JP2012188319A - γ BELITE-CONTAINING FOAM MORTAR MIXTURE - Google Patents

γ BELITE-CONTAINING FOAM MORTAR MIXTURE Download PDF

Info

Publication number
JP2012188319A
JP2012188319A JP2011053726A JP2011053726A JP2012188319A JP 2012188319 A JP2012188319 A JP 2012188319A JP 2011053726 A JP2011053726 A JP 2011053726A JP 2011053726 A JP2011053726 A JP 2011053726A JP 2012188319 A JP2012188319 A JP 2012188319A
Authority
JP
Japan
Prior art keywords
mortar
belite
powder
carbon dioxide
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011053726A
Other languages
Japanese (ja)
Other versions
JP6071169B2 (en
Inventor
Kenzo Watanabe
賢三 渡邉
Sei Kobayashi
聖 小林
Kosuke Yokozeki
康祐 横関
Takeshi Torii
剛 取違
Shuji Yanai
修司 柳井
Toshio Ono
俊夫 大野
Noboru Sakata
昇 坂田
Arihisa Watanabe
有寿 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2011053726A priority Critical patent/JP6071169B2/en
Publication of JP2012188319A publication Critical patent/JP2012188319A/en
Application granted granted Critical
Publication of JP6071169B2 publication Critical patent/JP6071169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a foam mortar exhibiting excellent carbon dioxide-absorbing capability in the natural environment (atmospheric environment) and not having problems such as pH rise and soil contamination due to the solution of cement components.SOLUTION: In mortar mixture constituted by mixing water, powder, air bubbles, admixture, Vp:Vso is 2:8 to 6:4 wherein total of a volume unit quantity (L/m) of the water and a volume unit quantity (L/m) of the powder is Vp, a volume unit quantity (L/m) of the air bubbles is Vso, the mortar mixture contains cement and γ belite as powder components, and the ratio of the γ belite in the powder is 20 to 70 pts.mass.

Description

本発明は、自然環境(大気環境)において優れた二酸化炭素吸収能力を発揮する気泡モルタルを得るための混練物に関する。   The present invention relates to a kneaded material for obtaining a bubble mortar exhibiting excellent carbon dioxide absorption ability in a natural environment (atmospheric environment).

モルタルやコンクリートに代表されるセメント系材料は、硬化後のセメントマトリクスが二酸化炭素と反応して炭酸化(中性化)することにより、二酸化炭素を吸収する材料である。ただし、一般的なセメント系材料を地球温暖化防止の観点から二酸化炭素吸収材として積極的に活用することは、従来、有意義でないとされてきた。セメント系材料が二酸化炭素と反応するのは表面付近のみにとどまり、通常、当該セメント系材料に使用されるセメントを製造する際の二酸化炭素の排出量が、吸収量を上回るからである。   Cement-based materials typified by mortar and concrete are materials that absorb carbon dioxide when the cement matrix after curing reacts with carbon dioxide and carbonizes (neutralizes). However, it has been conventionally considered insignificant to actively use common cement-based materials as carbon dioxide absorbers from the viewpoint of preventing global warming. This is because the cement-based material reacts with carbon dioxide only in the vicinity of the surface, and usually the amount of carbon dioxide emitted when producing cement used in the cement-based material exceeds the absorbed amount.

これに対し、気泡モルタルの場合、内部に存在する空隙の表面を考慮すると二酸化炭素の吸収量はかなり多くなる。気泡モルタルは既に土質系材料の一環として軽量盛土などに適用されている。しかしながら、従来の気泡モルタルは、二酸化炭素濃度を高めた環境で促進炭酸化養生を行う場合には多量の二酸化炭素を吸収させることが可能であるものの、自然界の大気環境下では炭酸化の進行が遅く、二酸化炭素吸収材としての活用にはあまり効果を発揮していなかった。   On the other hand, in the case of bubble mortar, the amount of carbon dioxide absorbed becomes considerably large in consideration of the surface of voids existing inside. Bubble mortar has already been applied to lightweight embankments as part of soil-based materials. However, the conventional bubble mortar can absorb a large amount of carbon dioxide when accelerated carbonation curing is performed in an environment where the carbon dioxide concentration is increased, but carbonation proceeds in a natural atmospheric environment. Slowly, it was not very effective for use as a carbon dioxide absorber.

また、土質系材料の用途で気泡モルタルを多量に使用する場合、セメント成分の溶出に起因して、pH上昇による生物への影響や、土壌汚染が懸念される。このため、土質系材料としての気泡モルタルの適用範囲は限られていた。   In addition, when a large amount of foam mortar is used for the use of soil-based materials, there is a concern about the influence on living organisms due to pH increase and soil contamination due to elution of cement components. For this reason, the application range of the bubble mortar as a soil type material was limited.

特開2003−212617号公報JP 2003-212617 A 特開2006−182583号公報JP 2006-182583 A

本発明は、自然環境(大気環境)において優れた二酸化炭素吸収能力を発揮する気泡モルタルであって、セメント成分の溶出に起因したpH上昇や土壌汚染の問題が少ないものを提供することを目的とする。   It is an object of the present invention to provide a foam mortar that exhibits excellent carbon dioxide absorption ability in a natural environment (atmospheric environment), and has few problems of pH increase and soil contamination due to elution of cement components. To do.

上記目的は、水、粉体、気泡、混和剤を配合したモルタル混練物であって、水の体積単位量(L/m3)と粉体の体積単位量(L/m3)の合計をVp、気泡の体積単位量(L/m3)をVsoと表すとき、Vp:Vsoが2:8〜6:4であり、粉体成分としてセメントおよびγビーライトを含有し、粉体に占めるγビーライトの割合が20〜70質量%である気泡モルタル混練物によって達成される。特に、材齢28日における硬化体の圧縮強度が0.5〜5.0(N/mm2)、透気係数が1.0×10-1(cm/s)以上、比重が0.4〜0.7となるように配合調整された混練物であることがより好ましい。 The above-mentioned purpose is a mortar kneaded material in which water, powder, bubbles and admixture are blended, and the sum of the volume unit amount of water (L / m 3 ) and the volume unit amount of powder (L / m 3 ) When Vp and the volume unit amount (L / m 3 ) of bubbles are expressed as Vso, Vp: Vso is 2: 8 to 6: 4, and cement and γ belite are contained as powder components and occupy the powder. This is achieved by a foam mortar kneaded product having a γ belite ratio of 20 to 70% by mass. In particular, the compression strength of the cured body at the age of 28 days is 0.5 to 5.0 (N / mm 2 ), the air permeability coefficient is 1.0 × 10 −1 (cm / s) or more, and the specific gravity is 0.4. It is more preferable that the kneaded product is blended and adjusted so as to be -0.7.

本発明によれば、自然環境(大気環境)において優れた二酸化炭素吸収能力を発揮する気泡モルタルが提供可能となった。この気泡モルタルはγビーライトの炭酸化反応を利用して二酸化炭素を吸収するものであり、その反応生成物が内部空隙の表面に形成されることによりセメント成分のアルカリや重金属の溶出が抑制さえる。そのため、従来の気泡モルタルに比べ生物の生育環境に及ぼす影響が少なく、また土壌汚染に対しても安全性が高い。したがって、軽量盛土などの土質系材料として広く適用することができ、それによって大気中の二酸化炭素の低減に大きく寄与しうる。   According to the present invention, it is possible to provide a bubble mortar that exhibits excellent carbon dioxide absorption ability in a natural environment (atmospheric environment). This bubble mortar absorbs carbon dioxide by utilizing the carbonation reaction of γ belite, and the reaction product is formed on the surface of the internal void, thereby suppressing the elution of cement components alkali and heavy metals. . Therefore, it has less influence on the living environment of living organisms than conventional bubble mortar, and is highly safe against soil contamination. Therefore, it can be widely applied as a soil-based material such as lightweight embankment, and thereby can greatly contribute to the reduction of carbon dioxide in the atmosphere.

また、本発明によって得られる気泡モルタル硬化体はポーラスな材料であるため断熱材としても有用である。さらに、連続気泡を有することから重機や自動車の排気ガスフィルターとしても使用可能である。強制的な炭酸化処理を行って製品化することも可能であり、大気環境に曝さない各種用途においてもセメント成分の溶出防止性能が発揮される。また、強制的な炭酸化処理に工場や発電所で排出する排気ガスを利用することによって、二酸化炭素排出量の低減を図ることができる。   Further, since the cured foamed mortar obtained by the present invention is a porous material, it is also useful as a heat insulating material. Furthermore, since it has open cells, it can be used as an exhaust gas filter for heavy machinery and automobiles. It is also possible to produce a product by forcible carbonation treatment, and the elution prevention performance of the cement component is exhibited even in various uses that are not exposed to the atmospheric environment. Moreover, the amount of carbon dioxide emission can be reduced by using exhaust gas discharged from a factory or power plant for forced carbonation treatment.

気中養生および促進炭酸化養生を施したγC2S置換率50%の気泡モルタル供試体(ケースNo.1、2、3)についての圧縮強度を示すグラフ。The graph which shows the compressive strength about the foam mortar test piece (case No. 1, 2, 3) of the γC2S substitution rate which gave the air curing and the accelerated carbonation curing. OPCを用いた気泡モルタル供試体(ケースNo.1、4、5、6)についてγC2S置換率と圧縮強度の関係を示すグラフ。The graph which shows the relationship between (gamma) C2S substitution rate and compressive strength about the bubble mortar specimen (case No. 1, 4, 5, 6) using OPC. OPCを用いた気泡モルタル供試体(ケースNo.1、4、5、6)についてγC2S置換率と促進炭酸化養生による二酸化炭素吸収量の関係を示すグラフ。The graph which shows the relationship between (gamma) C2S substitution rate and the carbon dioxide absorption by accelerated carbonation curing about the bubble mortar specimen (case No. 1, 4, 5, 6) using OPC. 大気環境に置かれた気泡モルタル供試体について重量の経時変化を示すグラフ。The graph which shows the time-dependent change of the weight about the foam mortar test piece set | placed by the atmospheric environment. 大気環境に置かれた気泡モルタル供試体について1週目の供試体重量を基準にした重量増加量を示すグラフ。The graph which shows the weight increase amount on the basis of the test piece weight of the 1st week about the bubble mortar test piece set | placed by the atmospheric environment. OPCを用いた気泡モルタル供試体(ケースNo.1、4、5、6)についてγC2S置換率と室内保管開始から25週目における重量増加量の関係を示すグラフ。The graph which shows the relationship between (gamma) C2S substitution rate and the weight increase amount in the 25th week from the start of indoor storage about the foam mortar specimen (case No. 1, 4, 5, 6) using OPC.

セメント系材料に添加される混和材のなかでも、γビーライト(γ−2CaO・SiO2)は二酸化炭素と反応し、セメントマトリクスを緻密化する作用を有することが知られている。その作用は促進炭酸化養生を行うことによって顕著に発揮され、セメント系材料の高強度化を図ったり(特許文献1)、耐Ca溶出性、耐塩害性、耐スケーリング性、耐凍結融解性を向上させたりすることができる(特許文献2)。 Among admixtures added to cement-based materials, it is known that γ belite (γ-2CaO · SiO 2 ) reacts with carbon dioxide and has a function of densifying the cement matrix. Its action is remarkably exhibited by performing accelerated carbonation curing, and it is possible to increase the strength of cementitious materials (Patent Document 1), and to improve Ca elution resistance, salt damage resistance, scaling resistance, and freeze-thaw resistance. It can be improved (Patent Document 2).

一方、気泡モルタルの場合、発明者らの調査によれば、セメントの一部をγビーライトで置換すると、促進炭酸化養生による二酸化炭素吸収量はむしろ低減する傾向が見られる。その理由については未解明の部分も多いが、γビーライトが促進炭酸化環境で急速に炭酸化することによって、γビーライトと二酸化炭素の反応生成物が気泡モルタルの内部空隙を狭めてしまい、モルタル硬化体内部への二酸化炭素の供給が比較的早期に阻害されるためではないかと考えられる。したがって、気泡モルタルの二酸化炭素吸収性能を向上させるうえで、γビーライトの配合は有効でないものと予測された。   On the other hand, in the case of bubble mortar, according to the investigation by the inventors, when a part of the cement is replaced with γ belite, the carbon dioxide absorption amount by accelerated carbonation curing tends to decrease. There are many unexplained reasons for that, but the reaction product of γ belite and carbon dioxide narrows the internal voids of the bubble mortar due to the rapid carbonation of γ belite in an accelerated carbonation environment, This is probably because the supply of carbon dioxide into the cured mortar is obstructed relatively early. Therefore, in order to improve the carbon dioxide absorption performance of the bubble mortar, it was predicted that the blending of γ belite was not effective.

ところが更なる検討を進めたところ、促進炭酸化環境ではなく、常温の大気環境においては、γビーライトを配合した気泡モルタルの方がγビーライトを配合しないものと比べ、二酸化炭素吸収量が増大することが明らかとなった。大気環境下での穏やかな炭酸化反応の場合、γビーライト起因の反応生成物による急速な空隙の狭小化が生じることなく、長期にわたって空隙内部への二酸化炭素の到達が可能となることにより、セメント自体の炭酸化とγビーライトの炭酸化が長期間継続されるものと考えられる。
本発明はこのような知見に基づいて完成したものである。
However, as a result of further studies, in the atmospheric environment at room temperature rather than in an accelerated carbonation environment, the amount of carbon dioxide absorbed increased in the foam mortar containing γ belite compared to the one not containing γ belite. It became clear to do. In the case of a mild carbonation reaction in an atmospheric environment, carbon dioxide can reach the inside of the void over a long period of time without causing rapid void narrowing due to the reaction product caused by γ belite. Carbonation of cement itself and carbonation of γ belite are considered to continue for a long time.
The present invention has been completed based on such findings.

本発明の気泡モルタル混練物は、水、粉体、気泡、混和剤を配合したものである。骨材は用途に応じて公知のものを使用することができるが、骨材を使用しない気泡モルタルとすることもできる。   The foamed mortar kneaded product of the present invention is a mixture of water, powder, foam and admixture. Although an aggregate can use a well-known thing according to a use, it can also be set as the bubble mortar which does not use an aggregate.

粉体成分としては、少なくともセメントとγビーライトを配合させる。必要な強度レベルに応じてセメントの一部を炭酸カルシウムなどの粉体に置き換えてもよい。
粉体に占めるγビーライトの割合は20〜70質量%とする。20質量%より少ないとγビーライトによる大気環境での二酸化炭素吸収能力の向上効果が十分に発揮されない。一方、γビーライトの割合が70質量%を超えると二酸化炭素吸収能力はむしろ低下し、効果的でない。粉体に占めるγビーライトの割合は40〜60質量%とすることがより好ましい。
セメントは、ポルトランドセメント、フライアッシュセメント、高炉セメントB種などが好適な対象となる。
As a powder component, at least cement and γ belite are mixed. Depending on the required strength level, a portion of the cement may be replaced with a powder such as calcium carbonate.
The proportion of γ belite in the powder is 20 to 70% by mass. If it is less than 20% by mass, the effect of improving the carbon dioxide absorption capacity in the atmospheric environment by γ belite will not be sufficiently exhibited. On the other hand, if the proportion of γ belite exceeds 70% by mass, the carbon dioxide absorption capacity is rather lowered, which is not effective. The proportion of γ belite in the powder is more preferably 40 to 60% by mass.
As the cement, portland cement, fly ash cement, blast furnace cement B type and the like are suitable targets.

気泡は、公知の起泡剤(界面活性剤)を用いて発泡装置にて生成させたプレフォームを適用することが望ましい。気泡の生成手法や、起泡剤の種類は公知の気泡モルタル製造技術を利用することができる。ただし、本発明では気泡の量を以下の範囲とする。
水の体積単位量(L/m3)と粉体の体積単位量(L/m3)の合計をVp、気泡の体積単位量(L/m3)をVsoと表すとき、Vp:Vsoが2:8〜6:4となる範囲。
気泡量が上記より少ないとモルタル硬化体において連続気泡とならない場合が生じやすく、その場合は外界の二酸化炭素と接触しない空隙壁面が増大するので好ましくない。一方、気泡量が上記より多くなるとモルタル硬化体の強度が著しく低下する。
It is desirable to apply a preform generated by a foaming apparatus using a known foaming agent (surfactant). A known bubble mortar manufacturing technique can be used for the method of generating bubbles and the kind of foaming agent. However, in the present invention, the amount of bubbles is set to the following range.
When the sum of the volume unit amount of water (L / m 3 ) and the volume unit amount of powder (L / m 3 ) is Vp, and the volume unit amount of bubbles (L / m 3 ) is Vso, Vp: Vso is The range is 2: 8 to 6: 4.
If the amount of bubbles is less than the above, it may be difficult to form open cells in the mortar cured body, and in this case, the void wall surface that does not come into contact with outside carbon dioxide increases, which is not preferable. On the other hand, when the amount of bubbles is larger than the above, the strength of the mortar cured body is significantly reduced.

混和剤としては、AE減水剤、高性能減水剤または高性能AE減水剤を使用する。   As the admixture, an AE water reducing agent, a high performance water reducing agent or a high performance AE water reducing agent is used.

以上の配合を満たすモルタル混練物において、特に、そのモルタル混練物の材齢28日における硬化体の圧縮強度が0.5〜5.0(N/mm2)、透気係数が1.0×10-1(cm/s)以上、比重が0.4〜0.7となるように配合調整されているものが、より好ましい対象となる。透気係数が大きくなれば、圧縮強度および比重が低下するので、上記圧縮強度の下限あるいは上記比重の下限によって透気係数の上限は必然的に制約うける。したがって透気係数の上限は特に設ける必要はないが、例えば1.0(cm/s)以下の範囲とすれば種々の用途において好適に使用できる。圧縮強度は主として水粉比および単位骨材量によって調整でき、透気係数は主として気泡の体積単位量Vsoおよび混和剤の種類・添加量によって調整でき、比重は主として単位骨材量および気泡の体積単位量Vsoによって調整できる。 In the mortar kneaded material satisfying the above formulation, in particular, the compression strength of the cured body at the age of 28 days of the mortar kneaded material is 0.5 to 5.0 (N / mm 2 ), and the air permeability coefficient is 1.0 ×. What is blended and adjusted so that the specific gravity is 0.4 to 0.7 is 10 -1 (cm / s) or more is a more preferable target. If the air permeability coefficient increases, the compressive strength and specific gravity decrease, so the upper limit of the air permeability coefficient is necessarily restricted by the lower limit of the compressive strength or the lower limit of the specific gravity. Therefore, the upper limit of the air permeability coefficient is not particularly required, but can be suitably used in various applications, for example, within a range of 1.0 (cm / s) or less. The compressive strength can be adjusted mainly by the water powder ratio and the unit aggregate amount, the air permeability coefficient can be adjusted mainly by the volume unit amount Vso of the bubble and the kind / addition amount of the admixture, and the specific gravity is mainly the unit aggregate amount and the volume unit of the bubble. It can be adjusted by the amount Vso.

〔促進炭酸化養生による実験例〕
表1に示す配合の気泡モルタルを作製した。使用した粉体は以下の通りである。
・OPC; 普通ポルトランドセメント
・FAC; フライアッシュセメント
・BB; 高炉セメントB種
・γ; γビーライト(γC2S)
表1中のW/Pは水粉体比を意味する。また、以下において「γC2S置換率」とは「粉体に占めるγビーライトの割合」を意味する。
[Experimental example of accelerated carbonation curing]
A foam mortar having the composition shown in Table 1 was prepared. The powder used is as follows.
・ OPC: Ordinary Portland cement ・ FAC: Fly ash cement ・ BB: Blast furnace cement type B ・ γ: γ Belite (γC 2 S)
W / P in Table 1 means the water powder ratio. In the following, “γC2S substitution rate” means “ratio of γ belite in the powder”.

Figure 2012188319
Figure 2012188319

気泡モルタル混練物は以下の要領で作製した。
予め水、粉体、高性能減水剤を練り混ぜ、ペーストを作る。このとき、だまがないように十分に練り混ぜ、その後、ブリーディングを生じないように間欠的または連続的にペーストの撹拌を継続する。別途、発泡装置により起泡剤を使用してムース状の気泡(プレフォーム)を生成させ、これを前記ペーストに所定量添加し、直ちに練り混ぜて練上がりとする。
A foam mortar kneaded material was prepared as follows.
Pre-mix water, powder and high-performance water reducing agent to make a paste. At this time, the paste is sufficiently mixed so as not to be fooled, and then the stirring of the paste is continued intermittently or continuously so as not to cause bleeding. Separately, a foaming device is used to generate mousse-like air bubbles (preform), which is added to the paste in a predetermined amount, and immediately kneaded to be finished.

得られた気泡モルタル混練物を打設したのち、20℃湿空養生(湿度80%以上)を10日間行って脱型し、得られた気泡モルタル硬化体を促進炭酸化養生に供した。促進炭酸化養生は温度60℃、湿度50%、CO2濃度20%にて7日間または28日間行った。また、圧縮強度を比較するために、上記の促進炭酸化養生に代えて気中養生(前記湿空養生条件)に供した試料も作製した。
なお、いずれのモルタル硬化体も、材齢28日のおいて透気係数が1.0×10-1(cm/s)以上、比重が0.4〜0.7であることが確認された。
After placing the obtained foamed mortar kneaded material, 20 ° C. wet air curing (humidity of 80% or more) was performed for 10 days to demold, and the obtained foamed foamed mortar was subjected to accelerated carbonation curing. The accelerated carbonation curing was performed at a temperature of 60 ° C., a humidity of 50%, and a CO 2 concentration of 20% for 7 days or 28 days. Moreover, in order to compare compressive strength, it replaced with said accelerated carbonation curing and the sample used for the air curing (the said wet air curing conditions) was also produced.
Each mortar cured body was confirmed to have an air permeability coefficient of 1.0 × 10 −1 (cm / s) or more and a specific gravity of 0.4 to 0.7 at the age of 28 days. .

図1に、気中養生および促進炭酸化養生を施したγC2S置換率50%の気泡モルタル供試体(ケースNo.1、2、3)についての圧縮強度を示す。各セメント種類毎に左から順に7日間気中養生、7日間促進炭酸化養生、28日間気中養生、28日間促進炭酸化養生のデータを示してある。促進炭酸化養生を行うとγビーライトの炭酸化によって強度が増大するが、促進炭酸化養生期間が長くなると強度増大効果は低減する傾向が見られた。セメントの種類で見ると、強度発現の観点からはOPCおよびBBが比較的好ましい。   FIG. 1 shows the compressive strength of a foam mortar specimen (case No. 1, 2, 3) subjected to air curing and accelerated carbonation curing and having a γC2S substitution rate of 50%. For each cement type, data for 7 days air curing, 7 days accelerated carbonation curing, 28 days air curing, and 28 days accelerated carbonation curing are shown in order from the left. When accelerated carbonation curing was performed, the strength increased due to carbonation of γ-belite, but when the accelerated carbonation curing period became longer, the strength increasing effect tended to decrease. In terms of the type of cement, OPC and BB are relatively preferable from the viewpoint of strength development.

図2に、OPCを用いた気泡モルタル供試体(ケースNo.1、4、5、6)についてγC2S置換率と圧縮強度の関係を示す。γビーライトの配合割合が増大すると圧縮強度は低下する傾向にあるが、促進炭酸化養生を行った場合にはγビーライト無添加のものに対する強度低下は小さくなる。γC2S置換率30%のものでは促進炭酸化養生によりγビーライト無添加のものと同等の強度レベルが得られた。   FIG. 2 shows the relationship between the γC2S substitution rate and the compressive strength for the bubble mortar specimens (cases Nos. 1, 4, 5, and 6) using OPC. When the blending ratio of γ belite increases, the compressive strength tends to decrease. However, when accelerated carbonation curing is performed, the decrease in strength relative to those without γ belite is reduced. With the γC2S substitution rate of 30%, the accelerated carbonation curing yielded the same strength level as that without γ belite.

図3に、OPCを用いた気泡モルタル供試体(ケースNo.1、4、5、6)についてγC2S置換率と促進炭酸化養生による二酸化炭素吸収量の関係を示す。■印のプロットが7日間促進炭酸化養生、●印のプロットが28日間促進炭酸化養生である。縦軸は気泡モルタル供試体の見掛け単位体積(内部空隙を含む)あたりの二酸化炭素吸収量を意味する。促進炭酸化環境ではγビーライトを多量に配合する気泡モルタルでは二酸化炭素吸収量が低減する。後述の大気環境での二酸化炭素吸収性能に加え、促進炭酸化環境での二酸化炭素吸収性能をも重視する場合は、γC2S置換率20〜30%の範囲とすることが好ましい。   FIG. 3 shows the relationship between the γC2S substitution rate and the amount of carbon dioxide absorbed by accelerated carbonation curing for the foam mortar specimens (cases No. 1, 4, 5, and 6) using OPC. The plot marked with ■ is the accelerated carbonation curing for 7 days, and the plot marked with ● is the accelerated carbonation curing for 28 days. The vertical axis represents the amount of carbon dioxide absorbed per apparent unit volume (including internal voids) of the foam mortar specimen. In the accelerated carbonation environment, carbon dioxide absorption is reduced in the foam mortar containing a large amount of γ belite. In addition to the carbon dioxide absorption performance in the atmospheric environment described later, in the case where the carbon dioxide absorption performance in the accelerated carbonation environment is also emphasized, the γC2S substitution rate is preferably in the range of 20 to 30%.

〔大気環境暴露による実験例〕
上記の表1に示す配合の気泡モルタル混練物を前述の要領にて作製し、打設したのち、20℃湿空養生(湿度80%以上)を10日間行って脱型した。得られた気泡モルタル硬化体を常温大気環境の室内に置き、大気に曝した状態で最大49週目まで保管した。
[Experimental example by exposure to atmospheric environment]
The foamed mortar kneaded material having the composition shown in Table 1 was prepared and placed in the manner described above, and then subjected to 20 ° C. wet air curing (humidity of 80% or more) for 10 days for demolding. The obtained foamed mortar hardened body was placed in a room temperature and atmospheric environment and stored up to 49 weeks in a state exposed to the atmosphere.

図4に、大気環境に置かれた気泡モルタル供試体について重量の経時変化を示す。横軸は、室内保管開始時点を基準にした材齢の√週目盛としてある。すなわち、√週1、2、3、4、5、6および7は、それぞれ室内保管開始から1週目、4週目、9週目、16週目、25週目、36週目および49週目の時点を意味する。いずれの配合の気泡モルタル供試体においても初めの1週間で重量減少が観測された。これは乾燥に伴う水分の減少量が二酸化炭素吸収量を上回ることによる現象である。その後、供試体重量は増加に転じる。一般的なセメント系材料の場合、強制的に炭酸化処理を施さない限り、脱型後49週の時点では重量は減少し続けるのが通常である。大気環境暴露中の気泡モルタルが早期に重量増加に転じる現象はセメント系材料としては非常に珍しいものと考えられる。   FIG. 4 shows the change over time in the weight of the foam mortar specimen placed in the atmospheric environment. The horizontal axis is a √ week scale of age based on the start of indoor storage. That is, √weeks 1, 2, 3, 4, 5, 6 and 7 are the 1st week, 4th week, 9th week, 16th week, 25th week, 36th week and 49th week from the start of indoor storage, respectively. It means the time of eye. Weight loss was observed in the first week for all blended foam mortar specimens. This is a phenomenon due to the amount of water loss accompanying drying exceeding the amount of carbon dioxide absorbed. Thereafter, the specimen weight starts to increase. In the case of a general cementitious material, unless the carbonation treatment is forcibly performed, the weight usually continues to decrease at 49 weeks after demolding. The phenomenon that bubble mortar during exposure to the air environment rapidly increases in weight is considered to be very rare for cementitious materials.

図5に、大気環境に置かれた気泡モルタル供試体について1週目の供試体重量を基準にした重量増加量を示す。縦軸は、気泡モルタル供試体の重量増加量を、当該供試体の大気に曝されている見掛け表面(内部空隙の表面積を考慮しない表面)の単位面積あたりの重量増加量に換算したものである。この重量増加は吸収した二酸化炭素の質量から乾燥に伴い気化した水分の質量を差し引いたものに相当し、この重量増加分を上回る量の二酸化炭素が吸収されたと見ることができる。   FIG. 5 shows the weight increase based on the weight of the first week specimen for the foam mortar specimen placed in the atmospheric environment. The vertical axis shows the weight increase amount of the bubble mortar specimen converted into the weight increase amount per unit area of the apparent surface exposed to the atmosphere of the specimen (surface not considering the surface area of the internal void). . This increase in weight corresponds to a value obtained by subtracting the mass of water vaporized by drying from the mass of absorbed carbon dioxide, and it can be considered that carbon dioxide in an amount exceeding this weight increase was absorbed.

図6に、OPCを用いた気泡モルタル供試体(ケースNo.1、4、5、6)についてγC2S置換率と室内保管開始から25週目および49週目における重量増加量の関係を示す。γビーライトを配合することにより常温大気環境における気泡モルタル硬化体の二酸化炭素吸収量は増大することが明らかとなった。特にγC2S置換率を30〜70%とすることが効果的であり、軽量盛土などの自然環境で使用される用途に限ればγC2S置換率を40〜60%とすることがより好ましい。   FIG. 6 shows the relationship between the γC2S substitution rate and the weight increase amount at the 25th and 49th weeks from the start of indoor storage for the foam mortar specimens (cases No. 1, 4, 5, and 6) using OPC. It became clear that the amount of carbon dioxide absorbed by the foamed mortar hardened body in the ambient air environment increased by adding γ belite. In particular, it is effective to set the γC2S substitution rate to 30 to 70%, and it is more preferable to set the γC2S substitution rate to 40 to 60% for applications that are used in a natural environment such as lightweight embankment.

Claims (2)

水、粉体、気泡、混和剤を配合したモルタル混練物であって、水の体積単位量(L/m3)と粉体の体積単位量(L/m3)の合計をVp、気泡の体積単位量(L/m3)をVsoと表すとき、Vp:Vsoが2:8〜6:4であり、粉体成分としてセメントおよびγビーライトを含有し、粉体に占めるγビーライトの割合が20〜70質量%である気泡モルタル混練物。 A mortar kneaded material containing water, powder, bubbles and admixture, and the sum of volume unit amount of water (L / m 3 ) and volume unit amount of powder (L / m 3 ) is Vp, When the volume unit amount (L / m 3 ) is expressed as Vso, Vp: Vso is 2: 8 to 6: 4, and cement and γ belite are contained as powder components. A foam mortar kneaded product having a ratio of 20 to 70% by mass. 材齢28日における硬化体の圧縮強度が0.5〜5.0(N/mm2)、透気係数が1.0×10-1(cm/s)以上、比重が0.4〜0.7となるように配合調整された請求項1に記載の気泡モルタル混練物。 The compression strength of the cured body at the age of 28 days is 0.5 to 5.0 (N / mm 2 ), the air permeability coefficient is 1.0 × 10 −1 (cm / s) or more, and the specific gravity is 0.4 to 0. The foamed mortar kneaded product according to claim 1, which is blended and adjusted to have a ratio of 0.7.
JP2011053726A 2011-03-11 2011-03-11 Gamma belite-containing cellular mortar kneaded material Active JP6071169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011053726A JP6071169B2 (en) 2011-03-11 2011-03-11 Gamma belite-containing cellular mortar kneaded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053726A JP6071169B2 (en) 2011-03-11 2011-03-11 Gamma belite-containing cellular mortar kneaded material

Publications (2)

Publication Number Publication Date
JP2012188319A true JP2012188319A (en) 2012-10-04
JP6071169B2 JP6071169B2 (en) 2017-02-01

Family

ID=47081897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053726A Active JP6071169B2 (en) 2011-03-11 2011-03-11 Gamma belite-containing cellular mortar kneaded material

Country Status (1)

Country Link
JP (1) JP6071169B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185863B1 (en) * 2022-03-31 2022-12-08 住友大阪セメント株式会社 Concrete CO2 Absorption Derivation System and Concrete CO2 Absorption Derivation Method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112708A (en) * 2003-10-10 2005-04-28 Takara Tsusho Co Ltd Foaming agent for cellular concrete having excellent air permeability/water permeability, and cellular concrete composition
JP2007084363A (en) * 2005-09-20 2007-04-05 Kajima Corp Composite fiber reinforced cement base material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112708A (en) * 2003-10-10 2005-04-28 Takara Tsusho Co Ltd Foaming agent for cellular concrete having excellent air permeability/water permeability, and cellular concrete composition
JP2007084363A (en) * 2005-09-20 2007-04-05 Kajima Corp Composite fiber reinforced cement base material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009058825; 盛岡実: 'gamma-2CaO・SiO2の中性化抑制効果とその機構' セメント・コンクリート論文集 第57号, 20040210, 第23-29頁, 社団法人セメント協会 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185863B1 (en) * 2022-03-31 2022-12-08 住友大阪セメント株式会社 Concrete CO2 Absorption Derivation System and Concrete CO2 Absorption Derivation Method
JP7185863B6 (en) 2022-03-31 2023-01-05 住友大阪セメント株式会社 Concrete CO2 Absorption Derivation System and Concrete CO2 Absorption Derivation Method

Also Published As

Publication number Publication date
JP6071169B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6430268B2 (en) Porous geopolymer cured body
JP5504000B2 (en) CO2 absorbing precast concrete and method for producing the same
JP5931317B2 (en) Hydraulic composition and concrete using the hydraulic composition
JP5100983B2 (en) Foaming agent for cement composition, cement composition containing the same, method for preventing shrinkage of cement composition, and use of foaming agent in cement composition
KR101779565B1 (en) Eco-friendly cement concrete composition for ready-mixed concrete
Wang et al. Incorporation of sand-based breathing bricks with foamed concrete and humidity control materials
JP2014080367A (en) Fly ash concrete
JP6071169B2 (en) Gamma belite-containing cellular mortar kneaded material
JP2009035429A (en) Hydraulic composition and cured product of the same
Jang et al. Utilization of metakaolin-based geopolymers for stabilization of sulfate-rich expansive soils
JP2015131747A (en) cement composition
JP2008094668A (en) Grout composition and grout material using the same
JP3806420B2 (en) Low strength mortar filler using shirasu
JP2011144078A (en) Cement additive and cement composition using the same
JP2012162418A (en) Method for producing aerated lightweight concrete
JP6447291B2 (en) Method for determining the composition of fresh concrete
JP7393167B2 (en) lightweight aerated concrete
Sutandar et al. Effect of cement variation on properties of clc concrete masonry brick
KR101729737B1 (en) Manufacturing method of concrete by air entring agent
Dong et al. Study on foaming agent foam ability and stability for foam concrete
RU2728308C1 (en) Complex additive for foam concrete mixture
JP6843666B2 (en) Durability improver for concrete, and concrete
JP7222603B2 (en) Low expansion concrete composition
KR100515118B1 (en) Self-levelling mortar containing waste casting sand
JP2023160056A (en) Hardenable cement composition, hardened cement body, and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6071169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250