JP2012188466A - Decomposition method for epoxy resin hardened material - Google Patents

Decomposition method for epoxy resin hardened material Download PDF

Info

Publication number
JP2012188466A
JP2012188466A JP2011050699A JP2011050699A JP2012188466A JP 2012188466 A JP2012188466 A JP 2012188466A JP 2011050699 A JP2011050699 A JP 2011050699A JP 2011050699 A JP2011050699 A JP 2011050699A JP 2012188466 A JP2012188466 A JP 2012188466A
Authority
JP
Japan
Prior art keywords
epoxy resin
cured epoxy
cured
silica
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011050699A
Other languages
Japanese (ja)
Inventor
Hiroki Ohira
浩輝 大平
Shin Matsugi
伸 真継
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011050699A priority Critical patent/JP2012188466A/en
Priority to EP11860223.4A priority patent/EP2684911A4/en
Priority to KR20137023811A priority patent/KR20130122973A/en
Priority to CN2011800690603A priority patent/CN103415561A/en
Priority to PCT/JP2011/079829 priority patent/WO2012120752A1/en
Priority to US14/003,182 priority patent/US20140174257A1/en
Publication of JP2012188466A publication Critical patent/JP2012188466A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PROBLEM TO BE SOLVED: To provide a decomposition method for silica-containing epoxy resin hardened material that can efficiently decompose the silica-containing epoxy resin hardened material.SOLUTION: The method includes decomposing the silica-containing epoxy resin hardened material by putting the same into contact with subcritical water in which at least one alkali selected from an alkali metal salt and an alkali metal hydroxide is present.

Description

本発明は、エポキシ樹脂硬化物の分解方法に関する。   The present invention relates to a method for decomposing a cured epoxy resin.

プラスチックの中でもエポキシ樹脂は、優れた電気絶縁性、耐熱性、機械的強度を示すため、シリカなどの無機充填材と硬化剤などの添加剤と混合、硬化、成形され、電気・電子部品、自動車部品などの材料として広く用いられている。しかし、一旦硬化したエポキシ樹脂硬化物は、熱硬化性樹脂である上に、無機充填材を多く含んでいることもあり、熱により軟化、融解せず、溶剤への溶解性も低いため、分解は容易ではない。このため、処分を埋立てに頼らざるを得なく、処分場の確保や環境への負荷などの課題が懸念される。   Among plastics, epoxy resins exhibit excellent electrical insulation, heat resistance, and mechanical strength, so they are mixed, cured, and molded with inorganic fillers such as silica and additives such as curing agents, and are used in electrical and electronic parts and automobiles. Widely used as a material for parts. However, once cured epoxy resin is a thermosetting resin and may contain a lot of inorganic fillers, it is not softened or melted by heat, and has low solubility in solvents. Is not easy. For this reason, there is no choice but to rely on landfill for disposal, and there are concerns about issues such as securing a disposal site and impacting the environment.

これまでに報告されているエポキシ樹脂硬化物の分解方法としては、エポキシ樹脂硬化物を、塩基濃度2%以下の亜臨界水を反応溶媒として分解する方法を挙げることができる(例えば、特許文献1)。   Examples of a method for decomposing a cured epoxy resin reported so far include a method of decomposing a cured epoxy resin using subcritical water having a base concentration of 2% or less as a reaction solvent (for example, Patent Document 1). ).

特開平10−242747号公報Japanese Patent Laid-Open No. 10-242747

しかしながら、上記の分解方法は、エポキシ樹脂硬化物中の樹脂成分の再利用、そしてさらには同エポキシ樹脂硬化物中の無機充填材の再利用を前提にした分解方法であり、樹脂成分および無機充填材の両者をまとめて分解することについては検討されていない。すなわち、上記の分解方法は、エポキシ樹脂硬化物中の無機充填材の形態を変えずに同エポキシ樹脂硬化物中の樹脂成分を低分子化して両者を分級分離しており、樹脂成分は低分子化合物として、無機充填材は当初の形態のまま回収される。また、亜臨界水に塩基を共存させているが、これは樹脂成分の分解を促進させるためのものであり、塩基が無機充填材の分解(溶解)に寄与することは記載されていないし、塩基の具体的な種類も記載されていない。   However, the above-described decomposition method is a decomposition method based on the premise that the resin component in the cured epoxy resin is reused, and further the inorganic filler in the cured epoxy resin is reused. It has not been studied to decompose both materials together. That is, in the above decomposition method, the resin component in the cured epoxy resin is reduced in molecular weight without changing the form of the inorganic filler in the cured epoxy resin, and the both are classified and separated. As a compound, the inorganic filler is recovered in its original form. In addition, a base coexists in subcritical water, but this is for accelerating the decomposition of the resin component, and it is not described that the base contributes to the decomposition (dissolution) of the inorganic filler. The specific type of is not described.

本発明は、以上のとおりの事情に鑑みてなされたものであり、シリカを含有するエポキシ樹脂硬化物を効率良く分解することができるエポキシ樹脂硬化物の分解方法を提供することを課題とする。   This invention is made | formed in view of the above situations, and makes it a subject to provide the decomposition | disassembly method of the epoxy resin hardened | cured material which can decompose | disassemble efficiently the epoxy resin hardened | cured material containing a silica.

上記の課題を解決するために、本発明のエポキシ樹脂硬化物の分解方法は、シリカを含有するエポキシ樹脂硬化物を、アルカリ金属塩およびアルカリ金属の水酸化物のうち少なくともいずれかのアルカリを共存させた亜臨界水に接触させて分解することを特徴とする。
このエポキシ樹脂硬化物の分解方法においては、アルカリの添加量が、エポキシ樹脂硬化物1重量部に対して0.05重量部以上であることが好ましい。
In order to solve the above-described problems, the method for decomposing a cured epoxy resin according to the present invention includes a cured epoxy resin containing silica, and an alkali metal salt and an alkali metal hydroxide coexisting with each other. It is characterized by being decomposed by contacting with subcritical water.
In this method for decomposing a cured epoxy resin, the amount of alkali added is preferably 0.05 parts by weight or more with respect to 1 part by weight of the cured epoxy resin.

また、このエポキシ樹脂硬化物の分解方法においては、アルカリ金属の水酸化物が、水酸化ナトリウムまたは水酸化カリウムであることが好ましい。   In this method for decomposing a cured epoxy resin, the alkali metal hydroxide is preferably sodium hydroxide or potassium hydroxide.

さらにまた、このエポキシ樹脂硬化物の分解方法においては、エポキシ樹脂硬化物を200〜350℃の亜臨界水に接触させることが好ましい。   Furthermore, in this method for decomposing a cured epoxy resin, it is preferable to contact the cured epoxy resin with subcritical water at 200 to 350 ° C.

本発明によれば、シリカを含有するエポキシ樹脂硬化物を効率良く分解することができる。   ADVANTAGE OF THE INVENTION According to this invention, the epoxy resin hardened | cured material containing a silica can be decomposed | disassembled efficiently.

本発明のエポキシ樹脂硬化物の分解方法における亜臨界水処理の一例を示すプロセスフローの模式図である。It is a schematic diagram of the process flow which shows an example of the subcritical water process in the decomposition | disassembly method of the epoxy resin hardened | cured material of this invention. 本発明のエポキシ樹脂硬化物の分解方法における亜臨界水処理の別の一例を示すプロセスフローの模式図である。It is a schematic diagram of the process flow which shows another example of the subcritical water process in the decomposition | disassembly method of the epoxy resin hardened | cured material of this invention.

本発明は、上記のとおり、シリカを含有するエポキシ樹脂硬化物を分解する方法である。   As described above, the present invention is a method for decomposing a cured epoxy resin containing silica.

本発明において、エポキシ樹脂硬化物とは、分子内にエポキシ基を有する樹脂を硬化剤によって架橋ネットワーク化させた熱硬化性樹脂のことを指し、樹脂や硬化剤の種類は問わない。樹脂としては、例えば、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂などのビスフェノール型エポキシ樹脂、O−クレゾールノボラック型エポキシ樹脂などのクレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂などを挙げることができる。硬化剤としては、例えば、無水ヘキサヒドロフタル酸、無水テトラヒドロフタル酸、無水ピロメリット酸などの酸無水物系硬化剤、ジアミノジフェニルメタン、メタフェニレンジアミンなどのアミン系硬化剤、フェノールノボラック樹脂などのフェノール系硬化剤などを挙げることができる。   In the present invention, the cured epoxy resin refers to a thermosetting resin obtained by crosslinking a resin having an epoxy group in the molecule with a curing agent, and the type of the resin or the curing agent is not limited. Examples of the resin include bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, cresol novolac type epoxy resins such as O-cresol novolak type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin. And so on. Examples of the curing agent include acid anhydride curing agents such as hexahydrophthalic anhydride, tetrahydrophthalic anhydride and pyromellitic anhydride, amine curing agents such as diaminodiphenylmethane and metaphenylenediamine, and phenols such as phenol novolac resin. Examples thereof include a system curing agent.

エポキシ樹脂硬化物には無機充填材としてシリカが配合されている。シリカは、低熱膨張化、作業性改善、原材料の低コスト化を目的として使用され、例えば、エポキシ樹脂硬化物全量の40〜95質量%の割合で配合することができる。   Silica is blended in the cured epoxy resin as an inorganic filler. Silica is used for the purpose of reducing thermal expansion, improving workability, and reducing the cost of raw materials. For example, silica can be blended in a proportion of 40 to 95% by mass based on the total amount of the cured epoxy resin.

シリカの種類としては、例えば、溶融シリカ、結晶シリカ、微粉シリカなどを挙げることができる。シリカの粒子径、配合量は特に限定されない。例えば、レーザ回折散乱法などにより測定される平均粒子径0.1〜30μmの範囲のシリカを用いることができる。   Examples of the type of silica include fused silica, crystalline silica, and finely divided silica. The particle diameter and blending amount of silica are not particularly limited. For example, silica having an average particle diameter of 0.1 to 30 μm measured by a laser diffraction scattering method or the like can be used.

またエポキシ樹脂硬化物にはシリカ以外の無機充填材、水酸化アルミニウムなど難燃剤を含む各種の添加剤など、その他の成分が含有されていてもよい。   The cured epoxy resin may contain other components such as inorganic fillers other than silica and various additives including flame retardants such as aluminum hydroxide.

エポキシ樹脂硬化物の分解方法における亜臨界水処理は、例えば、分解処理槽で行うことができる。図1は亜臨界水処理の一例を示すプロセスフローの模式図であり、以下、図1に沿ってエポキシ樹脂硬化物の亜臨界水処理を説明する。   The subcritical water treatment in the decomposition method of the cured epoxy resin can be performed, for example, in a decomposition treatment tank. FIG. 1 is a schematic diagram of a process flow showing an example of subcritical water treatment. Hereinafter, subcritical water treatment of a cured epoxy resin will be described with reference to FIG.

エポキシ樹脂硬化物の亜臨界水処理にあたっては、まず、分解処理槽1に処理対象のエポキシ樹脂硬化物を所定量投入する。   In the subcritical water treatment of the cured epoxy resin, first, a predetermined amount of the cured epoxy resin to be treated is put into the decomposition treatment tank 1.

分解処理槽1は、蓋部8を有する圧力容器であり、蓋部8が急速に開閉自在に作動するJISなどで定められた急速蓋開閉機構を備えていることが好ましい。ボルト締め方式によって蓋部8を開閉することもできるが、規模が大きい工業用装置において作業性を考慮すると急速蓋開閉機構によって蓋部8を開閉することが好ましい。   The decomposition treatment tank 1 is a pressure vessel having a lid portion 8 and is preferably provided with a quick lid opening / closing mechanism defined by JIS or the like in which the lid portion 8 operates so as to be rapidly opened and closed. The lid 8 can be opened and closed by a bolting method, but it is preferable to open and close the lid 8 by a quick lid opening / closing mechanism in view of workability in a large-scale industrial apparatus.

図1の亜臨界水処理は、連続式の処理である。貯水槽2からの水が、ポンプ3により加圧され、熱交換器4で熱媒と熱交換をしながら加熱され、加圧熱水が分解処理槽1へ供給される。分解処理槽1内ではエポキシ樹脂硬化物と加圧熱水が接触してエポキシ樹脂硬化物の亜臨界水処理が行われる。分解処理槽1から排出した熱水は、貯水槽2から分解処理槽1に供給される水と熱交換しながら冷却され、また熱交換器5で冷水と熱交換しながら冷却され、圧力調整弁6を通じて、減圧される。減圧された水は有機物や無機物を含む場合もあるため、水循環排水設備7で有機物や無機物が取り除かれるなどの水処理が施されたうえで、大部分の水は貯水槽2に供給されて循環使用され、一部は排水される。貯水槽2内の水が不足する場合には、外部から水が適宜補給される。   The subcritical water treatment in FIG. 1 is a continuous treatment. Water from the water storage tank 2 is pressurized by the pump 3, heated while exchanging heat with the heat medium in the heat exchanger 4, and pressurized hot water is supplied to the decomposition treatment tank 1. In the decomposition treatment tank 1, the epoxy resin cured product and the pressurized hot water come into contact with each other to perform subcritical water treatment of the epoxy resin cured product. The hot water discharged from the decomposition treatment tank 1 is cooled while exchanging heat with the water supplied to the decomposition treatment tank 1 from the water storage tank 2, and is cooled while exchanging heat with cold water in the heat exchanger 5. 6 to reduce the pressure. Since the depressurized water may contain organic matter and inorganic matter, water treatment such as removal of organic matter and inorganic matter is performed in the water circulation drainage facility 7, and most of the water is supplied to the water tank 2 and circulated. Used, some drained. When the water in the water storage tank 2 is insufficient, water is appropriately replenished from the outside.

亜臨界水処理は、分解処理槽1内に加圧熱水を通水しつづけて行なわれてもよいが、一定時間通水した後、加圧熱水の供給を停止してそのまま加圧熱水を分解処理槽1内に保持することにより行われてもよい。本実施形態では、エポキシ樹脂硬化物の分解に必要な熱源がこの加圧熱水から供給されるので、分解処理槽1は断熱容器であることが望ましい。   The subcritical water treatment may be performed by continuously passing the pressurized hot water through the decomposition treatment tank 1, but after passing for a certain period of time, the supply of the pressurized hot water is stopped and the pressurized heat water is kept as it is. You may carry out by hold | maintaining water in the decomposition processing tank 1. FIG. In this embodiment, since the heat source required for decomposition | disassembly of an epoxy resin hardened | cured material is supplied from this pressurized hot water, it is desirable for the decomposition treatment tank 1 to be a heat insulation container.

また、亜臨界水処理は、図2に示すようにバッチ式の処理で行うこともできる。この方式では、貯水槽2の水がポンプ11により分解処理槽1へ供給され、分解処理槽1に供給された水は所定の圧力に加圧され、また、分解処理槽1の周囲に設けられたジャケット12内を循環する熱媒により所定の温度に加熱される。分解処理槽1内では、図1の連続式の処理と同様、エポキシ樹脂硬化物と加圧熱水が接触してエポキシ樹脂硬化物の亜臨界水処理が行われる。   Further, the subcritical water treatment can be performed by a batch type treatment as shown in FIG. In this method, the water in the water storage tank 2 is supplied to the decomposition treatment tank 1 by the pump 11, and the water supplied to the decomposition treatment tank 1 is pressurized to a predetermined pressure and provided around the decomposition treatment tank 1. The heating medium circulating in the jacket 12 is heated to a predetermined temperature. In the decomposition treatment tank 1, the epoxy resin cured product and the pressurized hot water are brought into contact with each other and the subcritical water treatment of the epoxy resin cured product is performed in the same manner as the continuous process of FIG.

分解処理槽1に供給される水には、アルカリを共存させている。アルカリは、アルカリ金属塩またはアルカリ金属の水酸化物であり、いずれか一方または両者を水に共存させてエポキシ樹脂硬化物を亜臨界水処理している。   The water supplied to the decomposition treatment tank 1 coexists with alkali. Alkali is an alkali metal salt or an alkali metal hydroxide, and either or both of them coexist in water to treat the cured epoxy resin with subcritical water.

アルカリを共存させることでエポキシ樹脂硬化物に含まれるシリカを亜臨界水処理において溶解させることができる。またエポキシ樹脂硬化物の樹脂成分の加水分解反応を効果的に進行させて低分子化することができる。このようにエポキシ樹脂硬化物に含まれるシリカの溶解もしくはエポキシ樹脂硬化物の樹脂成分の低分子化、またはそれら両方の作用によりエポキシ樹脂硬化物が分解される。エポキシ樹脂硬化物に含まれるシリカ以外の無機充填材や添加剤なども溶解させることができる。例えば、難燃剤として配合された水酸化アルミニウムを亜臨界水処理において溶解させることが可能である。   In the presence of alkali, silica contained in the cured epoxy resin can be dissolved in the subcritical water treatment. Moreover, the hydrolysis reaction of the resin component of the cured epoxy resin can be effectively advanced to reduce the molecular weight. As described above, the cured epoxy resin is decomposed by the dissolution of silica contained in the cured epoxy resin or the lowering of the molecular weight of the resin component of the cured epoxy resin, or both of them. Inorganic fillers and additives other than silica contained in the cured epoxy resin can also be dissolved. For example, aluminum hydroxide blended as a flame retardant can be dissolved in the subcritical water treatment.

アルカリを共存させた亜臨界水処理によるシリカの溶解反応は下記反応式によると推測される。下記式はアルカリとして水酸化ナトリウムを用いた場合の推定反応式である。
SiO2 + 2NaOH → Na2SiO3(ケイ酸ナトリウム) + H2O
It is estimated that the dissolution reaction of silica by the subcritical water treatment in the presence of alkali is based on the following reaction formula. The following equation is an estimated reaction equation when sodium hydroxide is used as the alkali.
SiO 2 + 2NaOH → Na 2 SiO 3 (sodium silicate) + H 2 O

アルカリの添加量は、エポキシ樹脂硬化物1重量部に対して0.05重量部以上であることが好ましい。かかる割合でアルカリを添加することにより、シリカを効果的に溶解したり、エポキシ樹脂硬化物の樹脂成分を効果的に低分子化したりすることができるなどエポキシ樹脂硬化物を効率良く分解することができる。アルカリの添加量は多いほどよく、エポキシ樹脂硬化物1重量部に対して例えば15重量部程度まで添加することもできる。廃液の処理などを考慮すると、好ましくはその上限値をエポキシ樹脂硬化物1重量部に対して2重量部に設定することができる。したがって、アルカリの添加量は、例えば、エポキシ樹脂硬化物1重量部に対して0.05〜2重量部とすることが好ましい。エポキシ樹脂硬化物をより一層効果的に分解するという観点から、アルカリの添加量はエポキシ樹脂硬化物1重量部に対して0.1〜1.5重量部の割合であることが好ましく、特に0.38〜0.5重量部の割合であることが望ましい。   The amount of alkali added is preferably 0.05 parts by weight or more with respect to 1 part by weight of the cured epoxy resin. By adding an alkali at such a ratio, it is possible to effectively decompose the cured epoxy resin, such as effectively dissolving silica or effectively reducing the molecular weight of the resin component of the cured epoxy resin. it can. The larger the amount of alkali added, the better, and for example, up to about 15 parts by weight can be added to 1 part by weight of the cured epoxy resin. Considering the treatment of the waste liquid, the upper limit value can be preferably set to 2 parts by weight with respect to 1 part by weight of the cured epoxy resin. Therefore, the amount of alkali added is preferably 0.05 to 2 parts by weight with respect to 1 part by weight of the cured epoxy resin, for example. From the viewpoint of more effectively decomposing the cured epoxy resin, the amount of alkali added is preferably 0.1 to 1.5 parts by weight with respect to 1 part by weight of the cured epoxy resin, particularly 0. Desirably, the ratio is 38 to 0.5 parts by weight.

アルカリ金属塩の具体例としては、炭酸カルシウム、炭酸バリウム、炭酸マグネシウムなどを挙げることができる。アルカリ金属の水酸化物としては、水酸化ナトリウムや水酸化カリウムなどを挙げることができる。エポキシ樹脂硬化物に含まれるシリカの溶解性および樹脂成分の低分子化、入手のし易さ、取り扱い性などを総合的に判断すると、これらアルカリのうち水酸化ナトリウムまたは水酸化カリウムを好ましいものとして挙げることができる。   Specific examples of the alkali metal salt include calcium carbonate, barium carbonate, magnesium carbonate and the like. Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide. Comprehensively considering the solubility of silica contained in the cured epoxy resin, the low molecular weight of the resin component, the availability, and the handleability, among these alkalis, sodium hydroxide or potassium hydroxide is preferred. Can be mentioned.

図1や図2の分解処理槽1内の加圧熱水は亜臨界状態とされている。ここで、加圧熱水の取りうる温度範囲の下限値は、200℃である。加圧熱水の温度が200℃以上であれば、エポキシ樹脂硬化物を効率良く分解することができる。より効率良くエポキシ樹脂硬化物を分解するためには260℃以上であり、特に280℃以上であることが望ましい。加圧熱水の温度の上限値は、例えば樹脂の分解温度を考慮すれば350℃であるが、エネルギーコストなどを考慮すると300℃とすることができる。このように望ましい範囲としては260℃〜300℃、最適な範囲としては280℃〜300℃とすることができる。圧力は、例えば、2〜15MPa程度である。反応時間は2h〜15h程度とすることができる。   The pressurized hot water in the decomposition treatment tank 1 in FIGS. 1 and 2 is in a subcritical state. Here, the lower limit of the temperature range that the pressurized hot water can take is 200 ° C. When the temperature of the pressurized hot water is 200 ° C. or higher, the cured epoxy resin can be efficiently decomposed. In order to decompose the cured epoxy resin more efficiently, the temperature is 260 ° C. or higher, and particularly preferably 280 ° C. or higher. The upper limit of the temperature of the pressurized hot water is 350 ° C., for example, considering the decomposition temperature of the resin, but can be set to 300 ° C., taking energy costs into consideration. Thus, a desirable range is 260 ° C to 300 ° C, and an optimum range is 280 ° C to 300 ° C. The pressure is, for example, about 2 to 15 MPa. The reaction time can be about 2h to 15h.

亜臨界水処理は、エポキシ樹脂硬化物1重量部に対して水を1重量部以上添加して行うことができる。かかる割合で水を添加することにより、エポキシ樹脂硬化物を効率的に分解することができる。水の添加量は多いほどよく、エポキシ樹脂硬化物1重量部に対して例えば300重量部程度まで添加することもできる。分解処理槽の処理量や廃液の処理などを考慮すると、好ましくはその上限値をエポキシ樹脂硬化物1重量部に対して20重量部に設定することができる。したがって、亜臨界水処理は、例えば、エポキシ樹脂硬化物1重量部に対して水を1〜20重量部の割合で添加して行うことが好ましい。エポキシ樹脂硬化物をより一層効果的に分解するという観点から、亜臨界水処理はエポキシ樹脂硬化物1重量部に対して水を5〜15重量部の割合で添加することが好ましく、特に水を8〜15重量部の割合で添加することが望ましい。   The subcritical water treatment can be performed by adding 1 part by weight or more of water to 1 part by weight of the cured epoxy resin. By adding water at such a ratio, the cured epoxy resin can be efficiently decomposed. The greater the amount of water added, the better. For example, up to about 300 parts by weight can be added to 1 part by weight of the cured epoxy resin. Considering the treatment amount of the decomposition treatment tank and the treatment of the waste liquid, the upper limit value can be preferably set to 20 parts by weight with respect to 1 part by weight of the cured epoxy resin. Therefore, the subcritical water treatment is preferably performed, for example, by adding water at a ratio of 1 to 20 parts by weight with respect to 1 part by weight of the cured epoxy resin. From the viewpoint of more effectively decomposing the cured epoxy resin, the subcritical water treatment preferably adds 5 to 15 parts by weight of water with respect to 1 part by weight of the cured epoxy resin. It is desirable to add 8 to 15 parts by weight.

亜臨界水処理後は、減圧および冷水の通水により、分解処理槽1内が常温〜80℃程度まで冷却される。分解処理槽1を自然冷却することもできる。減圧、冷却後、分解処理槽1の蓋部8を開いてエポキシ樹脂硬化物の分解物を回収する。   After the subcritical water treatment, the inside of the decomposition treatment tank 1 is cooled to room temperature to about 80 ° C. by reducing the pressure and passing cold water. The decomposition treatment tank 1 can be naturally cooled. After decompression and cooling, the lid portion 8 of the decomposition treatment tank 1 is opened to recover the decomposition product of the cured epoxy resin.

以上、アルカリを共存させた亜臨界水でエポキシ樹脂硬化物を処理することにより、エポキシ樹脂硬化物に含まれるシリカの溶解、エポキシ樹脂硬化物の樹脂成分の低分子化、またはそれら両方の作用により効率良くエポキシ樹脂硬化物を分解することができる。   As described above, by treating the epoxy resin cured product with subcritical water coexisting with alkali, by dissolving silica contained in the epoxy resin cured product, reducing the molecular weight of the resin component of the epoxy resin cured product, or both of them The cured epoxy resin can be efficiently decomposed.

以下に本発明の実施例を示すが、本発明はこれらに制限されるものではない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

<実施例1−6、比較例>
エポキシ樹脂硬化物Aによって封止されているTaコンデンサ(3mm*5mm*2.5mm)をプリント回路基板から取り外した。次いで、バッチ式のSUS316製分解処理槽(内容積21cm)にTaコンデンサを20個入れ、1.2mol/L NaOH水を約16g仕込み、亜臨界水処理した。ここで、NaOH水の添加量はエポキシ樹脂硬化物1重量部に対して260重量部、NaOHの添加量はエポキシ樹脂硬化物1重量部に対して13重量部である。また、亜臨界水処理時の圧力はその温度における飽和水蒸気圧である。
<Example 1-6, Comparative Example>
The Ta capacitor (3 mm * 5 mm * 2.5 mm) sealed with the cured epoxy resin A was removed from the printed circuit board. Next, 20 Ta condensers were placed in a batch type SUS316 decomposition treatment tank (internal volume 21 cm 3 ), about 16 g of 1.2 mol / L NaOH water was charged, and subcritical water treatment was performed. Here, the addition amount of NaOH water is 260 parts by weight with respect to 1 part by weight of the cured epoxy resin, and the addition amount of NaOH is 13 parts by weight with respect to 1 part by weight of the cured epoxy resin. The pressure during the subcritical water treatment is the saturated water vapor pressure at that temperature.

亜臨界水処理は表1に示す条件で行い、Taコンデンサに含有されている金属からエポキシ樹脂硬化物の剥離のし易さの程度によってエポキシ樹脂硬化物の分解の程度を評価した。   The subcritical water treatment was performed under the conditions shown in Table 1, and the degree of decomposition of the cured epoxy resin was evaluated according to the degree of ease of peeling of the cured epoxy resin from the metal contained in the Ta capacitor.

エポキシ樹脂硬化物中の樹脂成分が完全に分解(微粉化)して金属からエポキシ樹脂硬化物が剥離するか、もしくは流水によりエポキシ樹脂硬化物が剥離できたものを「◎」と評価した。また、スパチュラなどで軽くこそぎ落とすことでエポキシ樹脂硬化物が剥離できたものと「○」、ピンセットなどで力を入れてこそぎ落とすことでエポキシ樹脂硬化物が剥離できたものと「△」とし、剥離できなかったものを「×」と評価した。「◎」「○」「△」「×」の順にエポキシ樹脂硬化物の分解の程度が小さくなっており、「◎」は、エポキシ樹脂硬化物が最も良好に分解されている。   The resin component in the cured epoxy resin was completely decomposed (pulverized) and the cured epoxy resin was peeled off from the metal, or the cured epoxy resin was peeled off with running water was evaluated as “「 ”. “△” indicates that the cured epoxy resin can be peeled off with a spatula, etc., and “△” indicates that the cured epoxy resin can be peeled off with forceps. Those that could not be peeled were evaluated as “x”. The degree of decomposition of the cured epoxy resin decreases in the order of “◎”, “◯”, “Δ”, and “×”, and “◎” indicates that the cured epoxy resin is decomposed best.

なお、エポキシ樹脂硬化物Aは下記材料が使用されている。
エポキシ樹脂:ビスフェノールA
硬化剤:フェノールノボラック樹脂
無機充填材:シリカ(エポキシ樹脂硬化物全量中のシリカの配合量は76.9重量%である)
The epoxy resin cured product A uses the following materials.
Epoxy resin: Bisphenol A
Curing agent: Phenol novolac resin Inorganic filler: Silica (The amount of silica in the total amount of the cured epoxy resin is 76.9% by weight)

Figure 2012188466
Figure 2012188466

280℃、6.4MPa、4hの条件(実施例4)で亜臨界水処理した後のエポキシ樹脂硬化物Aの分解率を算出したところ、76.9%であった。また、エポキシ樹脂硬化物Aのエポキシ樹脂成分の溶解率は82.3%であり、シリカの溶解率は77.4%であった。   It was 76.9% when the decomposition rate of the epoxy resin hardened | cured material A after subcritical water treatment was calculated on conditions (Example 4) of 280 degreeC, 6.4MPa, and 4h. Moreover, the solubility of the epoxy resin component of the cured epoxy resin A was 82.3%, and the solubility of silica was 77.4%.

エポキシ樹脂硬化物Aの分解率、エポキシ樹脂成分の溶解率、シリカの溶解率は、次の方法にて算出した。亜臨界水処理終了後、分解液を固液分離し、ろ液としてエポキシ樹脂および硬化剤由来の有機物とシリカとが溶解した水溶液を回収した。ろ液に溶解した有機物をジエチルエーテルによって抽出し、ろ液中の有機物重量を算出して、エポキシ樹脂硬化物の分解率とエポキシ樹脂成分の溶解率を求めた。また、ろ液中のSi濃度をICP-AESによって分析し、シリカの溶解率算出の指標とした。   The decomposition rate of the cured epoxy resin A, the dissolution rate of the epoxy resin component, and the dissolution rate of silica were calculated by the following methods. After completion of the subcritical water treatment, the decomposition solution was subjected to solid-liquid separation, and an aqueous solution in which an epoxy resin and a curing agent-derived organic substance and silica were dissolved was collected as a filtrate. The organic substance dissolved in the filtrate was extracted with diethyl ether, the weight of the organic substance in the filtrate was calculated, and the decomposition rate of the cured epoxy resin and the dissolution rate of the epoxy resin component were determined. In addition, the Si concentration in the filtrate was analyzed by ICP-AES and used as an index for calculating the silica dissolution rate.

表1によれば、実施例1−6のように200℃〜350℃の亜臨界水で処理するとエポキシ樹脂硬化物を効率良く分解することができた。特に260℃〜300℃、さらに280℃〜300℃の亜臨界水で処理するとエポキシ樹脂硬化物を金属から簡単に剥離することができ、エポキシ樹脂硬化物が良好に分解されていることが確認できた。   According to Table 1, the cured epoxy resin could be efficiently decomposed when treated with subcritical water at 200 ° C. to 350 ° C. as in Example 1-6. In particular, when treated with subcritical water at 260 ° C. to 300 ° C. and 280 ° C. to 300 ° C., the cured epoxy resin can be easily peeled off from the metal, and it can be confirmed that the cured epoxy resin is well decomposed. It was.

比較例のようにアルカリを共存させないで亜臨界水処理した場合には、エポキシ樹脂硬化物を金属から剥離できず、エポキシ樹脂硬化物が良好に分解されていないことが確認できた。   When the subcritical water treatment was performed without coexisting alkali as in the comparative example, it was confirmed that the cured epoxy resin could not be peeled off from the metal, and the cured epoxy resin was not decomposed well.

また、実施例1−6においてNaOH水に代えてKOH水で亜臨界水処理した場合でも、実施例1−6と同様の結果が得られることが確認できた。
<実施例7>
Moreover, even if it replaced with NaOH water in Example 1-6 and carried out subcritical water processing with KOH water, it has confirmed that the same result as Example 1-6 was obtained.
<Example 7>

実施例4において、Taコンデンサ20個の代わりに電子部品の封止材として用いられているエポキシ樹脂硬化物B2g(2mmアンダーの大きさ)を用いた以外は実施例4と同様にして亜臨界水処理した。エポキシ樹脂硬化物の分解率は48.3%であり、エポキシ樹脂成分の溶解率は5.2%であり、シリカの溶解率は62.6%であった。さらにエポキシ樹脂硬化物Cについてもエポキシ樹脂硬化物Bと同様に亜臨界水処理したところ、エポキシ樹脂硬化物の分解率は92.1%であり、エポキシ樹脂成分の溶解率は94.7%であり、シリカの溶解率は88.4%であった。   In Example 4, subcritical water was used in the same manner as in Example 4 except that the cured epoxy resin B2g (size of 2 mm under) used as a sealing material for electronic components was used instead of 20 Ta capacitors. Processed. The decomposition rate of the cured epoxy resin was 48.3%, the dissolution rate of the epoxy resin component was 5.2%, and the dissolution rate of silica was 62.6%. Further, when the epoxy resin cured product C was treated with subcritical water in the same manner as the epoxy resin cured product B, the decomposition rate of the epoxy resin cured product was 92.1%, and the dissolution rate of the epoxy resin component was 94.7%. Yes, the dissolution rate of silica was 88.4%.

エポキシ樹脂硬化物Bのろ液のICP-AES分析に関しては、難燃剤目的で用いられている水酸化アルミニウムの溶解率を算出するために、アルミニウムについても定量を行っている。   Regarding the ICP-AES analysis of the filtrate of the cured epoxy resin B, aluminum is also quantified in order to calculate the dissolution rate of aluminum hydroxide used for flame retardant purposes.

なお、エポキシ樹脂硬化物Bおよびエポキシ樹脂硬化物Cは下記材料が使用されている。
・エポキシ樹脂硬化物B
エポキシ樹脂:クレゾールノボラック
硬化剤:フェノールノボラック樹脂
無機充填材:シリカ(エポキシ樹脂硬化物全量中のシリカの配合量は64重量%であ る)
難燃剤:水酸化アルミニウム(エポキシ樹脂硬化物全量中の水酸化アルミニウムの配合 量は11重量%である)
・エポキシ樹脂硬化物C
エポキシ樹脂:ビスフェノールA
硬化剤:酸無水物
無機充填材:シリカ(エポキシ樹脂硬化物全量中のシリカの配合量は40重量%であ る)
The following materials are used for the cured epoxy resin B and the cured epoxy resin C.
・ Epoxy resin cured product B
Epoxy resin: Cresol novolac Curing agent: Phenol novolac resin Inorganic filler: Silica (The amount of silica in the total amount of cured epoxy resin is 64% by weight)
Flame retardant: Aluminum hydroxide (The amount of aluminum hydroxide in the total amount of cured epoxy resin is 11% by weight)
-Epoxy resin cured product C
Epoxy resin: Bisphenol A
Hardener: Acid anhydride Inorganic filler: Silica (The amount of silica in the total amount of cured epoxy resin is 40% by weight)

Claims (4)

シリカを含有するエポキシ樹脂硬化物を、アルカリ金属塩およびアルカリ金属の水酸化物のうち少なくともいずれかのアルカリを共存させた亜臨界水に接触させて分解することを特徴とするエポキシ樹脂硬化物の分解方法。   An epoxy resin cured product containing silica is decomposed by bringing it into contact with subcritical water in which at least one of an alkali metal salt and an alkali metal hydroxide is allowed to coexist. Disassembly method. 前記アルカリの添加量が、エポキシ樹脂硬化物1重量部に対して0.05重量部以上であることを特徴とする請求項1に記載のエポキシ樹脂硬化物の分解方法。   The method for decomposing a cured epoxy resin according to claim 1, wherein the addition amount of the alkali is 0.05 parts by weight or more with respect to 1 part by weight of the cured epoxy resin. 前記アルカリ金属の水酸化物が、水酸化ナトリウムまたは水酸化カリウムであることを特徴とする請求項1または2に記載のエポキシ樹脂硬化物の分解方法。   The method for decomposing a cured epoxy resin according to claim 1 or 2, wherein the alkali metal hydroxide is sodium hydroxide or potassium hydroxide. 前記エポキシ樹脂硬化物を200〜350℃の亜臨界水に接触させることを特徴とする請求項1から3のいずれか一項に記載のエポキシ樹脂硬化物の分解方法。   The method for decomposing a cured epoxy resin according to any one of claims 1 to 3, wherein the cured epoxy resin is brought into contact with subcritical water at 200 to 350 ° C.
JP2011050699A 2011-03-08 2011-03-08 Decomposition method for epoxy resin hardened material Withdrawn JP2012188466A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011050699A JP2012188466A (en) 2011-03-08 2011-03-08 Decomposition method for epoxy resin hardened material
EP11860223.4A EP2684911A4 (en) 2011-03-08 2011-12-22 Epoxy resin hardened material and decomposition method for same
KR20137023811A KR20130122973A (en) 2011-03-08 2011-12-22 Epoxy resin hardened material and decomposition method for same
CN2011800690603A CN103415561A (en) 2011-03-08 2011-12-22 Epoxy resin hardened material and decomposition method for same
PCT/JP2011/079829 WO2012120752A1 (en) 2011-03-08 2011-12-22 Epoxy resin hardened material and decomposition method for same
US14/003,182 US20140174257A1 (en) 2011-03-08 2011-12-22 Method for decomposing cured epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011050699A JP2012188466A (en) 2011-03-08 2011-03-08 Decomposition method for epoxy resin hardened material

Publications (1)

Publication Number Publication Date
JP2012188466A true JP2012188466A (en) 2012-10-04

Family

ID=47081996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050699A Withdrawn JP2012188466A (en) 2011-03-08 2011-03-08 Decomposition method for epoxy resin hardened material

Country Status (1)

Country Link
JP (1) JP2012188466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679797A (en) * 2019-10-17 2021-04-20 中国石油化工股份有限公司 Method for recovering carbon fiber reinforced resin matrix composite material by subcritical fluid
WO2022190835A1 (en) * 2021-03-11 2022-09-15 学校法人帝京大学 Method for producing alkali metal halide and method for producing halide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206638A (en) * 2005-01-25 2006-08-10 Matsushita Electric Works Ltd Method of decomposing artificial marble
JP2010144132A (en) * 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd Method for decomposing composite material
JP2010144101A (en) * 2008-12-19 2010-07-01 Panasonic Electric Works Co Ltd Method for decomposing plastic
JP2010168560A (en) * 2008-12-22 2010-08-05 Panasonic Electric Works Co Ltd Method for decomposing composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206638A (en) * 2005-01-25 2006-08-10 Matsushita Electric Works Ltd Method of decomposing artificial marble
JP2010144101A (en) * 2008-12-19 2010-07-01 Panasonic Electric Works Co Ltd Method for decomposing plastic
JP2010144132A (en) * 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd Method for decomposing composite material
JP2010168560A (en) * 2008-12-22 2010-08-05 Panasonic Electric Works Co Ltd Method for decomposing composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679797A (en) * 2019-10-17 2021-04-20 中国石油化工股份有限公司 Method for recovering carbon fiber reinforced resin matrix composite material by subcritical fluid
WO2022190835A1 (en) * 2021-03-11 2022-09-15 学校法人帝京大学 Method for producing alkali metal halide and method for producing halide

Similar Documents

Publication Publication Date Title
WO2012120752A1 (en) Epoxy resin hardened material and decomposition method for same
Yin et al. Hydrothermal decomposition of brominated epoxy resin in waste printed circuit boards
JP4051873B2 (en) Recycling method of composite material of inorganic and cured epoxy resin
KR100468802B1 (en) Method of treating epoxy resin-cured product
WO2014098229A1 (en) Method for separation and recovery of plastic-based composite waste
CN101058853A (en) Method of reclaiming chemical industry products by using industrial slag containing vanadium, chromium, iron and phosphorous
US7202283B2 (en) Method for dissolving saturated polyester solution for decomposing saturated polyester and method for decomposition using the same
JP2007297641A (en) Method of recycling epoxy resin-cured product
JP2010168560A (en) Method for decomposing composite material
JP2012188466A (en) Decomposition method for epoxy resin hardened material
JP2012188681A (en) Method for recovering metal from metal-containing product
JP4440337B2 (en) Decomposition of thermosetting resin and recovery method of decomposition product
CN102276789B (en) Method for recovering and utilizing waste and old paper-based copper-coated board non-metallic material
JP4720463B2 (en) Decomposition treatment method for cured resin
JP4765202B2 (en) Treatment solution for cured epoxy resin, treatment method and treatment product using the same
JP4539130B2 (en) Treatment liquid for cured epoxy resin and treatment method using the same
JP4645160B2 (en) Treatment liquid for decomposition or dissolution of ester bond-containing polymer, treatment method using the treatment liquid, and separation method of composite material
CN110639940A (en) Method for debrominating waste circuit board
JP5508025B2 (en) Decomposition of thermosetting resin and recovery method of decomposition product
JP2010150297A (en) Method for treating plastic
JP4888270B2 (en) Decomposition and recovery method of thermosetting resin
JP2001131334A (en) Recycling process for polystyrene resin waste
JP2011111502A (en) Method for decomposing plastic
JP2005220198A (en) Dehalogenation method of halogen-containing epoxy resin
JP2001098107A (en) Method for decomposition treatment of thermosetting resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141009

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141107

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20141208

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20141215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330