JP2012188540A - Coal gasification system and coal gasification method - Google Patents

Coal gasification system and coal gasification method Download PDF

Info

Publication number
JP2012188540A
JP2012188540A JP2011052886A JP2011052886A JP2012188540A JP 2012188540 A JP2012188540 A JP 2012188540A JP 2011052886 A JP2011052886 A JP 2011052886A JP 2011052886 A JP2011052886 A JP 2011052886A JP 2012188540 A JP2012188540 A JP 2012188540A
Authority
JP
Japan
Prior art keywords
coal
coal gasification
differential pressure
pulverized coal
gasification furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011052886A
Other languages
Japanese (ja)
Other versions
JP5887061B2 (en
Inventor
Yasuki Namiki
泰樹 並木
Katsushi Kosuge
克志 小管
Masumi Itonaga
眞須美 糸永
Hiroyuki Kotsuru
広行 小水流
Taku Takeda
卓 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2011052886A priority Critical patent/JP5887061B2/en
Publication of JP2012188540A publication Critical patent/JP2012188540A/en
Application granted granted Critical
Publication of JP5887061B2 publication Critical patent/JP5887061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly precisely control a pulverized coal amount supplied to a coal gasification furnace regardless of pressure fluctuation in the coal gasification furnace.SOLUTION: The coal gasification system 1 comprises: a feed hopper 2 for receiving pulverized coal obtained by crushing coal; a rotary feeder 3 connectedly disposed in the lower portion of the feed hopper 2 and used for discharging the pulverized coal from the feed hopper 2; a coal gasification furnace 4 for burning the pulverized coal discharged and supplied from the rotary feeder 3 in the furnace to produce the coal gasification gas containing hydrogen gas and carbon monoxide gas; and a differential pressure-controlling unit 5 for measuring differential pressure between inside the feed hopper 2 and inside the coal gasification furnace 4, and changing the pressure in the feed hopper 2 on the basis of the difference between the measurement value of the differential pressure and the target value of the differential pressure to control the differential pressure to the target value.

Description

本発明は、石炭が内部で燃焼することで、水素ガスおよび一酸化炭素ガスを含有する石炭ガス化ガスが生成される石炭ガス化炉を備える石炭ガス化システムおよび石炭ガス化方法に関する。   The present invention relates to a coal gasification system and a coal gasification method including a coal gasification furnace in which coal gasification gas containing hydrogen gas and carbon monoxide gas is generated by burning coal inside.

この種の石炭ガス化システムにおいて前記石炭ガス化炉に微粉炭を供給する粉体計量装置として、例えば下記特許文献1記載の構成が挙げられる。該粉体計量装置は、粉体である微粉炭が収容された計量ホッパと、計量ホッパから所定箇所である石炭ガス化炉に粉体を供給する粉体供給装置と、を備えている。
ここで前記粉体供給装置としては、供給口および排出口が形成されたケーシング、および該ケーシング内に配設されたロータを備えるロータリフィーダを採用することが考えられる。ロータは、回転軸回りに同等の間隔をあけて配設された複数の羽板を備えており、回転軸回りに隣り合う羽板同士の間には仕切り室が形成されている。そして、ロータリフィーダでは、ロータが回転することにより、供給口から供給された計量ホッパ内の微粉炭を仕切り室内に充填させた後、該仕切り室内の微粉炭を排出口から排出する。このように、ロータリフィーダは、ロータが回転することにより、計量ホッパ内の微粉炭を仕切り室に充填される量単位で排出して石炭ガス化炉に供給することから、ロータの回転量を制御することにより、微粉炭の石炭ガス化炉への供給量を調整することができる。
In this type of coal gasification system, as a powder metering device for supplying pulverized coal to the coal gasification furnace, for example, a configuration described in Patent Document 1 below can be cited. The powder metering device includes a metering hopper in which pulverized coal that is powder is accommodated, and a powder supply device that feeds powder from the metering hopper to a coal gasification furnace that is a predetermined location.
Here, as the powder supply device, it is conceivable to employ a rotary feeder including a casing in which a supply port and a discharge port are formed, and a rotor disposed in the casing. The rotor includes a plurality of blades arranged at equal intervals around the rotation axis, and a partition chamber is formed between adjacent blades around the rotation axis. In the rotary feeder, when the rotor rotates, the pulverized coal in the weighing hopper supplied from the supply port is filled into the partition chamber, and then the pulverized coal in the partition chamber is discharged from the discharge port. In this way, the rotary feeder controls the amount of rotation of the rotor because the pulverized coal in the weighing hopper is discharged in units of the amount filled in the partition chamber and supplied to the coal gasifier when the rotor rotates. By doing this, the supply amount of pulverized coal to the coal gasifier can be adjusted.

特開平1−51932号公報JP-A-1-51932

しかしながら、前記従来の石炭ガス化システムでは、石炭ガス化炉内の圧力に応じて、ロータリフィーダの前記仕切り室内に充填される微粉炭の充填量が変化し易く、石炭ガス化炉内の圧力が変動すると、圧力変動の前後で、ロータリフィーダのロータを同一回転量だけ回転させたとしても、ロータリフィーダから排出される微粉炭の排出量が異なり、石炭ガス化炉への微粉炭の供給量を調整することが難しいという問題がある。   However, in the conventional coal gasification system, the amount of pulverized coal charged in the partition chamber of the rotary feeder is likely to change according to the pressure in the coal gasifier, and the pressure in the coal gasifier is If it fluctuates, even if the rotor of the rotary feeder is rotated by the same amount of rotation before and after pressure fluctuation, the amount of pulverized coal discharged from the rotary feeder is different, and the amount of pulverized coal supplied to the coal gasifier is reduced. There is a problem that it is difficult to adjust.

本発明は、前述した事情に鑑みてなされたものであって、その目的は、石炭ガス化炉内の圧力変動によらず、石炭ガス化炉への微粉炭の供給量を高精度に調整することができる石炭ガス化システムを提供することである。   The present invention has been made in view of the above-described circumstances, and its purpose is to adjust the supply amount of pulverized coal to the coal gasification furnace with high accuracy regardless of the pressure fluctuation in the coal gasification furnace. It is to provide a coal gasification system that can.

前記課題を解決するために、本発明は以下の手段を提案している。
本願の請求項1に係る石炭ガス化システムは、石炭が粉砕されてなる微粉炭が収容された供給ホッパと、該供給ホッパの下部に連設され、該供給ホッパから微粉炭を排出するロータリフィーダと、該ロータリフィーダから排出された微粉炭が供給され、該微粉炭が内部で燃焼することで、水素ガスおよび一酸化炭素ガスを含有する石炭ガス化ガスが生成される石炭ガス化炉と、を備える石炭ガス化システムであって、前記供給ホッパ内と前記石炭ガス化炉内との差圧を測定するとともに、差圧の測定値と差圧の目標値との差分に基づいて前記供給ホッパ内の圧力を変化させ、差圧を目標値に制御する差圧制御部を備えていることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
A coal gasification system according to claim 1 of the present application includes a supply hopper containing pulverized coal obtained by pulverizing coal, and a rotary feeder connected to a lower portion of the supply hopper to discharge the pulverized coal from the supply hopper. And a coal gasification furnace in which pulverized coal discharged from the rotary feeder is supplied, and the pulverized coal burns inside to generate a coal gasification gas containing hydrogen gas and carbon monoxide gas, A coal gasification system comprising: a differential pressure between the supply hopper and the coal gasification furnace; and the supply hopper based on a difference between a measured value of the differential pressure and a target value of the differential pressure And a differential pressure control unit that controls the differential pressure to a target value by changing the internal pressure.

この発明によれば、前記差圧制御部を備えているので、石炭ガス化炉内の圧力が変動したとしても、供給ホッパ内と石炭ガス化炉内との差圧を目標値に制御し、圧力変動の前後での差圧の変化を抑えることが可能になり、ロータリフィーダの仕切り室内に充填される微粉炭の充填量が変化するのを抑制することができる。   According to this invention, since the differential pressure control unit is provided, even if the pressure in the coal gasification furnace fluctuates, the differential pressure between the supply hopper and the coal gasification furnace is controlled to a target value, It becomes possible to suppress the change of the differential pressure before and after the pressure fluctuation, and it is possible to suppress the change in the filling amount of the pulverized coal filled in the partition chamber of the rotary feeder.

本願の請求項2に係る石炭ガス化方法は、石炭が粉砕されてなる微粉炭が収容された供給ホッパと、該供給ホッパの下部に連設され、該供給ホッパから微粉炭を排出するロータリフィーダと、該ロータリフィーダから排出された微粉炭が供給され、該微粉炭が内部で燃焼することで、水素ガスおよび一酸化炭素ガスを含有する石炭ガス化ガスが生成される石炭ガス化炉と、を備える石炭ガス化システムを用いた石炭ガス化方法であって、前記供給ホッパ内と前記石炭ガス化炉内との差圧を測定するとともに、差圧の測定値と差圧の目標値との差分に基づいて前記供給ホッパ内の圧力を変化させ、差圧を目標値に制御する差圧制御工程を有していることを特徴とする。   A coal gasification method according to claim 2 of the present application includes a supply hopper that contains pulverized coal obtained by pulverizing coal, and a rotary feeder that is connected to a lower portion of the supply hopper and discharges the pulverized coal from the supply hopper. And a coal gasification furnace in which pulverized coal discharged from the rotary feeder is supplied, and the pulverized coal burns inside to generate a coal gasification gas containing hydrogen gas and carbon monoxide gas, A coal gasification method using a coal gasification system comprising: measuring a differential pressure between the supply hopper and the coal gasification furnace; and a difference between a measured value of the differential pressure and a target value of the differential pressure. It has a differential pressure control step of changing the pressure in the supply hopper based on the difference and controlling the differential pressure to a target value.

この発明によれば、前記差圧制御工程を有しているので、石炭ガス化炉内の圧力が変動したとしても、供給ホッパ内と石炭ガス化炉内との差圧を目標値に制御し、圧力変動の前後での差圧の変化を抑えることが可能になり、ロータリフィーダの仕切り室内に充填される微粉炭の充填量が変化するのを抑制することができる。   According to this invention, since the differential pressure control step is included, even if the pressure in the coal gasification furnace fluctuates, the differential pressure between the supply hopper and the coal gasification furnace is controlled to a target value. Thus, it is possible to suppress a change in the differential pressure before and after the pressure fluctuation, and it is possible to suppress a change in the filling amount of the pulverized coal filled in the partition chamber of the rotary feeder.

本願の請求項1に記載の発明によれば、石炭ガス化炉内の圧力が変動したとしても、圧力変動の前後でロータリフィーダの仕切り室内に充填される微粉炭の充填量が変化するのを抑制することができるので、ロータの回転量を制御することにより、石炭ガス化炉への微粉炭の供給量を高精度に調整することができる。   According to the invention described in claim 1 of the present application, even if the pressure in the coal gasification furnace fluctuates, the amount of pulverized coal charged in the partition chamber of the rotary feeder changes before and after the pressure fluctuation. Since the amount of rotation of the rotor can be controlled, the amount of pulverized coal supplied to the coal gasification furnace can be adjusted with high accuracy.

なお石炭ガス化炉は、一般的な高炉などに比べて容積が小さいものが主流で、例えばその容積は数m程度であることから、石炭ガス化炉内の圧力が変動し易く、前述の作用効果が顕著に奏功されることとなる。 The coal gasification furnace is mainly smaller in volume than a general blast furnace. For example, since the volume is about several m 3 , the pressure in the coal gasification furnace easily fluctuates. The effect will be remarkably achieved.

また、前述のように石炭ガス化炉への微粉炭の供給量を高精度に調整することにより、石炭ガス化炉内で微粉炭の燃焼により生ずるガスの量も高精度に調整することができる。ここで、このガスの量は石炭ガス化炉内の圧力に大きく影響することから、このように該ガスの量を高精度に調整することにより、石炭ガス化炉内において意図しない圧力変動を抑えることが可能になり、石炭ガス化炉の運転を安定させることができる。   In addition, by adjusting the supply amount of pulverized coal to the coal gasification furnace with high accuracy as described above, the amount of gas generated by the combustion of pulverized coal in the coal gasification furnace can also be adjusted with high accuracy. . Here, since the amount of the gas greatly affects the pressure in the coal gasification furnace, the pressure fluctuation in the coal gasification furnace is suppressed by adjusting the amount of the gas with high accuracy in this way. And the operation of the coal gasifier can be stabilized.

さらに前述のように、微粉炭の燃焼により生ずるガスの量が、石炭ガス化炉内の圧力に大きく影響することから、石炭ガス化炉の運転条件を変更するため石炭ガス化炉への微粉炭の供給量を増減させるときにも、石炭ガス化炉内の圧力が変動することとなる。このような場合であっても、前述のように石炭ガス化炉への微粉炭の供給量を高精度に調整することが可能であり、石炭ガス化炉への微粉炭の供給量を精度よく増減させ、運転条件を円滑に変更することができる。   Furthermore, as described above, since the amount of gas generated by the combustion of pulverized coal greatly affects the pressure in the coal gasifier, the pulverized coal to the coal gasifier is changed to change the operating conditions of the coal gasifier. The pressure in the coal gasifier also fluctuates when increasing or decreasing the supply amount. Even in such a case, it is possible to adjust the supply amount of pulverized coal to the coal gasification furnace with high accuracy as described above, and to accurately adjust the supply amount of pulverized coal to the coal gasification furnace. Increase or decrease the operating conditions can be changed smoothly.

本願の請求項2に記載の発明によれば、石炭ガス化炉内の圧力が変動したとしても、圧力変動の前後でロータリフィーダの仕切り室内に充填される微粉炭の充填量が変化するのを抑制することができるので、ロータの回転量を制御することにより、石炭ガス化炉への微粉炭の供給量を高精度に調整することができる。   According to the invention described in claim 2 of the present application, even if the pressure in the coal gasification furnace fluctuates, the amount of pulverized coal charged in the partition chamber of the rotary feeder changes before and after the pressure fluctuation. Since the amount of rotation of the rotor can be controlled, the amount of pulverized coal supplied to the coal gasification furnace can be adjusted with high accuracy.

なお石炭ガス化炉は、一般的な高炉などに比べて容積が小さいものが主流で、例えばその容積は数m程度であることから、石炭ガス化炉内の圧力が変動し易く、前述の作用効果が顕著に奏功されることとなる。 The coal gasification furnace is mainly smaller in volume than a general blast furnace. For example, since the volume is about several m 3 , the pressure in the coal gasification furnace easily fluctuates. The effect will be remarkably achieved.

また、前述のように石炭ガス化炉への微粉炭の供給量を高精度に調整することにより、石炭ガス化炉内で微粉炭の燃焼により生ずるガスの量も高精度に調整することができる。ここで、このガスの量は石炭ガス化炉内の圧力に大きく影響することから、このように該ガスの量を高精度に調整することにより、石炭ガス化炉内において意図しない圧力変動を抑えることが可能になり、石炭ガス化炉の運転を安定させることができる。   In addition, by adjusting the supply amount of pulverized coal to the coal gasification furnace with high accuracy as described above, the amount of gas generated by the combustion of pulverized coal in the coal gasification furnace can also be adjusted with high accuracy. . Here, since the amount of the gas greatly affects the pressure in the coal gasification furnace, the pressure fluctuation in the coal gasification furnace is suppressed by adjusting the amount of the gas with high accuracy in this way. And the operation of the coal gasifier can be stabilized.

さらに前述のように、微粉炭の燃焼により生ずるガスの量が、石炭ガス化炉内の圧力に大きく影響することから、石炭ガス化炉の運転条件を変更するため石炭ガス化炉への微粉炭の供給量を増減させるときにも、石炭ガス化炉内の圧力が変動することとなる。このような場合であっても、前述のように石炭ガス化炉への微粉炭の供給量を高精度に調整することが可能であり、石炭ガス化炉への微粉炭の供給量を精度よく増減させ、運転条件を円滑に変更することができる。   Furthermore, as described above, since the amount of gas generated by the combustion of pulverized coal greatly affects the pressure in the coal gasifier, the pulverized coal to the coal gasifier is changed to change the operating conditions of the coal gasifier. The pressure in the coal gasifier also fluctuates when increasing or decreasing the supply amount. Even in such a case, it is possible to adjust the supply amount of pulverized coal to the coal gasification furnace with high accuracy as described above, and to accurately adjust the supply amount of pulverized coal to the coal gasification furnace. Increase or decrease the operating conditions can be changed smoothly.

本発明の一実施形態に係る石炭ガス化システムの概略図である。It is the schematic of the coal gasification system which concerns on one Embodiment of this invention.

以下、図面を参照し、本発明の一実施形態に係る石炭ガス化システムを説明する。
図1に示すように、石炭ガス化システム1は、石炭が粉砕されてなる微粉炭が収容された供給ホッパ2と、該供給ホッパ2の下部に連設され、該供給ホッパ2から微粉炭を排出するロータリフィーダ3と、該ロータリフィーダ3から排出された微粉炭が供給され、該微粉炭が内部で燃焼することで、水素ガスおよび一酸化炭素ガスを含有する石炭ガス化ガスが生成される石炭ガス化炉4と、供給ホッパ2内と石炭ガス化炉4内との差圧を測定するとともに、差圧の測定値と差圧の目標値との差分に基づいて供給ホッパ2内の圧力を変化させ、差圧を目標値に制御する差圧制御部5と、を備えている。
Hereinafter, a coal gasification system according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a coal gasification system 1 includes a supply hopper 2 in which pulverized coal obtained by pulverizing coal is accommodated, and a lower portion of the supply hopper 2, and pulverized coal is supplied from the supply hopper 2. The rotary feeder 3 to be discharged and the pulverized coal discharged from the rotary feeder 3 are supplied, and the pulverized coal is combusted inside to generate a coal gasification gas containing hydrogen gas and carbon monoxide gas. While measuring the differential pressure between the coal gasification furnace 4, the supply hopper 2 and the coal gasification furnace 4, the pressure in the supply hopper 2 based on the difference between the measured value of the differential pressure and the target value of the differential pressure And a differential pressure control unit 5 that controls the differential pressure to a target value.

供給ホッパ2の上部には、該供給ホッパ2に微粉炭を供給するロックホッパ6が連設されている。これらの両ホッパ2、6は、開閉弁7が設けられたホッパ連結管8を介して連結されている。供給ホッパ2内の圧力は、石炭ガス化炉4内の圧力よりも小さくなっている。
ロータリフィーダ3は、上方に開口する供給口9および下方に開口する排出口10が形成されたケーシング11と、該ケーシング11内に配設されたロータ12と、該ロータ12を回転軸17回りに回転させるモータ13と、該モータ13を制御するモータ制御部14と、を備えている。
A lock hopper 6 that supplies pulverized coal to the supply hopper 2 is connected to the upper portion of the supply hopper 2. These hoppers 2 and 6 are connected through a hopper connecting pipe 8 provided with an on-off valve 7. The pressure in the supply hopper 2 is smaller than the pressure in the coal gasification furnace 4.
The rotary feeder 3 includes a casing 11 in which a supply port 9 opening upward and a discharge port 10 opening downward are formed, a rotor 12 disposed in the casing 11, and the rotor 12 around a rotation shaft 17. The motor 13 to rotate and the motor control part 14 which controls this motor 13 are provided.

ケーシング11の供給口9は、供給ホッパ2内に連通し、ケーシング11の排出口10は、ロータリフィーダ3の下方に位置する混合器15内に、ケーシング11から下方に延設された微粉炭流通管16を介して連通している。またケーシング11は、ロータ12の回転軸17と同軸の円筒状に形成されている。   The supply port 9 of the casing 11 communicates with the supply hopper 2, and the discharge port 10 of the casing 11 circulates pulverized coal extending downward from the casing 11 in the mixer 15 positioned below the rotary feeder 3. It communicates via the tube 16. The casing 11 is formed in a cylindrical shape that is coaxial with the rotating shaft 17 of the rotor 12.

ロータ12は、回転軸17方向から見た側面視で回転軸17から放射状に延設された複数の羽板18を備えている。複数の羽板18は、回転軸17回りに同等の間隔をあけて配設されており、回転軸17回りに隣り合う羽板18同士の間には仕切り室19が形成されている。仕切り室19は、回転軸17回りに複数設けられ、全ての仕切り室19の容積は互いに同等となっている。   The rotor 12 includes a plurality of blades 18 extending radially from the rotary shaft 17 in a side view as viewed from the direction of the rotary shaft 17. The plurality of slats 18 are arranged around the rotation shaft 17 at equal intervals, and a partition chamber 19 is formed between the slats 18 adjacent to each other around the rotation shaft 17. A plurality of partition chambers 19 are provided around the rotating shaft 17, and the volumes of all the partition chambers 19 are equal to each other.

モータ制御部14には、供給ホッパ2の重量を測定する重量計20から測定結果が送出される。そしてモータ制御部14は、モータ13によりロータ12を所定量、回転させたときに、その回転量と、回転前後での供給ホッパ2の重量の測定結果と、に基づいて、単位回転量あたり、ロータリフィーダ3から排出される供給ホッパ2内の微粉炭の重量を算出する。   A measurement result is sent to the motor control unit 14 from a weigh scale 20 that measures the weight of the supply hopper 2. Then, when the motor 12 rotates the rotor 12 by a predetermined amount by the motor 13, the motor control unit 14 per unit rotation amount based on the rotation amount and the measurement result of the weight of the supply hopper 2 before and after the rotation. The weight of the pulverized coal in the supply hopper 2 discharged from the rotary feeder 3 is calculated.

混合器15は、ロータリフィーダ3から供給された微粉炭を、例えば窒素ガスなどからなる搬送ガスにより石炭ガス化炉4に送出する。該混合器15には、搬送ガスを混合器15内に供給する搬送ガス供給部21と、石炭ガス化炉4内に連通し、微粉炭と搬送ガスとの混合体が混合器15から送出される送出管22と、が各別に接続されている。   The mixer 15 sends the pulverized coal supplied from the rotary feeder 3 to the coal gasifier 4 using a carrier gas made of, for example, nitrogen gas. The mixer 15 communicates with the carrier gas supply unit 21 for supplying carrier gas into the mixer 15 and the coal gasification furnace 4, and a mixture of pulverized coal and carrier gas is sent from the mixer 15. Are connected to each other.

搬送ガス供給部21は、混合器15内に連通する搬送ガス配管23と、該搬送ガス配管23に設けられた搬送ガス流量調整弁24と、該搬送ガス流量調整弁24を制御する弁制御部25と、を備えている。搬送ガス配管23は、搬送ガスを供給する図示しないガス供給源に接続されている。   The carrier gas supply unit 21 includes a carrier gas pipe 23 communicating with the mixer 15, a carrier gas flow rate adjustment valve 24 provided in the carrier gas pipe 23, and a valve control unit that controls the carrier gas flow rate adjustment valve 24. 25. The carrier gas pipe 23 is connected to a gas supply source (not shown) that supplies carrier gas.

石炭ガス化炉4は、下段が部分酸化部26で上段が熱分解部27である二段構造とされている。
部分酸化部26には、送出管22に接続されたバーナ28が設けられており、該バーナ28を通して部分酸化部26内に前記混合体が供給される。バーナ28には、図示しない酸素含有ガス供給手段が接続されており、バーナ28は、前記混合体とともに酸素含有ガスを部分酸化部26内に供給する。これにより、部分酸化部26は、内部に投入される微粉炭を、酸素含有ガスを酸化剤としてガス化して、石炭ガス化ガスを生成する。
The coal gasification furnace 4 has a two-stage structure in which the lower stage is a partial oxidation unit 26 and the upper stage is a thermal decomposition unit 27.
The partial oxidation unit 26 is provided with a burner 28 connected to the delivery pipe 22, and the mixture is supplied into the partial oxidation unit 26 through the burner 28. An oxygen-containing gas supply means (not shown) is connected to the burner 28, and the burner 28 supplies the oxygen-containing gas into the partial oxidation unit 26 together with the mixture. Thereby, the partial oxidation part 26 gasifies the pulverized coal thrown in by using oxygen-containing gas as an oxidizing agent, and produces | generates coal gasification gas.

熱分解部27は、部分酸化部26で生成された石炭ガス化ガスに図示しないノズルから石炭を供給し、この石炭を、石炭ガス化ガスの熱を利用して熱分解する。熱分解部27の頂部には、石炭ガス化ガスを下流に導出する導出管29が設けられ、該導出管29を流通した石炭ガス化ガスから、最終的にメタン、メタノールおよびアンモニア等、製品である合成天然ガス(SNG)が製造される。   The pyrolysis unit 27 supplies coal to the coal gasification gas generated by the partial oxidation unit 26 from a nozzle (not shown), and pyrolyzes the coal using the heat of the coal gasification gas. At the top of the pyrolysis section 27, a lead-out pipe 29 for leading the coal gasification gas downstream is provided. From the coal gasification gas that has circulated through the lead-out pipe 29, finally, products such as methane, methanol and ammonia are provided. A synthetic natural gas (SNG) is produced.

差圧制御部5は、供給ホッパ2内と石炭ガス化炉4内との差圧を測定する測定部30と、供給ホッパ2内に例えば窒素ガスなどからなる加圧ガスを供給する加圧ガス供給部31と、を備えている。
加圧ガス供給部31は、供給ホッパ2内に連通する加圧ガス配管32と、該加圧ガス配管32に設けられた加圧ガス流量調整弁33と、を備えている。なお図示の例では、加圧ガス配管32は、搬送ガス配管23と同一の前記ガス供給源に接続されている。
The differential pressure control unit 5 includes a measuring unit 30 that measures the differential pressure between the supply hopper 2 and the coal gasification furnace 4, and a pressurized gas that supplies pressurized gas such as nitrogen gas into the supply hopper 2. And a supply unit 31.
The pressurized gas supply unit 31 includes a pressurized gas pipe 32 that communicates with the supply hopper 2 and a pressurized gas flow rate adjustment valve 33 provided in the pressurized gas pipe 32. In the illustrated example, the pressurized gas pipe 32 is connected to the same gas supply source as the carrier gas pipe 23.

測定部30には、差圧の目標値が予め記憶されており、差圧を測定した後、差圧の測定値と目標値との差分を算出する。そして、この差分に基づいて、前記加圧ガス流量調整弁33を制御することにより、供給ホッパ2内の圧力を変化させて差圧を目標値に制御する。なお図示の例では、測定部30は、石炭ガス化炉4内の圧力として、部分酸化部26内の圧力を測定する。   The measurement unit 30 stores a target value of the differential pressure in advance. After measuring the differential pressure, the difference between the measured value of the differential pressure and the target value is calculated. Based on this difference, the pressurized gas flow rate adjusting valve 33 is controlled to change the pressure in the supply hopper 2 to control the differential pressure to the target value. In the illustrated example, the measurement unit 30 measures the pressure in the partial oxidation unit 26 as the pressure in the coal gasification furnace 4.

なお、差圧制御部5を作動させることにより、供給ホッパ2内と石炭ガス化炉4内との差圧を測定するとともに、差圧の測定値と差圧の目標値との差分に基づいて供給ホッパ2内の圧力を変化させ、差圧を目標値に制御する差圧制御工程を行うことができる。この差圧制御工程は、石炭ガス化システム1の運転中に、一定時間おきに間欠的に実施してもよく、一定時間、継続して連続的に実施してもよい。   In addition, by operating the differential pressure control unit 5, the differential pressure between the supply hopper 2 and the coal gasification furnace 4 is measured, and based on the difference between the measured value of the differential pressure and the target value of the differential pressure. A differential pressure control process can be performed in which the pressure in the supply hopper 2 is changed to control the differential pressure to a target value. This differential pressure control step may be performed intermittently at regular intervals during the operation of the coal gasification system 1 or may be continuously performed continuously for a fixed time.

以上説明したように、本実施形態に係る石炭ガス化システム1および石炭ガス化方法によれば、前記差圧制御部5を備えているので、石炭ガス化炉4内の圧力が変動したとしても、供給ホッパ2内と石炭ガス化炉4内との差圧を目標値に制御し、圧力変動の前後での差圧の変化を抑えることが可能になり、ロータリフィーダ3の仕切り室19内に充填される微粉炭の充填量が変化するのを抑制することができる。これにより、ロータ12の回転量を制御することにより、石炭ガス化炉4への微粉炭の供給量を高精度に調整することができる。   As described above, according to the coal gasification system 1 and the coal gasification method according to the present embodiment, since the differential pressure control unit 5 is provided, even if the pressure in the coal gasification furnace 4 fluctuates. The pressure difference between the supply hopper 2 and the coal gasification furnace 4 can be controlled to a target value, and the change in the differential pressure before and after the pressure fluctuation can be suppressed. It can suppress that the filling amount of the pulverized coal with which it fills changes. Thereby, the supply amount of the pulverized coal to the coal gasification furnace 4 can be adjusted with high accuracy by controlling the rotation amount of the rotor 12.

なお石炭ガス化炉4は、一般的な高炉などに比べて容積が小さいものが主流で、例えばその容積は数m程度であることから、石炭ガス化炉4内の圧力が変動し易く、前述の作用効果が顕著に奏功されることとなる。 The coal gasification furnace 4 has a main volume that is smaller than that of a general blast furnace. For example, since the volume is about several m 3 , the pressure in the coal gasification furnace 4 is likely to fluctuate. The above-described effects are remarkably achieved.

また、前述のように石炭ガス化炉4への微粉炭の供給量を高精度に調整することにより、石炭ガス化炉4内で微粉炭の燃焼により生ずるガスの量も高精度に調整することができる。ここで、このガスの量は石炭ガス化炉4内の圧力に大きく影響することから、このように該ガスの量を高精度に調整することにより、石炭ガス化炉4内において意図しない圧力変動を抑えることが可能になり、石炭ガス化炉4の運転を安定させることができる。   In addition, by adjusting the amount of pulverized coal supplied to the coal gasification furnace 4 with high accuracy as described above, the amount of gas generated by the combustion of pulverized coal in the coal gasification furnace 4 can also be adjusted with high accuracy. Can do. Here, since the amount of the gas greatly affects the pressure in the coal gasification furnace 4, unintended pressure fluctuations in the coal gasification furnace 4 can be achieved by adjusting the amount of the gas with high accuracy. Can be suppressed, and the operation of the coal gasification furnace 4 can be stabilized.

さらに前述のように、微粉炭の燃焼により生ずるガスの量が、石炭ガス化炉4内の圧力に大きく影響することから、石炭ガス化炉4の運転条件を変更するため石炭ガス化炉4への微粉炭の供給量を増減させるときにも、石炭ガス化炉4内の圧力が変動することとなる。このような場合であっても、前述のように石炭ガス化炉4への微粉炭の供給量を高精度に調整することが可能であり、石炭ガス化炉4への微粉炭の供給量を精度よく増減させ、運転条件を円滑に変更することができる。   Further, as described above, the amount of gas generated by the combustion of pulverized coal greatly affects the pressure in the coal gasification furnace 4, so that the operating condition of the coal gasification furnace 4 is changed to the coal gasification furnace 4. The pressure in the coal gasifier 4 also varies when increasing or decreasing the amount of pulverized coal supplied. Even in such a case, it is possible to adjust the supply amount of pulverized coal to the coal gasification furnace 4 with high accuracy as described above, and the supply amount of pulverized coal to the coal gasification furnace 4 can be adjusted. The operating conditions can be changed smoothly by increasing and decreasing the accuracy.

また、前記差圧制御部5を備えることにより、石炭ガス化炉4への微粉炭の供給量を高精度に調整することができるので、石炭ガス化炉4への微粉炭の供給量を高精度に調整するために、送出管22に流路調整弁を設けるといった必要がない。なおこのように送出管22に流路調整弁を設けた場合、送出管22が微粉炭により閉塞されてしまうおそれがある。   Moreover, since the supply amount of the pulverized coal to the coal gasification furnace 4 can be adjusted with high accuracy by providing the differential pressure control unit 5, the supply amount of the pulverized coal to the coal gasification furnace 4 is increased. There is no need to provide a flow path adjustment valve in the delivery pipe 22 in order to adjust the accuracy. In addition, when the flow path adjustment valve is provided in the delivery pipe 22 in this way, the delivery pipe 22 may be blocked by pulverized coal.

なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、前記実施形態では、石炭ガス化炉4は、下段が部分酸化部26で上段が熱分解部27である二段構造とされているものとしたが、一段構造であってもよい。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the coal gasification furnace 4 has a two-stage structure in which the lower stage is the partial oxidation unit 26 and the upper stage is the thermal decomposition unit 27, but may have a single-stage structure.

また前記実施形態では、モータ制御部14は、モータ13によりロータ12を所定量、回転させたときに、その回転量と、回転前後での供給ホッパ2の重量と、に基づいて、単位回転量あたり、ロータリフィーダ3から排出される供給ホッパ2内の微粉炭の重量を算出するものとしたが、これに限られるものではない。例えば、単位回転量あたり、ロータリフィーダ3から排出される供給ホッパ2内の微粉炭の重量が、モータ制御部14に予め記憶されていてもよい。   Moreover, in the said embodiment, when the motor control part 14 rotates the rotor 12 by the predetermined amount by the motor 13, based on the rotation amount and the weight of the supply hopper 2 before and behind rotation, unit rotation amount Although the weight of the pulverized coal in the supply hopper 2 discharged from the rotary feeder 3 is calculated, the present invention is not limited to this. For example, the weight of pulverized coal in the supply hopper 2 discharged from the rotary feeder 3 per unit rotation amount may be stored in the motor control unit 14 in advance.

また前記実施形態では、加圧ガスおよび搬送ガスとして窒素ガスを例示したが、これに限られるものではなく、例えば不燃性のガスを採用してもよく、不活性ガスを採用してもよい。
さらに前記実施形態では、加圧ガス配管32は、搬送ガス配管23と同一の前記ガス供給源に接続されているものとしたが、これに限られない。
Moreover, in the said embodiment, although nitrogen gas was illustrated as pressurized gas and carrier gas, it is not restricted to this, For example, a nonflammable gas may be employ | adopted and an inert gas may be employ | adopted.
Furthermore, in the said embodiment, although the pressurized gas piping 32 shall be connected to the said gas supply source same as the conveyance gas piping 23, it is not restricted to this.

その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。   In addition, it is possible to appropriately replace the constituent elements in the embodiment with known constituent elements without departing from the spirit of the present invention, and the above-described modified examples may be appropriately combined.

1 石炭ガス化システム
2 供給ホッパ
3 ロータリフィーダ
4 石炭ガス化炉
5 差圧制御部
DESCRIPTION OF SYMBOLS 1 Coal gasification system 2 Supply hopper 3 Rotary feeder 4 Coal gasification furnace 5 Differential pressure control part

Claims (2)

石炭が粉砕されてなる微粉炭が収容された供給ホッパと、
該供給ホッパの下部に連設され、該供給ホッパから微粉炭を排出するロータリフィーダと、
該ロータリフィーダから排出された微粉炭が供給され、該微粉炭が内部で燃焼することで、水素ガスおよび一酸化炭素ガスを含有する石炭ガス化ガスが生成される石炭ガス化炉と、を備える石炭ガス化システムであって、
前記供給ホッパ内と前記石炭ガス化炉内との差圧を測定するとともに、差圧の測定値と差圧の目標値との差分に基づいて前記供給ホッパ内の圧力を変化させ、差圧を目標値に制御する差圧制御部を備えていることを特徴とする石炭ガス化システム。
A supply hopper containing pulverized coal obtained by pulverizing coal;
A rotary feeder connected to the lower portion of the supply hopper and discharging pulverized coal from the supply hopper;
A pulverized coal discharged from the rotary feeder is supplied, and the pulverized coal is combusted inside to generate a coal gasification gas containing hydrogen gas and carbon monoxide gas. A coal gasification system,
While measuring the differential pressure between the supply hopper and the coal gasification furnace, the pressure in the supply hopper is changed based on the difference between the measured value of the differential pressure and the target value of the differential pressure, A coal gasification system comprising a differential pressure control unit that controls to a target value.
石炭が粉砕されてなる微粉炭が収容された供給ホッパと、
該供給ホッパの下部に連設され、該供給ホッパから微粉炭を排出するロータリフィーダと、
該ロータリフィーダから排出された微粉炭が供給され、該微粉炭が内部で燃焼することで、水素ガスおよび一酸化炭素ガスを含有する石炭ガス化ガスが生成される石炭ガス化炉と、を備える石炭ガス化システムを用いた石炭ガス化方法であって、
前記供給ホッパ内と前記石炭ガス化炉内との差圧を測定するとともに、差圧の測定値と差圧の目標値との差分に基づいて前記供給ホッパ内の圧力を変化させ、差圧を目標値に制御する差圧制御工程を有していることを特徴とする石炭ガス化方法。
A supply hopper containing pulverized coal obtained by pulverizing coal;
A rotary feeder connected to the lower portion of the supply hopper and discharging pulverized coal from the supply hopper;
A pulverized coal discharged from the rotary feeder is supplied, and the pulverized coal is combusted inside to generate a coal gasification gas containing hydrogen gas and carbon monoxide gas. A coal gasification method using a coal gasification system,
While measuring the differential pressure between the supply hopper and the coal gasification furnace, the pressure in the supply hopper is changed based on the difference between the measured value of the differential pressure and the target value of the differential pressure, A coal gasification method comprising a differential pressure control step of controlling to a target value.
JP2011052886A 2011-03-10 2011-03-10 Coal gasification system and coal gasification method Active JP5887061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011052886A JP5887061B2 (en) 2011-03-10 2011-03-10 Coal gasification system and coal gasification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052886A JP5887061B2 (en) 2011-03-10 2011-03-10 Coal gasification system and coal gasification method

Publications (2)

Publication Number Publication Date
JP2012188540A true JP2012188540A (en) 2012-10-04
JP5887061B2 JP5887061B2 (en) 2016-03-16

Family

ID=47082061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052886A Active JP5887061B2 (en) 2011-03-10 2011-03-10 Coal gasification system and coal gasification method

Country Status (1)

Country Link
JP (1) JP5887061B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515447B1 (en) * 2013-04-26 2015-04-27 고등기술연구원연구조합 Supplying System And Supplying Method Of Pulverized Coal For Gasifier
CN104877701A (en) * 2015-06-08 2015-09-02 中美新能源技术研发(山西)有限公司 Two-section type coal hydrogenation reactor and method for carrying out three-stage gas-solid separation
KR20150131514A (en) * 2014-05-15 2015-11-25 한국서부발전 주식회사 Differential pressure control apparatus for pneumatic transporting type-pulverized coal gasification system, pneumatic transporting type-gasification system and method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164692A (en) * 1982-03-25 1983-09-29 Babcock Hitachi Kk Supplying coal under stabilized condition by means of lock hopper
JPH0485395A (en) * 1990-07-26 1992-03-18 Hitachi Ltd Stable feeding of starting powder, method and apparatus for and control system thereof
JPH0525111U (en) * 1991-08-19 1993-04-02 三菱重工業株式会社 Powder fluid flow controller
JP2001226682A (en) * 2000-02-14 2001-08-21 Babcock Hitachi Kk Feeder for finely powdered solid carbonaceous raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164692A (en) * 1982-03-25 1983-09-29 Babcock Hitachi Kk Supplying coal under stabilized condition by means of lock hopper
JPH0485395A (en) * 1990-07-26 1992-03-18 Hitachi Ltd Stable feeding of starting powder, method and apparatus for and control system thereof
JPH0525111U (en) * 1991-08-19 1993-04-02 三菱重工業株式会社 Powder fluid flow controller
JP2001226682A (en) * 2000-02-14 2001-08-21 Babcock Hitachi Kk Feeder for finely powdered solid carbonaceous raw material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515447B1 (en) * 2013-04-26 2015-04-27 고등기술연구원연구조합 Supplying System And Supplying Method Of Pulverized Coal For Gasifier
KR20150131514A (en) * 2014-05-15 2015-11-25 한국서부발전 주식회사 Differential pressure control apparatus for pneumatic transporting type-pulverized coal gasification system, pneumatic transporting type-gasification system and method using the same
KR101636505B1 (en) 2014-05-15 2016-07-05 고등기술연구원연구조합 Differential pressure control apparatus for pneumatic transporting type-pulverized coal gasification system, pneumatic transporting type-gasification system and method using the same
CN104877701A (en) * 2015-06-08 2015-09-02 中美新能源技术研发(山西)有限公司 Two-section type coal hydrogenation reactor and method for carrying out three-stage gas-solid separation

Also Published As

Publication number Publication date
JP5887061B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
CN101999037B (en) Gas turbine control device
JP5887061B2 (en) Coal gasification system and coal gasification method
US9637696B2 (en) Solids supply system and method for supplying solids
US9017064B2 (en) Utilizing a diluent to lower combustion instabilities in a gas turbine engine
SI2799522T1 (en) Microwave plasma biomass entrained flow gasifier and process
JPS594476B2 (en) Method and apparatus for high-pressure vaporization of powdered fuel
JP2011252494A (en) Gas turbine combustion system with rich premixed fuel reforming and method of use thereof
CN109250504B (en) System and method for accurately controlling dense-phase conveying of pulverized coal and quickly calibrating flow
ES2597961T3 (en) Procedure to improve the dynamic behavior of a coal-fired power plant with primary and / or secondary demands of the power grid operator with respect to the supply of power to the grid and coal-powered power plant
AU2015282415A1 (en) Waste processing apparatus and method of feeding waste
CN108350808A (en) The method for controlling of operation of gas turbine, the setting variation of method of modifying and gas turbine control device
US20110197566A1 (en) Systems and methods of operating a catalytic reforming assembly for use with a gas turbine engine system
CN102105567B (en) Method and apparatus for starting up gasifying reactors operated with combustible dust
CN102417111A (en) Conveying system and method
CN105674329B (en) Using the gas turbine burner and control method of synthesis gas fuel
CN106350119B (en) A kind of the coal oxygen conveyance control method and device of coal gasification apparatus
CN102892869B (en) Coal gasification system and coal gasification method
JP2012171739A (en) Powder supply apparatus and powder supply method
WO2013030533A2 (en) Combustion apparatus
JP2015045463A (en) Supply system for particulate matter and combustion device
CN101107434A (en) Gas calorie variation suppressing device, fuel gas supply facility, gas turbine facility, and boiler facility
CN102360179A (en) Method for controlling in-out materials in process of producing acetylene by dry method
US20210238490A1 (en) Powder fuel feed apparatus, gasifier unit, and integrated gasification combined cycle and control method of powder fuel feed apparatus
CN101303123A (en) Compact pulverized coal burner
JP5211369B1 (en) Coal pyrolysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5887061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250