JP2012188339A - Ceramic composition, ceramic sintered compact, and electronic component - Google Patents

Ceramic composition, ceramic sintered compact, and electronic component Download PDF

Info

Publication number
JP2012188339A
JP2012188339A JP2011135151A JP2011135151A JP2012188339A JP 2012188339 A JP2012188339 A JP 2012188339A JP 2011135151 A JP2011135151 A JP 2011135151A JP 2011135151 A JP2011135151 A JP 2011135151A JP 2012188339 A JP2012188339 A JP 2012188339A
Authority
JP
Japan
Prior art keywords
mass
parts
component
oxide
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011135151A
Other languages
Japanese (ja)
Other versions
JP5887074B2 (en
Inventor
Mika Tamanoi
美香 玉野井
Akitoshi Wakawa
明俊 和川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2011135151A priority Critical patent/JP5887074B2/en
Publication of JP2012188339A publication Critical patent/JP2012188339A/en
Application granted granted Critical
Publication of JP5887074B2 publication Critical patent/JP5887074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic composition capable of being sintered at a low temperature, having low dielectric loss in a high frequency range, and from which a ceramic sintered compact having excellent plating corrosion resistance can be obtained, a ceramic sintered compact obtained from the composition, and an electronic component made using the sintered compact.SOLUTION: A ceramic composition includes 6 to 19 pts.mass SrTiOpowder, 1.4 to 6 pts.mass Al component in terms of oxide, 0.3 to 0.9 pts.mass Li component in terms of oxide, 1.6 to 3.2 pts.mass B component in terms of oxide, 3.2 to 5.1 pts.mass Zn component in terms of oxide, 0.5 to 0.9 pts.mass Cu component in terms of oxide, 0 to 3 pts.mass Ag component in terms of oxide, and 0 to 4.5 pts.mass Co component in terms of oxide, and 100 pts.mass diopside crystal powder synthesized by a solid phase reaction method. A ceramic sintered compact and an electronic component are obtained using the composition.

Description

本発明は、低温焼結が可能で、高周波領域での誘電損失が低く、メッキ耐食性に優れたセラミックス焼結体を得ることが可能なセラミックス組成物、該組成物から得られるセラミックス焼結体、及び該焼結体を用いた電子部品に関する。   The present invention is a ceramic composition capable of low temperature sintering, low dielectric loss in a high frequency region, and capable of obtaining a ceramic sintered body excellent in plating corrosion resistance, a ceramic sintered body obtained from the composition, And an electronic component using the sintered body.

近年の情報の大容量化、情報通信の高速化に伴い、高周波信号を損失なく伝送することが求められている。このため、これらの機器に搭載される回路基板等の電子部品は、高周波領域での誘電損失が低いことが求められている。高周波信号を損失なく伝損する上で、銅や銀などの低抵抗金属を使用して導体層を形成することが要求されており、これらの電子部品に用いられるセラミックス組成物においては、低抵抗金属との同時焼成を可能にすべく、低温で焼結が可能であることが必要とされている。   With the recent increase in information capacity and the speed of information communication, it is required to transmit high-frequency signals without loss. For this reason, electronic components such as circuit boards mounted on these devices are required to have low dielectric loss in the high frequency region. In order to transmit high-frequency signals without loss, it is required to form a conductor layer using a low-resistance metal such as copper or silver. In ceramic compositions used for these electronic components, a low-resistance metal is required. Therefore, it is necessary to be able to sinter at a low temperature.

このようなセラミックス組成物に用いられる材料の一つとして、ディオプサイドが現在注目されている。ディオプサイドは、誘電率εやQ×f値が大きく、高周波特性に優れている。しかしながら、ディオプサイドは、共振周波数の温度係数τfが大きいために、静電容量の温度係数が大きくなり、使用環境によっては、所望の誘電特性が得られず、特にアンテナやフィルタに用いる場合には設計の許容範囲を狭めてしまう問題があった。そこで、共振周波数の温度特性を改善する試みが種々検討されている。   Diopside is currently attracting attention as one of the materials used in such ceramic compositions. Diopside has a large dielectric constant ε and Q × f value, and is excellent in high frequency characteristics. However, since the temperature coefficient τf of the resonance frequency is large in the diopside, the temperature coefficient of the capacitance becomes large, and a desired dielectric property cannot be obtained depending on the use environment, and particularly when used for an antenna or a filter. Had the problem of narrowing the design tolerance. Thus, various attempts to improve the temperature characteristics of the resonance frequency have been studied.

特許文献1には、ディオプサイド型結晶を析出する結晶化ガラス粉末30〜90質量%と、チタン酸カルシウム粉末及び/又はチタン酸ストロンチウム粉末を合計で1〜40質量%と、Al、TiO、ZrO、MgTiO、BaTi、LaTi、NdTi、CaNb、SrZrO、CaZrOの中から少なくとも1種の粉末を0〜60質量%とを含有する混合粉末100質量部に対して、Fe、Cr、ZnO、CuO、AgO、Co、MnO、CeO、R(Rは希土類元素)の中から少なくとも1種の粉末を0.1〜2.0質量部添加してなるセラミックス組成物が開示されている。 Patent Document 1 discloses that 30 to 90% by mass of crystallized glass powder for precipitating diopside crystals, 1 to 40% by mass in total of calcium titanate powder and / or strontium titanate powder, Al 2 O 3 , TiO 2 , ZrO 2 , MgTiO 3 , BaTi 4 O 9 , La 2 Ti 2 O 7 , Nd 2 Ti 2 O 7 , Ca 2 Nb 2 O 7 , SrZrO 3 , CaZrO 3 Fe 2 O 3 , Cr 2 O 3 , ZnO, CuO, Ag 2 O, Co 3 O 4 , MnO 2 , CeO 2 , R 2 O with respect to 100 parts by mass of the mixed powder containing 0 to 60% by mass 3 (C is a ceramic composition obtained by adding 0.1 to 2.0 parts by mass of at least one powder from R (rare earth element)).

また、特許文献2には、(a)固相反応法により合成されたディオプサイド結晶粉末100質量部に対し、(b)チタン酸ストロンチウム粉末を6.0〜19.0質量部、又は、チタン酸カルシウム粉末を13.0〜43.0質量部、又は、チタン酸ストロンチウム粉末及びチタン酸カルシウム粉末を合計して6.5〜42.0質量部と、(c)アルカリ化合物、アルカリ土類化合物、ホウ素化合物、遷移金属化合物、リン化合物、亜鉛化合物から選ばれた、リチウム化合物及びホウ素化合物を含む2種以上の化合物の粉末を、酸化物換算で合計して6.0〜11.0質量部とを含有するセラミックス組成物が開示されている。   Further, in Patent Document 2, (a) with respect to 100 parts by mass of the diopside crystal powder synthesized by the solid phase reaction method, (b) 6.0 to 19.0 parts by mass of strontium titanate powder, or 13.0 to 43.0 parts by mass of calcium titanate powder, or 6.5 to 42.0 parts by mass in total of strontium titanate powder and calcium titanate powder, and (c) an alkali compound and an alkaline earth A total of 6.0 to 11.0 masses of powders of two or more compounds selected from a compound, a boron compound, a transition metal compound, a phosphorus compound, and a zinc compound, including a lithium compound and a boron compound, in terms of oxides. A ceramic composition containing a part is disclosed.

特開2003−286074号公報JP 2003-286074 A 特開2010−37126号公報JP 2010-37126 A

上記特許文献1のセラミックス組成物は、結晶化ガラスを原料として用いているが、結晶化ガラスは、ガラス原料を融点以上に加熱し、溶解させて調製するので、熱エネルギーを要する。また、結晶化ガラスはブロック状の塊状物として生成されるので粉末化するに際し手間を要する。このため、結晶化ガラスを原料として用いた場合、材料コストが嵩む問題があった。また、結晶化ガラスは、低温焼結を可能にするためには、助剤成分を比較的多量に使用する必要があるが、助剤成分を多量に含有させることでディオプサイド結晶の特性が損なわれ、特に高周波領域における誘電損失が増加する傾向にあった。   The ceramic composition of Patent Document 1 uses crystallized glass as a raw material. However, crystallized glass is prepared by heating and melting a glass raw material to a melting point or higher, and thus requires heat energy. Moreover, since crystallized glass is produced as a block-like lump, it takes time and effort to powderize it. For this reason, when crystallized glass is used as a raw material, there was a problem that material cost increased. Crystallized glass needs to use a relatively large amount of an auxiliary component in order to enable low-temperature sintering. However, by adding a large amount of an auxiliary component, the characteristics of diopside crystals can be increased. The dielectric loss tends to increase, particularly in the high frequency region.

一方、固相反応法により合成されたディオプサイド結晶粉末は、助剤成分の使用量が少量であっても、低温焼結することができ、ディオプサイド結晶の特性が損なわれにくい。また、それぞれの原料を融点以下の温度で合成することができるので、結晶化ガラスに比べて低温での合成が可能であり、更には、粉末状で合成されるので、粉末化工程が簡略で済む。このため、製造コストを抑えることができ、経済的に優れる、という利点がある。   On the other hand, the diopside crystal powder synthesized by the solid phase reaction method can be sintered at a low temperature even if the amount of the auxiliary component used is small, and the characteristics of the diopside crystal are hardly impaired. In addition, since each raw material can be synthesized at a temperature below the melting point, it can be synthesized at a lower temperature than crystallized glass, and furthermore, since it is synthesized in powder form, the powdering process is simplified. That's it. For this reason, manufacturing cost can be held down and there is an advantage that it is excellent economically.

しかしながら、特許文献2のセラミックス組成物を焼成して得られるセラミックス焼結体は、耐メッキ性が劣り、このセラミックス組成物を用いて基板等の電子部品を製造した場合、導体層の表面をメッキ処理するに際し、セラミックス層がメッキ液によって浸食されることがあった。メッキ液で浸食された部位にはメッキ残渣が残り、大気中の湿気を吸収すると電解質液となって、マイグレーションが促進され易かった。更には、導体層とセラミックス層との固着力が低下して、導体層がセラミックス層から剥離し易くなるという問題があった。   However, the ceramic sintered body obtained by firing the ceramic composition of Patent Document 2 has poor plating resistance, and when an electronic component such as a substrate is manufactured using this ceramic composition, the surface of the conductor layer is plated. During processing, the ceramic layer may be eroded by the plating solution. Plating residue remained at the site eroded by the plating solution, and when moisture in the atmosphere was absorbed, it became an electrolyte solution and migration was easily promoted. Furthermore, there is a problem that the adhesion force between the conductor layer and the ceramic layer is reduced, and the conductor layer is easily peeled off from the ceramic layer.

よって、本発明の目的は、低温焼結が可能で、高周波領域での誘電損失が低く、メッキ耐食性に優れたセラミックス焼結体を得ることが可能なセラミックス組成物、該組成物から得られるセラミックス焼結体、及び該焼結体を用いた、高周波領域での誘電損失が低く、メッキ耐食性に優れ、マイグレーションが改善された電子部品を提供することにある。   Accordingly, an object of the present invention is to provide a ceramic composition capable of obtaining a ceramic sintered body that can be sintered at low temperature, has a low dielectric loss in a high frequency region, and is excellent in plating corrosion resistance, and a ceramic obtained from the composition. An object of the present invention is to provide a sintered body and an electronic component using the sintered body, having a low dielectric loss in a high-frequency region, excellent corrosion resistance against plating, and improved migration.

上記目的を達成するため、本発明のセラミックス組成物の第1は、固相反応法により合成されたディオプサイド結晶粉末100質量部に対し、SrTiO粉末を6〜19質量部、Al成分を酸化物換算で1.4〜6質量部、Li成分を酸化物換算で0.3〜0.9質量部、B成分を酸化物換算で1.6〜3.2質量部、Zn成分を酸化物換算で3.2〜5.1質量部、Cu成分を酸化物換算で0.5〜0.9質量部、Ag成分を酸化物換算で0〜3質量部、Co成分を酸化物換算で0〜4.5質量部含有することを特徴とする。 In order to achieve the above object, the first ceramic composition of the present invention is based on 100 parts by mass of diopside crystal powder synthesized by a solid phase reaction method, 6 to 19 parts by mass of SrTiO 3 powder, and Al component. 1.4 to 6 parts by mass in terms of oxide, 0.3 to 0.9 parts by mass in terms of oxide of Li component, 1.6 to 3.2 parts by mass in terms of oxide of B component, and oxidation of Zn component 3.2 to 5.1 parts by mass in terms of product, 0.5 to 0.9 parts by mass in terms of oxide of Cu component, 0 to 3 parts by mass in terms of oxide of Ag component, and Co in terms of oxide It contains 0 to 4.5 parts by mass.

また、本発明のセラミックス組成物の第2は、固相反応法により合成されたディオプサイド結晶粉末100質量部に対し、CaTiO粉末を13〜43質量部、Al成分を酸化物換算で1.4〜6質量部、Li成分を酸化物換算で0.3〜0.9質量部、B成分を酸化物換算で1.6〜3.2質量部、Zn成分を酸化物換算で3.2〜5.1質量部、Cu成分を酸化物換算で0.5〜0.9質量部、Ag成分を酸化物換算で0〜3質量部、Co成分を酸化物換算で0〜4.5質量部含有することを特徴とする。 The second ceramic composition of the present invention is 13 to 43 parts by mass of CaTiO 3 powder and 1 component of oxide in terms of oxide with respect to 100 parts by mass of diopside crystal powder synthesized by a solid phase reaction method. 0.4 to 6 parts by mass, Li component in terms of oxide 0.3 to 0.9 parts by mass, B component in terms of oxide 1.6 to 3.2 parts by mass, and Zn component in terms of oxide 3. 2 to 5.1 parts by mass, Cu component to 0.5 to 0.9 parts by mass in terms of oxide, Ag component to 0 to 3 parts by mass in terms of oxide, and Co component to 0 to 4.5 in terms of oxide It is characterized by containing a mass part.

また、本発明のセラミックス組成物の第3は、固相反応法により合成されたディオプサイド結晶粉末100質量部に対し、SrTiO粉末及びCaTiO粉末を合計して6.5〜42質量部、Al成分を酸化物換算で1.4〜6質量部、Li成分を酸化物換算で0.3〜0.9質量部、B成分を酸化物換算で1.6〜3.2質量部、Zn成分を酸化物換算で3.2〜5.1質量部、Cu成分を酸化物換算で0.5〜0.9質量部、Ag成分を酸化物換算で0〜3質量部、Co成分を酸化物換算で0〜4.5質量部含有することを特徴とする。 The third ceramic composition of the present invention is a total of 6.5 to 42 parts by mass of SrTiO 3 powder and CaTiO 3 powder with respect to 100 parts by mass of diopside crystal powder synthesized by the solid phase reaction method. The Al component is 1.4 to 6 parts by mass in terms of oxide, the Li component is 0.3 to 0.9 parts by mass in terms of oxide, the B component is 1.6 to 3.2 parts by mass in terms of oxide, The Zn component is 3.2 to 5.1 parts by mass in terms of oxide, the Cu component is 0.5 to 0.9 parts by mass in terms of oxide, the Ag component is 0 to 3 parts by mass in terms of oxide, and the Co component is It is characterized by containing 0 to 4.5 parts by mass in terms of oxide.

本発明のセラミックス組成物の第1〜第3は、前記Ag成分を、ディオプサイド結晶粉末100質量部に対し、酸化物換算で0.5〜3質量部含有することが好ましい。   It is preferable that 1st-3rd of the ceramic composition of this invention contains 0.5-3 mass parts of said Ag component in conversion of an oxide with respect to 100 mass parts of diopside crystal powder.

本発明のセラミックス組成物の第1〜第3は、前記Co成分を、ディオプサイド結晶粉末100質量部に対し、酸化物換算で1.5〜4.5質量部含有することが好ましい。   In the first to third ceramic compositions of the present invention, the Co component is preferably contained in an amount of 1.5 to 4.5 parts by mass in terms of oxide with respect to 100 parts by mass of the diopside crystal powder.

また、本発明のセラミックス焼結体は、上記セラミックス組成物を焼成して得られたものである。   The ceramic sintered body of the present invention is obtained by firing the ceramic composition.

本発明のセラミックス焼結体は、ディオプサイト結晶粒の粒内、粒界及び三重点から選ばれるいずれかに、SrTiO結晶及び/又はCaTiO結晶が単独で存在していることが好ましい。この態様において、前記SrTiO結晶及び/又はCaTiO結晶の平均粒径が0.5〜3μmであることが好ましい。 In the ceramic sintered body of the present invention, it is preferable that a SrTiO 3 crystal and / or a CaTiO 3 crystal is present alone in any one selected from the interior of the diopsite crystal grain, the grain boundary, and the triple point. In this embodiment, the SrTiO 3 crystal and / or CaTiO 3 crystal preferably has an average particle size of 0.5 to 3 μm.

本発明のセラミックス焼結体は、共振周波数の温度係数τfの絶対値が30×10−6/℃以下であり、Q×f値が5000GHz以上であることが好ましい。 In the ceramic sintered body of the present invention, the absolute value of the temperature coefficient τf of the resonance frequency is preferably 30 × 10 −6 / ° C. or less, and the Q × f value is preferably 5000 GHz or more.

また、本発明の電子部品は、上記セラミックス組成物を焼成して得られるセラミックス層と、該セラミックス層の表面及び/又は内部にあって、前記セラミックス組成物と同時焼成して得られる導体層とを有することを特徴とする。   Further, an electronic component of the present invention includes a ceramic layer obtained by firing the ceramic composition, a conductor layer that is on the surface and / or inside the ceramic layer, and is obtained by simultaneous firing with the ceramic composition, It is characterized by having.

本発明の電子部品は、前記導体層が、Ag、Cu、もしくはそれらの少なくとも一方を含む合金で形成されていることが好ましい。   In the electronic component of the present invention, the conductor layer is preferably formed of Ag, Cu, or an alloy containing at least one of them.

本発明の電子部品は、前記導体層の表面が湿式メッキ処理されていることが好ましい。   In the electronic component of the present invention, the surface of the conductor layer is preferably subjected to wet plating.

本発明の電子部品は、基板であることが好ましい。   The electronic component of the present invention is preferably a substrate.

本発明のセラミックス組成物は、固相反応法により合成されたディオプサイド結晶粉末を用いたことで、ディオプサイド結晶粉末以外の助剤成分の使用量が少量であっても、低温焼結が可能である。このため、ディオプサイド結晶の特性が損なわれにくい。また、固相反応法により合成されたディオプサイド結晶粉末は、それぞれの原料を融点以下の温度で合成し、粉末状の形態で合成されるので、加熱に要する熱エネルギーを低減でき、更には、粉末化に要する手間を簡略化して製造コストを抑えることができ、経済的に優れる。また、SrTiO粉末及び/又はCaTiO粉末を、それぞれ所定量含有させたことで、得られるセラミックス焼結体の誘電率ε及びQ×f値を大きくしつつ、共振周波数の温度係数τfを制御して、ほぼゼロに近づけることができる。また、Li成分、B成分、Zn成分、Cu成分、Ag成分及びCo成分を、それぞれ所定量含有させたことで低温焼結が可能となり、特に930℃以下での低温で焼結することができる。そして、Al成分を所定量含有させたことで、焼結後の粒界構造が強固となり、粒界の化学耐久性が向上し、耐メッキ性に優れた焼結体を得ることができる。 The ceramic composition of the present invention uses a diopside crystal powder synthesized by a solid phase reaction method, so that low temperature sintering is possible even if the amount of auxiliary components other than the diopside crystal powder is small. Is possible. For this reason, the characteristic of a diopside crystal is hard to be impaired. In addition, the diopside crystal powder synthesized by the solid phase reaction method synthesizes each raw material at a temperature below the melting point and is synthesized in a powder form, so that the heat energy required for heating can be reduced, and The manufacturing cost can be reduced by simplifying the labor required for powdering, which is economically superior. Further, by containing a predetermined amount of SrTiO 3 powder and / or CaTiO 3 powder, respectively, the temperature coefficient τf of the resonance frequency is controlled while increasing the dielectric constant ε and the Q × f value of the obtained ceramic sintered body. Thus, it can be close to zero. In addition, low-temperature sintering is possible by including a predetermined amount of each of the Li component, B component, Zn component, Cu component, Ag component, and Co component, and in particular, sintering can be performed at a low temperature of 930 ° C. or lower. . And by containing predetermined amount of Al component, the grain boundary structure after sintering becomes strong, the chemical durability of a grain boundary improves, and the sintered compact excellent in plating resistance can be obtained.

また、本発明のセラミックス焼結体は、低温焼結が可能であることから、Cu、Ag等の低抵抗金属と同時焼結することができ、これらの低抵抗金属を導体層として備えた電子部品のセラミックス層などに用いることができる。また、耐メッキ性に優れることから、導体層の表面をメッキ処理しても、セラミックス層がメッキ液によって浸食されにくくでき、マイグレーションやデラミネーション等の発生し難い電子部品とすることができる。   Further, since the ceramic sintered body of the present invention can be sintered at a low temperature, it can be simultaneously sintered with a low-resistance metal such as Cu or Ag, and an electron including these low-resistance metals as a conductor layer. It can be used for ceramic layers of parts. Moreover, since it is excellent in plating resistance, even if the surface of the conductor layer is plated, the ceramic layer can be hardly eroded by the plating solution, and an electronic component in which migration or delamination is unlikely to occur can be obtained.

実施例の焼結体の導電層パターンを示す図面である。It is drawing which shows the conductive layer pattern of the sintered compact of an Example. 試料No.1,3の焼結体の耐湿試験結果を示す図表である。Sample No. It is a graph which shows the moisture-proof test result of 1 and 3 sintered compact.

[セラミックス組成物]
本発明のセラミックス組成物は、固相反応法により得られたディオプサイド結晶粉末を主成分として含有する。このディオプサイド結晶粉末は、Si、Mg、Caの酸化物、炭酸塩等のガラスでない材料からなるセラミックス粉末を、ディオプサイドの化学量論比(Ca:Mg:Si=1:1:2)となるように混合し、融点以下で加熱し、固相反応法により焼結し、所定粒度に粉砕して製造される。
[Ceramic composition]
The ceramic composition of the present invention contains diopside crystal powder obtained by a solid phase reaction method as a main component. The diopside crystal powder is a ceramic powder made of a non-glass material such as Si, Mg, Ca oxide, carbonate or the like, and a diopside stoichiometric ratio (Ca: Mg: Si = 1: 1: 2). ), Heated below the melting point, sintered by a solid phase reaction method, and pulverized to a predetermined particle size.

上記セラミックス粉末は、Si、Mg、Caをそれらの酸化物、すなわちSiO、MgO、CaOに換算した配合割合が、好ましくは、SiO 53.5〜62質量%、MgO 12〜22質量%、CaO 21〜32質量%となるように調整し、より好ましくは、SiO 56〜59.5質量%、MgO 15〜19質量%、CaO 23.5〜29.5質量%となるように調整する。SiO、MgO、CaOを上記範囲に調整することで、ディオプサイド結晶を析出させやすくなる。 The above-mentioned ceramic powder preferably contains Si, Mg, Ca in their oxides, that is, SiO 2 , MgO, CaO, preferably 53.5 to 62% by mass of SiO 2 , 12 to 22% by mass of MgO, adjusted to CaO 21-32 wt%, more preferably, SiO 2 56-59.5 wt%, MgO 15 to 19 wt%, adjusted to a CaO 23.5-29.5 wt% . By adjusting SiO 2 , MgO, and CaO within the above ranges, it becomes easy to precipitate diopside crystals.

SiOの含有量が62質量%を超えると、ウォラストナイト結晶が生成しやすくなり、誘電損失が大きくなって、強度も低下することがある。また、SiOの含有量が53.5質量%未満であると、オーケルマナイト結晶が生成し易くなり、誘電損失が大きくなることがある。 When the content of SiO 2 exceeds 62% by mass, wollastonite crystals are likely to be generated, the dielectric loss increases, and the strength may decrease. On the other hand, when the content of SiO 2 is less than 53.5% by mass, an akermanite crystal is likely to be generated, and the dielectric loss may be increased.

MgOの含有量が22質量%を超えると、フォルステライト結晶が生成し易くなり、強度が低下し易くなる。また、MgOの含有量が12質量%未満であると、ウォラストナイト結晶が生成し易くなり、誘電損失が大きくなり易い。   When the content of MgO exceeds 22% by mass, forsterite crystals are likely to be generated, and the strength tends to be reduced. On the other hand, when the content of MgO is less than 12% by mass, wollastonite crystals are likely to be generated, and the dielectric loss tends to increase.

CaOの含有量が32質量%を超えると、ウォラストナイト結晶や、オーケルマナイト結晶が生成し易くなり、誘電損失が大きくなり、強度が低下し易くなる。また、CaOの含有量が21質量%未満であると、フォルステライト結晶が生成し易くなり、強度が低下し易い。   When the content of CaO exceeds 32% by mass, wollastonite crystals and orkelmanite crystals are likely to be formed, dielectric loss increases, and strength tends to decrease. On the other hand, if the content of CaO is less than 21% by mass, forsterite crystals are likely to be generated, and the strength is likely to be reduced.

本発明において、ディオプサイド結晶粉末の平均粒径は、0.8〜2μmが好ましい。平均粒径が0.8μm未満であると、比表面積(BET値)が大きくなり、セラミックス組成物をグリーンシート化した際に、密度が小さくなり易い。このため、焼成前後でシートの収縮量が大きくなり易く、導体材料と同時焼成してセラミックス層上に導体層を形成しようとした場合、導体層がセラミックス層から剥離し易くなる。また、平均粒径が2μmを超えると、セラミックス組成物をグリーンシート化する際に、グリーンシートの厚みを薄くし難くなる。なお、本発明において、ディオプサイド結晶粉末の平均粒径は、レーザ回折・散乱法による粒度分布測定の方法で測定した値を意味する。   In the present invention, the average particle size of the diopside crystal powder is preferably 0.8 to 2 μm. When the average particle size is less than 0.8 μm, the specific surface area (BET value) increases, and the density tends to decrease when the ceramic composition is made into a green sheet. For this reason, the amount of shrinkage of the sheet tends to increase before and after firing, and when the conductor layer is formed on the ceramic layer by simultaneous firing with the conductor material, the conductor layer is easily peeled off from the ceramic layer. On the other hand, when the average particle size exceeds 2 μm, it is difficult to reduce the thickness of the green sheet when the ceramic composition is formed into a green sheet. In the present invention, the average particle size of the diopside crystal powder means a value measured by a particle size distribution measurement method by a laser diffraction / scattering method.

本発明のセラミックス組成物は、SrTiO粉末及び/又はCaTiO粉末を含有する。 The ceramic composition of the present invention contains SrTiO 3 powder and / or CaTiO 3 powder.

ディオプサイド結晶は、単独では共振周波数の温度係数τfが負の特性(およそ−65×10−6/℃)を示す。一方、SrTiO結晶は、共振周波数の温度係数τfが1670×10−6/℃であり、CaTiO結晶は、共振周波数の温度係数τfが840×10−6/℃であり、それぞれ単独では共振周波数の温度係数τfが正の特性を示す。このため、SrTiO粉末やCaTiO粉末を含有することで、共振周波数の温度係数τfを調整してゼロに近づけることができる。 The diopside crystal alone exhibits a characteristic in which the temperature coefficient τf of the resonance frequency is negative (approximately −65 × 10 −6 / ° C.). On the other hand, SrTiO 3 crystal, the temperature coefficient τf of the resonance frequency is the 1670 × 10 -6 / ℃, CaTiO 3 crystals, the temperature coefficient τf of the resonance frequency is the 840 × 10 -6 / ℃, respectively resonance alone The temperature coefficient τf of the frequency shows a positive characteristic. For this reason, by containing SrTiO 3 powder or CaTiO 3 powder, the temperature coefficient τf of the resonance frequency can be adjusted to approach zero.

そして、SrTiO粉末は、ディオプサイド結晶との焼結により、焼結後の結晶相として、SrTiO単独、もしくはSrTiOにカルシウムが固溶した、(xCa、1−xSr)TiO型ペロブスカイト化合物が生成される。このペロブスカイト化合物は、共振周波数の温度係数τfが正の値を示すので、SrTiO粉末は、少量の添加量で、ディオプサイド結晶を含有するセラミックス焼結体の共振周波数の温度係数τfを上昇させて、ゼロに近づけることができる。 The SrTiO 3 powder was sintered with diopside crystals, and as a crystal phase after sintering, SrTiO 3 alone or (xCa, 1-xSr) TiO 3 type perovskite in which calcium was dissolved in SrTiO 3. A compound is produced. Since this perovskite compound has a positive temperature coefficient τf of the resonance frequency, SrTiO 3 powder increases the temperature coefficient τf of the resonance frequency of the ceramic sintered body containing the diopside crystal with a small addition amount. Let it be close to zero.

また、CaTiO粉末は、ディオプサイド結晶との焼結により、ディオプサイド結晶中のSiOと反応して、チタナイト(もしくはスフェーン、CaTiSiO)を生成し易い。チタナイトは、共振周波数の温度係数τfが、−756×10−6/℃と負に大きな特性を持つことから、チタナイトが生成されると共振周波数の温度係数τfを補償する際の阻害要因となり、チタナイトの共振周波数の温度係数τfを相殺する分量をさらに添加する必要が生じる。 Further, the CaTiO 3 powder easily reacts with SiO 2 in the diopside crystal by sintering with the diopside crystal to easily generate titanite (or sphene, CaTiSiO 5 ). Since titanite has a negative frequency characteristic that the temperature coefficient τf of the resonance frequency is −756 × 10 −6 / ° C., when titanite is generated, it becomes an obstructive factor in compensating the temperature coefficient τf of the resonance frequency, It is necessary to further add an amount that cancels the temperature coefficient τf of the resonance frequency of titanite.

ここで、異種材料が複合したような組成物の共振周波数は、経験的に次の式(1)が成り立つことが知られている。
{複合体の共振周波数の温度係数τf=Σ(各成分の体積分率(vol%)×各成分の共振周波数の温度係数τf)} ・・・(1)
Here, it is known that the following equation (1) is established empirically for the resonance frequency of a composition in which different kinds of materials are combined.
{Temperature coefficient τf of resonance frequency of composite = Σ (volume fraction of each component (vol%) × temperature coefficient τf of resonance frequency of each component)} (1)

また、異種材料が複合した組成物の誘電率についても、経験的に次の式(2)が成り立つことが知られている。
{log(複合体の誘電率ε)=Σ(各成分の体積分率(vol%)×log(各成分の誘電率ε)} ・・・(2)
Further, it is known from experience that the following formula (2) holds for the dielectric constant of a composition in which different materials are combined.
{Log (dielectric constant ε of composite) = Σ (volume fraction of each component (vol%) × log (dielectric constant ε of each component)} (2)

そして、SrTiOの共振周波数の温度係数τf及び誘電率εは、τf=1670×10−6、ε=255であり、CaTiOの共振周波数の温度係数τf及び誘電率εは、τf=840×10−6/℃、ε=177である。 The temperature coefficient τf and dielectric constant ε of the resonance frequency of SrTiO 3 are τf = 1670 × 10 −6 and ε = 255, and the temperature coefficient τf and dielectric constant ε of the resonance frequency of CaTiO 3 are τf = 840 × 10 −6 / ° C. and ε = 177.

つまり、誘電率εを極力上げずに共振周波数の温度係数τfを上げたい場合は、SrTiO粉末を用いることが好ましい。また、誘電率εも共振周波数の温度係数τfも両方を上げたい場合は、CaTiO粉末を用いることが好ましい。また、誘電率εと共振周波数の温度係数τfとを用途に応じて任意で調整する場合は、SrTiO粉末とCaTiO粉末とを併用することが好ましい。 That is, when it is desired to increase the temperature coefficient τf of the resonance frequency without increasing the dielectric constant ε as much as possible, it is preferable to use SrTiO 3 powder. Further, when it is desired to increase both the dielectric constant ε and the temperature coefficient τf of the resonance frequency, it is preferable to use CaTiO 3 powder. Also, when adjusting optionally depending on the application and the temperature coefficient τf of the resonance frequency and the dielectric constant ε, it is preferable to use the SrTiO 3 powder and CaTiO 3 powder.

したがって、本発明のセラミックス組成物の第一の態様は、ディオプサイド結晶粉末100質量部に対し、SrTiO粉末を6〜19質量部含有する。SrTiO粉末の含有量が上記範囲内であれば、高周波領域での誘電損失を低くしつつ、共振周波数の温度係数τfをゼロに近づけることができる。 Accordingly, a first aspect of the ceramic composition of the present invention, compared diopside crystal powder 100 parts by weight of the SrTiO 3 powder containing 6 to 19 parts by weight. If the content of the SrTiO 3 powder is within the above range, the temperature coefficient τf of the resonance frequency can be brought close to zero while reducing the dielectric loss in the high frequency region.

また、本発明のセラミックス組成物の第二の態様は、ディオプサイド結晶粉末100質量部に対し、CaTiO粉末を13〜43質量部含有する。CaTiO粉末の含有量が上記範囲内であれば、高周波領域での誘電損失を低くしつつ、共振周波数の温度係数τfをゼロに近づけることができる。 A second aspect of the ceramic composition of the present invention, compared diopside crystal powder 100 parts by weight, containing 13 to 43 parts by weight of CaTiO 3 powder. If the content of the CaTiO 3 powder is within the above range, the temperature coefficient τf of the resonance frequency can be brought close to zero while reducing the dielectric loss in the high frequency region.

また、本発明のセラミックス組成物の第三の態様は、ディオプサイド結晶粉末100質量部に対し、SrTiO粉末とCaTiO粉末とを合計で6.5〜42質量部含有する。SrTiO粉末とCaTiO粉末との合計含有量が上記範囲内であれば、高周波領域での誘電損失を低くしつつ、共振周波数の温度係数τfをゼロに近づけることができる。 A third aspect of the ceramic composition of the present invention, compared diopside crystal powder 100 parts by weight, contains from 6.5 to 42 parts by weight of a SrTiO 3 powder and CaTiO 3 powder in total. If the total content of the SrTiO 3 powder and the CaTiO 3 powder is within the above range, the temperature coefficient τf of the resonance frequency can be brought close to zero while reducing the dielectric loss in the high frequency region.

本発明のセラミックス組成物において、SrTiO粉末及びCaTiO粉末は、得られるセラミックス焼結体の焼結性、高強度化、共振周波数の温度係数τfを制御するという観点から、平均粒径が0.5〜2μmの粉状物を用いることが好ましく、特に、ディオプサイド結晶粉末に対して分散性を向上させるという理由から、0.8〜1.5μmの粉状物を用いることがより好ましい。なお、本発明において、SrTiO粉末及びCaTiO粉末の平均粒径は、レーザ回折・散乱法による粒度分布測定の方法で測定した値を意味する。 In the ceramic composition of the present invention, the SrTiO 3 powder and the CaTiO 3 powder have an average particle size of 0 from the viewpoint of controlling the sinterability, increasing the strength of the ceramic sintered body, and controlling the temperature coefficient τf of the resonance frequency. It is preferable to use a powdery material of 5 to 2 μm, and in particular, it is more preferable to use a powdery material of 0.8 to 1.5 μm because the dispersibility is improved with respect to the diopside crystal powder. . In the present invention, the average particle size of the SrTiO 3 powder and CaTiO 3 powder means a value measured by the method of particle size distribution measurement by laser diffraction scattering method.

本発明のセラミックス組成物は、Al成分を含有する。Al成分としては、Alの酸化物、炭酸塩等が挙げられる。Al成分を含有することで、得られるセラミックス焼結体の粒界構造が強固となり、粒界の化学耐久性が向上する。このため、耐メッキ性に優れたセラミックス焼結体が得られる。Al成分は、ディオプサイド結晶粉末100質量部に対し、酸化物(Al)換算で1.4〜6質量部含有する。Al成分の含有量が酸化物換算で1.4質量部未満であると、添加効果が乏しく、耐メッキ性が劣る。また、6質量部を超えると、セラミックス組成物の焼結性が低下し、930℃以下で焼結しない。 The ceramic composition of the present invention contains an Al component. Examples of the Al component include Al oxides and carbonates. By containing the Al component, the grain boundary structure of the ceramic sintered body obtained is strengthened, and the chemical durability of the grain boundary is improved. For this reason, the ceramic sintered compact excellent in plating resistance is obtained. Al component to diopside crystal powder 100 parts by weight, contains from 1.4 to 6 parts by weight in oxide (Al 2 O 3) in terms. When the content of the Al component is less than 1.4 parts by mass in terms of oxide, the effect of addition is poor and the plating resistance is poor. Moreover, when it exceeds 6 mass parts, the sinterability of a ceramic composition will fall and it will not sinter at 930 degrees C or less.

本発明のセラミックス組成物は、Li成分を含有する。Li成分としては、Liの酸化物、炭酸塩等が挙げられる。Li成分を含有することで、焼結時に液相を形成し、セラミックス組成物の焼結温度を低下させることができる。Li成分は、ディオプサイド結晶粉末100質量部に対し酸化物(LiO)換算で0.3〜0.9質量部含有する。Li成分の含有量が酸化物換算で0.3質量部未満であると、セラミックス組成物の焼結性が低下し、930℃以下で焼結しない。また、0.9質量部を超えると、焼結時に融着が起こり、焼結体の形状が安定しにくくなると共に、絶縁性が損なわれ易くなる。 The ceramic composition of the present invention contains a Li component. Examples of the Li component include Li oxide and carbonate. By containing the Li component, a liquid phase can be formed during sintering and the sintering temperature of the ceramic composition can be lowered. Li component contains 0.3 to 0.9 parts by mass oxide (Li 2 O) in terms of relative diopside crystal powder 100 parts by weight. When the content of the Li component is less than 0.3 parts by mass in terms of oxide, the sinterability of the ceramic composition is lowered, and sintering is not performed at 930 ° C or lower. On the other hand, when the amount exceeds 0.9 parts by mass, fusion occurs during sintering, and the shape of the sintered body becomes difficult to stabilize, and the insulating property is easily impaired.

本発明のセラミックス組成物は、B成分を含有する。B成分としては、Bの酸化物、炭酸塩等が挙げられる。B成分を含有することで、焼結時に液相を形成し、セラミックス組成物の焼結温度を低下させることができる。B成分は、ディオプサイド結晶粉末100質量部に対し、酸化物(B)換算で1.6〜3.2質量部含有する。B成分の含有量が酸化物換算で1.6質量部未満であると、セラミックス組成物の焼結性が低下し、930℃以下で焼結しない。また、3.2質量部を超えると、Q×f値が低下し、誘電損失が大きくなる。 The ceramic composition of the present invention contains a component B. Examples of the B component include B oxides and carbonates. By containing B component, a liquid phase can be formed at the time of sintering and the sintering temperature of the ceramic composition can be lowered. B component, to diopside crystal powder 100 parts by weight, contains from 1.6 to 3.2 parts by weight of an oxide (B 2 O 3) in terms. When the content of the B component is less than 1.6 parts by mass in terms of oxide, the sinterability of the ceramic composition is lowered and the sintering is not performed at 930 ° C or lower. On the other hand, if it exceeds 3.2 parts by mass, the Q × f value decreases and the dielectric loss increases.

本発明のセラミックス組成物は、Zn成分を含有する。Zn成分としては、Znの酸化物、炭酸塩等が挙げられる。Zn成分を含有することで、焼結時中に液相を形成し、セラミックス組成物の焼結温度を低下させることができる。更には耐水性を向上させることができる。Zn成分は、ディオプサイド結晶粉末100質量部に対し酸化物(ZnO)換算で3.2〜5.1質量部含有る。Zn成分の含有量が酸化物換算で3.2質量部未満であると、セラミックス組成物の焼結性が低下し、930℃以下で焼結しない。また、5.1質量部を超えると、Q×f値が低下し、誘電損失が大きくなる。   The ceramic composition of the present invention contains a Zn component. Examples of the Zn component include Zn oxide and carbonate. By containing the Zn component, a liquid phase can be formed during sintering, and the sintering temperature of the ceramic composition can be lowered. Furthermore, water resistance can be improved. The Zn component is contained in an amount of 3.2 to 5.1 parts by mass in terms of oxide (ZnO) with respect to 100 parts by mass of the diopside crystal powder. When the content of the Zn component is less than 3.2 parts by mass in terms of oxide, the sinterability of the ceramic composition is deteriorated and does not sinter at 930 ° C. or lower. On the other hand, if it exceeds 5.1 parts by mass, the Q × f value decreases and the dielectric loss increases.

本発明のセラミックス組成物は、Cu成分を含有する。Cu成分としては、Cuの酸化物、炭酸塩等が挙げられる。Cu成分を含有することで、焼結時に液相を形成し、セラミックス組成物の焼結温度を低下させることができる。Cu成分は、ディオプサイド結晶粉末100質量部に対し酸化物(CuO)換算で0.5〜0.9質量部含有する。Cu成分の含有量が酸化物換算で0.5質量部未満であると、セラミックス組成物の焼結性が低下し、930℃以下で焼結しない。また、0.9質量部を超えると、焼結時に融着が起こり、焼結体の形状が安定しにくくなると共に、絶縁性が損なわれ易くなる。   The ceramic composition of the present invention contains a Cu component. Examples of the Cu component include Cu oxide and carbonate. By containing a Cu component, a liquid phase can be formed during sintering, and the sintering temperature of the ceramic composition can be lowered. Cu component contains 0.5-0.9 mass part in conversion of an oxide (CuO) with respect to 100 mass parts of diopside crystal powder. When the content of the Cu component is less than 0.5 parts by mass in terms of oxide, the sinterability of the ceramic composition is deteriorated and does not sinter at 930 ° C. or lower. On the other hand, when the amount exceeds 0.9 parts by mass, fusion occurs during sintering, and the shape of the sintered body becomes difficult to stabilize, and the insulating property is easily impaired.

本発明のセラミックス組成物は、Ag成分を任意成分として含有できる。Ag成分としては、Agの酸化物、炭酸塩等が挙げられる。Ag成分を含有することで、導体金属としてAgやAg合金を用い、セラミックス組成物と導体金属とを同時焼成した際に、導体金属がセラミックス組成物の液相に溶出することを防止できる。Ag成分は、ディオプサイド結晶粉末100質量部に対し、酸化物(AgO)換算で0〜3質量部含有でき、好ましくは0.5〜3質量部含有する。Ag成分の含有量が酸化物換算で0.5質量部未満であると、セラミックス組成物と導体金属と同時焼成した際に、導体金属のセラミックス組成物の液相への溶出を防止できないことがある。また、3質量部を超えると、耐メッキ性が低下する傾向にある。 The ceramic composition of the present invention can contain an Ag component as an optional component. Examples of the Ag component include Ag oxide and carbonate. By containing the Ag component, it is possible to prevent the conductor metal from eluting into the liquid phase of the ceramic composition when Ag or an Ag alloy is used as the conductor metal and the ceramic composition and the conductor metal are simultaneously fired. The Ag component can be contained in an amount of 0 to 3 parts by mass, preferably 0.5 to 3 parts by mass, in terms of oxide (Ag 2 O) with respect to 100 parts by mass of the diopside crystal powder. When the content of the Ag component is less than 0.5 parts by mass in terms of oxide, it is not possible to prevent elution of the conductive metal into the liquid phase of the ceramic composition when the ceramic composition and the conductive metal are fired simultaneously. is there. Moreover, when it exceeds 3 mass parts, it exists in the tendency for plating resistance to fall.

本発明のセラミックス組成物は、Co成分を任意成分として含有できる。Co成分としては、Coの酸化物、炭酸塩等が挙げられる。Co成分を含有することで、焼結性を向上できる。Co成分は、ディオプサイド結晶粉末100質量部に対し酸化物(CoO)換算で0〜4.5質量部含有でき、好ましくは0.5〜4.5質量部含有する。Co成分の含有量が酸化物換算で0.5質量部未満であると、添加効果が殆ど得られず、4.5質量部を超えると、焼結時に融着が生じ易くなる。   The ceramic composition of the present invention can contain a Co component as an optional component. Examples of the Co component include Co oxides and carbonates. By containing the Co component, the sinterability can be improved. The Co component can be contained in an amount of 0 to 4.5 parts by mass, preferably 0.5 to 4.5 parts by mass, in terms of oxide (CoO) with respect to 100 parts by mass of the diopside crystal powder. When the content of the Co component is less than 0.5 parts by mass in terms of oxide, the effect of addition is hardly obtained, and when it exceeds 4.5 parts by mass, fusion tends to occur during sintering.

本発明のセラミックス組成物は、更に、Na成分、K成分、Ca成分、Mg成分、Ba成分、P成分等を任意で含有させることができる。   The ceramic composition of the present invention can further optionally contain a Na component, a K component, a Ca component, a Mg component, a Ba component, a P component, and the like.

Na成分、K成分を含有させることで、焼結性を大きく損なわずに、耐水性や耐酸性を向上できる。Na成分、K成分は、ディオプサイド結晶粉末100質量部に対し酸化物(NaO、KO)換算で、合計量で0〜2質量部含有できる。 By containing the Na component and the K component, water resistance and acid resistance can be improved without significantly impairing the sinterability. The Na component and the K component can be contained in a total amount of 0 to 2 parts by mass in terms of oxide (Na 2 O, K 2 O) with respect to 100 parts by mass of the diopside crystal powder.

また、Ca成分、Mg成分、Ba成分を含有させることで、焼結時に液相を形成し、焼結温度を低下させることができる。Ca成分、Mg成分、Ba成分は、ディオプサイド結晶粉末100質量部に対し酸化物(CaO、MgO、BaO)換算で、合計量で0〜5質量部含有できる。   Moreover, by containing Ca component, Mg component, and Ba component, a liquid phase can be formed at the time of sintering and sintering temperature can be lowered. The Ca component, Mg component, and Ba component can be contained in a total amount of 0 to 5 parts by mass in terms of oxide (CaO, MgO, BaO) with respect to 100 parts by mass of the diopside crystal powder.

また、P成分を含有させることで、焼結時に液相を形成し、焼結温度を低下させることができる。P成分は、ディオプサイド結晶粉末100質量部に対し酸化物(P)換算で、0〜2質量部含有できる。 Moreover, by containing P component, a liquid phase can be formed at the time of sintering and the sintering temperature can be lowered. The P component can be contained in an amount of 0 to 2 parts by mass in terms of oxide (P 2 O 5 ) with respect to 100 parts by mass of the diopside crystal powder.

[セラミックス焼結体]
本発明のセラミックス焼結体は、上記のような組成となるように配合されたセラミックス組成物を、ZrOボールなどを用いて、水などの湿式下で混合し、必要に応じて結合剤、可塑剤、溶剤等を添加し、所定形状に成形して、焼成することによって得られる。
[Ceramic sintered body]
The ceramic sintered body of the present invention is prepared by mixing a ceramic composition blended so as to have the above composition under a wet condition such as water using a ZrO 2 ball or the like, and if necessary, a binder, It is obtained by adding a plasticizer, a solvent, etc., forming into a predetermined shape, and firing.

上記結合剤としては、例えばポリビニルブチラール樹脂、メタアクリル酸樹脂等が用いられ、可塑剤としては、例えばフタル酸ジブチル、フタル酸ジオクチル等が用いられ、溶剤としては、例えばトルエン、メチルエチルケトン等を使用することができる。   Examples of the binder include polyvinyl butyral resin and methacrylic acid resin. Examples of the plasticizer include dibutyl phthalate and dioctyl phthalate. Examples of the solvent include toluene and methyl ethyl ketone. be able to.

成形は、各種の公知の成形方法、例えばプレス法、ドクターブレード法、射出成形法、テープ成形等により任意の形状に成形する。これらの方法の中で、ドクターブレード法、及びテープ成形が積層体形成のために特に好ましい。   The molding is performed in an arbitrary shape by various known molding methods such as a press method, a doctor blade method, an injection molding method, and tape molding. Among these methods, the doctor blade method and tape molding are particularly preferable for forming a laminate.

焼成は、大気中または酸素雰囲気中または窒素雰囲気等の非酸化性雰囲気において、850〜1000℃で0.5〜3時間焼成することが好ましい。   Firing is preferably performed at 850 to 1000 ° C. for 0.5 to 3 hours in a non-oxidizing atmosphere such as air, oxygen atmosphere, or nitrogen atmosphere.

このようにして得られる本発明のセラミックス焼結体は、ディオプサイト結晶粒の粒内、粒界及び三重点から選ばれるいずれかに、SrTiO結晶及び/又はCaTiO結晶が単独で存在している。SrTiO結晶及びCaTiO結晶の平均粒径は、0.5〜3μmが好ましい。0.5μm未満であると、共振周波数の温度係数τfが−30×10−6/℃以下になり易い。3μmを超えると仮焼後の湿式混合時の分散が悪くなり、結果として、焼結体におけるSrTiO結晶やCaTiO結晶の偏在が顕著になり易い。SrTiO結晶及びCaTiO結晶の確認は、顕微鏡観察で確認できる。なお、本発明において、SrTiO結晶、CaTiO結晶の平均粒径は、レーザ回折・散乱法による粒度分布測定の方法で測定した値を意味する。 The ceramic sintered body of the present invention thus obtained has SrTiO 3 crystal and / or CaTiO 3 crystal alone in any one selected from the interior of the diopsite crystal grain, the grain boundary and the triple point. ing. The average particle size of the SrTiO 3 crystal and the CaTiO 3 crystal is preferably 0.5 to 3 μm. If it is less than 0.5 μm, the temperature coefficient τf of the resonance frequency tends to be −30 × 10 −6 / ° C. or less. If it exceeds 3 μm, dispersion during wet mixing after calcination becomes poor, and as a result, uneven distribution of SrTiO 3 crystals and CaTiO 3 crystals in the sintered body tends to become remarkable. Confirmation of the SrTiO 3 crystal and the CaTiO 3 crystal can be confirmed by microscopic observation. In the present invention, the average particle size of SrTiO 3 crystal and CaTiO 3 crystal means a value measured by a particle size distribution measurement method by a laser diffraction / scattering method.

また、本発明のセラミックス焼結体は、誘電率ε及びQ×f値が高く、共振周波数の温度係数τfがゼロに近く、耐メッキ性に優れ、メッキプロセスによる基材侵食がきわめて少ないものである。更には耐水性、耐薬品性、機械強度にも優れる。   In addition, the ceramic sintered body of the present invention has a high dielectric constant ε and Q × f value, a temperature coefficient τf of resonance frequency is close to zero, excellent plating resistance, and extremely low substrate erosion due to the plating process. is there. Furthermore, it is excellent in water resistance, chemical resistance and mechanical strength.

本発明のセラミックス焼結体は、誘電率εが、8〜20であることが好ましい。また、Q×f値が、5000GHz以上であることが好ましい。また、共振周波数の温度係数τfの絶対値が、30×10−6/℃以下であることが好ましい。 The ceramic sintered body of the present invention preferably has a dielectric constant ε of 8 to 20. Moreover, it is preferable that Q * f value is 5000 GHz or more. The absolute value of the temperature coefficient τf of the resonance frequency is preferably 30 × 10 −6 / ° C. or less.

本発明のセラミックス焼結体は、共振周波数の温度係数τfの絶対値を30×10−6/℃以下、Q×f値を5000以上にできるので、例えば、回路基板、フィルタ、アンテナの高周波部品用の電子部品に好適に使用することができる。 Since the ceramic sintered body of the present invention can have an absolute value of the temperature coefficient τf of the resonance frequency of 30 × 10 −6 / ° C. or less and a Q × f value of 5000 or more, for example, high-frequency components such as circuit boards, filters, and antennas It can be suitably used for electronic components.

[電子部品]
次に、本発明の電子部品について説明する。
[Electronic parts]
Next, the electronic component of the present invention will be described.

本発明の電子部品は、上記セラミックス組成物を焼成して得られるセラミックス層と、該セラミックス層の表面及び/又は内部にあって、セラミックス組成物と同時焼成して得られる導体層とを有する。   The electronic component of the present invention has a ceramic layer obtained by firing the ceramic composition, and a conductor layer which is on the surface and / or inside of the ceramic layer and obtained by simultaneous firing with the ceramic composition.

導体層を構成する材料としては、低抵抗材料が好ましく、Ag、Ag合金、Cu、Cu合金がより好ましい。Ag合金としては、Ag−Pd合金、Ag−Pt合金等が挙げられる。Cu合金としては、Cu−Ca合金、Cu−Mg−Ca合金、Cu−Ni−Fe合金等が挙げられる。   As a material which comprises a conductor layer, a low resistance material is preferable and Ag, Ag alloy, Cu, and Cu alloy are more preferable. Examples of the Ag alloy include an Ag—Pd alloy and an Ag—Pt alloy. Examples of the Cu alloy include a Cu—Ca alloy, a Cu—Mg—Ca alloy, and a Cu—Ni—Fe alloy.

本発明の電子部品としては、例えば単層基板、積層基板、コンデンサ、フィルタ等が挙げられる。   Examples of the electronic component of the present invention include a single layer substrate, a multilayer substrate, a capacitor, and a filter.

以下、本発明の電子部品を積層基板として使用する場合の製造例について説明する。   Hereinafter, a manufacturing example in the case where the electronic component of the present invention is used as a laminated substrate will be described.

本発明のセラミックス組成物に、結合剤、溶剤、可塑剤などを加えてスラリー状に調整し、ドクターブレード法等の方法で薄膜状に成形してグリーンシートを製造する。   A binder, a solvent, a plasticizer, and the like are added to the ceramic composition of the present invention to prepare a slurry, which is then formed into a thin film by a method such as a doctor blade method to produce a green sheet.

次いで、得られたグリーンシート上に、Ag、Ag合金、Cu、Cu合金等の導体金属を含む導体ペーストを、スクリーン印刷法等により印刷し、所定パターンの未焼成内部導体層を形成する。   Next, a conductive paste containing a conductive metal such as Ag, an Ag alloy, Cu, or Cu alloy is printed on the obtained green sheet by a screen printing method or the like to form an unfired internal conductor layer having a predetermined pattern.

次いで、未焼成内部導体層が形成された各グリーンシートを複数重ね合せ、圧着して未焼成積層体を製造する。   Next, a plurality of green sheets on which the unfired internal conductor layer is formed are stacked and pressure-bonded to produce an unfired laminate.

次いで、未焼成積層体を脱バインダー処理し、所定形状に切断して、未焼成内部導体層を未焼成積層体の端部に露出させる。そして、未焼成積層体の端面に、導体金属を含む導体ペーストをスクリーン印刷法等の方法により印刷して、未焼成下地金属を形成する。   Next, the unfired laminate is subjected to binder removal treatment and cut into a predetermined shape to expose the unfired inner conductor layer at the end of the unfired laminate. Then, a conductor paste containing a conductor metal is printed on the end face of the unfired laminate by a method such as a screen printing method to form an unfired base metal.

次いで、未焼成下地金属が形成された未焼成積層体を、酸素雰囲気中又は非酸化性雰囲気において、870℃〜930℃で0.5〜3時間焼成し、未焼成積層体と未焼成下地金属とを同時焼成する。   Next, the unfired laminated body on which the unfired base metal is formed is fired at 870 ° C. to 930 ° C. for 0.5 to 3 hours in an oxygen atmosphere or a non-oxidizing atmosphere. And co-firing.

そして、未焼成下地金属を焼成して得られた下地金属の表面を、電解メッキ等の湿式メッキ処理を施してメッキ層を形成して外部電極を形成する。こうすることで、セラミックス層の層間及びセラミックス層の外側に導体層が形成された積層基板が得られる。   Then, the surface of the base metal obtained by firing the unfired base metal is subjected to a wet plating process such as electrolytic plating to form a plating layer to form an external electrode. By doing so, it is possible to obtain a multilayer substrate in which a conductor layer is formed between the ceramic layers and outside the ceramic layers.

本発明の電子部品は、セラミックス層の誘電率εが8〜20、Q×f値が5000以上、−25〜85℃の範囲における共振周波数の温度係数τfの絶対値が30×10−6/℃以下であり、高周波領域の誘電特性に優れている。また、セラミックス層は、Ag、Ag合金、Cu、Cu合金などの低抵抗金属との同時焼成が可能な温度で焼結ができるので、導体金属として、これらの低抵抗金属を用いることができる In the electronic component of the present invention, the ceramic layer has a dielectric constant ε of 8 to 20, a Q × f value of 5000 or more, and an absolute value of the temperature coefficient τf of the resonance frequency in the range of −25 to 85 ° C. is 30 × 10 −6 / It is below ℃, and has excellent dielectric properties in the high frequency region. Further, since the ceramic layer can be sintered at a temperature at which simultaneous firing with a low-resistance metal such as Ag, Ag alloy, Cu, or Cu alloy is possible, these low-resistance metals can be used as the conductor metal.

SiO、CaO及びMgO粉末を表1〜4の各試料組成の割合で秤量し、15時間湿式混合後、120℃で乾燥し、乾燥した粉体を大気中1200℃で2時間仮焼し、得られた仮焼物を粉砕して、平均粒径1.1μmのディオプサイド結晶粉末を製造した。このディオプサイド結晶粉末に、表1,2に示す酸化物の割合となるように、SrTiO粉末、CaTiO粉末、B粉末、LiO粉末、CoO粉末、ZnO粉末、CuO粉末、AgO粉末及びAl粉末をそれぞれ秤量して添加し、15時間湿式混合後、150℃で乾燥した。この乾燥物にPVA系バインダーを適量添加し、造粒、プレス成型後、大気中500℃に加熱して脱バインダー処理し、成型体を得た。この成型体を、大気中930℃で2時間焼成して、試料No.1〜80の焼結体を得た。 SiO 2 , CaO and MgO powders are weighed at the ratio of each sample composition shown in Tables 1 to 4, wet mixed for 15 hours, dried at 120 ° C., and the dried powder is calcined at 1200 ° C. in the atmosphere for 2 hours. The obtained calcined product was pulverized to produce a diopside crystal powder having an average particle size of 1.1 μm. In this diopside crystal powder, SrTiO 3 powder, CaTiO 3 powder, B 2 O 3 powder, Li 2 O powder, CoO powder, ZnO powder, and CuO powder so as to have the oxide ratios shown in Tables 1 and 2. , Ag 2 O powder and Al 2 O 3 powder were respectively weighed and added, wet-mixed for 15 hours, and dried at 150 ° C. An appropriate amount of PVA binder was added to the dried product, and after granulation and press molding, it was heated to 500 ° C. in the atmosphere to remove the binder to obtain a molded body. This molded body was fired at 930 ° C. for 2 hours in the atmosphere, and sample No. 1-80 sintered bodies were obtained.


各焼結体の結晶相、焼結性、吸水率、誘電率ε、Q×f値、温度係数τfを評価した。結果を表5〜8に記す。表5〜8の結晶相中、Diはディオプサイド結晶を意味し、Foはフォルステライト結晶を意味し、Akはオーケルマナイト結晶を意味し、Woはウォラストナイト結晶を意味し、STはSrTiO結晶を意味し、CTはCaTiO結晶を意味し、CSTは(xCa、1−xSr)TiO型ペロブスカイト化合物の結晶を意味し、Tiはチタナイト(もしくはスフェーン)結晶を意味する。 The crystal phase, sinterability, water absorption, dielectric constant ε, Q × f value, and temperature coefficient τf of each sintered body were evaluated. The results are shown in Tables 5-8. In the crystal phases shown in Tables 5 to 8, Di means diopside crystal, Fo means forsterite crystal, Ak means ochermanite crystal, Wo means wollastonite crystal, ST means It means SrTiO 3 crystal, CT means CaTiO 3 crystal, CST means (xCa, 1-xSr) TiO 3 type perovskite crystal, and Ti means titanite (or sphene) crystal.

なお、結晶相は、Cu−Kα線を用いた粉末X線回折(ディフラクトメータ法)の方法で評価した。また、焼結性は、930℃で焼結したものを○、焼結しなかったものを×として評価した。また、吸水性は、水中アルキメデス法に基づき測定した。また、誘電率ε、Q×f値、温度係数τfは、JIS R1627に準拠し、3GHz〜5GHzの共振周波数における値を測定した。また、共振周波数における温度係数τfは、3GHz〜5GHzの共振周波数の−25〜85℃間における温度変化率を測定した。   The crystal phase was evaluated by a powder X-ray diffraction (diffractometer method) method using Cu-Kα rays. In addition, the sinterability was evaluated as “◯” when sintered at 930 ° C. and “X” when not sintered. The water absorption was measured based on the underwater Archimedes method. Further, the dielectric constant ε, Q × f value, and temperature coefficient τf were measured at a resonance frequency of 3 GHz to 5 GHz in accordance with JIS R1627. The temperature coefficient τf at the resonance frequency was measured by measuring the temperature change rate between −25 to 85 ° C. of the resonance frequency of 3 GHz to 5 GHz.

また、上記焼結体からなるセラミックス層の表面に、図1に示すようにAgペーストを印刷し、大気中930℃で2時間焼成して、セラミックス層上にAg導電層が形成された試験体を得た。得られた試験体を、通常電子部品向けのNi、Cu、Snで電解メッキしてAg導電層をメッキ層で被覆した。この焼結体のセラミックス層のメッキ浸食距離を評価した。結果を表5〜8にまとめて記す。   Further, a test body in which an Ag paste was printed on the surface of the ceramic layer made of the sintered body as shown in FIG. 1 and fired at 930 ° C. for 2 hours in the atmosphere to form an Ag conductive layer on the ceramic layer. Got. The obtained test specimen was electrolytically plated with Ni, Cu, and Sn for normal electronic parts, and the Ag conductive layer was covered with a plating layer. The plating erosion distance of the ceramic layer of this sintered body was evaluated. The results are summarized in Tables 5-8.

なお、メッキ浸食距離は、焼結体またはチップを破断し、破断面を電子顕微鏡を用いて観察し、破断面で見られる表面から焼結体内部方向に、粒界破断モードを呈する部分の深さを、メッキ浸食距離として測定した。   The plating erosion distance refers to the depth of the portion exhibiting the grain boundary fracture mode from the surface seen on the fractured surface to the interior of the sintered compact, by breaking the sintered body or chip and observing the fractured surface with an electron microscope. This was measured as the plating erosion distance.

また、試料No.1,3の焼結体を用いて、耐湿試験を行った。結果を図2に示す。なお、耐湿試験は、図1に示す試験体を用いて、温度85℃、湿度85%の環境下にて、DC5Vの電圧を印加し、抵抗値の経時変化を測定した。   Sample No. A moisture resistance test was performed using 1 and 3 sintered bodies. The results are shown in FIG. In the humidity resistance test, a voltage of 5 V DC was applied in an environment of a temperature of 85 ° C. and a humidity of 85% using the test body shown in FIG.



試料No.1〜8の結果より、Al成分の含有量が、ディオプサイド結晶(主成分)100質量部に対し、酸化物換算で1.4〜6質量部である、試料No.3〜7は、930℃で焼結し、電気特性及び耐メッキ性に優れるものであった。これに対し、Al成分の含有量が、ディオプサイド結晶100質量部に対し1.4質量部未満である試料No.1,2は耐メッキ性に劣るものであった。そして、図2に示す、試料No.1,3の耐湿試験結果からも明らかなように、耐メッキ性に劣る試料No.3は、経時的に抵抗値が低下して、耐湿性に劣るものであった。また、Al成分の含有量が、ディオプサイド結晶100質量部に対し6質量部を超える試料No.8は、焼結性が劣り、930℃で焼結しなかった。   Sample No. From the results of Nos. 1 to 8, sample No. 1 in which the content of the Al component is 1.4 to 6 parts by mass in terms of oxide with respect to 100 parts by mass of the diopside crystal (main component). Nos. 3 to 7 were sintered at 930 ° C. and were excellent in electrical characteristics and plating resistance. On the other hand, Sample No. in which the content of the Al component is less than 1.4 parts by mass with respect to 100 parts by mass of the diopside crystal. 1 and 2 were inferior in plating resistance. And sample No. shown in FIG. As is clear from the results of the moisture resistance tests of Nos. 1 and 3, Sample No. No. 3 was inferior in moisture resistance due to a decrease in resistance over time. Further, Sample No. in which the content of the Al component exceeds 6 parts by mass with respect to 100 parts by mass of the diopside crystal. No. 8 had poor sinterability and was not sintered at 930 ° C.

また、試料No.9〜15の結果より、B成分の含有量が、ディオプサイド結晶100質量部に対し、酸化物換算で1.6〜3.2質量部である、試料No.10〜14は、930℃で焼結し、電気特性及び耐メッキ性に優れるものであった。これに対し、B成分の含有量が、ディオプサイド結晶100質量部に対し1.6質量部未満である試料No.9は、焼結性が劣り、930℃で焼結しなかった。また、B成分の含有量が、ディオプサイド結晶100質量部に対し3.2質量部を超える試料No.15は、Q×f値が小さく、誘電損失が大きかった。   Sample No. From the result of 9-15, sample No. whose content of B component is 1.6-3.2 mass parts in conversion of an oxide with respect to 100 mass parts of diopside crystals. Nos. 10 to 14 were sintered at 930 ° C. and were excellent in electrical characteristics and plating resistance. On the other hand, Sample No. whose B component content is less than 1.6 parts by mass with respect to 100 parts by mass of the diopside crystal. No. 9 had poor sinterability and was not sintered at 930 ° C. Further, Sample No. in which the content of Component B exceeds 3.2 parts by mass with respect to 100 parts by mass of the diopside crystal. No. 15 had a small Q × f value and a large dielectric loss.

また、試料No.16〜21の結果より、Li成分の含有量が、ディオプサイド結晶100質量部に対し、酸化物換算で0.3〜0.9質量部である、試料No.17〜20は、930℃で焼結し、電気特性及び耐メッキ性に優れるものであった。これに対し、Li成分の含有量が、ディオプサイド結晶100質量部に対し0.3質量部未満である試料No.16は、焼結性が劣り、930℃で焼結しなかった。また、Li成分の含有量が、ディオプサイド結晶100質量部に対し0.9質量部を超える試料No.21は、焼結時に融着が生じた。   Sample No. From the result of 16-21, content of Li component is 0.3-0.9 mass part in conversion of oxide with respect to 100 mass parts of diopside crystals. Nos. 17 to 20 were sintered at 930 ° C. and were excellent in electrical characteristics and plating resistance. On the other hand, Sample No. in which the content of the Li component is less than 0.3 parts by mass with respect to 100 parts by mass of the diopside crystal. No. 16 had poor sinterability and was not sintered at 930 ° C. In addition, Sample No. in which the content of the Li component exceeds 0.9 parts by mass with respect to 100 parts by mass of the diopside crystal. No. 21 was fused during sintering.

また、試料No.22〜28の結果より、Co成分の含有量が、ディオプサイド結晶100質量部に対し、酸化物換算で0〜4.5質量部である、試料No.22〜27は、930℃で焼結し、電気特性及び耐メッキ性に優れるものであった。特に、Co成分の含有量がディオプサイド結晶100質量部に対し1.5〜4.5質量部である試料No.23〜27は、特に低温での焼結性に優れるものであった。これに対し、Co成分の含有量が、ディオプサイド結晶100質量部に対し4.5質量部を超える試料No.28は、焼結時に融着が生じた。   Sample No. From the result of 22-28, content of Co component is 0-4.5 mass parts in conversion of oxide with respect to 100 mass parts of diopside crystals. Nos. 22 to 27 were sintered at 930 ° C. and were excellent in electrical characteristics and plating resistance. In particular, Sample No. in which the content of the Co component is 1.5 to 4.5 parts by mass with respect to 100 parts by mass of the diopside crystal. Nos. 23 to 27 were particularly excellent in sinterability at low temperatures. On the other hand, Sample No. in which the content of the Co component exceeds 4.5 parts by mass with respect to 100 parts by mass of the diopside crystal. No. 28 was fused during sintering.

また、試料No.29〜34の結果より、Zn成分の含有量が、ディオプサイド結晶100質量部に対し、酸化物換算で3.2〜5.1質量部である、試料No.30〜33は、930℃で焼結し、電気特性及び耐メッキ性に優れるものであった。これに対し、Zn成分の含有量が、ディオプサイド結晶100質量部に対し3.2質量部未満である試料No.29は、焼結性が劣り、930℃で焼結しなかった。また、Zn成分の含有量が、ディオプサイド結晶100質量部に対し5.1質量部を超える試料No.34は、Q×f値が小さく、誘電損失が大きかった。   Sample No. From the result of 29-34, content of Zn component is 3.2-5.1 mass parts in conversion of oxide with respect to 100 mass parts of diopside crystals. Nos. 30 to 33 were sintered at 930 ° C. and were excellent in electrical characteristics and plating resistance. On the other hand, Sample No. whose Zn component content is less than 3.2 parts by mass with respect to 100 parts by mass of the diopside crystal. No. 29 had poor sinterability and was not sintered at 930 ° C. In addition, Sample No. in which the content of the Zn component exceeds 5.1 parts by mass with respect to 100 parts by mass of the diopside crystal. No. 34 had a small Q × f value and a large dielectric loss.

また、試料No.35〜39の結果より、Cu成分の含有量が、ディオプサイド結晶100質量部に対し、酸化物換算で0.5〜0.9質量部である、試料No.36〜38は、930℃で焼結し、電気特性及び耐メッキ性に優れるものであった。これに対し、Cu成分の含有量が、上記割合で0.5質量部未満である試料No.35は、焼結性が劣り、930℃で焼結しなかった。また、Cu成分の含有量が、ディオプサイド結晶100質量部に対し0.9質量部を超える試料No.39は、焼結時に融着が生じた。   Sample No. From the result of 35-39, sample No. whose content of Cu component is 0.5-0.9 mass part in conversion of an oxide with respect to 100 mass parts of diopside crystals. Nos. 36 to 38 were sintered at 930 ° C. and were excellent in electrical characteristics and plating resistance. On the other hand, Sample No. in which the content of the Cu component is less than 0.5 parts by mass in the above ratio. 35 was inferior in sinterability and did not sinter at 930 ° C. Further, Sample No. in which the content of the Cu component exceeds 0.9 parts by mass with respect to 100 parts by mass of the diopside crystal. No. 39 was fused during sintering.

試料No.40〜45の結果より、Ag成分の含有量が、ディオプサイド結晶100質量部に対し、酸化物換算で0〜3質量部である、試料No.40〜44は、930℃で焼結し、電気特性及び耐メッキ性に優れるものであった。これに対し、Ag成分の含有量が、ディオプサイド結晶100質量部に対し3質量部を超える試料No.45は、耐メッキ性の劣るものであった。   Sample No. From the results of 40 to 45, Sample No. in which the content of the Ag component is 0 to 3 parts by mass in terms of oxide with respect to 100 parts by mass of the diopside crystal. Nos. 40 to 44 were sintered at 930 ° C. and were excellent in electrical characteristics and plating resistance. On the other hand, Sample No. in which the content of the Ag component exceeds 3 parts by mass with respect to 100 parts by mass of the diopside crystal. No. 45 had poor plating resistance.

試料No.46〜68の結果より、ディオプサイド結晶100質量部に対し、SrTiO粉末の含有量が6〜19質量部である試料No.47〜50、CaTiO粉末の含有量が13〜43質量部である試料No.53〜57、SrTiO粉末及びCaTiO粉末の合計含有量が6.5〜42質量部である試料No.60〜67は、いずれも930℃で焼結し、電気特性及び耐メッキ性に優れるものであった。これに対し、SrTiO粉末、CaTiO粉末の含有量が本発明の範囲から外れる、試料No.46、51、52、58、59、68は、いずれも温度係数τfの絶対値が大きいものであった。 Sample No. The results of 46-68, to diopside crystal 100 parts by weight, the sample content of the SrTiO 3 powder is 6-19 parts by weight No. 47-50, the sample content of CaTiO 3 powder is 13 to 43 parts by weight No. 53-57, the total content of SrTiO 3 powder and CaTiO 3 powder is 6.5 to 42 parts by weight Sample No. All of Nos. 60 to 67 were sintered at 930 ° C. and were excellent in electrical characteristics and plating resistance. On the other hand, the sample No. 2 in which the content of SrTiO 3 powder and CaTiO 3 powder is out of the scope of the present invention. 46, 51, 52, 58, 59, and 68 all had large absolute values of the temperature coefficient τf.

また、試料No.69〜80の結果より、試料No.69,72,73,76,77,80は、主成分であるディオプサイド結晶の組成比がディオプサイドの化学量論比(Ca:Mg:Si=1:1:2)から大きくずれたために、ディオプサイドより誘電損失の大きな2次相が析出しており、Q×f値が小さく、誘電損失が大きかった。   Sample No. From the results of 69 to 80, sample No. In 69, 72, 73, 76, 77, and 80, the composition ratio of the diopside crystal that is the main component greatly deviated from the stoichiometric ratio of diopside (Ca: Mg: Si = 1: 1: 2). In addition, a secondary phase having a larger dielectric loss than that of the diopside was precipitated, the Q × f value was small, and the dielectric loss was large.

Claims (13)

固相反応法により合成されたディオプサイド結晶粉末100質量部に対し、SrTiO粉末を6〜19質量部、Al成分を酸化物換算で1.4〜6質量部、Li成分を酸化物換算で0.3〜0.9質量部、B成分を酸化物換算で1.6〜3.2質量部、Zn成分を酸化物換算で3.2〜5.1質量部、Cu成分を酸化物換算で0.5〜0.9質量部、Ag成分を酸化物換算で0〜3質量部、Co成分を酸化物換算で0〜4.5質量部含有することを特徴とするセラミックス組成物。 6 to 19 parts by mass of SrTiO 3 powder, 1.4 to 6 parts by mass in terms of oxide, and Li in terms of oxide for 100 parts by mass of diopside crystal powder synthesized by the solid phase reaction method 0.3 to 0.9 parts by mass, B component is 1.6 to 3.2 parts by mass in terms of oxide, Zn component is 3.2 to 5.1 parts by mass in terms of oxide, and Cu component is an oxide. A ceramic composition comprising 0.5 to 0.9 parts by mass in terms of conversion, 0 to 3 parts by mass of an Ag component in terms of oxide, and 0 to 4.5 parts by mass of a Co component in terms of oxide. 固相反応法により合成されたディオプサイド結晶粉末100質量部に対し、CaTiO粉末を13〜43質量部、Al成分を酸化物換算で1.4〜6質量部、Li成分を酸化物換算で0.3〜0.9質量部、B成分を酸化物換算で1.6〜3.2質量部、Zn成分を酸化物換算で3.2〜5.1質量部、Cu成分を酸化物換算で0.5〜0.9質量部、Ag成分を酸化物換算で0〜3質量部、Co成分を酸化物換算で0〜4.5質量部含有することを特徴とするセラミックス組成物。 13 to 43 parts by mass of CaTiO 3 powder, 1.4 to 6 parts by mass of Al component in terms of oxide, and Li component to oxide in terms of 100 parts by mass of diopside crystal powder synthesized by the solid phase reaction method 0.3 to 0.9 parts by mass, B component is 1.6 to 3.2 parts by mass in terms of oxide, Zn component is 3.2 to 5.1 parts by mass in terms of oxide, and Cu component is an oxide. A ceramic composition comprising 0.5 to 0.9 parts by mass in terms of conversion, 0 to 3 parts by mass of an Ag component in terms of oxide, and 0 to 4.5 parts by mass of a Co component in terms of oxide. 固相反応法により合成されたディオプサイド結晶粉末100質量部に対し、SrTiO粉末及びCaTiO粉末を合計して6.5〜42質量部、Al成分を酸化物換算で1.4〜6質量部、Li成分を酸化物換算で0.3〜0.9質量部、B成分を酸化物換算で1.6〜3.2質量部、Zn成分を酸化物換算で3.2〜5.1質量部、Cu成分を酸化物換算で0.5〜0.9質量部、Ag成分を酸化物換算で0〜3質量部、Co成分を酸化物換算で0〜4.5質量部含有することを特徴とするセラミックス組成物。 The total amount of SrTiO 3 powder and CaTiO 3 powder is 6.5 to 42 parts by mass with respect to 100 parts by mass of the diopside crystal powder synthesized by the solid phase reaction method, and the Al component is 1.4 to 6 in terms of oxide. Part by mass is 0.3 to 0.9 parts by mass in terms of oxide, Li component is in the range of 1.6 to 3.2 parts by mass in terms of oxide, and Zn is 3.2 to 5 in terms of oxide. 1 part by mass, 0.5 to 0.9 parts by mass of Cu component in terms of oxide, 0 to 3 parts by mass of Ag component in terms of oxide, and 0 to 4.5 parts by mass of Co component in terms of oxide The ceramic composition characterized by the above-mentioned. 前記Ag成分を、ディオプサイド結晶粉末100質量部に対し、酸化物換算で0.5〜3質量部含有する、請求項1〜3のいずれか1項に記載のセラミックス組成物。   The ceramic composition according to any one of claims 1 to 3, wherein the Ag component is contained in an amount of 0.5 to 3 parts by mass in terms of oxide with respect to 100 parts by mass of the diopside crystal powder. 前記Co成分を、ディオプサイド結晶粉末100質量部に対し、酸化物換算で1.5〜4.5質量部含有する、請求項1〜4のいずれか1項に記載のセラミックス組成物。   The ceramic composition according to any one of claims 1 to 4, wherein the Co component is contained in an amount of 1.5 to 4.5 parts by mass in terms of an oxide with respect to 100 parts by mass of the diopside crystal powder. 請求項1〜5のいずれか1項に記載のセラミックス組成物を焼成して得られたセラミックス焼結体。   The ceramic sintered compact obtained by baking the ceramic composition of any one of Claims 1-5. ディオプサイト結晶粒の粒内、粒界及び三重点から選ばれるいずれかに、SrTiO結晶及び/又はCaTiO結晶が単独で存在している、請求項6に記載のセラミックス焼結体。 The ceramic sintered body according to claim 6, wherein a SrTiO 3 crystal and / or a CaTiO 3 crystal is present alone in any one selected from the interior of the diopsite crystal grain, the grain boundary, and the triple point. 前記SrTiO結晶及び/又は前記CaTiO結晶の平均粒径が0.5〜3μmである、請求項7に記載のセラミックス焼結体。 The ceramic sintered body according to claim 7, wherein an average particle diameter of the SrTiO 3 crystal and / or the CaTiO 3 crystal is 0.5 to 3 µm. 共振周波数の温度係数τfの絶対値が30×10−6/℃以下であり、Q×f値が5000GHz以上である、請求項6〜8のいずれか1項に記載のセラミックス焼結体。 The ceramic sintered body according to any one of claims 6 to 8, wherein the absolute value of the temperature coefficient τf of the resonance frequency is 30 x 10 -6 / ° C or less, and the Q x f value is 5000 GHz or more. 請求項1〜5のいずれか1項に記載のセラミックス組成物を焼成して得られるセラミックス層と、該セラミックス層の表面及び/又は内部にあって、前記セラミックス組成物と同時焼成して得られる導体層とを有することを特徴とする電子部品。   A ceramic layer obtained by firing the ceramic composition according to any one of claims 1 to 5, and a ceramic layer that is on the surface and / or inside of the ceramic layer and is obtained by co-firing with the ceramic composition. An electronic component comprising a conductor layer. 前記導体層が、Ag、Cu、もしくはそれらの少なくとも一方を含む合金で形成されている請求項10に記載の電子部品。   The electronic component according to claim 10, wherein the conductor layer is made of Ag, Cu, or an alloy containing at least one of them. 前記導体層の表面が湿式メッキ処理されている請求項10又は11に記載の電子部品。   The electronic component according to claim 10 or 11, wherein a surface of the conductor layer is wet-plated. 前記電子部品が基板である、請求項10〜12のいずれか1項に記載の電子部品。   The electronic component according to claim 10, wherein the electronic component is a substrate.
JP2011135151A 2011-02-24 2011-06-17 Ceramic composition, ceramic sintered body and electronic component Active JP5887074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011135151A JP5887074B2 (en) 2011-02-24 2011-06-17 Ceramic composition, ceramic sintered body and electronic component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011037903 2011-02-24
JP2011037903 2011-02-24
JP2011135151A JP5887074B2 (en) 2011-02-24 2011-06-17 Ceramic composition, ceramic sintered body and electronic component

Publications (2)

Publication Number Publication Date
JP2012188339A true JP2012188339A (en) 2012-10-04
JP5887074B2 JP5887074B2 (en) 2016-03-16

Family

ID=47081915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135151A Active JP5887074B2 (en) 2011-02-24 2011-06-17 Ceramic composition, ceramic sintered body and electronic component

Country Status (1)

Country Link
JP (1) JP5887074B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170013655A (en) * 2015-07-28 2017-02-07 (주)샘씨엔에스 Ceramic composition for electrostatic chuck and electrostatic chuck using the same
KR20180013919A (en) * 2015-05-28 2018-02-07 스냅트랙, 인코포레이티드 Glass ceramic sinter compact and wiring board
US11142482B2 (en) 2018-07-24 2021-10-12 Taiyo Yuden Co., Ltd. Ceramic composition and electronic component using the ceramic composition
US11319252B2 (en) 2019-03-28 2022-05-03 Taiyo Yuden Co., Ltd. Ceramic composition and electronic component including the same
CN115432933A (en) * 2022-08-30 2022-12-06 电子科技大学 High bending strength glass ceramic material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284264A (en) * 2006-04-13 2007-11-01 Sanyo Electric Co Ltd Laminated ceramic substrate
JP2007284327A (en) * 2006-04-14 2007-11-01 Taiyo Yuden Co Ltd Ceramic composition and laminated ceramic circuit device
JP2010037126A (en) * 2008-08-04 2010-02-18 Taiyo Yuden Co Ltd Ceramic composition and ceramic sintered compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284264A (en) * 2006-04-13 2007-11-01 Sanyo Electric Co Ltd Laminated ceramic substrate
JP2007284327A (en) * 2006-04-14 2007-11-01 Taiyo Yuden Co Ltd Ceramic composition and laminated ceramic circuit device
JP2010037126A (en) * 2008-08-04 2010-02-18 Taiyo Yuden Co Ltd Ceramic composition and ceramic sintered compact

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180013919A (en) * 2015-05-28 2018-02-07 스냅트랙, 인코포레이티드 Glass ceramic sinter compact and wiring board
KR102002639B1 (en) * 2015-05-28 2019-07-22 스냅트랙, 인코포레이티드 Glass ceramic sinter compact and wiring board
KR20170013655A (en) * 2015-07-28 2017-02-07 (주)샘씨엔에스 Ceramic composition for electrostatic chuck and electrostatic chuck using the same
KR102393287B1 (en) 2015-07-28 2022-05-02 (주)샘씨엔에스 Ceramic composition for electrostatic chuck and electrostatic chuck using the same
US11142482B2 (en) 2018-07-24 2021-10-12 Taiyo Yuden Co., Ltd. Ceramic composition and electronic component using the ceramic composition
US11319252B2 (en) 2019-03-28 2022-05-03 Taiyo Yuden Co., Ltd. Ceramic composition and electronic component including the same
CN115432933A (en) * 2022-08-30 2022-12-06 电子科技大学 High bending strength glass ceramic material and preparation method thereof
CN115432933B (en) * 2022-08-30 2023-08-04 电子科技大学 Glass ceramic material with high bending strength and preparation method thereof

Also Published As

Publication number Publication date
JP5887074B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5332807B2 (en) Dielectric porcelain composition
WO2009113475A1 (en) Glass ceramic composition, glass ceramic sinter and laminated type ceramic electronic component
KR100814674B1 (en) Dielectric porcelain composition and method for production thereof
JP5742373B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and dielectric porcelain manufacturing powder manufacturing method
JPWO2005108327A1 (en) Multilayer dielectric manufacturing method
JP5887074B2 (en) Ceramic composition, ceramic sintered body and electronic component
JP4706228B2 (en) Lead-free glass, glass ceramic composition and dielectric
JP4577461B2 (en) Conductive paste composition and multilayer capacitor
JP4613826B2 (en) Ceramic substrate composition, ceramic substrate, method for producing ceramic substrate, and glass composition
JPWO2005085154A1 (en) Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
JP4802039B2 (en) Ceramic composition and multilayer ceramic circuit device
JPWO2004065325A1 (en) Dielectric ceramic composition, dielectric ceramic, and multilayer ceramic component using the same
KR100981072B1 (en) Process for production of ceramic porcelains, ceramic porcelains and electronic components
JP2010037126A (en) Ceramic composition and ceramic sintered compact
JP2012051750A (en) Method for manufacturing dielectric ceramic composition and laminated ceramic electronic component
US11142482B2 (en) Ceramic composition and electronic component using the ceramic composition
JP2003012370A (en) Low temperature fired ceramic and electronic parts
JP2021153105A (en) Laminate electronic part
JP2020164338A (en) Ceramic composition, and electronic component using the ceramic composition
JP2005217170A (en) Composite multilayer ceramic electronic component
JP2006298716A (en) Glass, glass-ceramic composition, and dielectric
JP2009227483A (en) Dielectric ceramic composition
JP5193319B2 (en) Ceramic composition and electronic component
JP2009007217A (en) Ceramic composition and ceramic wiring board
JP2012240890A (en) Ceramic composition, ceramic sintered compact, and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5887074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250