JP2012188370A - Phosphine compound, organic inorganic composite material containing phosphine, and utilization of the same - Google Patents

Phosphine compound, organic inorganic composite material containing phosphine, and utilization of the same Download PDF

Info

Publication number
JP2012188370A
JP2012188370A JP2011051651A JP2011051651A JP2012188370A JP 2012188370 A JP2012188370 A JP 2012188370A JP 2011051651 A JP2011051651 A JP 2011051651A JP 2011051651 A JP2011051651 A JP 2011051651A JP 2012188370 A JP2012188370 A JP 2012188370A
Authority
JP
Japan
Prior art keywords
group
transition metal
composite material
inorganic composite
phosphine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011051651A
Other languages
Japanese (ja)
Other versions
JP5791040B2 (en
Inventor
Kunihisa Fukaya
訓久 深谷
Toshiya Onozawa
俊也 小野澤
Hiroyuki Yasuda
弘之 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011051651A priority Critical patent/JP5791040B2/en
Publication of JP2012188370A publication Critical patent/JP2012188370A/en
Application granted granted Critical
Publication of JP5791040B2 publication Critical patent/JP5791040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a phosphine compound utilizable as a silane coupling agent usable as a precursor for forming a covalent bond with an inorganic oxide by introducing a silyl group having a leaving substituent to the phosphine compound.SOLUTION: The phosphine compound is represented by formula (1), wherein Rand Rare each independently an aryl group or an alkyl group; Y is an aryl group or an alkyl group; X, when Y is an aryl group, is one group selected from the group consisting of a halogen atom, an alkoxy group, a hydroxy group and an amino group, and when Y is an alkyl group, is one group selected from the group consisting of an alkoxy group, a hydroxy group and an amino group; and n is an integer of 1 to 3.

Description

本発明は、新規なホスフィン化合物およびホスフィンを含有した有機無機複合材料に関し、更に詳細には、当該ホスフィン化合物またはホスフィンを含有した有機無機複合材料と遷移金属からなるクロスカップリングなどの有機合成反応用触媒に関するものである。   The present invention relates to a novel phosphine compound and an organic-inorganic composite material containing phosphine, and more specifically, for organic synthesis reactions such as cross-coupling comprising the phosphine compound or organic-inorganic composite material containing phosphine and a transition metal. It relates to a catalyst.

従来からホスフィン化合物は、鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、金等の遷移金属錯体の配位子として用いられ、リン原子上の置換基を様々に変化させる事によって、遷移金属錯体を均一系触媒として用いた際の性能を向上させる試みが広くなされている。例えばパラジウムホスフィン錯体を用いた鈴木―宮浦カップリング反応、Heck反応、Buchwald―Hartig反応などに代表されるクロスカップリング反応においては、リン原子上に立体的に嵩高い置換基を導入する事によって、触媒性能を向上させ得る事が知られている。
一方、ホスフィン化合物あるいはホスフィンを配位子として含有する遷移金属錯体のホスフィン部位に対して、アルキレン鎖あるいはパラフェニレン鎖を介して反応性シリル基部位を導入していわゆるシランカップリング剤とし、これとシリカゲルやゼオライト等の無機酸化物の水酸基とを反応させて共有結合させる事によってホスフィン、あるいは遷移金属錯体が結合した有機無機複合材料を得る試みも行われている。
このようにして得られる有機無機複合材料は、各種吸着剤、カラム充填剤、界面活性剤などの工業材料やドラッグデリバリシステム、生体親和性材料、検査チップなどの医薬用材料、センサー、有機ELや液晶などの電子材料といった用途の他に、触媒成分の分離・回収を容易とする事が可能な不均一系触媒として利用されている。
例えば非特許文献1には、シリカゲル表面にアルキレン鎖を介してジフェニルホスフィノ基を配位子として含有するパラジウム錯体を結合させた有機無機複合材料について、鈴木―宮浦カップリング反応、Heck反応に用いる不均一系触媒への利用が開示されている。
また非特許文献2には、パラフェニレン鎖を介してジフェニルホスフィノ基を配位子とするパラジウム錯体および白金錯体がシリカ表面に結合している有機無機複合材料について、ゾルゲル法による合成が開示されている。
一方、シリル基を有するホスフィン化合物としては、上述のアルキレン鎖を介してシリル基を有するものの他には、非特許文献3により、トリフェニルホスフィン分子内の一つのフェニル基について、リン原子から見てオルト位にジアルキルクロロシリル基を導入したホスフィン化合物の合成例が僅かに知られているのみである。
Conventionally, phosphine compounds have been used as ligands for transition metal complexes such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, and gold, and can change the substituents on the phosphorus atom in various ways. Therefore, attempts have been made to improve the performance when a transition metal complex is used as a homogeneous catalyst. For example, in cross-coupling reactions represented by Suzuki-Miyaura coupling reaction, Heck reaction, Buchwald-Hartig reaction and the like using a palladium phosphine complex, by introducing a sterically bulky substituent on the phosphorus atom, It is known that the catalyst performance can be improved.
On the other hand, a reactive silyl group site is introduced into the phosphine site of a transition metal complex containing a phosphine compound or phosphine as a ligand via an alkylene chain or a paraphenylene chain to form a so-called silane coupling agent. Attempts have also been made to obtain organic-inorganic composite materials to which phosphine or transition metal complexes are bonded by reacting and covalently bonding hydroxyl groups of inorganic oxides such as silica gel and zeolite.
Organic-inorganic composite materials obtained in this way include industrial materials such as various adsorbents, column fillers, surfactants, drug delivery systems, biocompatible materials, pharmaceutical materials such as test chips, sensors, organic EL, In addition to applications such as electronic materials such as liquid crystals, they are used as heterogeneous catalysts that can facilitate the separation and recovery of catalyst components.
For example, in Non-Patent Document 1, an organic-inorganic composite material in which a palladium complex containing a diphenylphosphino group as a ligand is bonded to a silica gel surface via an alkylene chain is used for Suzuki-Miyaura coupling reaction and Heck reaction. Use for heterogeneous catalysts is disclosed.
Non-Patent Document 2 discloses the synthesis by a sol-gel method of an organic-inorganic composite material in which a palladium complex and a platinum complex having a diphenylphosphino group as a ligand are bonded to a silica surface via a paraphenylene chain. ing.
On the other hand, as a phosphine compound having a silyl group, in addition to those having a silyl group via the above-described alkylene chain, non-patent document 3 describes one phenyl group in a triphenylphosphine molecule as viewed from a phosphorus atom. There are only a few known synthesis examples of phosphine compounds in which a dialkylchlorosilyl group is introduced at the ortho position.

Top.Catal.53(2010),1059.Top. Catal. 53 (2010), 1059. J.Organomet.Chem.643−644(2002) 453.J. et al. Organomet. Chem. 643-644 (2002) 453. Synthesis(2002) 905.Synthesis (2002) 905.

しかしながら、上記従来例の有機無機複合材料に用いられるホスフィン化合物では、シリル基部位はホスフィンに対して、アルキレン鎖あるいはパラフェニレン鎖を介して結合し、分子内の空間的に遠い位置に存在している為に、その機能が分離しており、シリル基は無機酸化物との間で共有結合を形成する結合点としてのみの役割を担っており、シリル基部位がホスフィンのリン原子周りの立体的嵩高さに影響を及ぼすことはなかった。従って、ホスフィン化合物に対して、触媒性能を向上させる為の嵩高さと無機酸化物への共有結合形成能をそれぞれ独立に付与する為の分子設計が必要となり、化合物を合成する上で効率が悪いという欠点があった。
本出願に係る第一の発明の目的は、ホスフィン化合物に脱離性置換基を有するシリル基を導入する事により、ホスフィン周りへの嵩高さの付与と同時に、無機酸化物との共有結合形成の前駆体として用いる事ができるホスフィン化合物を提供し、さらにこのホスフィンを含有する有機無機複合材料を提供する事である。
本出願に係る第二の発明の目的は、上記ホスフィン化合物を配位子として有する遷移金属錯体および上記ホスフィン含有有機無機複合材料に遷移金属を担持した遷移金属含有有機無機複合材料を提供する事である。
本出願に係る第三の発明の目的は、上記遷移金属錯体および上記遷移金属含有有機無機複合材料を利用した各種合成反応、特にクロスカップリング反応に対して有用な、均一系触媒および固定化触媒を提供する事である。
However, in the phosphine compound used in the organic-inorganic composite material of the above-described conventional example, the silyl group site is bonded to the phosphine via an alkylene chain or a paraphenylene chain, and exists in a spatially distant position in the molecule. Therefore, the functions are separated, and the silyl group serves only as a bonding point for forming a covalent bond with the inorganic oxide, and the silyl group site is a three-dimensional structure around the phosphorus atom of the phosphine. The bulkiness was not affected. Therefore, it is necessary for the phosphine compound to have a molecular design for independently imparting bulkiness for improving the catalyst performance and the ability to form a covalent bond to the inorganic oxide, which is inefficient in synthesizing the compound. There were drawbacks.
The object of the first invention according to the present application is to introduce a silyl group having a detachable substituent into a phosphine compound, thereby providing bulkiness around the phosphine and simultaneously forming a covalent bond with an inorganic oxide. The object is to provide a phosphine compound that can be used as a precursor and to provide an organic-inorganic composite material containing this phosphine.
The object of the second invention according to the present application is to provide a transition metal complex having the phosphine compound as a ligand and a transition metal-containing organic-inorganic composite material in which a transition metal is supported on the phosphine-containing organic-inorganic composite material. is there.
The object of the third invention according to the present application is to provide a homogeneous catalyst and an immobilization catalyst useful for various synthesis reactions using the transition metal complex and the transition metal-containing organic-inorganic composite material, particularly for cross-coupling reactions. Is to provide.

上記目的を達成する手段は、以下の通りである。
〈1〉下記一般式(1)で表されるホスフィン化合物。
(式(1)中、RおよびRは、各々独立に、アリール基またはアルキル基であり、Yはアリール基またはアルキル基であり、Xは、Yがアリール基の時にはハロゲン原子、アルコキシ基、水酸基、アミノ基の群より選ばれるいずれかの基、Yがアルキル基の時にはアルコキシ基、水酸基、アミノ基の群より選ばれるいずれかの基であり、nは1から3の整数である。)
〈2〉〈1〉に記載のホスフィン化合物と無機酸化物とを反応させ、前記ホスフィン化合物のケイ素原子を無機酸化物表面の酸素原子に共有結合させたホスフィン含有有機無機複合材料。
〈3〉〈1〉に記載のホスフィン化合物を配位子として含有する遷移金属錯体。
〈4〉〈2〉に記載のホスフィン含有有機無機複合材料に遷移金属を担持させた遷移金属含有有機無機複合材料。
〈5〉〈3〉に記載の遷移金属錯体と無機酸化物とを反応させ、前記ホスフィン化合物のケイ素原子を無機酸化物表面の酸素原子に共有結合させた遷移金属含有有機無機複合材料。
〈6〉〈3〉に記載の遷移金属錯体からなる均一系触媒。
〈7〉〈4〉または〈5〉に記載の遷移金属含有有機無機複合材料からなる固定化触媒。
〈8〉クロスカップリング反応用均一系触媒である、〈6〉に記載の均一系触媒。
〈9〉クロスカップリング反応用固定化触媒である、〈7〉に記載の固定化触媒。
Means for achieving the object is as follows.
<1> A phosphine compound represented by the following general formula (1).
(In formula (1), R 1 and R 2 are each independently an aryl group or an alkyl group, Y is an aryl group or an alkyl group, and X is a halogen atom or an alkoxy group when Y is an aryl group. , Any group selected from the group of hydroxyl group and amino group, and when Y is an alkyl group, any group selected from the group of alkoxy group, hydroxyl group and amino group, and n is an integer of 1 to 3. )
<2> A phosphine-containing organic-inorganic composite material obtained by reacting the phosphine compound according to <1> with an inorganic oxide to covalently bond a silicon atom of the phosphine compound to an oxygen atom on the surface of the inorganic oxide.
<3> A transition metal complex containing the phosphine compound according to <1> as a ligand.
<4> A transition metal-containing organic-inorganic composite material in which a transition metal is supported on the phosphine-containing organic-inorganic composite material according to <2>.
<5> A transition metal-containing organic-inorganic composite material obtained by reacting the transition metal complex according to <3> with an inorganic oxide to covalently bond a silicon atom of the phosphine compound to an oxygen atom on the surface of the inorganic oxide.
<6> A homogeneous catalyst comprising the transition metal complex according to <3>.
<7> An immobilized catalyst comprising the transition metal-containing organic-inorganic composite material according to <4> or <5>.
<8> The homogeneous catalyst according to <6>, which is a homogeneous catalyst for cross-coupling reaction.
<9> The immobilized catalyst according to <7>, which is an immobilized catalyst for cross-coupling reaction.

以上説明したように、本発明によるホスフィン化合物は、リン原子が結合したベンゼン環のオルト位に脱離性置換基を有するシリル基を導入している為、ホスフィンのリン原子周りへ嵩高さが付与されると同時に、無機酸化物との共有結合形成の前駆体として用いる事ができる。
嵩高さの付与によって、本発明のホスフィン化合物を配位子とした遷移金属錯体を用いた触媒反応においては、従来のホスフィン化合物を用いた場合よりも高い活性を有する均一系触媒を提供できる。
また本発明の遷移金属錯体含有有機無機複合材料を固定化触媒として用いた場合においても、ホスフィン周りの嵩高さは有効に作用し、従来型ホスフィンを有する固定化触媒よりも高い活性を有する固定化触媒を提供できる。
As described above, the phosphine compound according to the present invention introduces a silyl group having a detachable substituent at the ortho position of the benzene ring to which the phosphorus atom is bonded, so that a bulkiness is imparted around the phosphorus atom of the phosphine. At the same time, it can be used as a precursor for forming a covalent bond with an inorganic oxide.
By imparting bulkiness, in the catalytic reaction using the transition metal complex having the phosphine compound of the present invention as a ligand, it is possible to provide a homogeneous catalyst having higher activity than when a conventional phosphine compound is used.
Moreover, even when the transition metal complex-containing organic-inorganic composite material of the present invention is used as an immobilization catalyst, the bulkiness around the phosphine works effectively, and the immobilization has higher activity than the conventional immobilization catalyst having phosphine. A catalyst can be provided.

本発明は、下記一般式(1)で表されるホスフィン化合物に関する。
(式(1)中、RおよびRは、各々独立に、アリール基またはアルキル基であり、Yはアリール基またはアルキル基であり、Xは、Yがアリール基の時にはハロゲン原子、アルコキシ基、水酸基、アミノ基の群より選ばれるいずれかの基、Yがアルキル基の時にはアルコキシ基、水酸基、アミノ基の群より選ばれるいずれかの基であり、nは1から3の整数である。)
本発明のホスフィン化合物は、リン原子が結合したベンゼン環のオルト位に脱離性置換基を有するシリル基を導入している為、ホスフィンのリン原子周りへの嵩高さの付与により遷移金属触媒の配位子として用いた場合に高活性な均一系触媒が得られると同時に、シリル基部位を無機酸化物と反応させる事により有機無機複合材とし、これに遷移金属を担持する事により、高活性な固定化触媒として利用する事ができる。
The present invention relates to a phosphine compound represented by the following general formula (1).
(In formula (1), R 1 and R 2 are each independently an aryl group or an alkyl group, Y is an aryl group or an alkyl group, and X is a halogen atom or an alkoxy group when Y is an aryl group. , Any group selected from the group of hydroxyl group and amino group, and when Y is an alkyl group, any group selected from the group of alkoxy group, hydroxyl group and amino group, and n is an integer of 1 to 3. )
Since the phosphine compound of the present invention introduces a silyl group having a detachable substituent at the ortho position of the benzene ring to which the phosphorus atom is bonded, the bulk of the phosphine around the phosphorus atom gives the transition metal catalyst. When used as a ligand, a highly active homogeneous catalyst can be obtained, and at the same time, a silyl group site can be reacted with an inorganic oxide to form an organic-inorganic composite material. It can be used as a stable immobilized catalyst.

以下に、一般式(1)について説明する。
式中RおよびRは、各々独立に、アリール基またはアルキル基である。アリール基としては、具体的にはフェニル基、オルトトリル基、パラトリル基、ナフチル基などが挙げられるが、合成の容易性の観点からフェニル基が好ましい。アルキル基としては、炭素数1〜6の直鎖または分岐のアルキル基、シクロアルキル基などが挙げられるが、触媒活性の観点からイソプロピル基、ターシャリーブチル基、シクロヘキシル基が好ましい。RおよびRは、それぞれ同一であっても異なっても良いが、合成の容易性の観点から同一である事が好ましい。
Yはアリール基またはアルキル基である。アリール基としては、具体的にはフェニル基、オルトトリル基、パラトリル基、ナフチル基などが挙げられるが、合成の容易性の観点からフェニル基が好ましい。アルキル基としては、炭素数1〜6の直鎖または分岐のアルキル基、シクロアルキル基などが挙げられるが、合成の容易性の観点からメチル基、イソプロピル基が好ましい。
Xは、ホスフィン化合物を無機酸化物と反応させて有機無機複合材料を合成する為の脱離能を有する基であり、Yがアリール基の時にはハロゲン原子、アルコキシ基、水酸基、アミノ基の群より選ばれるいずれかの基であるが、無機酸化物上の有機基固定化量の向上と化合物の安定性を両立させる観点から塩素原子、メトキシ基が好ましい。
また、Yがアルキル基の時には、ケイ素部分の加水分解性が高く、取り扱い性が困難になる傾向があり、例えば非特許文献3に、ホスフィンのオルト位に導入したケイ素上に、二つのメチル基と塩素原子を有する化合物が、容易に加水分解・縮合してしまう事が開示されているように、Xがハロゲン原子である場合、特に不安定である為、Xとしてはハロゲン原子以外の中程度の脱離能を有するアルコキシ基、水酸基、アミノ基の群より選ばれるいずれかの基が好ましく、中でもイソプロポキシ基がより好ましい。
nは1から3の整数である。
Below, general formula (1) is demonstrated.
In the formula, R 1 and R 2 are each independently an aryl group or an alkyl group. Specific examples of the aryl group include a phenyl group, an orthotolyl group, a paratolyl group, and a naphthyl group, and a phenyl group is preferable from the viewpoint of ease of synthesis. Examples of the alkyl group include a linear or branched alkyl group having 1 to 6 carbon atoms and a cycloalkyl group. From the viewpoint of catalytic activity, an isopropyl group, a tertiary butyl group, and a cyclohexyl group are preferable. R 1 and R 2 may be the same or different, but are preferably the same from the viewpoint of ease of synthesis.
Y is an aryl group or an alkyl group. Specific examples of the aryl group include a phenyl group, an orthotolyl group, a paratolyl group, and a naphthyl group, and a phenyl group is preferable from the viewpoint of ease of synthesis. Examples of the alkyl group include a linear or branched alkyl group having 1 to 6 carbon atoms and a cycloalkyl group, and a methyl group and an isopropyl group are preferable from the viewpoint of ease of synthesis.
X is a group having a leaving ability for reacting a phosphine compound with an inorganic oxide to synthesize an organic-inorganic composite material. When Y is an aryl group, X is a group of a halogen atom, an alkoxy group, a hydroxyl group, and an amino group. Although it is any group selected, a chlorine atom and a methoxy group are preferable from the viewpoint of achieving both improvement in the amount of organic group immobilized on the inorganic oxide and stability of the compound.
In addition, when Y is an alkyl group, the hydrolyzability of the silicon part tends to be high, and the handleability tends to be difficult. For example, in Non-Patent Document 3, two methyl groups are formed on silicon introduced at the ortho position of phosphine. As it is disclosed that a compound having a chlorine atom is easily hydrolyzed / condensed, when X is a halogen atom, it is particularly unstable. Any group selected from the group consisting of an alkoxy group, a hydroxyl group, and an amino group having the ability to leave is preferable, and an isopropoxy group is more preferable.
n is an integer of 1 to 3.

本発明のホスフィン化合物の合成は、ベンゼン環のオルト位に2つのハロゲン原子を有するオルトジハロゲン化ベンゼンを出発原料として、第1段階としてホスフィンを導入してオルトハロゲン化フェニルホスフィンを合成する。ホスフィンの導入には、パラジウム触媒によるホスフィン化反応あるいは、オルトジハロベンゼンから有機リチウム試薬あるいはグリニヤール試薬を調製し、これとハロゲン化ホスフィンとの反応による方法を用いる事ができる。
第2段階として、残ったもう1つのハロゲン原子部位を用いて有機リチウム試薬あるいはグリニヤール試薬を調製し、これとハロゲン化シランとの反応によって、ホスフィンのオルト位にシリル基を導入する。
また本発明のホスフィン化合物は、上記の順序とは反対に、第1段階としてシリル基を導入し、第2段階においてホスフィンを導入する事によっても合成する事ができる。この場合もそれぞれを導入する反応としては、上記の有機リチウム試薬あるいはグリニヤール試薬の調製、パラジウム触媒によるホスフィン化反応などを使用する事ができる。
In the synthesis of the phosphine compound of the present invention, ortho-halogenated phenylphosphine is synthesized by introducing phosphine as a first step using ortho-dihalogenated benzene having two halogen atoms in the ortho position of the benzene ring as a starting material. For the introduction of phosphine, a phosphation reaction using a palladium catalyst or a method in which an organolithium reagent or a Grignard reagent is prepared from orthodihalobenzene and then reacted with a halogenated phosphine can be used.
As the second step, an organolithium reagent or a Grignard reagent is prepared using the remaining halogen atom site, and a silyl group is introduced into the ortho position of the phosphine by reaction with the halogenated silane.
The phosphine compound of the present invention can also be synthesized by introducing a silyl group as the first step and introducing phosphine in the second step, contrary to the above order. Also in this case, as the reaction for introducing each of them, preparation of the above-mentioned organolithium reagent or Grignard reagent, phosphination reaction with a palladium catalyst, and the like can be used.

本発明のホスフィンを含有する有機無機複合材料は、上記のホスフィン化合物を任意の無機酸化物材料と反応させることによって合成する事ができる。
無機酸化物は、特に制限はないが、ケイ素、チタン、アルミニウム、ジルコニウム、マグネシウム等の単独酸化物またはそれらを含む複合酸化物などを用いることができる。この中でも、表面に水酸基としてシラノール基を多く有しており、固定化する有機基と無機酸化物との間に強固な共有結合を形成できるという観点からケイ素の酸化物であるシリカまたはケイ素を含む複合酸化物を用いることが好ましく、さらに大きな表面積を利用して単位重量あたりの有機基の導入量を多くできることから規則性メソポーラスシリカまたは規則性メソポーラスメタロシリケートを用いることがより好ましい。
具体的にホスフィン含有有機無機複合材料を得る方法としては、例えば、ホスフィン化合物を液体であれば原液のまま、あるいは脂肪族炭化水素、芳香族炭化水素、エーテル類、アルコール類などに溶解させた溶液に無機酸化物を懸濁させ、加熱しながら撹拌する。その後、ろ過によって固体を集め、洗浄、乾燥を行うことによってホスフィン含有有機無機複合材料を得ることができる。
このようにして得られたホスフィン含有有機無機複合材料では、上記一般式(1)で示したケイ素上のYのうち、少なくとも一つが脱離することで、無機酸化物上の酸素原子とホスフィン化合物のケイ素原子との間に共有結合が形成されている。
The phosphine-containing organic-inorganic composite material of the present invention can be synthesized by reacting the above phosphine compound with any inorganic oxide material.
Although there is no restriction | limiting in particular in an inorganic oxide, Single oxides, such as silicon, titanium, aluminum, zirconium, magnesium, or the complex oxide containing them can be used. Among them, silica or silicon which is an oxide of silicon is included from the viewpoint that the surface has many silanol groups as hydroxyl groups and can form a strong covalent bond between the organic group to be immobilized and the inorganic oxide. It is preferable to use a composite oxide, and it is more preferable to use regular mesoporous silica or regular mesoporous metallosilicate because a larger surface area can be used to increase the amount of organic groups introduced per unit weight.
Specifically, as a method for obtaining a phosphine-containing organic-inorganic composite material, for example, if the phosphine compound is liquid, it is a raw solution or a solution in which it is dissolved in aliphatic hydrocarbons, aromatic hydrocarbons, ethers, alcohols, etc. The inorganic oxide is suspended in and stirred while heating. Thereafter, the phosphine-containing organic-inorganic composite material can be obtained by collecting solids by filtration, washing and drying.
In the phosphine-containing organic-inorganic composite material thus obtained, at least one of Y on silicon represented by the general formula (1) is eliminated, so that an oxygen atom on the inorganic oxide and a phosphine compound can be obtained. A covalent bond is formed with the silicon atom.

本発明の遷移金属錯体は、金属として、例えば鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、金などを含む事ができるが、クロスカップリング反応に対する触媒性能の観点からは、白金、パラジウム、ニッケルを含む事が好ましい。
本発明の遷移金属錯体は、トルエン、テトラヒドロフランなどの適当な溶媒中で、ここに任意の遷移金属錯体、例えば酢酸パラジウムやビス(ベンゾニトリル)パラジウムジクロリド等と本発明のホスフィン化合物とを混合する事によって調製できる。
このようにして得られる本発明の遷移金属錯体は、嵩高いホスフィン配位子の効果によって均一系触媒として用いた際に、高い触媒性能が実現される。
The transition metal complex of the present invention can contain, for example, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, gold, etc. as a metal, but from the viewpoint of catalytic performance for the cross-coupling reaction. It is preferable to contain platinum, palladium, and nickel.
The transition metal complex of the present invention is prepared by mixing an arbitrary transition metal complex such as palladium acetate or bis (benzonitrile) palladium dichloride with the phosphine compound of the present invention in a suitable solvent such as toluene or tetrahydrofuran. Can be prepared.
When the transition metal complex of the present invention thus obtained is used as a homogeneous catalyst due to the effect of a bulky phosphine ligand, high catalytic performance is realized.

本発明の遷移金属含有有機無機複合材料は、本発明のホスフィン含有有機無機複合材料をトルエン、テトラヒドロフランなどの適当な溶媒に懸濁し、ここに任意の遷移金属錯体、例えば酢酸パラジウムやビス(ベンゾニトリル)パラジウムジクロリドを混合する事によって調製しても良く、また本発明のホスフィンを配位子として有する遷移金属錯体を事前に調製しておき、これと無機酸化物とを反応させて遷移金属錯体と無機酸化物との間に共有結合を形成させることによって調製しても良い。   The transition metal-containing organic-inorganic composite material of the present invention is obtained by suspending the phosphine-containing organic-inorganic composite material of the present invention in a suitable solvent such as toluene and tetrahydrofuran, and any transition metal complex such as palladium acetate or bis (benzonitrile). ) It may be prepared by mixing palladium dichloride, or a transition metal complex having the phosphine of the present invention as a ligand is prepared in advance, and this is reacted with an inorganic oxide to form a transition metal complex You may prepare by forming a covalent bond between inorganic oxides.

これまで説明した本発明のホスフィン含有有機無機複合材料および遷移金属含有有機無機複合材料は、各種吸着剤、カラム充填剤、界面活性剤などの工業材料やドラッグデリバリシステム、生体親和性材料、検査チップなどの医薬用材料、センサー、有機ELや液晶などの電子材料といった用途に有用であるが、特に遷移金属部位の反応性と無機酸化物の不溶性の利点を活用した、触媒成分の分離・回収を容易とする固定化触媒として利用する事が好ましい。
本発明の遷移金属含有有機無機複合材料を固定化触媒として用いた場合も、本発明のホスフィン化合物の立体的な嵩高さの効果によって、従来型の固定化触媒よりも触媒性能の向上が実現される。
The phosphine-containing organic-inorganic composite material and transition metal-containing organic-inorganic composite material of the present invention described so far are used for various adsorbents, column fillers, surfactants and other industrial materials, drug delivery systems, biocompatible materials, test chips. It is useful for applications such as pharmaceutical materials such as sensors, electronic materials such as sensors, organic EL and liquid crystal, etc., but separation and recovery of catalyst components that take advantage of the reactivity of transition metal sites and the insolubility of inorganic oxides in particular. It is preferable to use it as an easy immobilized catalyst.
Even when the transition metal-containing organic-inorganic composite material of the present invention is used as an immobilization catalyst, the steric bulk effect of the phosphine compound of the present invention improves the catalyst performance over the conventional immobilization catalyst. The

なお、本発明の均一系触媒および固定化触媒は、種々の合成反応の触媒として利用することができるが、ホモカップリング、クロスカップリング反応等のカップリング反応用、ヒドロシリル化、カルボニル化、ヒドロホルミル化、マイケル付加、水素化(不斉水素化を含む)等の付加反応用等の触媒として有効なものであり、特にクロスカップリング反応の触媒として有効なものである。
上記反応のうち、クロスカップリング反応とは、二つの同じ化学種を結合させるホモカップリング反応と異なり、二つの異なる化学種を選択的に結合させる反応であり、かつ遷移金属を触媒として用いることで進行することを特徴とする反応である。上記触媒をクロスカップリング反応に用いる場合には、遷移金属またはその化合物が白金、パラジウム、ニッケルが好ましい。
The homogeneous catalyst and the immobilization catalyst of the present invention can be used as catalysts for various synthesis reactions, but for coupling reactions such as homo-coupling and cross-coupling reactions, hydrosilylation, carbonylation, hydroformyl It is effective as a catalyst for addition reactions such as hydrogenation, Michael addition, and hydrogenation (including asymmetric hydrogenation), and is particularly effective as a catalyst for cross-coupling reactions.
Among the above reactions, the cross-coupling reaction is a reaction that selectively binds two different chemical species, unlike a homo-coupling reaction that binds two identical chemical species, and uses a transition metal as a catalyst. It is a reaction characterized by proceeding with. When the catalyst is used for the cross-coupling reaction, the transition metal or a compound thereof is preferably platinum, palladium, or nickel.

上記クロスカップリング反応の代表的なものとしては、下記のものを挙げることができるが、本発明の触媒は、これらクロスカップリング反応のいずれに対しても有効である
(1)鈴木カップリング反応
パラジウム等の遷移金属を触媒に用いて塩基性条件下、有機ホウ素化合物と有機ハロゲン化物等をクロスカップリングさせる反応
(2)溝呂木−ヘックカップリング反応
パラジウム等の遷移金属を触媒に用いて塩基性条件下、末端アルケンとハロゲン化アリール等をクロスカップリングさせアルケニルアリール化合物を合成する反応
(3)根岸カップリング反応
パラジウム、ニッケル等の遷移金属を触媒に用いて、有機亜鉛化合物と有機ハロゲン化物等をクロスカップリングさせる反応
(4)スティレカップリング反応
パラジウム等の遷移金属を触媒に用いて、有機スズ化合物と有機ハロゲン化物等をクロスカップリングさせる反応
(5)辻−トロストカップリング反応
パラジウム等の遷移金属を触媒に用いて塩基性条件下、アリルエステル等と有機求核剤をクロスカップリングさせアリル位アルキル化生成物を合成する反応
(6)薗頭カップリング反応
パラジウム等の遷移金属を触媒に用いて塩基性条件下、末端アルキンとハロゲン化アリール等をクロスカップリングさせアルキニルアリール化合物を合成する反応
(7)熊田−玉尾カップリング反応
ニッケル、パラジウム等の遷移金属を触媒に用いて、グリニャール試薬と有機ハロゲン化物等をクロスカップリングさせる反応
(8)ブッフバルト−ハートウィックカップリング反応
パラジウム等の遷移金属を触媒に用いて塩基性条件下、ハロゲン化アリールとアミンまたはアルコールをクロスカップリングさせアリールアミンまたはアリールエーテルを合成する反応
Typical examples of the cross-coupling reaction include the following, but the catalyst of the present invention is effective for any of these cross-coupling reactions (1) Suzuki coupling reaction Reactions in which organoboron compounds and organic halides are cross-coupled under basic conditions using transition metals such as palladium as catalysts (2) Mizorogi-Heck coupling reaction Basic using transition metals such as palladium as catalysts Reaction to synthesize alkenyl aryl compounds by cross-coupling terminal alkene and aryl halide under conditions (3) Negishi coupling reaction Organo zinc compounds and organic halides using transition metals such as palladium and nickel as catalysts (4) Stille coupling reaction Transition of palladium, etc. Reaction that cross-couples organotin compounds and organic halides using transfer metals as catalysts (5) 辻 -Trost coupling reaction Allyl esters, etc. under basic conditions using transition metals such as palladium as catalysts Reaction of cross-coupling organic nucleophiles to synthesize allylic alkylation products (6) Sonogashira coupling reaction Terminal alkynes and aryl halides are converted under basic conditions using transition metals such as palladium as catalysts. Reaction for synthesizing alkynylaryl compounds by cross-coupling (7) Kumada-Tamao coupling reaction Reaction for cross-coupling Grignard reagents with organic halides using transition metals such as nickel and palladium as catalysts (8) Buchwald-Hartwick coupling reaction Using transition metals such as palladium as catalysts Reaction to synthesize arylamine or aryl ether by cross-coupling aryl halide and amine or alcohol under basic conditions

以下、本発明触媒を用いたクロスカップリング反応の好ましい一態様を、鈴木カップリング反応を例にとり説明する。鈴木カップリング反応によるビアリール化合物の合成に用いる原料としては、ハロゲン化アリールとアリールボロン酸が挙げられる。それぞれの原料はアリール基上を種々の置換基で置換されていても良い。また、本反応で用いられる本発明触媒の遷移金属化合物としては、白金、パラジウム、ニッケルを含むものが好ましく使用される。
クロスカップリング反応系に共存させる塩基としては、有機塩基、無機塩基の両方が挙げられるが、好ましくは無機塩基である。具体的な無機塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、リン酸ナトリウム、リン酸カリウム、酢酸ナトリウム等が挙げられる。
クロスカップリング反応を実施する場合、溶媒は必ずしも必要ではないが種々の溶媒を単独もしくは混合して用いても良い。溶媒としては、トルエン、キシレン等の芳香族炭化水素類、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン等のエーテル類、ペンタン、ヘキサン等の脂肪族飽和炭化水素類、メタノール、エタノール等のアルコール類等の有機溶媒または水等が挙げられる。
Hereinafter, a preferred embodiment of the cross coupling reaction using the catalyst of the present invention will be described by taking the Suzuki coupling reaction as an example. Examples of raw materials used for the synthesis of biaryl compounds by the Suzuki coupling reaction include aryl halides and aryl boronic acids. Each raw material may be substituted with various substituents on the aryl group. Moreover, as a transition metal compound of this invention catalyst used by this reaction, what contains platinum, palladium, and nickel is used preferably.
Examples of the base coexisting in the cross-coupling reaction system include both organic bases and inorganic bases, but inorganic bases are preferred. Specific examples of the inorganic base include sodium hydroxide, potassium hydroxide, cesium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium phosphate, potassium phosphate, sodium acetate and the like.
When carrying out the cross-coupling reaction, a solvent is not always necessary, but various solvents may be used alone or in combination. Solvents include organic solvents such as aromatic hydrocarbons such as toluene and xylene, ethers such as diethyl ether, dibutyl ether and tetrahydrofuran, aliphatic saturated hydrocarbons such as pentane and hexane, and alcohols such as methanol and ethanol. Or water etc. are mentioned.

以下に本発明を実施例を挙げて詳細に説明するが、本発明はこれらによって限定されるものではない。   The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.

実施例1.化合物2の合成:
第一段階
100mlの二口ナス型フラスコにPd(PPh) (0.463g、0.400mmol)を入れ、窒素雰囲気下後、アセトニトリル60ml、ジフェニルホスフィン(7.11g、38.2mmol)、トリエチルアミン(4.69g、46.4mmol)、2−ブロモヨードベンゼン(12.0g、42.3mmol)を順次加え、加熱還流条件下で6時間反応させた。反応液に水を加え、有機相をジクロロメタンで抽出後、無水硫酸マグネシウムにて乾燥した。減圧下で有機溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより化合物1を単離した。収量12.3g、収率97%。
第二段階
続いて100mlの二口ナス型フラスコに化合物1(0.500g、1.47mmol)を入れ、窒素雰囲気下、ジエチルエーテル7.5mlを加え、−50℃に冷却した。さらに、n−BuLiヘキサン溶液1.0ml(1.55M、1.55mmol)を滴下し、3時間撹拌した。その後、ジフェニルジクロロシラン(4.51g、17.8mmol)を加え、撹拌しながら室温へと昇温した。反応後、溶液をヘキサンで希釈し、副生した塩をろ過によって取り除いた。
減圧下で溶媒を留去した後、ヘキサン溶媒から再結晶し、化合物2を単離した。収量0.204g、収率29%。
化合物2のNMRデータ:
H NMR(CD2Cl2,δ) 7.51〜6.92(m,24H).
13C NMR(CD2Cl2,δ) 137.62(d, J = 16.4 Hz), 137.11(d, J = 10.4 Hz), 136.17, 135.41(d, J = 2.55 Hz), 135.13, 134.76(d, J = 3.71 Hz), 133.19(d, J = 18.31 Hz), 131.39, 130.39, 129.33, 128.40(2C), 128.33(d, J = 6.65 Hz), 128.00.
31P NMR(CD2Cl2,δ) -12.31.
29Si NMR(CD2Cl2,δ) -0.22(d, J = 14.7 Hz),
Example 1. Synthesis of compound 2:
First stage: Pd (PPh 3 ) 4 (0.463 g, 0.400 mmol) was placed in a 100 ml two-necked eggplant type flask, and after nitrogen atmosphere, 60 ml of acetonitrile, diphenylphosphine (7.11 g, 38.2 mmol), triethylamine (4.69 g, 46.4 mmol) and 2-bromoiodobenzene (12.0 g, 42.3 mmol) were sequentially added, and the mixture was reacted for 6 hours under heating and refluxing conditions. Water was added to the reaction solution, and the organic phase was extracted with dichloromethane and dried over anhydrous magnesium sulfate. After distilling off the organic solvent under reduced pressure, Compound 1 was isolated by silica gel column chromatography. Yield 12.3 g, 97% yield.
Second Step Subsequently, Compound 1 (0.500 g, 1.47 mmol) was placed in a 100 ml two-necked eggplant type flask, 7.5 ml of diethyl ether was added under a nitrogen atmosphere, and the mixture was cooled to −50 ° C. Furthermore, 1.0 ml (1.55 M, 1.55 mmol) of n-BuLi hexane solution was added dropwise and stirred for 3 hours. Thereafter, diphenyldichlorosilane (4.51 g, 17.8 mmol) was added, and the temperature was raised to room temperature while stirring. After the reaction, the solution was diluted with hexane, and by-product salts were removed by filtration.
The solvent was distilled off under reduced pressure, and then recrystallized from a hexane solvent to isolate Compound 2. Yield 0.204 g, yield 29%.
NMR data of Compound 2:
1 H NMR (CD 2 Cl 2 , δ) 7.51-6.92 (m, 24H).
13 C NMR (CD 2 Cl 2 , δ) 137.62 (d, J = 16.4 Hz), 137.11 (d, J = 10.4 Hz), 136.17, 135.41 (d, J = 2.55 Hz), 135.13, 134.76 (d, J = 3.71 Hz), 133.19 (d, J = 18.31 Hz), 131.39, 130.39, 129.33, 128.40 (2C), 128.33 (d, J = 6.65 Hz), 128.00.
31 P NMR (CD 2 Cl 2 , δ) -12.31.
29 Si NMR (CD 2 Cl 2 , δ) -0.22 (d, J = 14.7 Hz),

実施例2.化合物3の合成:
100mlの二口ナス型フラスコに実施例1のようにして合成した化合物2(2.18g、4.56mmol)を入れ、窒素雰囲気下、ジエチルエーテル40ml加え、氷冷した。その後、メタノール(2.37g、74.0mmol)、トリエチルアミン
(0.653g、6.46mmol)を加え、撹拌しながら室温へ昇温した。反応後、桐山ロートを用いて吸引ろ過により副生した塩を取り除いた。ろ過後、減圧下で溶媒を留去したのちに、シリカゲルカラムクロマトグラフィーにより化合物3を単離した。収量0.773g、収率36%。
化合物3のNMRデータ:
H NMR(CD2Cl2,δ) 7.92〜6.93(m, 24H), 3.50(s, 3H).
13C NMR(CD2Cl2,δ) 144.03(d, J = 12.5 Hz), 142.6, 137.96(d, J = 11.8 Hz), 137.06(d, J = 16.5 Hz), 135.83(d, J = 2.95 Hz), 135.75(d, J = 1.47 Hz), 135.13(d, J = 2.99 Hz), 133.24(d, J = 18.39 Hz), 130.45, 129.77, 128.82, 128.25(d, J = 6.61 Hz), 128.17, 127.75, 51.61(d, J = 2.19 Hz).
31P NMR(CD2Cl2,δ) -11.19.
29Si NMR(CD2Cl2,δ) -13.10(d, J = 11.0 Hz).
Example 2 Synthesis of compound 3:
Compound 2 (2.18 g, 4.56 mmol) synthesized as in Example 1 was placed in a 100 ml two-necked eggplant-shaped flask, and 40 ml of diethyl ether was added under a nitrogen atmosphere and cooled with ice. Thereafter, methanol (2.37 g, 74.0 mmol) and triethylamine (0.653 g, 6.46 mmol) were added, and the temperature was raised to room temperature while stirring. After the reaction, by-product salt was removed by suction filtration using a Kiriyama funnel. After filtration, the solvent was distilled off under reduced pressure, and then Compound 3 was isolated by silica gel column chromatography. Yield 0.773 g, yield 36%.
NMR data of compound 3:
1 H NMR (CD 2 Cl 2 , δ) 7.92-6.93 (m, 24H), 3.50 (s, 3H).
13 C NMR (CD 2 Cl 2 , δ) 144.03 (d, J = 12.5 Hz), 142.6, 137.96 (d, J = 11.8 Hz), 137.06 (d, J = 16.5 Hz), 135.83 (d, J = 2.95 Hz), 135.75 (d, J = 1.47 Hz), 135.13 (d, J = 2.99 Hz), 133.24 (d, J = 18.39 Hz), 130.45, 129.77, 128.82, 128.25 (d, J = 6.61 Hz), 128.17 , 127.75, 51.61 (d, J = 2.19 Hz).
31 P NMR (CD 2 Cl 2 , δ) -11.19.
29 Si NMR (CD 2 Cl 2 , δ) -13.10 (d, J = 11.0 Hz).

実施例3.化合物5の合成:
100mlの二口ナス型フラスコに化合物1(1.02g、2.98mmol)を入れ、窒素雰囲気下、ジエチルエーテル30mlを加え、−78℃に冷却した。ここに、n-ブチルリチウムのヘキサン溶液2ml(1.55M、3.10mmol)を滴下し、3時間撹拌した。その後、ジメチルジクロロシラン(4.26g、33.0mmol)を加え、室温まで昇温した。反応終了後、減圧下で溶媒および過剰のジメチルジクロロシランを留去した。
同反応系中にジエチルエーテル30ml加え、0℃に冷却した。2−プロパノール(1.56g、26.0mmol)、トリエチルアミン(0.426g、4.31mmol)を加え、30分撹拌した後、室温まで昇温した。副生した塩をろ過によって取り除いた後、減圧下で溶媒を留去した。シリカゲルカラムクロマトグラフィーにより化合物Xを単離した。収量0.784g、収率70%。
化合物5のNMRデータ:
H NMR(CD2Cl2,δ) 7.40〜7.15(m, 14H), 4.12(sept, J = 5.99 Hz, 1H), 1.12(d, J = 6.04 Hz, 6H), 0.47(d, J = 2.03 Hz, 6H).
13C NMR(CD2Cl2,δ) 147.22(d, J = 46.9 Hz), 142.49(d, J = 12.5 Hz), 138.47(d, J = 11.7 Hz), 135.43, 135.27, 133.44(d, J = 18.8 Hz), 129.63(s, 2C), 128.51(d, J = 6.59 Hz), 128.38, 65.48, 25.72, 1.74(d, J = 10.4 Hz).
31P NMR(CD2Cl2,δ) -10.33.
29Si NMR(CD2Cl2,δ) 3.24(d, J = 8.81 Hz).
Example 3 Synthesis of compound 5:
Compound 1 (1.02 g, 2.98 mmol) was placed in a 100 ml two-necked eggplant type flask, 30 ml of diethyl ether was added under a nitrogen atmosphere, and the mixture was cooled to -78 ° C. To this, 2 ml (1.55 M, 3.10 mmol) of n-butyllithium in hexane was added dropwise and stirred for 3 hours. Thereafter, dimethyldichlorosilane (4.26 g, 33.0 mmol) was added, and the temperature was raised to room temperature. After completion of the reaction, the solvent and excess dimethyldichlorosilane were distilled off under reduced pressure.
30 ml of diethyl ether was added to the reaction system and cooled to 0 ° C. 2-Propanol (1.56 g, 26.0 mmol) and triethylamine (0.426 g, 4.31 mmol) were added, stirred for 30 minutes, and then warmed to room temperature. The salt formed as a by-product was removed by filtration, and then the solvent was distilled off under reduced pressure. Compound X was isolated by silica gel column chromatography. Yield 0.784 g, yield 70%.
NMR data of compound 5:
1 H NMR (CD 2 Cl 2 , δ) 7.40-7.15 (m, 14H), 4.12 (sept, J = 5.99 Hz, 1H), 1.12 (d, J = 6.04 Hz, 6H), 0.47 (d, J = 2.03 Hz, 6H).
13 C NMR (CD 2 Cl 2 , δ) 147.22 (d, J = 46.9 Hz), 142.49 (d, J = 12.5 Hz), 138.47 (d, J = 11.7 Hz), 135.43, 135.27, 133.44 (d, J = 18.8 Hz), 129.63 (s, 2C), 128.51 (d, J = 6.59 Hz), 128.38, 65.48, 25.72, 1.74 (d, J = 10.4 Hz).
31 P NMR (CD 2 Cl 2 , δ) -10.33.
29 Si NMR (CD 2 Cl 2 , δ) 3.24 (d, J = 8.81 Hz).

実施例4.有機無機複合材料1の合成:
まず、J. Chem. Soc., Chem. Commun.(1993)680.に記載の方法に従って
メソポーラスシリカFSM−22(BET表面積:1039m/g、BJH法による平均細孔径:4nm)を作製した。
100 mlの二口ナス型フラスコにFSM−22(0.506 g) を入れ、減圧下80℃で3時間乾燥した。減圧乾燥後、室温に戻し、化合物2(98.1 mg、0.205mmol)を加え、窒素雰囲気下、ヘプタン12mlを加え、還流条件下20 時間反応させた。その後、桐山ロートを用いて、ホスフィンを固定化したシリカをろ過によって回収した。ヘキサン、酢酸エチル、ジクロロメタンで洗浄したのちに、80℃で減圧乾燥3時間行い、目的物である有機無機複合材料1を得た。
炭素の元素分析によって、有機基の含有量を0.265mmol/gと決定した。
有機無機複合材料1の固体NMR(CP/MAS法)データ:
13C
NMR(δ) 136.5〜129.3.
31P
NMR(δ) -8.0.
29Si
NMR(δ) -16.9 (Ph2Si-O), -89.5〜-115.0 (SiO2).
Example 4 Synthesis of organic-inorganic composite material 1:
First, J.H. Chem. Soc. Chem. Commun. (1993) 680. The mesoporous silica FSM-22 (BET surface area: 1039 m 2 / g, average pore diameter by BJH method: 4 nm) was prepared according to the method described in 1).
FSM-22 (0.506 g) was placed in a 100 ml two-necked eggplant type flask and dried at 80 ° C. under reduced pressure for 3 hours. After drying under reduced pressure, the temperature was returned to room temperature, Compound 2 (98.1 mg, 0.205 mmol) was added, 12 ml of heptane was added under a nitrogen atmosphere, and the mixture was reacted under reflux conditions for 20 hours. Then, the silica which fixed the phosphine was collect | recovered by filtration using the Kiriyama funnel. After washing with hexane, ethyl acetate, and dichloromethane, drying was performed at 80 ° C. under reduced pressure for 3 hours to obtain the target organic-inorganic composite material 1.
The content of organic groups was determined to be 0.265 mmol / g by elemental analysis of carbon.
Solid-state NMR (CP / MAS method) data of organic-inorganic composite material 1:
13 C
NMR (δ) 136.5-129.3.
31 P
NMR (δ) -8.0.
29 Si
NMR (δ) -16.9 (Ph 2 Si-O), -89.5 to -115.0 (SiO 2 ).

実施例5.有機無機複合材料2の合成:
実施例4における化合物2を化合物3(94.9mg、0.205mmol)に変更した他は、実施例4と同様の操作により、有機無機複合材料2を得た。
炭素の元素分析によって、有機基の含有量を0.161mmol/gと決定した。
有機無機複合材料2の固体NMR(CP/MAS法)データ:
13C
NMR(δ) 136.5〜129.3.
31P
NMR(δ) -8.0.
29Si NMR(δ) -16.9 (Ph2Si-O), -89.5〜-115.0 (SiO2).
Example 5 FIG. Synthesis of organic-inorganic composite material 2:
Organic-inorganic composite material 2 was obtained in the same manner as in Example 4, except that Compound 2 in Example 4 was changed to Compound 3 (94.9 mg, 0.205 mmol).
The content of organic groups was determined to be 0.161 mmol / g by elemental analysis of carbon.
Solid-state NMR (CP / MAS method) data of organic-inorganic composite material 2:
13 C
NMR (δ) 136.5-129.3.
31 P
NMR (δ) -8.0.
29 Si NMR (δ) -16.9 (Ph 2 Si-O), -89.5 to -115.0 (SiO 2 ).

実施例6.有機無機複合材料3の合成:
実施例4における化合物2を化合物5(138 mg、0.366mmol)に変更した他は、実施例4と同様の操作により、有機無機複合材料3を得た。
炭素の元素分析によって、有機基の含有量を0.172mmol/gと決定した。
有機無機複合材料3の固体NMR(CP/MAS法)データ:
13C
NMR(δ) 135.2〜129.7.
31P
NMR(δ) -7.5.
29Si NMR(δ) 6.3(Me2Si-O), -89.5〜-115.0 (SiO2).
Example 6 Synthesis of organic-inorganic composite material 3:
Organic-inorganic composite material 3 was obtained in the same manner as in Example 4, except that Compound 2 in Example 4 was changed to Compound 5 (138 mg, 0.366 mmol).
The organic group content was determined to be 0.172 mmol / g by elemental analysis of carbon.
Solid-state NMR (CP / MAS method) data of organic-inorganic composite material 3:
13 C
NMR (δ) 135.2-129.7.
31 P
NMR (δ) -7.5.
29 Si NMR (δ) 6.3 (Me 2 Si-O), -89.5 to -115.0 (SiO 2 ).

実施例7.遷移金属錯体1の調製:
50mlの二口ナス型フラスコに化合物3(7.12mg、0.015 mmol)と(PhCN)2PdCl2 (5.75mg、0.015mmol)を入れ、窒素雰囲気下、トルエン5.0mlを加え、室温で4時間撹拌し、化合物3を配位子として有する遷移金属錯体1を調製した。
遷移金属錯体1のNMRデータ:
H NMR(toluene-d8,δ) 8.13〜6.70(m, 29H), 3.31(s, 3H).
31P NMR(toluene-d8,δ) 18.30.
Example 7 Preparation of transition metal complex 1:
Compound 3 (7.12 mg, 0.015 mmol) and (PhCN) 2 PdCl 2 (5.75 mg, 0.015 mmol) were placed in a 50 ml two-necked eggplant type flask, and 5.0 ml of toluene was added under a nitrogen atmosphere. The mixture was stirred at room temperature for 4 hours to prepare transition metal complex 1 having compound 3 as a ligand.
NMR data of transition metal complex 1:
1 H NMR (toluene-d 8 , δ) 8.13-6.70 (m, 29H), 3.31 (s, 3H).
31 P NMR (toluene-d 8 , δ) 18.30.

実施例8.遷移金属錯体2の合成:
実施例7における化合物3を、化合物5(5.68 mg、0.015mmol)に変更した他は、実施例7と同様の操作により、化合物5を配位子として有する遷移金属錯体2を調製した。
遷移金属錯体2のNMRデータ:
H NMR(toluene-d8,δ) 8.02〜6.71(m, 19H), 3.72(sept, J = 5.99 Hz, 1H), 0.99(d, J = 6.04 Hz, 6H), 0.35.
31P NMR(toluene-d8,δ) 22.20.
29Si NMR(CD2Cl2,δ) 0.31(d, J = 3.01 Hz).
Example 8 FIG. Synthesis of transition metal complex 2:
A transition metal complex 2 having Compound 5 as a ligand was prepared in the same manner as in Example 7, except that Compound 3 in Example 7 was changed to Compound 5 (5.68 mg, 0.015 mmol). .
NMR data of transition metal complex 2:
1 H NMR (toluene-d 8 , δ) 8.02 to 6.71 (m, 19H), 3.72 (sept, J = 5.99 Hz, 1H), 0.99 (d, J = 6.04 Hz, 6H), 0.35.
31 P NMR (toluene-d 8 , δ) 22.20.
29 Si NMR (CD 2 Cl 2 , δ) 0.31 (d, J = 3.01 Hz).

実施例9.遷移金属含有有機無機複合材料1の合成:
50mlのシュレンクフラスコに有機無機複合材料1(200mg)を入れ、80℃で減圧乾燥3時間したのち、室温に戻し、Pd(OAc)2 (2.20mg)を加え、窒素雰囲気下、THF溶媒4.0ml加え、20時間撹拌した。その後、ろ過によってパラジウムを担持した有機無機複合材料を回収した。ヘキサン、酢酸エチル、ジクロロメタンで洗浄したのちに、80℃で減圧乾燥3時間行い、遷移金属含有有機無機複合材料1を得た。
遷移金属含有有機無機複合材料1の固体NMR(CP/MAS法)データ:
13C
NMR(δ) 136.5〜129.3.
31P
NMR(δ) 28.2 (Pd-P), -8.0 .
29Si NMR(δ) -16.9 (Ph2Si-O), -89.5〜-115.0 (SiO2).
Example 9 Synthesis of transition metal-containing organic-inorganic composite material 1:
Into a 50 ml Schlenk flask, the organic-inorganic composite material 1 (200 mg) was placed, dried under reduced pressure at 80 ° C. for 3 hours, returned to room temperature, added with Pd (OAc) 2 (2.20 mg), and added with THF solvent 4 under nitrogen atmosphere. 0.0 ml was added and stirred for 20 hours. Thereafter, the organic-inorganic composite material supporting palladium was collected by filtration. After washing with hexane, ethyl acetate, and dichloromethane, drying under reduced pressure was performed at 80 ° C. for 3 hours to obtain a transition metal-containing organic-inorganic composite material 1.
Solid state NMR (CP / MAS method) data of transition metal-containing organic-inorganic composite material 1:
13 C
NMR (δ) 136.5-129.3.
31 P
NMR (δ) 28.2 (Pd-P), -8.0.
29 Si NMR (δ) -16.9 (Ph 2 Si-O), -89.5 to -115.0 (SiO 2 ).

実施例10.遷移金属含有有機無機複合材料2の合成:
実施例9における有機無機複合材料1を有機無機複合材料2(100mg)に、Pd(OAc)を(PhCN)PdCl(3.39mg)に変更した他は、実施例9と同様の操作により、遷移金属含有有機無機複合材料2を得た。
遷移金属含有有機無機複合材料2の固体NMR(CP/MAS法)データ:
13C
NMR(δ) 136.5〜129.3.
31P
NMR(δ) 28.2 (Pd-P), -8.0 .
29Si NMR(δ) -16.9 (Ph2Si-O), -89.5〜-115.0 (SiO2).
Example 10 Synthesis of transition metal-containing organic-inorganic composite material 2:
The same operation as in Example 9 except that the organic-inorganic composite material 1 in Example 9 was changed to the organic-inorganic composite material 2 (100 mg), and Pd (OAc) 2 was changed to (PhCN) 2 PdCl 2 (3.39 mg). Thus, a transition metal-containing organic-inorganic composite material 2 was obtained.
Solid state NMR (CP / MAS method) data of transition metal-containing organic-inorganic composite material 2:
13 C
NMR (δ) 136.5-129.3.
31 P
NMR (δ) 28.2 (Pd-P), -8.0.
29 Si NMR (δ) -16.9 (Ph 2 Si-O), -89.5 to -115.0 (SiO 2 ).

実施例11.遷移金属含有有機無機複合材料3の合成:
実施例9における有機無機複合材料1を有機無機複合材料3(634mg)に、Pd(OAc)を(PhCN)PdCl(13.9mg)に変更した他は、実施例9と同様の操作により、遷移金属含有有機無機複合材料3を得た。
遷移金属含有有機無機複合材料3の固体NMR(CP/MAS法)データ:
13C
NMR(δ) 135.2〜129.7.
31P
NMR(δ) 28.0 (Pd-P),-7.5.
29Si NMR(δ) 6.3(Me2Si-O), -89.5〜-115.0 (SiO2).
Example 11 Synthesis of transition metal-containing organic-inorganic composite material 3:
The same operation as in Example 9 except that the organic-inorganic composite material 1 in Example 9 was changed to the organic-inorganic composite material 3 (634 mg), and Pd (OAc) 2 was changed to (PhCN) 2 PdCl 2 (13.9 mg). Thus, a transition metal-containing organic-inorganic composite material 3 was obtained.
Solid state NMR (CP / MAS method) data of transition metal-containing organic-inorganic composite material 3:
13 C
NMR (δ) 135.2-129.7.
31 P
NMR (δ) 28.0 (Pd-P), -7.5.
29 Si NMR (δ) 6.3 (Me 2 Si-O), -89.5 to -115.0 (SiO 2 ).

実施例12.均一系触媒での鈴木カップリング反応1:
100 mlのシュレンクフラスコに炭酸カリウム(1.66g、12mmol)、フェニルボロン酸(768mg、6.3mmol)を入れ,窒素雰囲気下、トルエン5.0ml、ガスクロマトグラフ分析の内部標準としてp-t-ブチルトルエン1.0ml、遷移金属錯体1(1.2μmol)のトルエン溶液(1.0ml)、p-ブロモアニソール(1.12g、6.0mmol)を順次加えた。100℃で加熱撹拌し、反応させた。カップリング生成物である4−メトキシビフェニルの収率はガスクロマトグラフ分析(島津製作所製GC14−B)によって算出した。結果を表1にしめす。
Example 12 Suzuki coupling reaction with homogeneous catalyst 1:
Potassium carbonate (1.66 g, 12 mmol) and phenylboronic acid (768 mg, 6.3 mmol) were placed in a 100 ml Schlenk flask. Under a nitrogen atmosphere, 5.0 ml of toluene, pt-butyltoluene 1 as an internal standard for gas chromatographic analysis 1.0 ml, a toluene solution (1.0 ml) of transition metal complex 1 (1.2 μmol) and p-bromoanisole (1.12 g, 6.0 mmol) were sequentially added. The mixture was heated and stirred at 100 ° C. for reaction. The yield of 4-methoxybiphenyl as a coupling product was calculated by gas chromatographic analysis (GC14-B, manufactured by Shimadzu Corporation). The results are shown in Table 1.

実施例13.均一系触媒での鈴木カップリング反応2:
実施例12における遷移金属錯体1を遷移金属錯体2(1.2μmol)に変更した他は、実施例12と同様の操作により、鈴木カップリング反応を行った。結果を表1に示す。
Example 13 Suzuki coupling reaction with homogeneous catalyst 2:
A Suzuki coupling reaction was performed in the same manner as in Example 12 except that the transition metal complex 1 in Example 12 was changed to the transition metal complex 2 (1.2 μmol). The results are shown in Table 1.

実施例14.固定化触媒での鈴木カップリング反応1:
100mlのシュレンクフラスコに遷移金属含有有機無機複合材料1(パラジウム量として1.2μmol)、炭酸カリウム(1.66g、12mmol)、フェニルボロン酸(768mg、6.3mmol)を入れ、窒素雰囲気下、トルエン5.0ml、ガスクロマトグラフ分析の内部標準としてp-t-ブチルトルエン1.0ml、p-ブロモアニソール(1.12g、6.0mmol)を順次加えた。100℃で加熱撹拌し、反応させた。カップリング生成物である4−メトキシビフェニルの収率はガスクロマトグラフ分析(島津製作所製GC14−B)によって算出した。結果を表2に示す。
Example 14 Suzuki coupling reaction with immobilized catalyst 1:
A transition metal-containing organic-inorganic composite material 1 (1.2 μmol of palladium), potassium carbonate (1.66 g, 12 mmol), phenylboronic acid (768 mg, 6.3 mmol) was placed in a 100 ml Schlenk flask, and toluene was added under a nitrogen atmosphere. 5.0 ml of pt-butyltoluene 1.0 ml and p-bromoanisole (1.12 g, 6.0 mmol) were sequentially added as an internal standard for gas chromatographic analysis. The mixture was heated and stirred at 100 ° C. for reaction. The yield of 4-methoxybiphenyl as a coupling product was calculated by gas chromatographic analysis (GC14-B, manufactured by Shimadzu Corporation). The results are shown in Table 2.

実施例15.固定化触媒での鈴木カップリング反応2:
実施例14における遷移金属含有有機無機複合材料1を遷移金属含有有機無機複合材料2(パラジウム量として1.2μmol)に変更した他は、実施例14と同様の操作により、鈴木カップリング反応を行った。結果を表2に示す。
Example 15. Suzuki coupling reaction with immobilized catalyst 2:
The Suzuki coupling reaction was carried out in the same manner as in Example 14 except that the transition metal-containing organic-inorganic composite material 1 in Example 14 was changed to the transition metal-containing organic-inorganic composite material 2 (palladium amount: 1.2 μmol). It was. The results are shown in Table 2.

実施例16.固定化触媒での鈴木カップリング反応3:
実施例14における遷移金属含有有機無機複合材料1を遷移金属含有有機無機複合材料3(パラジウム量として1.2μmol)に変更した他は、実施例14と同様の操作により、鈴木カップリング反応を行った。結果を表2に示す。
Example 16 Suzuki coupling reaction with immobilized catalyst 3:
The Suzuki coupling reaction was carried out in the same manner as in Example 14 except that the transition metal-containing organic-inorganic composite material 1 in Example 14 was changed to the transition metal-containing organic-inorganic composite material 3 (palladium amount 1.2 μmol). It was. The results are shown in Table 2.

比較例1.
50mlの二口ナス型フラスコに上記の化合物6(5.68mg、0.015mmol)と(PhCN)PdCl(5.75mg、0.015mmol)を入れ、窒素雰囲気下、トルエン5.0mlを加え、室温で4時間撹拌し、化合物6を配位子として有する遷移金属錯体3を調製した。その後、実施例12における遷移金属錯体1を遷移金属錯体3に変更した以外は、実施例12と同様の操作により、鈴木カップリング反応を行った。結果を表1に示す。
Comparative Example 1
Into a 50 ml two-necked eggplant type flask, the above compound 6 (5.68 mg, 0.015 mmol) and (PhCN) 2 PdCl 2 (5.75 mg, 0.015 mmol) were placed, and 5.0 ml of toluene was added under a nitrogen atmosphere. The mixture was stirred at room temperature for 4 hours to prepare transition metal complex 3 having compound 6 as a ligand. Then, Suzuki coupling reaction was performed by the same operation as Example 12 except having changed the transition metal complex 1 in Example 12 into the transition metal complex 3. The results are shown in Table 1.

比較例2.
50mlの二口ナス型フラスコに上記の化合物7(4.75mg、0.015mmol)と(PhCN)PdCl(5.75mg、0.015mmol)を入れ、窒素雰囲気下、トルエン5.0mlを加え、室温で4時間撹拌し、化合物7を配位子として有する遷移金属錯体4を調製した。その後、実施例12における遷移金属錯体1を遷移金属錯体4に変更した以外は、実施例12と同様の操作により、鈴木カップリング反応を行った。結果を表1に示す。
Comparative Example 2
Into a 50 ml two-necked eggplant type flask, put the above compound 7 (4.75 mg, 0.015 mmol) and (PhCN) 2 PdCl 2 (5.75 mg, 0.015 mmol), and add 5.0 ml of toluene under a nitrogen atmosphere. The mixture was stirred at room temperature for 4 hours to prepare transition metal complex 4 having compound 7 as a ligand. Then, Suzuki coupling reaction was performed by the same operation as Example 12 except having changed the transition metal complex 1 in Example 12 into the transition metal complex 4. The results are shown in Table 1.

比較例3.
50mlの二口ナス型フラスコにトリフェニルホスフィン(3.93mg、0.015mmol)と(PhCN)PdCl(5.75mg、0.015mmol)を入れ、窒素雰囲気下、トルエン5.0mlを加え、室温で4時間撹拌し、トリフェニルホスフィンを配位子として有する遷移金属錯体5を調製した。その後、実施例12における遷移金属錯体1を遷移金属錯体5に変更した以外は、実施例12と同様の操作により、鈴木カップリング反応を行った。結果を表1に示す。
Comparative Example 3
Triphenylphosphine (3.93 mg, 0.015 mmol) and (PhCN) 2 PdCl 2 (5.75 mg, 0.015 mmol) were placed in a 50 ml two-necked eggplant type flask, and 5.0 ml of toluene was added under a nitrogen atmosphere. The mixture was stirred at room temperature for 4 hours to prepare transition metal complex 5 having triphenylphosphine as a ligand. Then, Suzuki coupling reaction was performed by the same operation as Example 12 except having changed the transition metal complex 1 in Example 12 into the transition metal complex 5. The results are shown in Table 1.

比較例4.
50mlのシュレンクフラスコに、FSM−22に表面に有機基0.147mmol/gを固定化した上記の有機無機複合材料4(200mg)を入れ、80℃で減圧乾燥3時間したのち、室温に戻し、(PhCN)PdCl(4.10mg、0.0105mmol)を加え、窒素雰囲気下、THF溶媒4.0ml加え、20時間撹拌した。その後、ろ過によってパラジウムを担持した有機無機複合材料を回収した。ヘキサン、酢酸エチル、ジクロロメタンで洗浄したのちに、80℃で減圧乾燥3時間行い、遷移金属含有有機無機複合材料4を得た。実施例14における遷移金属含有有機無機複合材料1を遷移金属含有有機無機複合材料4(パラジウム量として1.2μmol)に変更した他は、実施例14と同様の操作により、鈴木カップリング反応を行った。結果を表2に示す。
Comparative Example 4
Into a 50 ml Schlenk flask, the above organic-inorganic composite material 4 (200 mg) having an organic group of 0.147 mmol / g immobilized on FSM-22 was placed, dried at 80 ° C. under reduced pressure for 3 hours, and then returned to room temperature. (PhCN) 2 PdCl 2 (4.10 mg, 0.0105 mmol) was added, and 4.0 ml of a THF solvent was added under a nitrogen atmosphere, followed by stirring for 20 hours. Thereafter, the organic-inorganic composite material supporting palladium was collected by filtration. After washing with hexane, ethyl acetate, and dichloromethane, drying under reduced pressure at 80 ° C. for 3 hours was performed to obtain a transition metal-containing organic-inorganic composite material 4. The Suzuki coupling reaction was carried out in the same manner as in Example 14 except that the transition metal-containing organic-inorganic composite material 1 in Example 14 was changed to the transition metal-containing organic-inorganic composite material 4 (palladium amount 1.2 μmol). It was. The results are shown in Table 2.

比較例5.
50mlのシュレンクフラスコに、FSM−22に表面に有機基0.313mmol/gを固定化した上記の有機無機複合材料5(200mg)を入れ、80℃で減圧乾燥3時間したのち、室温に戻し、(PhCN)PdCl(8.72mg、0.0224mmol)を加え、窒素雰囲気下、THF溶媒4.0ml加え、20時間撹拌した。その後、ろ過によってパラジウムを担持した有機無機複合材料を回収した。ヘキサン、酢酸エチル、ジクロロメタンで洗浄したのちに、80℃で減圧乾燥3時間行い、遷移金属含有有機無機複合材料5を得た。実施例14における遷移金属含有有機無機複合材料1を遷移金属含有有機無機複合材料5(パラジウム量として1.2μmol)に変更した他は、実施例14と同様の操作により、鈴木カップリング反応を行った。結果を表2に示す。
Comparative Example 5
Into a 50 ml Schlenk flask, the above-mentioned organic-inorganic composite material 5 (200 mg) having organic group 0.313 mmol / g immobilized on FSM-22 was placed, dried at 80 ° C. under reduced pressure for 3 hours, and then returned to room temperature. (PhCN) 2 PdCl 2 (8.72 mg, 0.0224 mmol) was added, and 4.0 ml of a THF solvent was added under a nitrogen atmosphere, followed by stirring for 20 hours. Thereafter, the organic-inorganic composite material supporting palladium was collected by filtration. After washing with hexane, ethyl acetate, and dichloromethane, drying under reduced pressure at 80 ° C. for 3 hours was performed to obtain a transition metal-containing organic-inorganic composite material 5. The Suzuki coupling reaction was carried out in the same manner as in Example 14, except that the transition metal-containing organic-inorganic composite material 1 in Example 14 was changed to the transition metal-containing organic-inorganic composite material 5 (1.2 μmol as the amount of palladium). It was. The results are shown in Table 2.

本発明のホスフィン化合物は均一系触媒に用いられる金属錯体の配位子および有機無機複合材料の前駆体となるシランカップリング剤として有用である。また本発明のホスフィン含有有機無機複合材料および遷移金属含有有機無機複合材料は、固定化触媒および各種吸着剤、カラム充填剤、界面活性剤などの工業材料やドラッグデリバリシステム、生体親和性材料、検査チップなどの医薬用材料、センサー、有機ELや液晶などの電子材料といった用途に有用である。   The phosphine compound of the present invention is useful as a ligand of a metal complex used as a homogeneous catalyst and as a silane coupling agent serving as a precursor of an organic-inorganic composite material. In addition, the phosphine-containing organic-inorganic composite material and transition metal-containing organic-inorganic composite material of the present invention include an immobilization catalyst and various adsorbents, column fillers, surfactants and other industrial materials, drug delivery systems, biocompatible materials, and inspections. It is useful for uses such as medical materials such as chips, sensors, electronic materials such as organic EL and liquid crystals.

Claims (9)

下記一般式(1)で表されるホスフィン化合物。
(式(1)中、RおよびRは、各々独立に、アリール基またはアルキル基であり、Yはアリール基またはアルキル基であり、Xは、Yがアリール基の時にはハロゲン原子、アルコキシ基、水酸基、アミノ基の群より選ばれるいずれかの基、Yがアルキル基の時にはアルコキシ基、水酸基、アミノ基の群より選ばれるいずれかの基であり、nは1から3の整数である。)
A phosphine compound represented by the following general formula (1).
(In formula (1), R 1 and R 2 are each independently an aryl group or an alkyl group, Y is an aryl group or an alkyl group, and X is a halogen atom or an alkoxy group when Y is an aryl group. , Any group selected from the group of hydroxyl group and amino group, and when Y is an alkyl group, any group selected from the group of alkoxy group, hydroxyl group and amino group, and n is an integer of 1 to 3. )
請求項1に記載のホスフィン化合物と無機酸化物とを反応させ、前記ホスフィン化合物のケイ素原子を無機酸化物表面の酸素原子に共有結合させたホスフィン含有有機無機複合材料。   A phosphine-containing organic-inorganic composite material obtained by reacting the phosphine compound according to claim 1 and an inorganic oxide to covalently bond a silicon atom of the phosphine compound to an oxygen atom on the surface of the inorganic oxide. 請求項1に記載のホスフィン化合物を配位子として含有する遷移金属錯体。   A transition metal complex containing the phosphine compound according to claim 1 as a ligand. 請求項2に記載のホスフィン含有有機無機複合材料に遷移金属を担持させた遷移金属含有有機無機複合材料。   A transition metal-containing organic-inorganic composite material obtained by supporting a transition metal on the phosphine-containing organic-inorganic composite material according to claim 2. 請求項3に記載の遷移金属錯体と無機酸化物とを反応させ、前記ホスフィン化合物のケイ素原子を無機酸化物表面の酸素原子に共有結合させた遷移金属含有有機無機複合材料。   A transition metal-containing organic-inorganic composite material obtained by reacting the transition metal complex according to claim 3 and an inorganic oxide to covalently bond a silicon atom of the phosphine compound to an oxygen atom on the surface of the inorganic oxide. 請求項3に記載の遷移金属錯体からなる均一系触媒。   A homogeneous catalyst comprising the transition metal complex according to claim 3. 請求項4または請求項5に記載の遷移金属含有有機無機複合材料からなる固定化触媒。   An immobilized catalyst comprising the transition metal-containing organic-inorganic composite material according to claim 4 or 5. クロスカップリング反応用均一系触媒である、請求項6に記載の均一系触媒。   The homogeneous catalyst according to claim 6, which is a homogeneous catalyst for cross-coupling reaction. クロスカップリング反応用固定化触媒である、請求項7に記載の固定化触媒。   The immobilized catalyst according to claim 7, which is an immobilized catalyst for cross-coupling reaction.
JP2011051651A 2011-03-09 2011-03-09 Phosphine compounds and phosphine-containing organic-inorganic composites and their use Active JP5791040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011051651A JP5791040B2 (en) 2011-03-09 2011-03-09 Phosphine compounds and phosphine-containing organic-inorganic composites and their use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011051651A JP5791040B2 (en) 2011-03-09 2011-03-09 Phosphine compounds and phosphine-containing organic-inorganic composites and their use

Publications (2)

Publication Number Publication Date
JP2012188370A true JP2012188370A (en) 2012-10-04
JP5791040B2 JP5791040B2 (en) 2015-10-07

Family

ID=47081937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011051651A Active JP5791040B2 (en) 2011-03-09 2011-03-09 Phosphine compounds and phosphine-containing organic-inorganic composites and their use

Country Status (1)

Country Link
JP (1) JP5791040B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035805A1 (en) * 2014-09-03 2016-03-10 丸善石油化学株式会社 Catalyst, method for producing same, and method for producing polyalkylene carbonate using said catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952194A (en) * 1972-06-15 1974-05-21
JPS61114741A (en) * 1984-11-07 1986-06-02 ヘキスト・アクチエンゲゼルシヤフト Supported catalyst for producing monocarboxylic anhydrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952194A (en) * 1972-06-15 1974-05-21
JPS61114741A (en) * 1984-11-07 1986-06-02 ヘキスト・アクチエンゲゼルシヤフト Supported catalyst for producing monocarboxylic anhydrate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6014048475; Z. anorg. allg. Chem. 590, 1990, 65-80 *
JPN6014048477; Chem. Eur. J. 16, 2010, 10808-10817 *
JPN6014048479; SYNTHESIS No.6, 2004, 905-908 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035805A1 (en) * 2014-09-03 2016-03-10 丸善石油化学株式会社 Catalyst, method for producing same, and method for producing polyalkylene carbonate using said catalyst
JPWO2016035805A1 (en) * 2014-09-03 2017-06-15 丸善石油化学株式会社 Catalyst, method for producing the same, and method for producing polyalkylene carbonate using the catalyst

Also Published As

Publication number Publication date
JP5791040B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP6389220B2 (en) Hydrosilylation catalyst
Díez-González et al. A simple and efficient copper-catalyzed procedure for the hydrosilylation of hindered and functionalized ketones
Yoshizawa et al. Cavity-directed synthesis of labile silanol oligomers within self-assembled coordination cages
JP3943015B2 (en) Recyclable metathesis catalyst
JP5532434B2 (en) Organic-inorganic composite materials and uses thereof
De Bo et al. Hydrosilylation of alkynes mediated by N-heterocyclic carbene platinum (0) complexes
US8871877B2 (en) Hybrid organic-inorganic materials that contain stabilized carbene
Wallner et al. Synthesis of new chiral pincer-complex catalysts for asymmetric allylation of sulfonimines
JP6502339B2 (en) Novel catalysts with silylene ligands
CN101990543B (en) Method for manufacturing ruthenium carbene complexes
Ouyang et al. Iron (II) Complexes Featuring Bidentate N-Heterocyclic Carbene–Silyl Ligands: Synthesis and Characterization
Guo et al. Suzuki-type cross coupling between aryl halides and silylboranes for the syntheses of aryl silanes
JP5551062B2 (en) Immobilization of catalyst on silica-based mesocell foam by click chemistry
WO2016024607A1 (en) Hydrosilylation reaction catalyst
JP5429745B2 (en) Catalyst for dehydrogenation silylation reaction, and method for producing organosilicon compound
JP5791040B2 (en) Phosphine compounds and phosphine-containing organic-inorganic composites and their use
JP6015949B2 (en) Siloxane production method
Prabusankar et al. Synthesis, spectral studies, and structural characterization of a new organosilanetriol, its amine complexes, and a surface lewis basic cubic aluminosilicate
JP5071931B2 (en) Solid catalyst
Toupance et al. Silica-anchored organotin trichloride: a recyclable and clean organotin catalyst for transesterification reactions
JP5955034B2 (en) Bisphosphine compound, transition metal catalyst having bisphosphine compound as ligand, and production method thereof
CN111203276A (en) Application of chiral bidentate phosphite ligand, hydrosilation reaction catalyst and application thereof, and preparation method of chiral silane
CN113549064B (en) Two 1, 10-phenanthroline skeleton ligands and iron complex thereof, and preparation method and application thereof
CN107226822A (en) A kind of preparation method of hexa-atomic silaoxacyclen
JP2003212884A (en) Method for producing phenylsilane

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R150 Certificate of patent or registration of utility model

Ref document number: 5791040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250