two intersections h1 and h2 (here, h1) is outside the bottom of the hollow solid. It becomes. The electromagnetic wave absorbers are regularly installed adjacent to each other on the wall or ceiling surface of the anechoic chamber, but if the intersections h1 and h2 are both inside the bottom surface of the square weight as shown in FIG. Since it can attach without disturbing installation of an adjacent electromagnetic wave absorber, it is preferable.

また、直線Fの中点が、長方形Aの中心にあることが更に好ましい。この電波吸収体用シート材を底面が長方形の中空立体形状の電波吸収体とした場合、中空立体の上辺となる直線Fの中点と、この中点から中空立体の底面方向に降ろした垂線と中空立体の底面との交点とを結んだ直線に対し、線対称の中空立体となる。中空立体の対称性が高ければ、到来電波の偏波面に対し電波吸収体の異方性の影響を小さくすることができ、偏波面に依存しない均一な電波暗室性能を実現できる。   Further, it is more preferable that the midpoint of the straight line F is at the center of the rectangle A. When this radio wave absorber sheet material is a hollow solid wave absorber having a rectangular bottom surface, the midpoint of the straight line F, which is the upper side of the hollow solid, and a perpendicular drawn from the midpoint toward the bottom surface of the hollow solid, It becomes a line-symmetric hollow solid with respect to a straight line connecting the intersection with the bottom of the hollow solid. If the symmetry of the hollow solid is high, the influence of the anisotropy of the wave absorber on the polarization plane of the incoming radio wave can be reduced, and uniform anechoic chamber performance independent of the polarization plane can be realized.

また、内部長方形Dが正方形であると、中空立体形状の電波吸収体としたとき、中空立体の底面が正方形となり、電波暗室の壁面や天井面に規則正しく設置しやすくなるため好ましい。   In addition, it is preferable that the inner rectangle D is a square because the bottom of the hollow solid is a square when the hollow solid electromagnetic wave absorber is formed, and it is easy to install regularly on the wall or ceiling surface of the anechoic chamber.

次に、図3は長方形Aの四隅の内の一つを示したものである。この図3において、長方形Aから直角三角形を切り欠いたことにより生じる辺のひとつをSoとし、これを挟む二つの頂点をP1とP2とし、直線Fの二つの端点のうち最も近接した端点と頂点P1またはP2を結んだ直線をそれぞれL1とL2とする。また、頂点P1を含む長方形Aの辺と直交しかつ直線P1を通る直線Kαと、頂点P2を含む長方形Aの辺と直交しかつ直線P2を通る直線Kβとの交点Qと、直線Fの二つの端点のうち最も近接した端点とを結んだ直線をNとする。また、辺Soを底辺とする二等辺三角形を切り欠くか、もしくは足した際に生じる頂点をP3とし、この頂点P3とP1を結んだ十二角形Cの辺をSd1、頂点P3とP2を結んだ十二角形Cの辺をSd2とする。更に、直線L1と辺Sd1が形成する角をθ1、直線L2と辺Sd2が形成する角をθ2とする。このとき、十二角形Cに含まれる四箇所全ての角θ1、θ2が下式の範囲内にあることが好ましい。   Next, FIG. 3 shows one of the four corners of the rectangle A. In FIG. 3, one of the sides generated by cutting out a right triangle from the rectangle A is defined as So, the two vertices sandwiching this are defined as P1 and P2, and the closest end point and vertex among the two end points of the straight line F The straight lines connecting P1 and P2 are L1 and L2, respectively. Further, an intersection Q between a straight line Kα orthogonal to the side of the rectangle A including the vertex P1 and passing through the straight line P1, and a straight line Kβ orthogonal to the side of the rectangle A including the vertex P2 and passing through the straight line P2; Let N be the straight line connecting the end points closest to each other. Further, a vertex generated when an isosceles triangle having the base So as a base is cut out or added is defined as P3, a side of the dodecagon C connecting the vertices P3 and P1 is connected with Sd1, and vertices P3 and P2 are connected. Let the side of the dodecagon C be Sd2. Furthermore, an angle formed by the straight line L1 and the side Sd1 is θ1, and an angle formed by the straight line L2 and the side Sd2 is θ2. At this time, it is preferable that all the angles θ1 and θ2 included in the dodecagon C are within the range of the following expression.

Figure 2012191182
Figure 2012191182

図4に、図3の電波吸収体用シート材を折り曲げて作った電波吸収体の例を示す。角θ1、θ2がこの範囲内であれば、底面が長方形の中空立体形状の電波吸収体とした際に、中空立体の内部にできる折り返し三角形Eの底辺部分が中空立体底面をはみ出すことなく収納できることに加え、十分な吸収性能、特に数GHz〜数十GHzの高周波帯域で優れた吸収性能を得ることができる。   FIG. 4 shows an example of a radio wave absorber made by bending the radio wave absorber sheet material of FIG. If the angles θ1 and θ2 are within this range, the bottom portion of the folded triangle E formed inside the hollow solid body can be stored without protruding from the hollow solid bottom surface when the bottom surface is a rectangular hollow solid wave absorber. In addition, it is possible to obtain sufficient absorption performance, particularly excellent absorption performance in a high frequency band of several GHz to several tens GHz.

なお、本発明の電波吸収体用シート材は上述の構造を有するものであるが、発明の効果を損なわない限り、辺の一部からシート材の一部をさらに切り取ったり、辺の一部の外側に付加させた構造のものもとることができる。またシート材の一部に穴をあけることができる。さらに辺の一部または全部を波形とすることもできる。   In addition, although the sheet | seat material for electromagnetic wave absorbers of this invention has the above-mentioned structure, as long as the effect of invention is not impaired, a part of sheet material is further cut off from a part of edge | side, A structure with an external structure can be used. A hole can be made in a part of the sheet material. Furthermore, a part or all of the sides can be formed into a waveform.

図5は本発明の電波吸収体の一例を示したものである。図1における本発明の電波吸収体用シート材の四本の谷折り線(Ma,Mb,Mc,Md)、及び八本の山折り線(La1,La2,Lb1,Lb2,Lc1,Lc2,Ld1,Ld2)を、谷折り線に隣接する二本の山折り線とが重なるよう四組(La1,La2)、(Lb1,Lb2)、(Lc1,Lc2)、(Ld1,Ld2)いずれも折り曲げる。また、直線Fも山折りで折り曲げ、中空内部に四枚の折り返し三角形Eを有する底面が長方形の中空立体とする。この電波吸収体は中空であるため極めて軽量である。また、折り返し三角形を有する構造により、折り返し三角形そのものによる電波吸収に加え、中空立体を形成する外殻部分との間での多重反射により電波を吸収可能とでき、高度な吸収性能、特に数GHz〜数十GHzの高周波帯域で優れた吸収性能を得ることができる。   FIG. 5 shows an example of the radio wave absorber of the present invention. The four valley fold lines (Ma, Mb, Mc, Md) and the eight mountain fold lines (La1, La2, Lb1, Lb2, Lc1, Lc2, Ld1) of the sheet material for a radio wave absorber of the present invention in FIG. , Ld2) are folded so that four pairs (La1, La2), (Lb1, Lb2), (Lc1, Lc2), and (Ld1, Ld2) overlap with two mountain fold lines adjacent to the valley fold line. The straight line F is also folded in a mountain fold so that the bottom surface having four folded triangles E inside the hollow is a rectangular hollow solid. Since this radio wave absorber is hollow, it is extremely lightweight. In addition to the radio wave absorption by the folded triangle itself, the structure having the folded triangle can absorb radio waves by multiple reflections with the outer shell part forming the hollow solid, and has a high absorption performance, particularly from several GHz to Excellent absorption performance can be obtained in a high frequency band of several tens of GHz.

また、四枚の折り返し三角形Eがいずれも中空立体の底面に垂直であると、中空立体の内部でより効果的に電波を吸収できるため、好ましい。図6に、折り返し三角形Eが中空立体の底面に垂直である例を示す。図6(a)は、折り返し三角形Eが中空立体の底面に垂直であり、かつ折り返し三角形Eの底辺部分が中空立体の底面にある電波吸収体の例である。また、図6(b)は、折り返し三角形Eの底辺部分の一方が中空立体の底面から離れているが、この構造でも問題ない。   Further, it is preferable that all the four folded triangles E are perpendicular to the bottom surface of the hollow solid because radio waves can be absorbed more effectively inside the hollow solid. FIG. 6 shows an example in which the folded triangle E is perpendicular to the bottom surface of the hollow solid. FIG. 6A shows an example of a radio wave absorber in which the folded triangle E is perpendicular to the bottom surface of the hollow solid body and the bottom side of the folded triangle E is on the bottom surface of the hollow solid body. In FIG. 6B, one of the bottom sides of the folded triangle E is separated from the bottom surface of the hollow solid, but there is no problem with this structure.

本発明の電波吸収体用シート材を折り畳み、底面が長方形の中空立体の電波吸収体とするに際し、中空立体形状を保持、固定する方法には、どのような方法を用いてもよいが、いくつかの例を図7に示す。図7(a)のように折り返し三角形Eを形成する部分を両面テープ(図中、斜線部)で貼り合せたり、図7(b)のように四角錘の側辺部をテープ(図中、斜線部)で留めたり、図7(c)のように折り返し三角形Eを形成する部分に孔を開けておき、折り返して重なり合った孔をピンや紐等で留めたり、図7(d)のように電波吸収体の外周を囲う部位と、折り返し三角形Eを固定するスリットを持つ部位からなる部材を用いる等、様々な方法を選択できる。   When the sheet material for a radio wave absorber according to the present invention is folded to form a hollow solid wave absorber having a rectangular bottom, any method can be used for retaining and fixing the hollow solid shape. Such an example is shown in FIG. The portion forming the folded triangle E as shown in FIG. 7 (a) is bonded with a double-sided tape (shaded portion in the figure), or the side portion of the square weight is attached to the tape (in the figure as shown in FIG. 7 (b)). 7 (c), or a hole is formed in a portion where the folded triangle E is formed as shown in FIG. 7 (c), and the overlapped hole is fastened with a pin or a string, as shown in FIG. 7 (d). Various methods can be selected, such as using a member comprising a part surrounding the outer periphery of the radio wave absorber and a part having a slit for fixing the folded triangle E.

以下、本発明の実施例を説明する。尚、実施例に示す性能値は次の方法で測定した。
<電波吸収体の電波吸収量>
図8に示すように、二つのアンテナを用いて、入射アンテナから対象に電波を照射し、対象からの反射波を受信アンテナで受信し反射レベルを測定する。まず、ブランクとして縦60cm×横60cm×厚さ5mmのアルミニウム板に垂直に電波を当てたときの反射レベルをベクトルネットワークアナライザ(機種:N5230、アジレントテクノロジー社製)を用いて測定する。次に、このアルミニウム板の上に電波吸収体を置き、反射レベルを測定する。これらの測定値から次式により電波吸収体の電波吸収量を求める。
Examples of the present invention will be described below. The performance values shown in the examples were measured by the following method.
<Radio wave absorption amount of radio wave absorber>
As shown in FIG. 8, using two antennas, a target is irradiated with radio waves from an incident antenna, and a reflected wave from the target is received by a receiving antenna to measure a reflection level. First, using a vector network analyzer (model: N5230, manufactured by Agilent Technologies), a reflection level when a radio wave is vertically applied to an aluminum plate 60 cm long × 60 cm wide × 5 mm thick as a blank is measured. Next, a radio wave absorber is placed on the aluminum plate, and the reflection level is measured. The radio wave absorption amount of the radio wave absorber is obtained from these measured values by the following formula.

電波吸収量(dB)=電波吸収体の反射レベル(dB)−アルミニウム板の反射レベル(dB)
<電波吸収体用シート材の複素比誘電率>
ベクトルネットワークアナライザと同軸導波管(外径39mm,内径17mm)を用いて測定する。電波吸収体用シート材試料を外径39mm×内径17mmのドーナツ型としたものを同軸導波管内にセットした状態で、S11(複素反射率)及びS21(複素透過率)パラメータを測定し、これらの値から複素比誘電率を求める。
[実施例1]
(電波吸収体用シート材)
繊維長6mmの炭素繊維、繊維長6mmのガラス繊維、平均繊維長2mmのメタ系アラミドパルプをそれぞれ0.8重量%、30重量%、69.2重量%の割合で水に混合してスラリーとし、そのスラリーを平面に流し込み、脱水、乾燥し、厚さ120μm、坪量100g/mの難燃紙Aを得た。次に、上記配合から炭素繊維を除いた配合で、水に混合してスラリーとし、上記と同様の方法で厚さ120μm、坪量100g/mの電気的損失材を含まない難燃紙Bを得た。
Radio wave absorption (dB) = Radio wave absorber reflection level (dB) −Aluminum plate reflection level (dB)
<Complex relative permittivity of sheet material for radio wave absorber>
Measurement is performed using a vector network analyzer and a coaxial waveguide (outer diameter 39 mm, inner diameter 17 mm). The S11 (complex reflectivity) and S21 (complex transmissivity) parameters were measured in a state where a sheet material sample for an electromagnetic wave absorber having a donut shape having an outer diameter of 39 mm × an inner diameter of 17 mm was set in the coaxial waveguide. The complex dielectric constant is obtained from the value of.
[Example 1]
(Radio wave absorber sheet material)
A carbon fiber having a fiber length of 6 mm, a glass fiber having a fiber length of 6 mm, and a meta-aramid pulp having an average fiber length of 2 mm are mixed with water at a ratio of 0.8% by weight, 30% by weight, and 69.2% by weight to form a slurry. The slurry was poured into a flat surface, dehydrated and dried to obtain flame retardant paper A having a thickness of 120 μm and a basis weight of 100 g / m 2 . Next, a flame retardant paper B containing no electrical loss material having a thickness of 120 μm and a basis weight of 100 g / m 2 in the same manner as described above except that carbon fiber is removed from the above formulation and mixed with water to form a slurry. Got.

続いて、前記難燃紙Aを熱プレスロールで波形に加工し、段ボール3層構造の波状中芯部とし、その両側を平面状の難燃紙Bと貼り合わせたることによって、厚さ1.3mmの段ボールシートとした。   Subsequently, the flame retardant paper A is processed into a corrugated shape with a hot press roll to form a corrugated core portion having a corrugated cardboard three-layer structure, and both sides thereof are bonded to a flat flame retardant paper B to obtain a thickness of 1. A 3 mm cardboard sheet was obtained.

この段ボールシートを、図9(a)に示す十二角形Cの形状にトムソンカッターで裁断した。この裁断時に、段ボールシートに山折り線と谷折り線も入れ、電波吸収体用シート材を得た。   This cardboard sheet was cut into a dodecagon C shape shown in FIG. 9A by a Thomson cutter. At the time of this cutting, a mountain fold line and a valley fold line were also put in the corrugated cardboard sheet to obtain a sheet material for a radio wave absorber.

この電波吸収体用シート材の、1GHzにおける複素比誘電率を測定した結果、実部εr’=11、虚部εr”=7.5であった。
(電波吸収体)
この電波吸収体用シート材を山折り線及び谷折り線に沿って折り曲げ、図7(b)のように四角錘の側辺部にクラフトテープを貼って、図9(b)に示す折り返し三角形Eを有する底面が正方形の中空立体形状の電波吸収体を得た。また、折り返し三角形Eが中空立体の底面に垂直になるようクラフトテープで固定した。
As a result of measuring the complex dielectric constant at 1 GHz of the sheet material for radio wave absorber, the real part εr ′ = 11 and the imaginary part εr ″ = 7.5.
(Radio wave absorber)
This radio wave absorber sheet material is folded along a mountain fold line and a valley fold line, and a kraft tape is applied to the side of the square weight as shown in FIG. 7B, and the folded triangle shown in FIG. A hollow three-dimensional wave absorber having a square E bottom was obtained. Further, the folded triangle E was fixed with craft tape so as to be perpendicular to the bottom surface of the hollow solid.

この電波吸収体を四体用意し、縦60cm×縦60cm×厚さ5mmのアルミニウム板に装着して電波吸収量を測定した。図10に四体の電波吸収体をアルミニウム板に装着した際の俯瞰図を示したが、隣接する電波吸収体で中空立体の上辺が互いに90°傾くように配置した。またこのとき、四枚の折り返し三角形Eいずれも底面に対し垂直になるように固定した。結果を表1に示すが、500MHz〜6GHzの周波数帯域において20〜30dBの高度な電波吸収量を有していることがわかった。
[実施例2]
(電波吸収体用シート材)
難燃紙Aに混合した炭素繊維の繊維長が3mmのものを用いた以外は、実施例1と同様にして、電波吸収シート材を得た。
Four of these radio wave absorbers were prepared and mounted on an aluminum plate 60 cm long x 60 cm long x 5 mm thick, and the amount of radio wave absorption was measured. FIG. 10 shows an overhead view when four radio wave absorbers are mounted on an aluminum plate. The radio wave absorbers are arranged so that the upper sides of the hollow solid are inclined by 90 ° with respect to each other. At this time, all the four folded triangles E were fixed so as to be perpendicular to the bottom surface. The results are shown in Table 1, and it was found that they have a high radio wave absorption of 20 to 30 dB in the frequency band of 500 MHz to 6 GHz.
[Example 2]
(Radio wave absorber sheet material)
A radio wave absorbing sheet material was obtained in the same manner as in Example 1 except that carbon fiber mixed with the flame retardant paper A had a fiber length of 3 mm.

この電波吸収体用シート材の、1GHzにおける複素比誘電率を測定した結果、実部εr’=6、虚部εr”=3であった。
(電波吸収体)
実施例1と同様にして電波吸収体を得た。また、実施例1と同様にして電波吸収量を測定した。結果を表1に示すが、周波数4、6GHzで15dBと若干電波吸収量が低減するものの、500MHz〜2GHzでは20dBの高度な電波吸収量を有していることがわかった。
[実施例3]
(電波吸収体用シート材)
難燃紙Aの炭素繊維とメタ系アラミドパルプの混合率を、それぞれ2重量%と68重量%とした以外は、実施例1と同様にして、電波吸収シート材を得た。
As a result of measuring the complex dielectric constant at 1 GHz of the sheet material for radio wave absorber, the real part εr ′ = 6 and the imaginary part εr ″ = 3.
(Radio wave absorber)
A radio wave absorber was obtained in the same manner as in Example 1. Further, the amount of radio wave absorption was measured in the same manner as in Example 1. The results are shown in Table 1. It was found that although the radio wave absorption amount was slightly reduced to 15 dB at frequencies of 4 and 6 GHz, the radio wave absorption amount was high at 20 dB from 500 MHz to 2 GHz.
[Example 3]
(Radio wave absorber sheet material)
A radio wave absorbing sheet material was obtained in the same manner as in Example 1 except that the mixing ratio of the carbon fiber of the flame retardant paper A and the meta-aramid pulp was 2 wt% and 68 wt%, respectively.

この電波吸収体用シート材の、1GHzにおける複素比誘電率を測定した結果、実部εr’=33、虚部εr”=27であった。
(電波吸収体)
実施例1と同様にして電波吸収体を得た。また、実施例1と同様にして電波吸収量を測定した。結果を表1に示すが、周波数500MHz、2GHzで10〜15dBと電波吸収量が低減するものの、4〜6GHzでは30〜45dBの高度な電波吸収量を有していることがわかった。
[実施例4]
(電波吸収体用シート材)
段ボールシートの裁断形状を、図12に示す電波吸収シート材の十二角形Cの形状とした以外は、実施例1と同様にして、電波吸収シート材を得た。
(電波吸収体)
図12に示す電波吸収シート材を実施例1と同様にして組み立て、電波吸収体を得た。また、実施例1と同様にして電波吸収量を測定した。結果を表1に示すが、周波数500MHzで15dBと若干電波吸収量が低減するものの、2〜6GHzでは20dBの高度な電波吸収量を有していることがわかった。
[実施例5]
(電波吸収体用シート材)
段ボールシートの裁断形状を、図13に示す電波吸収シート材の十二角形Cの形状とした以外は、実施例1と同様にして、電波吸収シート材を得た。
(電波吸収体)
図13に示す電波吸収シート材を実施例1と同様にして組み立て、電波吸収体を得た。また、実施例1と同様にして電波吸収量を測定した。結果を表1に示すが、実施例1や実施例4に比較すると若干電波吸収量が低くなるものの、500MHz〜6GHzの周波数帯域において15〜25dBと十分な電波吸収量を有していることがわかった。
[比較例1]
(電波吸収体用シート材)
実施例1と同じ方法で製造した段ボールシートを、図11(a)に示す形状にトムソンカッターで裁断した。この裁断時に、段ボールシートに山折り線も入れ、電波吸収体用シート材を得た。
(電波吸収体)
この電波吸収体用シート材を山折り線に沿って、中空四角錘となるよう折り曲げ、繋がっていない中空四角錘の側辺部をクラフトテープで貼って、図11(b)に示す折り返し三角形Eを有さない底面が正方形の中空立体形状の電波吸収体を得た。
As a result of measuring the complex dielectric constant at 1 GHz of the sheet material for radio wave absorber, the real part εr ′ = 33 and the imaginary part εr ″ = 27.
(Radio wave absorber)
A radio wave absorber was obtained in the same manner as in Example 1. Further, the amount of radio wave absorption was measured in the same manner as in Example 1. The results are shown in Table 1. It was found that although the radio wave absorption amount was reduced to 10 to 15 dB at frequencies of 500 MHz and 2 GHz, the radio wave absorption amount was 30 to 45 dB at 4 to 6 GHz.
[Example 4]
(Radio wave absorber sheet material)
A radio wave absorbing sheet material was obtained in the same manner as in Example 1 except that the cut shape of the corrugated cardboard sheet was changed to a dodecagon C shape of the radio wave absorbing sheet material shown in FIG.
(Radio wave absorber)
The radio wave absorbing sheet material shown in FIG. 12 was assembled in the same manner as in Example 1 to obtain a radio wave absorber. Further, the amount of radio wave absorption was measured in the same manner as in Example 1. The results are shown in Table 1. It was found that although the radio wave absorption amount was slightly reduced to 15 dB at a frequency of 500 MHz, the radio wave absorption amount was 20 dB at 2 to 6 GHz.
[Example 5]
(Radio wave absorber sheet material)
A radio wave absorbing sheet material was obtained in the same manner as in Example 1 except that the cut shape of the corrugated cardboard sheet was changed to the shape of the dodecagon C of the radio wave absorbing sheet material shown in FIG.
(Radio wave absorber)
The radio wave absorbing sheet material shown in FIG. 13 was assembled in the same manner as in Example 1 to obtain a radio wave absorber. Further, the amount of radio wave absorption was measured in the same manner as in Example 1. The results are shown in Table 1. Although the amount of radio wave absorption is slightly lower than that of Example 1 or Example 4, it has a sufficient amount of radio wave absorption of 15 to 25 dB in the frequency band of 500 MHz to 6 GHz. all right.
[Comparative Example 1]
(Radio wave absorber sheet material)
A corrugated cardboard sheet produced by the same method as in Example 1 was cut with a Thomson cutter into the shape shown in FIG. At the time of this cutting, a mountain fold line was also placed on the corrugated cardboard sheet to obtain a sheet material for a radio wave absorber.
(Radio wave absorber)
The sheet material for an electromagnetic wave absorber is bent along a mountain fold line so as to form a hollow quadrangular pyramid, and the side portions of the hollow quadrangular pyramids that are not connected are attached with craft tape, and the folded triangle E shown in FIG. A hollow three-dimensional radio wave absorber having a square bottom surface with no square was obtained.

この電波吸収体を四体用意し、縦60cm×縦60cm×厚さ5mmのアルミニウム板に装着して電波吸収量を測定した。実施例1と同様、図10に示すように、隣接する電波吸収体で中空立体の上辺が互いに90°傾くように配置した。結果を表1に示す。500MHz〜6GHzの周波数帯域において10〜20dB程度の電波吸収量であり、本発明の折り返し三角形Eを有する実施例に比べ、効果が小さいことがわかった。   Four of these radio wave absorbers were prepared and mounted on an aluminum plate 60 cm long x 60 cm long x 5 mm thick, and the amount of radio wave absorption was measured. Similar to Example 1, as shown in FIG. 10, the adjacent solid wave absorbers were arranged so that the upper sides of the hollow solid were inclined by 90 °. The results are shown in Table 1. In the frequency band of 500 MHz to 6 GHz, the radio wave absorption amount is about 10 to 20 dB, and it was found that the effect was small compared to the example having the folded triangle E of the present invention.

Figure 2012191182
Figure 2012191182

本発明は、電波暗室用途に限らず、各種無線通信システムにおける電波環境改善用の電波吸収体として応用することもできる。   The present invention is not limited to use in an anechoic chamber, but can also be applied as a radio wave absorber for improving the radio wave environment in various wireless communication systems.

A 長方形A
B 八角形B
C 十二角形C(電波吸収体用シート材)
D 内部長方形D
E 折り返し三角形E
A rectangle A
B Octagon B
C dodecagon C (sheet material for electromagnetic wave absorber)
D Internal rectangle D
E Folding triangle E

Claims (10)

十二角形Cの電波吸収体用シート材であって、
長方形Aの四隅から、それぞれ直角三角形を切り欠いた結果生じる八角形Bが、
八角形Bの内部に元の長方形Aの二組のいずれかの辺に平行な直線Fを有し、
ひとつの直角三角形を切り欠いたことにより生じる二つの頂点と、直線Fの二つの端点のうち最も近接した端点とを結んだ二本の直線を一組としたとき、四組いずれも各々の組の二本の直線が同じ長さであり、
かつ、八角形Bは元の長方形Aの辺に由来する対向する二辺を一組とし、二組いずれも各々の組の二辺が同じ長さであり、
十二角形Cが、八角形Bにおける直角三角形を切り欠いたことにより生じる四つの辺から、これらの辺を底辺とする二等辺三角形を八角形Bから切り欠くか、もしくは八角形Bに足した形状であることを特徴とする電波吸収体用シート材。
A dodecagonal C wave absorber sheet material,
An octagon B resulting from cutting out a right triangle from the four corners of the rectangle A,
Inside the octagon B has a straight line F parallel to one of the two sides of the original rectangle A,
When two straight lines connecting two vertices generated by cutting out one right triangle and the two closest end points of the straight line F are set as one set, each of the four sets is each set. The two straight lines are the same length,
And the octagon B is a set of two opposite sides derived from the side of the original rectangle A, and the two sides of each set have the same length.
The dodecagon C is cut out of the octagon B from the four sides generated by cutting out the right triangle in the octagon B, or added to the octagon B. A sheet material for a radio wave absorber characterized by having a shape.
十二角形Cにおいて、元の八角形Bの八つの頂点と、八角形B内部の直線Fの二つの端点のうち最も近接した端点とを結んだそれぞれ八本の直線がいずれも山折り線であり、
かつ、八角形Bから二等辺三角形を切り欠くか、もしくは八角形Bに足すことにより生じる四つの頂点と、上記の直線Fの二つの端点のうち最も近接した端点とを結んだ四本の直線が谷折り線であり、
かつ、直線Fが山折り線であることを特徴とする請求項1記載の電波吸収体用シート材。
In the dodecagon C, the eight straight lines connecting the eight vertices of the original octagon B and the two end points of the straight line F inside the octagon B are all mountain fold lines. Yes,
In addition, four straight lines connecting four vertices generated by cutting an isosceles triangle from the octagon B or adding it to the octagon B and the two end points closest to the straight line F are connected. Is the valley fold line,
The sheet material for a radio wave absorber according to claim 1, wherein the straight line F is a mountain fold line.
直線Fが、長方形Aの四隅からそれぞれ直角三角形を切り欠いた結果生じる八角形Bの八つの頂点のうち互いに隣接しない二つの頂点を通り、長方形Aの辺に由来する対向する二辺に直交する直線四本で囲まれた内部長方形Dの内部にあることを特徴とする請求項1または2記載の電波吸収体用シート材。   The straight line F passes through two vertices that are not adjacent to each other among the eight vertices of the octagon B resulting from cutting out a right triangle from the four corners of the rectangle A, and is orthogonal to two opposite sides derived from the sides of the rectangle A. The sheet material for a radio wave absorber according to claim 1 or 2, wherein the sheet material is inside an internal rectangle D surrounded by four straight lines. 直線Fの中点が、長方形Aの中心にあることを特徴とする請求項1〜3のいずれかに記載の電波吸収体用シート材。   The sheet material for a radio wave absorber according to any one of claims 1 to 3, wherein the midpoint of the straight line F is at the center of the rectangle A. 長方形Aの四隅からそれぞれ直角三角形を切り欠いた結果生じる八角形Bの八つの頂点のうち互いに隣接しない二つの頂点を通り、長方形Aの対向する二辺に直交する直線四本で形成される内部長方形Dが正方形であることを特徴とする請求項1〜4のいずれかに記載の電波吸収体用シート材。   An interior formed by four straight lines that pass through two vertices that are not adjacent to each other among the eight vertices of the octagon B resulting from cutting out a right triangle from the four corners of the rectangle A and are orthogonal to the two opposite sides of the rectangle A The sheet for an electromagnetic wave absorber according to any one of claims 1 to 4, wherein the rectangle D is a square. 長方形Aから直角三角形を切り欠いたことにより生じる辺のひとつをSoとし、これを挟む二つの頂点を、P1とP2とし、直線Fの二つの端点のうち最も近接した端点と頂点P1またはP2とを結んだ直線をそれぞれL1とL2とし、
頂点P1を含む長方形Aの辺と直交しかつ直線P1を通る直線と、頂点P2を含む長方形Aの辺と直交しかつ直線P2を通る直線との交点Qと、直線Fの二つの端点のうち最も近接した端点を結んだ直線をNとし、
辺Soを底辺とする二等辺三角形を切り欠くか、もしくは足した際に生じる頂点をP3とし、頂点P3とP1を結んだ十二角形Cの辺と直線L1とが形成する角をθ1、頂点P3とP2を結んだ十二角形Cの辺と直線L2とが形成する角をθ2としたとき、十二角形Cに含まれる四箇所全ての角θ1、θ2が下式の範囲内にあることを特徴とする請求項1〜5のいずれかに記載の電波吸収体用シート材。
Figure 2012191182
One of the sides generated by cutting out a right triangle from the rectangle A is defined as So, and the two vertices sandwiching the side are defined as P1 and P2, and the two closest end points of the straight line F and the vertex P1 or P2 Let L1 and L2 be the straight lines connecting
Of the two end points of the straight line F, the intersection point Q of the straight line orthogonal to the side of the rectangle A including the vertex P1 and passing through the straight line P1 and the straight line orthogonal to the side of the rectangle A including the vertex P2 and passing through the straight line P2 Let N be the straight line connecting the nearest end points,
The vertex formed when notching or adding an isosceles triangle with the side So as the base is P3, the angle formed by the side of the dodecagon C connecting the vertices P3 and P1 and the straight line L1 is θ1, and the vertex When the angle formed by the side of the dodecagon C connecting P3 and P2 and the straight line L2 is θ2, all the angles θ1 and θ2 included in the dodecagon C are within the range of the following expression. The sheet | seat material for electromagnetic wave absorbers in any one of Claims 1-5 characterized by these.
Figure 2012191182
厚さが0.2〜10mmの範囲にあることを特徴とする請求項1〜6のいずれかに記載の電波吸収体用シート材。   The sheet material for a radio wave absorber according to any one of claims 1 to 6, wherein the thickness is in a range of 0.2 to 10 mm. 電波吸収体用シート材の1GHzにおける複素比誘電率が、実部εr’が5〜30、かつ虚部εr”が2〜25の範囲にあることを特徴とする請求項1〜7のいずれかに記載の電波吸収体用シート材。   The complex relative permittivity at 1 GHz of the sheet material for an electromagnetic wave absorber is such that the real part εr ′ is in the range of 5 to 30 and the imaginary part εr ″ is in the range of 2 to 25. The sheet | seat material for electromagnetic wave absorbers of description. 請求項1〜8のいずれかに記載の電波吸収体用シート材の谷折り線及び山折り線を、谷折り線に隣接する二本の山折り線同士が重なるよう四組いずれも折り曲げ、
かつ直線Fも山折りで折り曲げ、
内部に四枚の折り返し三角形Eを有する、
底面が長方形の中空立体とすることを特徴とする電波吸収体。
Folding the valley fold line and the mountain fold line of the radio wave absorber sheet material according to any one of claims 1 to 8, and folding all four sets so that two mountain fold lines adjacent to the valley fold line overlap each other,
And the straight line F is folded in a mountain fold,
It has four folded triangles E inside,
A radio wave absorber characterized in that the bottom is a rectangular solid with a rectangular shape.
四枚の折り返し三角形Eがいずれも中空の立体の底面に垂直であることを特徴とする請求項9記載の電波吸収体。   10. The radio wave absorber according to claim 9, wherein each of the four folded triangles E is perpendicular to the bottom surface of the hollow solid body.
JP2012033624A 2011-02-22 2012-02-20 Sheet material for radio wave absorber and radio wave absorber Expired - Fee Related JP5953799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012033624A JP5953799B2 (en) 2011-02-22 2012-02-20 Sheet material for radio wave absorber and radio wave absorber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011035715 2011-02-22
JP2011035715 2011-02-22
JP2012033624A JP5953799B2 (en) 2011-02-22 2012-02-20 Sheet material for radio wave absorber and radio wave absorber

Publications (2)

Publication Number Publication Date
JP2012191182A true JP2012191182A (en) 2012-10-04
JP5953799B2 JP5953799B2 (en) 2016-07-20

Family

ID=47083956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033624A Expired - Fee Related JP5953799B2 (en) 2011-02-22 2012-02-20 Sheet material for radio wave absorber and radio wave absorber

Country Status (1)

Country Link
JP (1) JP5953799B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163669A (en) * 1996-12-02 1998-06-19 Mitsubishi Electric Corp Shielding member
JPH1187978A (en) * 1997-09-09 1999-03-30 Nitto Boseki Co Ltd Incombustible radio wave absorber
JP2000216584A (en) * 1999-01-21 2000-08-04 Tdk Corp Electromagnetic-wave absorbing body, members for assembling therewith, and manufacture thereof
JP2000223883A (en) * 1999-01-29 2000-08-11 Kyocera Corp Radio-wave absorber
JP2000320039A (en) * 1999-03-09 2000-11-21 Nippon Muki Co Ltd Solid shaped inorganic fiber molding, its assembling body and manufacture of the assembling body
JP2005109161A (en) * 2003-09-30 2005-04-21 Nisshinbou Engineering Kk Electric wave absorber
JP2007067395A (en) * 2005-08-05 2007-03-15 Tdk Corp Radio wave absorber, method of fabricating the same, and anechoic chamber
JP2009164265A (en) * 2007-12-28 2009-07-23 Nok Corp Electromagnetic wave shield housing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163669A (en) * 1996-12-02 1998-06-19 Mitsubishi Electric Corp Shielding member
JPH1187978A (en) * 1997-09-09 1999-03-30 Nitto Boseki Co Ltd Incombustible radio wave absorber
JP2000216584A (en) * 1999-01-21 2000-08-04 Tdk Corp Electromagnetic-wave absorbing body, members for assembling therewith, and manufacture thereof
JP2000223883A (en) * 1999-01-29 2000-08-11 Kyocera Corp Radio-wave absorber
JP2000320039A (en) * 1999-03-09 2000-11-21 Nippon Muki Co Ltd Solid shaped inorganic fiber molding, its assembling body and manufacture of the assembling body
JP2005109161A (en) * 2003-09-30 2005-04-21 Nisshinbou Engineering Kk Electric wave absorber
JP2007067395A (en) * 2005-08-05 2007-03-15 Tdk Corp Radio wave absorber, method of fabricating the same, and anechoic chamber
JP2009164265A (en) * 2007-12-28 2009-07-23 Nok Corp Electromagnetic wave shield housing

Also Published As

Publication number Publication date
JP5953799B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP5496879B2 (en) Composite wave absorber
JP4346360B2 (en) Sheet material for radio wave absorber and radio wave absorber
JP4073933B2 (en) Electromagnetic wave absorber
CN109659691A (en) A kind of Meta Materials radome
US6359581B2 (en) Electromagnetic wave abosrber
JP2012191183A (en) Sheet material for radio wave absorber and radio wave absorber
JP6103249B2 (en) Radio wave absorber and anechoic chamber
KR102213841B1 (en) Electro-magnetic wave absorber and manufacturing method thereof
JP2011192978A (en) Electromagnetic wave absorber
JP5953799B2 (en) Sheet material for radio wave absorber and radio wave absorber
JP5953798B2 (en) Sheet material for radio wave absorber and radio wave absorber
WO2011016109A1 (en) Wave absorber
JP2016146374A (en) Electromagnetic wave absorber
JP2009088107A (en) Radio wave absorber, its accommodating method, and radio wave dark room
JP4684699B2 (en) Radio wave absorbing sheet material and radio wave absorber using the same
JP6089625B2 (en) Sheet material for radio wave absorber and radio wave absorber using the same
CN113690627A (en) WIFI dual-band-stop type frequency selection surface
JP6522262B1 (en) Electromagnetic wave absorbing sheet and method of manufacturing the same
JP6519317B2 (en) Radio wave absorber
JP4617830B2 (en) Radio wave absorber member and radio wave absorber
JP4338460B2 (en) Radio wave absorber and manufacturing method thereof
JP4422980B2 (en) Radio wave absorber
JP2008141190A (en) Radio wave absorber
JP4420253B2 (en) Radio wave absorber and anechoic chamber
JP2006314016A (en) Radio wave absorbing structural body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R151 Written notification of patent or utility model registration

Ref document number: 5953799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees