JP2012187958A - Tire air pressure monitoring system - Google Patents

Tire air pressure monitoring system Download PDF

Info

Publication number
JP2012187958A
JP2012187958A JP2011051427A JP2011051427A JP2012187958A JP 2012187958 A JP2012187958 A JP 2012187958A JP 2011051427 A JP2011051427 A JP 2011051427A JP 2011051427 A JP2011051427 A JP 2011051427A JP 2012187958 A JP2012187958 A JP 2012187958A
Authority
JP
Japan
Prior art keywords
tire
received signal
vehicle body
signal strength
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011051427A
Other languages
Japanese (ja)
Inventor
Katsuhide Kumagai
勝秀 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2011051427A priority Critical patent/JP2012187958A/en
Publication of JP2012187958A publication Critical patent/JP2012187958A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tire air pressure monitoring system that can secure accuracy for specifying the tire position when the tire position is specified from the received signal strength of the tire air pressure signal.SOLUTION: A battery voltage obtaining part 22 is provided in a tire communication instrument 4, and the voltage of a battery 12 is monitored. When the tire communication instrument 4 transmits a tire air pressure signal Stp, the battery voltage data Dc is contained in the tire air pressure signal Stp and is transmitted to a vehicle body 5. When a TPMS receiver 13 receives the tire air pressure signal Stp, a received signal strength measuring part 20 measures the received signal strength at this time. A received signal strength correcting part 24 corrects the measured received signal strength by the battery voltage data Dc, and specifies the tire position by the received signal strength after the correction.

Description

本発明は、各タイヤに取り付けたタイヤ空気圧検出手段から無線送信されるタイヤ空気圧信号により、各タイヤの空気圧を監視するタイヤ空気圧監視システムに関する。   The present invention relates to a tire air pressure monitoring system that monitors the air pressure of each tire based on a tire air pressure signal wirelessly transmitted from a tire air pressure detecting means attached to each tire.

近年、車両には、走行車両の安全確保を目的として、走行中において各タイヤのタイヤ空気圧を監視するタイヤ空気圧監視システムが搭載される傾向にある。タイヤ空気圧監視システムは、各タイヤにタイヤ通信機を取り付け、このタイヤ通信機にて検出したタイヤ空気圧信号を車体に無線送信する。車体は、タイヤ通信機から受信したタイヤ空気圧信号を基にタイヤ空気圧を監視し、低圧タイヤが存在することを確認すると、低圧警報を運転者に通知する。   In recent years, vehicles tend to be equipped with a tire pressure monitoring system that monitors the tire pressure of each tire during traveling for the purpose of ensuring the safety of the traveling vehicle. The tire pressure monitoring system attaches a tire communication device to each tire and wirelessly transmits a tire pressure signal detected by the tire communication device to the vehicle body. The vehicle body monitors the tire air pressure based on the tire air pressure signal received from the tire communicator, and notifies the driver of a low pressure alarm when confirming that a low pressure tire is present.

タイヤ空気圧監視システムでは、車体が受信したタイヤ空気圧信号がどのタイヤから送信されたものかを把握する必要がある。タイヤ位置を特定する方式として、例えば車体がタイヤ空気圧信号を受信したときの受信信号強度(RSSI:Received Signal Strength Indicator)からタイヤ位置を特定する技術(特許文献1等参照)が考案されている。この方式を使用すれば、タイヤ通信機を起動させるためのイニシエータを各タイヤハウスに取り付ける必要がないので、システム構成の簡素化や部品コスト削減などの利点がある。   In the tire pressure monitoring system, it is necessary to grasp from which tire the tire pressure signal received by the vehicle body is transmitted. As a method for specifying a tire position, for example, a technique for specifying a tire position from a received signal strength indicator (RSSI: Received Signal Strength Indicator) when a vehicle body receives a tire air pressure signal has been devised (see Patent Document 1, etc.). If this method is used, there is no need to attach an initiator for starting the tire communication device to each tire house, and there are advantages such as simplification of the system configuration and reduction of parts costs.

特開2006−312342号公報JP 2006-312342 A

ところで、例えばタイヤ通信機は電池が低下すると、電波の送信強度が低下していく傾向にある。また、タイヤ通信機の出力強度は、タイヤ温度によっても影響を受ける。このため、通常時に測定される受信信号強度と、タイヤ通信機の電池劣化時やタイヤ温度上昇時に測定される受信信号強度とでは、測定結果に違いが発生してしまう。よって、部品点数削減を狙ってタイヤ空気圧信号の受信信号強度からタイヤ位置を特定するようにしても、タイヤ位置を精度よく検出することができない問題があった。   By the way, for example, in a tire communication device, when the battery decreases, the transmission intensity of radio waves tends to decrease. The output intensity of the tire communication device is also affected by the tire temperature. For this reason, a difference occurs in the measurement result between the received signal strength measured at the normal time and the received signal strength measured at the time of battery deterioration of the tire communication device or when the tire temperature rises. Therefore, even if the tire position is specified from the received signal strength of the tire air pressure signal with the aim of reducing the number of parts, there is a problem that the tire position cannot be detected with high accuracy.

本発明の目的は、タイヤ空気圧信号の受信信号強度からタイヤ位置を特定する際のタイヤ位置特定の精度を確保することができるタイヤ空気圧監視システムを提供することにある。   An object of the present invention is to provide a tire pressure monitoring system capable of ensuring the accuracy of tire position specification when specifying the tire position from the received signal strength of the tire pressure signal.

前記問題点を解決するために、本発明では、タイヤ空気圧を検出するタイヤ空気圧検出手段を各タイヤに取り付け、当該タイヤ空気圧検出手段から無線によりタイヤ空気圧信号を車体に送信し、当該タイヤ空気圧信号を車体が受信したときの受信信号強度を基に、タイヤの位置を特定しつつ該タイヤの空気圧を監視するタイヤ空気圧監視システムにおいて、前記タイヤ空気圧信号の送信強度の変動要因値を取得する取得手段と、前記取得手段が取得した前記変動要因値を基に、前記受信信号強度を補正する補正手段とを備えたことを要旨とする。   In order to solve the above problems, in the present invention, tire pressure detection means for detecting tire pressure is attached to each tire, a tire pressure signal is transmitted to the vehicle body from the tire pressure detection means wirelessly, and the tire pressure signal is In a tire air pressure monitoring system that monitors the tire air pressure while specifying the position of the tire based on the received signal strength when the vehicle body receives, an acquisition means for acquiring a variation factor value of the transmission intensity of the tire air pressure signal; The present invention is summarized by comprising correction means for correcting the received signal intensity based on the variation factor value acquired by the acquisition means.

本発明の構成によれば、タイヤ通信機がタイヤ空気圧信号を車体に無線送信してタイヤ空気圧を監視させる際、タイヤ空気圧信号の変動要因値が取得手段によって取得される。そして、この変動要因値により、車体がタイヤ空気圧信号を受信するときの受信信号強度が補正手段によって補正される。よって、本例の場合は、変動要因値から導出された受信信号強度という、値として信頼性の高い受信信号強度にてタイヤ位置を判定する。このため、タイヤ空気圧信号の受信信号強度からタイヤ位置を特定する場合に、タイヤ位置特定の精度を確保することが可能となる。   According to the configuration of the present invention, when the tire communication device wirelessly transmits the tire pressure signal to the vehicle body to monitor the tire pressure, the fluctuation factor value of the tire pressure signal is acquired by the acquisition unit. Then, the received signal strength when the vehicle body receives the tire pressure signal is corrected by the correction means based on the variation factor value. Therefore, in the case of this example, the tire position is determined based on the received signal strength that is highly reliable as a value, that is, the received signal strength derived from the variation factor value. For this reason, when specifying a tire position from the received signal strength of a tire air pressure signal, it is possible to ensure the accuracy of specifying the tire position.

本発明では、前記取得手段は、前記タイヤ空気圧検出手段の電源の電圧を検出し、前記変動要因値として電源電圧を前記車体に無線で通知する電源電圧通知手段であり、前記補正手段は、前記車体において測定した前記受信信号強度を、前記電源電圧に基づき前記車体側において補正することを要旨とする。この構成によれば、タイヤ通信機の電源電圧を基に受信信号強度を補正するので、仮にタイヤ通信機の電源電圧が低下して、タイヤ通信機の送信強度が低下してしまったとしても、電源電圧が低下していないときと同様の値の受信信号強度を得ることが可能となる。よって、タイヤ通信機の電源電圧が低下しても、タイヤ位置特定の精度を確保することが可能となる。   In the present invention, the acquisition means is a power supply voltage notification means for detecting a power supply voltage of the tire air pressure detection means and wirelessly notifying the vehicle body of the power supply voltage as the variation factor value. The gist is to correct the received signal intensity measured in the vehicle body on the vehicle body side based on the power supply voltage. According to this configuration, since the received signal strength is corrected based on the power supply voltage of the tire communication device, even if the power supply voltage of the tire communication device is reduced and the transmission strength of the tire communication device is reduced, It is possible to obtain the received signal intensity having the same value as when the power supply voltage is not lowered. Therefore, even if the power supply voltage of the tire communication device is lowered, it is possible to ensure the accuracy of specifying the tire position.

本発明では、前記取得手段は、前記タイヤの温度を検出し、前記変動要因値として検出温度値を前記車体に無線で通知するタイヤ温度通知手段であり、前記補正手段は、前記車体において測定した前記受信信号強度を、前記タイヤの検出温度値に基づき前記車体側において補正することを要旨とする。この構成によれば、タイヤ通信機の温度を基に受信信号強度を補正するので、仮にタイヤ通信機が温度上昇して、タイヤ通信機の送信強度が低下してしまったとしても、タイヤ温度が上昇していないときと同様の値の受信信号強度を得ることが可能となる。よって、タイヤ通信機が温度変動しても、タイヤ位置特定の精度を確保することが可能となる。   In the present invention, the acquisition means is tire temperature notification means for detecting the temperature of the tire and wirelessly notifying the vehicle body of the detected temperature value as the variation factor value, and the correction means is measured in the vehicle body. The gist is to correct the received signal intensity on the vehicle body side based on the detected temperature value of the tire. According to this configuration, since the received signal strength is corrected based on the temperature of the tire communication device, even if the temperature of the tire communication device increases and the transmission strength of the tire communication device decreases, the tire temperature is reduced. It becomes possible to obtain the received signal strength of the same value as when it is not increased. Therefore, even if the tire communication device fluctuates in temperature, it is possible to ensure the accuracy of specifying the tire position.

本発明では、前記取得手段は、前記変動要因値を基に、前記受信信号強度を補正するための補正係数を割り出し、当該補正係数を前記車体に無線で通知する補正係数通知手段であり、前記補正手段は、前記車体において測定した前記受信信号強度を、前記補正係数に基づき前記車体側において補正することを要旨とする。この構成によれば、例えば単に係数を乗算するなどの簡単な計算で受信信号強度の補正が可能となるので、補正処理の簡素化が可能となる。   In the present invention, the acquisition means is a correction coefficient notification means for determining a correction coefficient for correcting the received signal strength based on the variation factor value and notifying the correction body of the correction coefficient wirelessly, The gist of the correction means is to correct the received signal intensity measured in the vehicle body on the vehicle body side based on the correction coefficient. According to this configuration, for example, the received signal strength can be corrected by a simple calculation such as simply multiplying by a coefficient, so that the correction process can be simplified.

本発明では、前記取得手段は、前記タイヤ空気圧信号の送信強度を実測し、この送信強度を前記車体に無線で通知する送信強度通知手段であり、前記補正手段は、前記送信強度とその基準値との差分を求め、前記車体において測定した前記受信信号強度を、前記車体側において前記差分にて補正することを要旨とする。この構成によれば、実測した特性値にて受信信号強度の補正が可能となるので、補正の精度がよくなる。よって、タイヤ位置判定の精度向上に効果が高くなる。   In the present invention, the acquisition means is transmission intensity notifying means for actually measuring the transmission intensity of the tire air pressure signal and notifying the transmission body wirelessly to the vehicle body, and the correcting means is the transmission intensity and its reference value. And the received signal intensity measured on the vehicle body is corrected by the difference on the vehicle body side. According to this configuration, the received signal intensity can be corrected with the actually measured characteristic value, so that the correction accuracy is improved. Therefore, the effect of improving the accuracy of tire position determination is increased.

本発明によれば、タイヤ空気圧信号の受信信号強度からタイヤ位置を特定する際のタイヤ位置特定の精度を確保することができる。   ADVANTAGE OF THE INVENTION According to this invention, the precision of tire position specification at the time of specifying a tire position from the received signal strength of a tire air pressure signal is securable.

第1実施形態のタイヤ空気圧監視システムの構成図。The lineblock diagram of the tire pressure monitoring system of a 1st embodiment. TPMS受信機の配置場所を示す模式図。The schematic diagram which shows the arrangement | positioning place of a TPMS receiver. タイヤ通信機の電波送信強度と電池電圧との関係を示すグラフ。The graph which shows the relationship between the radio wave transmission intensity | strength of a tire communication apparatus, and a battery voltage. タイヤ空気圧監視システムの通信シーケンスを示すフローチャート。The flowchart which shows the communication sequence of a tire pressure monitoring system. 第2実施形態のタイヤ通信機の電波送信強度とタイヤ温度との関係を示すグラフ。The graph which shows the relationship between the radio wave transmission intensity | strength of the tire communication apparatus of 2nd Embodiment, and tire temperature. タイヤ空気圧監視システムの通信シーケンスを示すフローチャート。The flowchart which shows the communication sequence of a tire pressure monitoring system. 第3実施形態のタイヤ空気圧監視システムの構成図。The block diagram of the tire pressure monitoring system of 3rd Embodiment. タイヤ空気圧監視システムの通信シーケンスを示すフローチャート。The flowchart which shows the communication sequence of a tire pressure monitoring system. 第4実施形態のタイヤ空気圧監視システムの構成図。The block diagram of the tire pressure monitoring system of 4th Embodiment. タイヤ通信機の送信強度の違いを例示した説明図。Explanatory drawing which illustrated the difference in the transmission intensity of a tire communication machine. タイヤ空気圧監視システムの通信シーケンスを示すフローチャート。The flowchart which shows the communication sequence of a tire pressure monitoring system.

(第1実施形態)
以下、本発明を具体化したタイヤ空気圧監視システムの第1実施形態を図1〜図4に従って説明する。
(First embodiment)
A tire air pressure monitoring system according to a first embodiment of the present invention will be described below with reference to FIGS.

図1に示すように、車両1には、各タイヤ2(2a〜2d)のタイヤ空気圧等を監視するタイヤ空気圧監視システム(TPMS:Tire Pressure Monitoring System)3が搭載されている。タイヤ空気圧監視システム3は、各タイヤ2a〜2dに取り付けられたタイヤ通信機4でタイヤ空気圧等を検出し、その検出結果をタイヤ空気圧信号Stpとして車体5に無線送信する。車体5は、タイヤ空気圧信号Stpからタイヤ空気圧を確認し、その結果を運転者に通知する。なお、タイヤ通信機4がタイヤ空気圧検出手段に相当する。   As shown in FIG. 1, the vehicle 1 is equipped with a tire pressure monitoring system (TPMS: Tire Pressure Monitoring System) 3 that monitors the tire pressure of each tire 2 (2a to 2d). The tire pressure monitoring system 3 detects the tire pressure and the like with a tire communication device 4 attached to each tire 2a to 2d, and wirelessly transmits the detection result to the vehicle body 5 as a tire pressure signal Stp. The vehicle body 5 confirms the tire air pressure from the tire air pressure signal Stp and notifies the driver of the result. Note that the tire communication device 4 corresponds to tire air pressure detecting means.

タイヤ通信機4には、タイヤ通信機4を統括管理するコントローラ6が設けられている。コントローラ6のメモリ7には、各タイヤ2a〜2dの固有IDとしてタイヤIDが登録されている。タイヤ通信機4には、タイヤ空気圧を検出する圧力センサ8、タイヤ温度を検出する温度センサ9、タイヤ2の回転を検出する加速度センサ10が設けられ、これらがコントローラ6に接続されている。これらセンサ類は、検出信号をコントローラ6に出力する。コントローラ6には、UHF(Ultra High Frequency)帯の電波を送信可能な送信部11が接続されている。また、タイヤ通信機4には、タイヤ通信機4の電源として電池12が設けられている。なお、電池12が電源に相当する。   The tire communication device 4 is provided with a controller 6 that manages the tire communication device 4 in an integrated manner. In the memory 7 of the controller 6, tire IDs are registered as unique IDs of the tires 2a to 2d. The tire communication device 4 includes a pressure sensor 8 that detects tire air pressure, a temperature sensor 9 that detects tire temperature, and an acceleration sensor 10 that detects rotation of the tire 2, and these are connected to the controller 6. These sensors output detection signals to the controller 6. The controller 6 is connected to a transmitter 11 capable of transmitting a radio wave in the UHF (Ultra High Frequency) band. The tire communication device 4 is provided with a battery 12 as a power source for the tire communication device 4. The battery 12 corresponds to a power source.

車体5には、タイヤ通信機4から受信したタイヤ空気圧信号Stpによりタイヤ2の空気圧を監視する受信機(以降、TPMS受信機と記す)13が設けられている。TPMS受信機13には、TPMS受信機13の動作を統括管理するタイヤ空気圧監視ECU(Electronic Control Unit)14と、UHF帯の電波を受信可能な受信部15とが設けられている。タイヤ空気圧監視ECU14のメモリ16には、各タイヤ2a〜2dのタイヤIDが複数登録されている。受信部15は、アンテナ17aと、受信電波を復調及び増幅する受信回路17bとからなる。TPMS受信機13には、例えば車内インストルメントパネル等に設置された表示部18が接続されている。   The vehicle body 5 is provided with a receiver (hereinafter referred to as a TPMS receiver) 13 that monitors the air pressure of the tire 2 based on the tire air pressure signal Stp received from the tire communication device 4. The TPMS receiver 13 is provided with a tire air pressure monitoring ECU (Electronic Control Unit) 14 that comprehensively manages the operation of the TPMS receiver 13 and a receiver 15 that can receive radio waves in the UHF band. In the memory 16 of the tire pressure monitoring ECU 14, a plurality of tire IDs of the respective tires 2a to 2d are registered. The receiving unit 15 includes an antenna 17a and a receiving circuit 17b that demodulates and amplifies received radio waves. For example, a display unit 18 installed on an in-vehicle instrument panel or the like is connected to the TPMS receiver 13.

コントローラ6は、TPMS受信機13がタイヤ空気圧を判定するのに必要な情報を、送信部11から車体5に無線送信させる無線送信制御部19が設けられている。無線送信制御部19は、加速度センサ10から出力される検出加速度値(加速度信号)を基にタイヤ2が回転状態(車両1が走行状態)に入ったことを検出すると、タイヤ空気圧信号Stpの送信を開始する。つまり、本例のタイヤ空気圧監視システム3は、車両走行中にタイヤ通信機4が自らタイヤ空気圧信号Stpを車体5に送信する直接方式となっている。タイヤ空気圧信号Stpには、タイヤIDの他に、圧力センサ8から取得した検出圧力値(圧力信号)や、温度センサ9から取得した検出温度値(温度信号)が含まれている。各タイヤ通信機4は、他のタイヤ通信機4と電波送信が重ならないように、時間差をもって電波送信する。   The controller 6 is provided with a wireless transmission control unit 19 that wirelessly transmits information necessary for the TPMS receiver 13 to determine the tire pressure from the transmission unit 11 to the vehicle body 5. When the wireless transmission control unit 19 detects that the tire 2 enters the rotation state (the vehicle 1 is in the traveling state) based on the detected acceleration value (acceleration signal) output from the acceleration sensor 10, the wireless transmission control unit 19 transmits the tire air pressure signal Stp. To start. That is, the tire pressure monitoring system 3 of this example is a direct method in which the tire communication device 4 transmits the tire pressure signal Stp to the vehicle body 5 by itself while the vehicle is traveling. In addition to the tire ID, the tire air pressure signal Stp includes a detected pressure value (pressure signal) acquired from the pressure sensor 8 and a detected temperature value (temperature signal) acquired from the temperature sensor 9. Each tire communication device 4 transmits radio waves with a time difference so that radio transmission does not overlap with other tire communication devices 4.

図2に示すように、本例のTPMS受信機13は、タイヤ空気圧信号Stpを受信したときの受信信号強度(RSSI:Received Signal Strength Indicator)でタイヤ位置を判定できるように、各タイヤ通信機4…からの距離L1〜L4がそれぞれ異なる値をとる位置に配置されている。本例の場合、右前タイヤ2aのタイヤ通信機4a及び受信機13の間の距離L1が最も小さく、続いて左前タイヤ2bのタイヤ通信機4b及び受信機13の間の距離L2、右後タイヤ2cのタイヤ通信機4c及び受信機13の間の距離L3、左後タイヤ2dのタイヤ通信機4d及び受信機13の間の距離L4の順に大きくなっている。   As shown in FIG. 2, the TPMS receiver 13 of the present example enables each tire communication device 4 to determine the tire position based on the received signal strength indicator (RSSI) when the tire pressure signal Stp is received. The distances L1 to L4 from... Are arranged at different positions. In the case of this example, the distance L1 between the tire communication device 4a of the right front tire 2a and the receiver 13 is the smallest, followed by the distance L2 between the tire communication device 4b and the receiver 13 of the left front tire 2b, and the right rear tire 2c. The distance L3 between the tire communication device 4c and the receiver 13 and the distance L4 between the tire communication device 4d and the receiver 13 of the left rear tire 2d increase in this order.

図1に示すように、タイヤ空気圧監視ECU14には、受信部15で受信した受信電波の受信信号強度を測定する受信信号強度測定部20が設けられている。また、タイヤ空気圧監視ECU14には、受信信号強度測定部20により測定された受信信号強度を基にタイヤ位置を特定するタイヤ位置特定部21が設けられている。   As shown in FIG. 1, the tire pressure monitoring ECU 14 is provided with a received signal strength measuring unit 20 that measures the received signal strength of the received radio wave received by the receiving unit 15. In addition, the tire pressure monitoring ECU 14 is provided with a tire position specifying unit 21 that specifies a tire position based on the received signal strength measured by the received signal strength measuring unit 20.

TPMS受信機13がタイヤ空気圧信号Stpを受信すると、受信信号強度測定部20は、タイヤ空気圧信号Stpの受信信号強度を測定する。続いて、タイヤ位置特定部21は、タイヤ空気圧信号Stp内に含まれるタイヤIDにてID照合を実行するとともに、受信信号強度測定部20が測定した受信信号強度を基に、そのタイヤIDのタイヤ位置を特定する。即ち、受信信号強度が距離L1に準じた値をとれば右前タイヤ2aと判定され、受信信号強度が距離L2に準じた値をとれば左前タイヤ2bと判定され、受信信号強度が距離L3に準じた値とれば右後タイヤ2cと判定され、受信信号強度が距離L4に準じた値をとれば左後タイヤ2dと判定される。そして、タイヤ空気圧監視ECU14は、タイヤIDのタイヤ位置を特定すると、タイヤ空気圧信号Stp内に含まれる検出圧力値と低圧閾値とを比較することにより、そのタイヤIDのタイヤ空気圧を確認する。   When the TPMS receiver 13 receives the tire pressure signal Stp, the received signal strength measuring unit 20 measures the received signal strength of the tire pressure signal Stp. Subsequently, the tire position specifying unit 21 performs ID collation with the tire ID included in the tire air pressure signal Stp, and based on the received signal strength measured by the received signal strength measuring unit 20, the tire of the tire ID Identify the location. That is, if the received signal strength takes a value according to the distance L1, it is determined as the right front tire 2a. If the received signal strength takes a value according to the distance L2, it is determined as the left front tire 2b, and the received signal strength conforms to the distance L3. If the value is determined to be the right rear tire 2c, the received signal strength is determined to be the left rear tire 2d if the received signal intensity is a value according to the distance L4. When the tire pressure monitoring ECU 14 identifies the tire position of the tire ID, the tire pressure monitoring ECU 14 compares the detected pressure value included in the tire air pressure signal Stp with the low pressure threshold value to confirm the tire air pressure of the tire ID.

本例のタイヤ空気圧監視ECU14は、タイヤ空気圧信号Stp内の検出温度値(タイヤ温度)に基づき、低圧閾値を設定する。これは、タイヤ温度が高くなると、必然的にタイヤ空気圧も高くなることから、タイヤ温度に応じて最適な低圧閾値を設定するためである。そして、タイヤ空気圧監視ECU14は、タイヤ温度に準じて設定した低圧閾値とタイヤ空気圧とを比較し、タイヤ空気圧が定圧閾値未満であれば、その低圧タイヤを表示部18にタイヤ位置を対応付けて表示する。   The tire pressure monitoring ECU 14 of this example sets a low pressure threshold value based on the detected temperature value (tire temperature) in the tire pressure signal Stp. This is because an optimum low pressure threshold is set according to the tire temperature because the tire air pressure naturally increases as the tire temperature increases. Then, the tire air pressure monitoring ECU 14 compares the tire pressure with the low pressure threshold value set according to the tire temperature, and if the tire air pressure is less than the constant pressure threshold value, the low pressure tire is displayed on the display unit 18 in association with the tire position. To do.

本例のタイヤ空気圧監視システム3には、タイヤ通信機4の電池12の電圧(以降、電池電圧と記す)に応じて受信信号強度を補正する補正機能が設けられている。これは、図3に示すように、タイヤ通信機4において電池電圧(電池残量)が低下してくると、電波の送信強度が弱くなってしまう傾向があるので、電池電圧を監視して、受信信号強度を電池電圧に基づき補正することにより、タイヤ位置を精度よく判定するためである。   The tire pressure monitoring system 3 of the present example is provided with a correction function for correcting the received signal intensity according to the voltage of the battery 12 of the tire communication device 4 (hereinafter referred to as the battery voltage). This is because, as shown in FIG. 3, when the battery voltage (remaining battery level) decreases in the tire communication device 4, the transmission intensity of radio waves tends to be weakened. This is because the tire position is accurately determined by correcting the received signal intensity based on the battery voltage.

この場合、図1に示すように、コントローラ6には、電池電圧を取得する電池電圧取得部22が設けられている。電池電圧取得部22は、タイヤ通信機4がタイヤ空気圧信号Stpを送信するとき、例えば電池12の電圧を確認することにより、電池電圧データDcを取得する。なお、電池電圧取得部22が取得手段(電池電圧通知手段)を構成し、電池電圧データDcが変動要因値を構成する。   In this case, as shown in FIG. 1, the controller 6 includes a battery voltage acquisition unit 22 that acquires a battery voltage. When the tire communication device 4 transmits the tire pressure signal Stp, the battery voltage acquisition unit 22 acquires the battery voltage data Dc by confirming the voltage of the battery 12, for example. In addition, the battery voltage acquisition part 22 comprises an acquisition means (battery voltage notification means), and the battery voltage data Dc comprises a fluctuation factor value.

コントローラ6には、電池電圧取得部22が取得した電池電圧データDcを車体5に無線送信する電池電圧通知部23が設けられている。電池電圧通知部23は、タイヤ通信機4がタイヤ空気圧信号Stpを車体5に送信するとき、このタイヤ空気圧信号Stpに電池電圧データDcを含ませて車体5に送信させる。なお、電池電圧通知部23が取得手段(電源電圧通知手段)を構成する。   The controller 6 is provided with a battery voltage notification unit 23 that wirelessly transmits the battery voltage data Dc acquired by the battery voltage acquisition unit 22 to the vehicle body 5. When the tire communication device 4 transmits the tire pressure signal Stp to the vehicle body 5, the battery voltage notification unit 23 includes the battery voltage data Dc in the tire pressure signal Stp and transmits the tire pressure signal Stp to the vehicle body 5. The battery voltage notification unit 23 constitutes acquisition means (power supply voltage notification means).

タイヤ空気圧監視ECU14には、タイヤ通信機4から送信された電池電圧データDcを基に受信信号強度を補正する受信信号強度補正部24が設けられている。受信信号強度補正部24は、受信信号強度測定部20が測定した受信信号強度を電池電圧データDcにより補正し、補正後の受信信号強度をタイヤ位置特定部21に出力して、補正後の受信信号強度にてタイヤ位置を特定させる。なお、受信信号強度補正部24が補正手段を構成する。   The tire pressure monitoring ECU 14 is provided with a received signal strength correction unit 24 that corrects the received signal strength based on the battery voltage data Dc transmitted from the tire communication device 4. The received signal strength correcting unit 24 corrects the received signal strength measured by the received signal strength measuring unit 20 with the battery voltage data Dc, and outputs the corrected received signal strength to the tire position specifying unit 21 for reception after correction. The tire position is specified by the signal strength. The received signal strength correction unit 24 constitutes a correction unit.

次に、本例のタイヤ空気圧監視システム3の動作を、図4を用いて説明する。
ステップ101において、タイヤ通信機4がタイヤ空気圧信号Stpを送信するとき、電池電圧取得部22は、電池12の電圧を確認することにより、電池電圧データDcを取得する。
Next, operation | movement of the tire pressure monitoring system 3 of this example is demonstrated using FIG.
In step 101, when the tire communication device 4 transmits the tire pressure signal Stp, the battery voltage acquisition unit 22 acquires the battery voltage data Dc by checking the voltage of the battery 12.

ステップ102において、電池電圧通知部23は、タイヤ通信機4がタイヤ空気圧信号Stpを送信するとき、電池電圧データDcをタイヤ空気圧信号Stpに付加して無線送信する。タイヤ空気圧信号Stpには、信号の始まりを示すスタートビット25、タイヤID、タイヤ情報26(検出圧力値、検出温度値)、電池電圧データDc、信号の終わりを示すエンドビット27を含む信号となっている。   In step 102, when the tire communication device 4 transmits the tire pressure signal Stp, the battery voltage notification unit 23 adds the battery voltage data Dc to the tire pressure signal Stp and wirelessly transmits the tire pressure signal Stp. The tire pressure signal Stp is a signal including a start bit 25 indicating the start of the signal, a tire ID, tire information 26 (detected pressure value, detected temperature value), battery voltage data Dc, and an end bit 27 indicating the end of the signal. ing.

ステップ103において、車体5は、TPMS受信機13でタイヤ空気圧信号Stpを受信する。
ステップ104において、受信信号強度測定部20は、受信部15がタイヤ空気圧信号Stpを受信したときの受信信号強度を実測する。
In step 103, the vehicle body 5 receives the tire pressure signal Stp by the TPMS receiver 13.
In step 104, the received signal strength measuring unit 20 measures the received signal strength when the receiving unit 15 receives the tire air pressure signal Stp.

ステップ105において、受信信号強度補正部24は、受信信号強度測定部20により測定された受信信号強度を、タイヤ空気圧信号Stp内に含まれる電池電圧データDcを基に補正する。補正処理としては、例えば電池電圧の値に応じて補正量が決まっているので、例えばこの補正量を実受信信号強度に乗算するなどして受信信号強度を補正する。そして、受信信号強度補正部24は、補正後の受信信号強度をタイヤ位置特定部21に出力する。   In step 105, the received signal strength correcting unit 24 corrects the received signal strength measured by the received signal strength measuring unit 20 based on the battery voltage data Dc included in the tire air pressure signal Stp. As the correction process, for example, the correction amount is determined according to the value of the battery voltage. For example, the received signal strength is corrected by multiplying the actual received signal strength by this correction amount. Then, the received signal strength correcting unit 24 outputs the corrected received signal strength to the tire position specifying unit 21.

ステップ106において、タイヤ位置特定部21は、補正後の受信信号強度を基に、タイヤ空気圧信号Stp内に含まれるタイヤIDのタイヤ位置を特定する。このとき、タイヤ位置特定部21は、受信したタイヤIDでID照合を行い、自身のメモリ16に登録されたタイヤIDか否かを確認する。そして、タイヤIDが登録されているものであれば、補正後の受信信号強度を基にタイヤIDのタイヤ位置を特定する。   In step 106, the tire position specifying unit 21 specifies the tire position of the tire ID included in the tire air pressure signal Stp based on the corrected received signal strength. At this time, the tire position specifying unit 21 performs ID collation with the received tire ID, and confirms whether or not the tire ID is registered in its own memory 16. If the tire ID is registered, the tire position of the tire ID is specified based on the corrected received signal intensity.

ステップ107において、タイヤ空気圧監視ECU14は、受信したタイヤIDの検出圧力値が低圧閾値未満か否かを判定する。このとき、検出圧力値が低圧閾値未満であれば、ステップ108に移行し、検出圧力値が低圧閾値未満でなければ、ステップ109に移行する。   In step 107, the tire pressure monitoring ECU 14 determines whether or not the detected pressure value of the received tire ID is less than a low pressure threshold value. At this time, if the detected pressure value is less than the low pressure threshold, the process proceeds to step 108, and if the detected pressure value is not less than the low pressure threshold, the process proceeds to step 109.

ステップ108において、タイヤ空気圧監視ECU14は、検出圧力値が低圧閾値未満であれば、表示部18で低圧警報を実行する。低圧警報は、例えば低圧になったタイヤ2を、その位置とともに表示部18に表示する。   In step 108, if the detected pressure value is less than the low pressure threshold value, the tire air pressure monitoring ECU 14 issues a low pressure alarm on the display unit 18. The low pressure alarm displays, for example, the tire 2 having a low pressure on the display unit 18 together with its position.

ステップ109において、タイヤ空気圧監視ECU14は、検出圧力値が低圧閾値未満でなければ、そのまま何もせずに処理を終了する。つまり、低圧警報を実行することなく、処理を終了する。   In step 109, if the detected pressure value is not less than the low pressure threshold value, the tire air pressure monitoring ECU 14 ends the process without doing anything. That is, the process ends without executing the low pressure alarm.

以上により、本例においては、タイヤ通信機4の電池電圧を測定し、この電池電圧データDcをTPMS受信機13に無線送信して、実測した受信信号強度を電池電圧データDcにて補正する。このため、仮にタイヤ通信機4の電池電圧が低下して、タイヤ空気圧信号Stpの送信強度が低下してしまっても、この低下分が補正されるので、タイヤ空気圧信号Stpの受信信号強度からタイヤ位置を特定する場合であっても、タイヤ位置を精度よく求めることが可能となる。   As described above, in this example, the battery voltage of the tire communication device 4 is measured, the battery voltage data Dc is wirelessly transmitted to the TPMS receiver 13, and the actually measured received signal strength is corrected with the battery voltage data Dc. For this reason, even if the battery voltage of the tire communication device 4 decreases and the transmission intensity of the tire air pressure signal Stp decreases, the decrease is corrected, so that the tire pressure is determined from the received signal intensity of the tire air pressure signal Stp. Even when the position is specified, the tire position can be obtained with high accuracy.

本実施形態の構成によれば、以下に記載の効果を得ることができる。
(1)タイヤ空気圧信号Stpにタイヤ通信機4の電池電圧データDcを含ませ、TPMS受信機13が実測したタイヤ空気圧信号Stpの受信信号強度を、電池電圧データDcにより補正する。このため、タイヤ空気圧信号Stpの受信信号強度からタイヤ位置を判定する場合であっても、好適な受信信号強度にてタイヤ位置の特定が可能となるので、タイヤ位置特定の精度を確保することができる。
According to the configuration of the present embodiment, the following effects can be obtained.
(1) The battery voltage data Dc of the tire communication device 4 is included in the tire pressure signal Stp, and the received signal strength of the tire pressure signal Stp measured by the TPMS receiver 13 is corrected by the battery voltage data Dc. For this reason, even when the tire position is determined from the received signal strength of the tire air pressure signal Stp, the tire position can be specified with a suitable received signal strength, so that the accuracy of specifying the tire position can be ensured. it can.

(2)タイヤ通信機4の電池電圧が低下してくると、タイヤ通信機4の電波送信強度が低下する傾向となってしまう。しかし、本例は、タイヤ通信機4にて電池電圧を監視し、電池電圧データDcを基に受信信号強度を補正するので、タイヤ通信機4の電池電圧が低下していないときと同様の値の受信信号強度でタイヤ位置を判定することが可能となる。よって、タイヤ通信機4の電池電圧が低下しても、タイヤ位置特定の精度を確保することができる。   (2) When the battery voltage of the tire communication device 4 decreases, the radio wave transmission intensity of the tire communication device 4 tends to decrease. However, in this example, since the battery voltage is monitored by the tire communication device 4 and the received signal strength is corrected based on the battery voltage data Dc, the same value as when the battery voltage of the tire communication device 4 is not lowered is obtained. It is possible to determine the tire position based on the received signal strength. Therefore, even if the battery voltage of the tire communication device 4 decreases, the accuracy of specifying the tire position can be ensured.

(3)受信信号強度の補正演算をTPMS受信機13側で実行するので、補正演算の機能をタイヤ通信機4に設けずに済む。よって、タイヤ通信機4の構造が複雑にならずに済む。   (3) Since the correction calculation of the received signal strength is executed on the TPMS receiver 13 side, it is not necessary to provide the tire communication device 4 with the function of the correction calculation. Therefore, the structure of the tire communication device 4 is not complicated.

(第2実施形態)
次に、第2実施形態を図5及び図6に従って説明する。なお、第2実施形態は、第1実施形態に記載の受信信号強度の補正方式を変更した実施例であって、他の基本的な部分は同じである。よって、第1実施形態と同一部分は同じ符号を付して詳しい説明を省略し、異なる部分についてのみ詳述する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. The second embodiment is an example in which the received signal strength correction method described in the first embodiment is changed, and other basic portions are the same. Therefore, the same parts as those in the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and only different parts are described in detail.

ところで、タイヤ通信機4の送信部11は、半導体の部品群により構成されるものが一般的である。このため、タイヤ通信機4の温度上昇に伴い、送信部11も温度上昇すると、図5に示すように、送信部11の電波の出力強度が低下していく傾向をとることが知られている。このため、タイヤ空気圧信号Stpの受信信号強度からタイヤ位置を特定する際、タイヤ通信機4の温度(即ち、タイヤ温度)で受信信号強度を補正すれば、タイヤ位置の判定精度が確保できることが分かる。なお、無線送信制御部19が取得手段(タイヤ温度通知手段)を構成する。   By the way, the transmitter 11 of the tire communication device 4 is generally configured by a group of semiconductor parts. For this reason, it is known that when the temperature of the transmitter 11 increases as the temperature of the tire communication device 4 increases, the output intensity of the radio wave of the transmitter 11 tends to decrease as shown in FIG. . For this reason, when the tire position is specified from the received signal strength of the tire air pressure signal Stp, it is understood that the tire position determination accuracy can be ensured by correcting the received signal strength with the temperature of the tire communication device 4 (that is, the tire temperature). . The wireless transmission control unit 19 constitutes acquisition means (tire temperature notification means).

本例の受信信号強度補正部24は、タイヤ温度及び電池電圧に基づき、受信信号強度を補正する。このように、受信信号強度をタイヤ温度及び電池電圧の2つのパラメータで補正するのは、その方が受信信号強度をより正確に補正できるためである。もちろん、タイヤ温度でのみ受信信号を補正してもよいが、本例では、タイヤ温度及び電池電圧の両方で受信信号強度を補正する例を述べる。   The received signal strength correction unit 24 of this example corrects the received signal strength based on the tire temperature and the battery voltage. Thus, the reason why the received signal intensity is corrected by the two parameters of the tire temperature and the battery voltage is that this can correct the received signal intensity more accurately. Of course, the received signal may be corrected only at the tire temperature, but in this example, an example in which the received signal intensity is corrected by both the tire temperature and the battery voltage will be described.

次に、本例のタイヤ空気圧監視システム3の動作を、図3、図5及び図6を用いて説明する。なお、本例は、受信信号強度を補正する箇所のみが第1実施形態と異なるので、この部分のみ抽出して説明する。   Next, operation | movement of the tire pressure monitoring system 3 of this example is demonstrated using FIG.3, FIG.5 and FIG.6. In this example, only the portion for correcting the received signal strength is different from that of the first embodiment, so only this portion will be extracted and described.

ステップ201において、受信信号強度補正部24は、タイヤ空気圧信号Stp内に含まれる検出温度値及び電池電圧データDcを基に、タイヤ空気圧信号Stpの受信信号強度を補正する。このとき、電池12の電圧が図3に示す基準電圧V0のときの送信部11の電波送信強度をPv0として割り出し、電池12の電圧がV1のときの送信部11の電波送信強度をPv1として割り出す。また、図5に示すタイヤ温度が基準温度T0のときの送信部11の電波送信強度をPtoとして割り出し、タイヤ温度がT1のときの送信部11の電波送信強度をPt1として割り出す。そして、受信信号強度測定部20が実測した受信信号強度をEaとすると、受信信号強度補正部24は、次式(A)を用いて受信信号強度を補正する。
Ea×(Pv0/Pv1)×(Pt0/Pt1) … (A)
補正後の受信信号強度は、V0とT0とに相当する値として算出されるので、結果、現状のタイヤ温度及び電池電圧に応じた値として求められる。よって、この補正後の受信信号強度によりタイヤ位置を特定すれば、好適な値の受信信号強度にてタイヤ位置の判定が可能となるので、タイヤ位置特定の精度を確保することが可能となる。
In step 201, the reception signal strength correction unit 24 corrects the reception signal strength of the tire pressure signal Stp based on the detected temperature value and the battery voltage data Dc included in the tire pressure signal Stp. At this time, the radio wave transmission intensity of the transmission unit 11 when the voltage of the battery 12 is the reference voltage V0 shown in FIG. 3 is calculated as Pv0, and the radio wave transmission intensity of the transmission unit 11 when the voltage of the battery 12 is V1 is calculated as Pv1. . Further, the radio wave transmission intensity of the transmission unit 11 when the tire temperature shown in FIG. 5 is the reference temperature T0 is calculated as Pto, and the radio wave transmission intensity of the transmission unit 11 when the tire temperature is T1 is calculated as Pt1. Then, assuming that the received signal strength actually measured by the received signal strength measuring unit 20 is Ea, the received signal strength correcting unit 24 corrects the received signal strength using the following equation (A).
Ea × (Pv0 / Pv1) × (Pt0 / Pt1) (A)
The corrected received signal strength is calculated as a value corresponding to V0 and T0, and as a result, it is obtained as a value according to the current tire temperature and battery voltage. Therefore, if the tire position is specified based on the corrected received signal intensity, the tire position can be determined with a suitable received signal intensity, so that the accuracy of specifying the tire position can be ensured.

本実施形態の構成によれば、第1実施形態の(1),(3)と同様の効果に加え、以下の効果を得ることができる。
(4)温度センサ9から出力された検出温度値を使用して、タイヤ空気圧信号Stpの受信信号強度を補正する。このため、タイヤ通信機4の送信部11が温度上昇して電波の送信強度が低下する傾向になっても、検出温度値にて受信信号強度が補正されるので、好適な値の受信信号強度でタイヤ位置を判定することができる。よって、送信部11の温度上昇に影響を受けず、タイヤ位置特定の精度を確保することができる。
According to the configuration of the present embodiment, the following effects can be obtained in addition to the same effects as (1) and (3) of the first embodiment.
(4) Using the detected temperature value output from the temperature sensor 9, the received signal strength of the tire air pressure signal Stp is corrected. For this reason, even if the transmission unit 11 of the tire communication device 4 tends to increase in temperature and the transmission intensity of radio waves tends to decrease, the received signal intensity is corrected with the detected temperature value. The tire position can be determined. Therefore, the accuracy of specifying the tire position can be ensured without being affected by the temperature rise of the transmitter 11.

(5)タイヤ温度及び電池電圧の両方でタイヤ空気圧信号Stpの受信信号強度を補正するので、受信信号強度をより正確な値で導き出すことができる。よって、タイヤ位置特定の精度確保に一層効果が高くなる。   (5) Since the received signal strength of the tire pressure signal Stp is corrected by both the tire temperature and the battery voltage, the received signal strength can be derived with a more accurate value. Therefore, the effect is further enhanced in ensuring the accuracy of specifying the tire position.

(第3実施形態)
次に、第3実施形態を図7及び図8に従って説明する。なお、第3実施形態も第1実施形態と異なる部分についてのみ詳述する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. In the third embodiment, only the parts different from the first embodiment will be described in detail.

図7に示すうように、コントローラ6には、送信強度を演算するのに必要なデータを取得するデータ取得部31が設けられている。データ取得部31は、タイヤ通信機4がタイヤ空気圧信号Stpを送信するとき、電池12から電池電圧データDcを取得し、温度センサ9から検出温度値を取得する。また、データ取得部31は、電池12の使用を開始してからの経過時間をカウンタ等により計時し、電池12の使用時間を計測する。なお、データ取得部31が取得手段を構成する。   As shown in FIG. 7, the controller 6 is provided with a data acquisition unit 31 that acquires data necessary to calculate the transmission intensity. When the tire communication device 4 transmits the tire pressure signal Stp, the data acquisition unit 31 acquires the battery voltage data Dc from the battery 12 and acquires the detected temperature value from the temperature sensor 9. In addition, the data acquisition unit 31 measures the elapsed time from the start of use of the battery 12 with a counter or the like, and measures the use time of the battery 12. The data acquisition unit 31 constitutes an acquisition unit.

コントローラ6のメモリ7には、タイヤ空気圧信号Stpの送信強度を補正する際に使用する補正係数α,βが記憶されている。ところで、電源電圧には、使用環境下におけるその時々の電圧値や使用年月によってバラツキが存在する。また、電池電源の低下速度は、使用環境下の使用年月によってもばらつく。本例の電池電圧補正係数αは、これらバラツキを解消するための補正係数として設定されている。また、送信部11の送信強度には、温度に対して送信部11(タイヤ通信機4ごと)に出力のバラツキが存在する。よって、本例の温度補正係数βは、このバラツキを解消するための補正係数として設定されている。データ取得部31は、タイヤ空気圧信号Stpの送信時、タイヤ空気圧、タイヤ温度、電池12の使用時間等を基に、使用すべき補正係数α,βを割り出す。   The memory 7 of the controller 6 stores correction coefficients α and β used when correcting the transmission intensity of the tire pressure signal Stp. By the way, the power supply voltage varies depending on the voltage value and the date of use in the usage environment. In addition, the rate of decrease in battery power varies depending on the years of use in the usage environment. The battery voltage correction coefficient α in this example is set as a correction coefficient for eliminating these variations. Further, the transmission intensity of the transmission unit 11 has output variations in the transmission unit 11 (for each tire communication device 4) with respect to the temperature. Therefore, the temperature correction coefficient β of this example is set as a correction coefficient for eliminating this variation. When the tire pressure signal Stp is transmitted, the data acquisition unit 31 calculates correction coefficients α and β to be used based on the tire pressure, the tire temperature, the usage time of the battery 12, and the like.

コントローラ6には、使用すべき補正係数α,βを車体5に無線送信する補正係数通知部32が設けられている。補正係数通知部32は、その時々の電池電圧及びタイヤ温度を基に、使用すべき補正係数α,βを割り出し、これをタイヤ空気圧信号Stpに乗せて、車体5に通知する。なお、補正係数通知部32が取得手段(補正係数通知手段)を構成する。   The controller 6 is provided with a correction coefficient notification unit 32 that wirelessly transmits the correction coefficients α and β to be used to the vehicle body 5. The correction coefficient notification unit 32 determines the correction coefficients α and β to be used based on the battery voltage and the tire temperature at that time, and puts them on the tire air pressure signal Stp and notifies the vehicle body 5 of the correction coefficients. The correction coefficient notification unit 32 constitutes acquisition means (correction coefficient notification means).

受信信号強度補正部24は、タイヤ通信機4から受信した補正係数α,βを基に、受信信号強度測定部20が測定した受信信号強度を補正し、補正後の受信信号強度をタイヤ位置特定部21に出力して、補正後の受信信号強度にてタイヤ位置を特定させる。   The received signal strength correcting unit 24 corrects the received signal strength measured by the received signal strength measuring unit 20 based on the correction coefficients α and β received from the tire communication device 4, and specifies the corrected received signal strength as a tire position. The tire position is specified based on the received signal strength after correction.

次に、本例のタイヤ空気圧監視システム3の動作を、図8を用いて説明する。
ステップ301において、タイヤ通信機4がタイヤ空気圧信号Stpを送信するとき、データ取得部31は、電池12の電圧を確認することにより、電池電圧データDcを取得する。
Next, operation | movement of the tire pressure monitoring system 3 of this example is demonstrated using FIG.
In step 301, when the tire communication device 4 transmits the tire pressure signal Stp, the data acquisition unit 31 acquires the battery voltage data Dc by checking the voltage of the battery 12.

ステップ302において、データ取得部31は、温度センサ9から検出温度値を取得する。
ステップ303において、データ取得部31は、取得した検出温度値と電池12の使用時間とから、このとき使用すべき電池電圧補正係数α及び温度補正係数βを取得する。
In step 302, the data acquisition unit 31 acquires a detected temperature value from the temperature sensor 9.
In step 303, the data acquisition unit 31 acquires the battery voltage correction coefficient α and the temperature correction coefficient β to be used at this time from the acquired detected temperature value and the usage time of the battery 12.

ステップ304において、補正係数通知部32は、タイヤ通信機4がタイヤ空気圧信号Stpを送信するとき、補正係数α,βをタイヤ空気圧信号Stpに付加して無線送信する。
車体5は、TPMS受信機13でタイヤ空気圧信号Stpを受信し(ステップ103)、その受信信号強度を実測する(ステップ104)。
In step 304, when the tire communication device 4 transmits the tire pressure signal Stp, the correction coefficient notification unit 32 adds the correction coefficients α and β to the tire pressure signal Stp and wirelessly transmits the tire pressure signal Stp.
The vehicle body 5 receives the tire pressure signal Stp by the TPMS receiver 13 (step 103), and measures the received signal strength (step 104).

ステップ305において、受信信号強度補正部24は、受信信号強度測定部20により測定された受信信号強度を、タイヤ空気圧信号Stp内に含まれる補正係数α,βを基に補正する。このとき補正処理としては、実測した受信信号強度をEaとすると、例えば次式(B)によって補正値が計算される。
Ea×α×β … (B)
なお、以降のステップ106〜109は、第1実施形態と同様であるので、説明を省略する。
In step 305, the received signal strength correcting unit 24 corrects the received signal strength measured by the received signal strength measuring unit 20 based on the correction coefficients α and β included in the tire air pressure signal Stp. At this time, as a correction process, if the actually measured received signal intensity is Ea, a correction value is calculated by the following equation (B), for example.
Ea × α × β (B)
Since subsequent steps 106 to 109 are the same as those in the first embodiment, the description thereof is omitted.

以上により、本例においては、タイヤ通信機4がタイヤ空気圧信号Stpを送信するとき、電池電圧データDc、検出温度値、電池電圧補正係数α及び温度補正係数βを基に、タイヤ通信機4の送信強度を補正する。このため、補正係数α,βを用いた簡単な計算にて、受信信号強度を補正することが可能となる。よって、受信信号強度を正確な値で導く対策をとったとしても、TPMS受信機13の処理負荷を軽いものとすることが可能となる。   As described above, in the present example, when the tire communication device 4 transmits the tire pressure signal Stp, the tire communication device 4 of the tire communication device 4 is based on the battery voltage data Dc, the detected temperature value, the battery voltage correction coefficient α, and the temperature correction coefficient β. Correct the transmission strength. For this reason, it is possible to correct the received signal intensity by a simple calculation using the correction coefficients α and β. Therefore, even if a measure for deriving the received signal strength with an accurate value is taken, the processing load on the TPMS receiver 13 can be reduced.

本実施形態の構成によれば、第1実施形態の(1)と同様の効果に加え、以下の効果を得ることができる。
(6)補正係数α,βにより受信信号強度を補正するので、補正処理を簡素な計算で済ませることができる。
According to the configuration of the present embodiment, in addition to the same effects as (1) of the first embodiment, the following effects can be obtained.
(6) Since the received signal intensity is corrected by the correction coefficients α and β, the correction process can be performed with a simple calculation.

(第4実施形態)
次に、第4実施形態を図9〜図11に従って説明する。第4実施形態は、第3実施形態の補正方式に変更を加えたものであって、この実施例も異なる部分についてのみ詳述する。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. The fourth embodiment is a modification of the correction method of the third embodiment, and this embodiment will be described in detail only for different parts.

図9に示すように、送信部11には、送信部11から送信される電波の送信強度を実測する送信強度測定回路35が設けられている。送信強度測定回路35は、送信部11からタイヤ空気圧信号Stpが送信される際、電波放射される前段階(または電波送信中)において電波の送信強度を実測し、その実測した送信強度データDkをコントローラ6に出力する。   As shown in FIG. 9, the transmission unit 11 is provided with a transmission intensity measurement circuit 35 that measures the transmission intensity of the radio wave transmitted from the transmission unit 11. When the tire pressure signal Stp is transmitted from the transmission unit 11, the transmission intensity measurement circuit 35 measures the transmission intensity of the radio wave before the radio wave is radiated (or during radio wave transmission), and uses the measured transmission intensity data Dk. Output to the controller 6.

コントローラ6には、送信強度測定回路35が測定した送信強度データDkを車体5に無線通信する送信強度通知部36が設けられている。送信強度通知部36は、タイヤ通信機4がタイヤ空気圧信号Stpを送信するとき、この信号の終わりの方に送信強度データDkを乗せて、車体5に通知する。なお、送信強度通知部36が取得手段(送信強度通知手段)を構成する。   The controller 6 is provided with a transmission intensity notification unit 36 that wirelessly communicates the transmission intensity data Dk measured by the transmission intensity measurement circuit 35 to the vehicle body 5. When the tire communicator 4 transmits the tire pressure signal Stp, the transmission strength notification unit 36 notifies the vehicle body 5 of the transmission strength data Dk on the end of the signal. The transmission strength notification unit 36 constitutes acquisition means (transmission strength notification means).

受信信号強度補正部24は、タイヤ通信機4から受信した送信強度データDkを基に、タイヤ空気圧信号Stpが適正な送信強度で送信されたか否かを判定する。ところで、図10に示すように、充分な電源電圧のタイヤ通信機4a〜4cからであれば、Fullに近い送信強度を通知する送信強度データDkが送信されるのに対し、電源電圧が低いタイヤ通信機4dからは、低い送信強度を通知する送信強度データDkが送信される。よって、TPMS受信機13は、送信強度データDkの値を確認すれば、タイヤ通信機4の送信能力を知ることが可能である。   The reception signal strength correction unit 24 determines whether or not the tire air pressure signal Stp is transmitted with an appropriate transmission strength based on the transmission strength data Dk received from the tire communication device 4. By the way, as shown in FIG. 10, if the tire communication devices 4a to 4c have a sufficient power supply voltage, the transmission strength data Dk notifying the transmission strength close to Full is transmitted, whereas the tire having a low power supply voltage. From the communication device 4d, transmission strength data Dk for notifying low transmission strength is transmitted. Therefore, the TPMS receiver 13 can know the transmission capability of the tire communication device 4 by confirming the value of the transmission intensity data Dk.

よって、受信信号強度補正部24は、受信した送信強度データDkと、基準値(送信能力がFullのときに取り得る送信強度)との差分を求め、この差分を基に受信信号強度を補正する。受信信号強度補正部24は、補正後の受信信号強度をタイヤ位置特定部21に出力して、補正後の受信信号強度にてタイヤ位置を特定させる。   Therefore, the received signal strength correction unit 24 obtains a difference between the received transmission strength data Dk and a reference value (transmission strength that can be obtained when the transmission capability is Full), and corrects the received signal strength based on this difference. . The received signal strength correction unit 24 outputs the corrected received signal strength to the tire position specifying unit 21 and specifies the tire position based on the corrected received signal strength.

次に、本例のタイヤ空気圧監視システム3の動作を、図11を用いて説明する。
ステップ401において、送信部11がタイヤ空気圧信号Stpを送信する過程で、送信強度測定回路35は、タイヤ空気圧信号Stpの送信強度を実測する。
Next, operation | movement of the tire pressure monitoring system 3 of this example is demonstrated using FIG.
In step 401, in the process in which the transmission unit 11 transmits the tire pressure signal Stp, the transmission strength measurement circuit 35 measures the transmission strength of the tire pressure signal Stp.

ステップ402において、送信強度通知部36は、送信強度測定回路35から送信強度データDkを取得する。
ステップ403において、送信強度通知部36は、タイヤ通信機4がタイヤ空気圧信号Stpを送信するとき、送信強度データDkをタイヤ空気圧信号Stpに付加して無線送信する。
In step 402, the transmission strength notification unit 36 acquires transmission strength data Dk from the transmission strength measurement circuit 35.
In step 403, when the tire communication device 4 transmits the tire pressure signal Stp, the transmission strength notification unit 36 adds the transmission strength data Dk to the tire pressure signal Stp and wirelessly transmits it.

車体5は、TPMS受信機13でタイヤ空気圧信号Stpを受信し(ステップ103)、その受信信号強度を実測する(ステップ104)。
ステップ404において、受信信号強度補正部24は、受信信号強度測定部20により測定された受信信号強度を、タイヤ空気圧信号Stp内に含まれる送信強度データDkを基に補正する。つまり、受信信号強度補正部24は、送信強度データDkと基準値との差分を求め、この差分により受信信号強度を補正する。このとき補正処理としては、例えば差分が、ある係数として求められ、この係数を実受信信号強度に乗算することで補正値が計算される。
The vehicle body 5 receives the tire pressure signal Stp by the TPMS receiver 13 (step 103), and measures the received signal strength (step 104).
In step 404, the reception signal strength correction unit 24 corrects the reception signal strength measured by the reception signal strength measurement unit 20 based on the transmission strength data Dk included in the tire air pressure signal Stp. That is, the received signal strength correction unit 24 obtains a difference between the transmission strength data Dk and the reference value, and corrects the received signal strength based on this difference. At this time, as a correction process, for example, a difference is obtained as a certain coefficient, and a correction value is calculated by multiplying the actual reception signal strength by this coefficient.

なお、以降のステップ106〜109は、第1実施形態と同様であるので、説明を省略する。
以上により、本例においては、送信部11に送信強度測定回路35を設け、送信部11から送信されるタイヤ空気圧信号Stpを送信強度測定回路35で実測する。そして、実測した送信強度データDkをTPMS受信機13に送信し、送信強度データDkと基準値との差分を基に受信信号強度を補正する。よって、実受信信号強度を理想値に近い値で算出することが可能となるので、タイヤ位置判定の精度向上に効果が高くなる。
Since subsequent steps 106 to 109 are the same as those in the first embodiment, the description thereof is omitted.
As described above, in this example, the transmission intensity measurement circuit 35 is provided in the transmission section 11, and the tire pressure signal Stp transmitted from the transmission section 11 is actually measured by the transmission intensity measurement circuit 35. Then, the actually measured transmission strength data Dk is transmitted to the TPMS receiver 13, and the received signal strength is corrected based on the difference between the transmission strength data Dk and the reference value. Therefore, it is possible to calculate the actual received signal strength with a value close to the ideal value, which is highly effective in improving the accuracy of tire position determination.

本実施形態の構成によれば、第1実施形態の(1)と同様の効果に加え、以下の効果を得ることができる。
(7)送信部11に送信強度測定回路35を設け、送信部11が実際に送信できる送信強度を送信強度測定回路35で測定し、実測した送信強度データDkを基に受信信号強度を補正する。よって、タイヤ位置判定の精度をよくすることが可能となる。
According to the configuration of the present embodiment, in addition to the same effects as (1) of the first embodiment, the following effects can be obtained.
(7) The transmission unit 11 is provided with a transmission intensity measurement circuit 35, the transmission intensity that the transmission unit 11 can actually transmit is measured by the transmission intensity measurement circuit 35, and the received signal intensity is corrected based on the actually measured transmission intensity data Dk. . Therefore, the accuracy of the tire position determination can be improved.

なお、実施形態はこれまでに述べた構成に限らず、以下の態様に変更してもよい。
・各実施形態において、変動要因値は、電池電圧データDc、検出温度値、電池12の使用時間等に限定されない。要は、受信信号強度が変化してしまう要因となるものであれば、どのような値であってもよい。
Note that the embodiment is not limited to the configuration described so far, and may be modified as follows.
In each embodiment, the variation factor value is not limited to the battery voltage data Dc, the detected temperature value, the usage time of the battery 12, and the like. In short, any value may be used as long as it causes a change in received signal strength.

・各実施形態において、電源は、電池12に限らず、例えばコンデンサなどでもよい。
・各実施形態において、タイヤ空気圧監視システム3は、直接方式に限定されず、例えば間接方式としてもよい。
In each embodiment, the power source is not limited to the battery 12 and may be a capacitor, for example.
In each embodiment, the tire pressure monitoring system 3 is not limited to the direct method, and may be an indirect method, for example.

・各実施形態において、タイヤ空気圧監視システム3の電波の周波数は、UHFに限定されず、例えばLF(Low Frequency)等の他の帯域を使用してもよい。
・受信信号強度の補正計算は、車体5側で行われることに限定されない、例えば、補正計算をタイヤ通信機4側で行い、その計算結果を車体5に通知するものでもよい。
In each embodiment, the frequency of the radio wave of the tire pressure monitoring system 3 is not limited to UHF, and other bands such as LF (Low Frequency) may be used.
The correction calculation of the received signal strength is not limited to being performed on the vehicle body 5 side. For example, the correction calculation may be performed on the tire communication device 4 side, and the calculation result may be notified to the vehicle body 5.

・第3実施形態において、補正係数は、対電池電圧や対温度に限らず、例えば対温度に対する電圧バラツキを補正するための係数でもよい。また、補正係数α,βは、どのようなデータでもよい。   In the third embodiment, the correction coefficient is not limited to the battery voltage and the temperature, but may be a coefficient for correcting a voltage variation with respect to the temperature, for example. The correction coefficients α and β may be any data.

・各実施形態において、タイヤ空気圧検出手段は、タイヤ通信機4という呼称に限らず、例えばタイヤバルブとしてもよい。
次に、上記実施形態及び別例から把握できる技術的思想について、それらの効果とともに以下に追記する。
In each embodiment, the tire air pressure detecting means is not limited to the name of the tire communication device 4 and may be a tire valve, for example.
Next, technical ideas that can be grasped from the above-described embodiment and other examples will be described below together with their effects.

(イ)請求項1〜5のいずれかにおいて、前記取得手段は、前記タイヤ空気圧検出手段の電源の電圧を検出し、前記変動要因値として電源電圧を前記車体に通知する電源電圧通知手段と、前記タイヤの温度を検出し、前記変動要因値として検出温度値を前記車体に通知するタイヤ温度通知手段とを備え、前記補正手段は、前記車体において測定した前記受信信号強度を、前記電源電圧及び前記検出温度値を基に前記車体側において補正する。この構成によれば、受信信号強度を一層好適な値とすることが可能となるので、タイヤ位置特定の精度を向上することが可能となる。   (A) In any one of claims 1 to 5, the acquisition means detects a power supply voltage of the tire air pressure detection means, and notifies the vehicle body of the power supply voltage as the variation factor value; and Tire temperature notification means for detecting the temperature of the tire and notifying the vehicle body of the detected temperature value as the variation factor value, and the correction means uses the received signal intensity measured in the vehicle body as the power supply voltage and Correction is performed on the vehicle body side based on the detected temperature value. According to this configuration, the received signal strength can be set to a more suitable value, so that the accuracy of specifying the tire position can be improved.

(ロ)請求項1〜5、前記技術的思想(イ)のいずれかにおいて、前記補正手段は、前記取得手段が取得した前記変動要因値を基に理想の受信信号強度を演算し、当該演算結果を前記車体に無線で通知する。この構成によれば、受信信号強度の補正計算を車体側で行わずに済むので、車体の処理負荷を軽減することが可能となる。   (B) In any one of claims 1 to 5 and the technical idea (A), the correction unit calculates an ideal received signal intensity based on the variation factor value acquired by the acquisition unit, and performs the calculation. The result is notified to the vehicle body wirelessly. According to this configuration, it is not necessary to perform correction calculation of the received signal strength on the vehicle body side, so that the processing load on the vehicle body can be reduced.

2(2a〜2d)…タイヤ、3…タイヤ空気圧監視システム、4(4a〜4d)…タイヤ空気圧検出手段としてのタイヤ通信機、5…車体、12…電源としての電池、19…取得手段(タイヤ温度通知手段)を構成する無線送信制御部、22…取得手段(電池電圧通知手段)を構成する電池電圧取得部、23…取得手段(電源電圧通知手段)を構成する電池電圧通知部、24…補正手段を構成する受信信号強度補正部、31…取得手段を構成するデータ取得部、32…取得手段(補正係数通知手段)を構成する補正係数通知部、36…取得手段(送信強度通知手段)を構成する送信強度通知部、Stp…タイヤ空気圧信号、Dc…変動要因値を構成する電池電圧データ、α,β…補正係数。   2 (2a to 2d) ... tyre, 3 ... tyre air pressure monitoring system, 4 (4a to 4d) ... tyre communication device as tire air pressure detecting means, 5 ... vehicle body, 12 ... battery as power source, 19 ... acquisition means (tire) Wireless transmission control unit constituting temperature notification means), 22 battery voltage acquisition unit constituting acquisition means (battery voltage notification means), 23 battery voltage notification part constituting acquisition means (power supply voltage notification means), 24 ... Received signal intensity correction unit constituting correction means, 31... Data acquisition part constituting acquisition means, 32... Correction coefficient notification part constituting acquisition means (correction coefficient notification means), 36... Acquisition means (transmission intensity notification means) Transmission strength notifying unit, Stp... Tire pressure signal, Dc... Battery voltage data constituting variation factor values, .alpha., .Beta.

Claims (5)

タイヤ空気圧を検出するタイヤ空気圧検出手段を各タイヤに取り付け、当該タイヤ空気圧検出手段から無線によりタイヤ空気圧信号を車体に送信し、当該タイヤ空気圧信号を車体が受信したときの受信信号強度を基に、タイヤの位置を特定しつつ該タイヤの空気圧を監視するタイヤ空気圧監視システムにおいて、
前記タイヤ空気圧信号の送信強度の変動要因値を取得する取得手段と、
前記取得手段が取得した前記変動要因値を基に、前記受信信号強度を補正する補正手段と
を備えたことを特徴とするタイヤ空気圧監視システム。
A tire pressure detection means for detecting tire pressure is attached to each tire, a tire pressure signal is transmitted to the vehicle body wirelessly from the tire pressure detection means, and based on the received signal strength when the tire pressure signal is received by the vehicle body, In a tire air pressure monitoring system for monitoring the air pressure of a tire while specifying the position of the tire,
Obtaining means for obtaining a variation factor value of the transmission intensity of the tire pressure signal;
A tire pressure monitoring system, comprising: correction means for correcting the received signal intensity based on the variation factor value acquired by the acquisition means.
前記取得手段は、前記タイヤ空気圧検出手段の電源の電圧を検出し、前記変動要因値として電源電圧を前記車体に無線で通知する電源電圧通知手段であり、
前記補正手段は、前記車体において測定した前記受信信号強度を、前記電源電圧に基づき前記車体側において補正する
ことを特徴とする請求項1に記載のタイヤ空気圧監視システム。
The acquisition means is a power supply voltage notification means for detecting a power supply voltage of the tire air pressure detection means and notifying the vehicle body of the power supply voltage as the variation factor value wirelessly,
The tire pressure monitoring system according to claim 1, wherein the correction unit corrects the received signal intensity measured in the vehicle body on the vehicle body side based on the power supply voltage.
前記取得手段は、前記タイヤの温度を検出し、前記変動要因値として検出温度値を前記車体に無線で通知するタイヤ温度通知手段であり、
前記補正手段は、前記車体において測定した前記受信信号強度を、前記タイヤの検出温度値に基づき前記車体側において補正する
ことを特徴とする請求項1又は2に記載のタイヤ空気圧監視システム。
The acquisition unit is a tire temperature notification unit that detects the temperature of the tire and wirelessly notifies the vehicle body of the detected temperature value as the variation factor value,
The tire pressure monitoring system according to claim 1 or 2, wherein the correction means corrects the received signal intensity measured in the vehicle body on the vehicle body side based on a detected temperature value of the tire.
前記取得手段は、前記変動要因値を基に、前記受信信号強度を補正するための補正係数を割り出し、当該補正係数を前記車体に無線で通知する補正係数通知手段であり、
前記補正手段は、前記車体において測定した前記受信信号強度を、前記補正係数に基づき前記車体側において補正する
ことを特徴とする請求項1に記載のタイヤ空気圧監視システム。
The acquisition means is a correction coefficient notifying means for determining a correction coefficient for correcting the received signal intensity based on the variation factor value and notifying the vehicle body of the correction coefficient wirelessly,
2. The tire pressure monitoring system according to claim 1, wherein the correction unit corrects the reception signal intensity measured in the vehicle body on the vehicle body side based on the correction coefficient. 3.
前記取得手段は、前記タイヤ空気圧信号の送信強度を実測し、この送信強度を前記車体に無線で通知する送信強度通知手段であり、
前記補正手段は、前記送信強度とその基準値との差分を求め、前記車体において測定した前記受信信号強度を、前記車体側において前記差分にて補正する
ことを特徴とする請求項1に記載のタイヤ空気圧監視システム。
The acquisition means is a transmission intensity notification means for measuring the transmission intensity of the tire pressure signal and notifying the vehicle body of the transmission intensity wirelessly,
The said correction | amendment means calculates | requires the difference of the said transmission strength and its reference value, and correct | amends the said received signal strength measured in the said vehicle body with the said difference in the said vehicle body side. Tire pressure monitoring system.
JP2011051427A 2011-03-09 2011-03-09 Tire air pressure monitoring system Withdrawn JP2012187958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011051427A JP2012187958A (en) 2011-03-09 2011-03-09 Tire air pressure monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011051427A JP2012187958A (en) 2011-03-09 2011-03-09 Tire air pressure monitoring system

Publications (1)

Publication Number Publication Date
JP2012187958A true JP2012187958A (en) 2012-10-04

Family

ID=47081609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011051427A Withdrawn JP2012187958A (en) 2011-03-09 2011-03-09 Tire air pressure monitoring system

Country Status (1)

Country Link
JP (1) JP2012187958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9278589B2 (en) 2013-12-16 2016-03-08 GM Global Technology Operations LLC Low line TPMS: sensor association using RSSI and doppler signatures with a single or multiple ECUs
WO2017069103A1 (en) * 2015-10-20 2017-04-27 株式会社オートネットワーク技術研究所 Monitoring device and tire air pressure monitoring system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9278589B2 (en) 2013-12-16 2016-03-08 GM Global Technology Operations LLC Low line TPMS: sensor association using RSSI and doppler signatures with a single or multiple ECUs
WO2017069103A1 (en) * 2015-10-20 2017-04-27 株式会社オートネットワーク技術研究所 Monitoring device and tire air pressure monitoring system
JP2017077794A (en) * 2015-10-20 2017-04-27 株式会社オートネットワーク技術研究所 Monitoring device and tire air pressure monitoring system
CN108136863A (en) * 2015-10-20 2018-06-08 株式会社自动网络技术研究所 monitoring device and tire pressure monitoring system

Similar Documents

Publication Publication Date Title
US9459275B2 (en) Method of sampling acceleration measurements of a motor vehicle wheel
US10576797B2 (en) Tire pressure detection apparatus
US10906361B2 (en) Sensor transmitter, wheel position detection apparatus, and tire pressure monitoring system provided with the same
JPWO2006064866A1 (en) Wheel information acquisition system
US20150367692A1 (en) Repeater for tire pressure monitoring system (tpms) auto localization
WO2015174031A1 (en) Tire air pressure detection device
US20130293371A1 (en) Tpms tire fill detection mode to ensure accurate tire filling
JP5803555B2 (en) Wheel position detecting device and tire air pressure detecting device having the same
JP2013001219A (en) Wheel position detection device, and tire pneumatic pressure detection device having the same
KR101216448B1 (en) Method and device for filtering information emitted by a pressure sensor mounted on a wheel of a vehicle
US9956833B2 (en) In-vehicle reporting apparatus and reporting system
JP2014231337A (en) Wheel position specification device
US20170334253A1 (en) Wireless Tire Pressure Monitoring System and Operating Method Thereof
JP2012187958A (en) Tire air pressure monitoring system
WO2016148059A1 (en) Tire air pressure monitoring system and vehicle-mounted radio device
JP6111220B2 (en) Tire condition monitoring device
JP2006327324A (en) Tire state monitoring device
JP5444258B2 (en) Tire sensor unit and tire condition monitoring device
US20130257610A1 (en) Apparatus for monitoring tire conditions and method thereof
KR102301098B1 (en) System and method for determining tire pressure monitoring system sensor location
JP2016007893A (en) Tire condition monitoring device
JP2013123997A (en) Wheel position determining device
JP2015137851A (en) Overload determination device
JP2012254678A (en) Transmission method possessed by tire monitoring sensor, tire monitoring sensor, and program
JP2012224230A (en) Tire position determination system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513