JP2012187490A - Method for cleaning nitrite nitrogen - Google Patents

Method for cleaning nitrite nitrogen Download PDF

Info

Publication number
JP2012187490A
JP2012187490A JP2011052322A JP2011052322A JP2012187490A JP 2012187490 A JP2012187490 A JP 2012187490A JP 2011052322 A JP2011052322 A JP 2011052322A JP 2011052322 A JP2011052322 A JP 2011052322A JP 2012187490 A JP2012187490 A JP 2012187490A
Authority
JP
Japan
Prior art keywords
aqueous liquid
nitrogen
nitrite nitrogen
purification method
photocatalytic reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011052322A
Other languages
Japanese (ja)
Other versions
JP5802027B2 (en
Inventor
Hiroshi Akikazu
博 古南
Yuki Ishiyama
由貴 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Priority to JP2011052322A priority Critical patent/JP5802027B2/en
Publication of JP2012187490A publication Critical patent/JP2012187490A/en
Application granted granted Critical
Publication of JP5802027B2 publication Critical patent/JP5802027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of cleaning nitrate nitrogen or nitrite nitrogen in aqueous liquid as a method of reducing the concentration of nitrate nitrogen or nitrite nitrogen in aqueous liquid at high efficiency for achieving its application to a large scale, and for achieving its application to aqueous liquid containing nitrate nitrogen or nitrite nitrogen which is high in concentration, and for reducing device costs, and for sufficiently reducing an environmental load, and for suppressing the generation of any harmful by-products, and for increasing safety.SOLUTION: There is provided a method of cleaning nitrite nitrogen as a method of cleaning nitrite nitrogen contained in aqueous liquid wherein photocatalytic reaction is carried out in the presence of a photocatalyst and ammonium ion.

Description

本発明は、亜硝酸性窒素の浄化方法に関する。   The present invention relates to a method for purifying nitrite nitrogen.

貴金属製造・再生業などの各種産業において、高濃度の硝酸性窒素(NO )や亜硝酸性窒素(NO )を含む廃液が発生している。現状、このような廃液を処理する方法としては、希釈した上で下水道へ排出する方法が採られている。 In various industries such as precious metal manufacturing / recycling, waste liquids containing high concentrations of nitrate nitrogen (NO 3 ) and nitrite nitrogen (NO 2 ) are generated. At present, as a method of treating such waste liquid, a method of diluting and discharging to the sewer is used.

しかし、近年、高濃度の硝酸性窒素や亜硝酸性窒素を含む廃液の排出規制が厳しくなっており、このような廃液中の硝酸性窒素や亜硝酸性窒素を効率的に低濃度化する技術が早急に求められている。   However, in recent years, regulations on the discharge of waste liquids containing high concentrations of nitrate nitrogen and nitrite nitrogen have become stricter, and technologies for efficiently reducing the concentration of nitrate nitrogen and nitrite nitrogen in such waste liquids. Is urgently needed.

水性液中の硝酸性窒素や亜硝酸性窒素を低濃度化する従来の技術として、イオン交換、逆浸透、電気化学透析などを利用した物理化学的脱窒素方法、独立栄養細菌などを用いる生物学的脱窒素方法、電解還元などを利用した電気化学的脱窒素方法、水素ガスを用いた触媒法などが報告されている(例えば、特許文献1、特許文献2など参照)。しかし、これら従来の技術においては、例えば、低濃度化の効率が低いという問題、ラージスケールへの適用が難しいという問題、高濃度の硝酸性窒素や亜硝酸性窒素を含む水性液への適用が難しいという問題、装置コストが大きいという問題、環境負荷が十分に低減されていないという問題、有害な副生成物が発生するという問題などがある。   Conventional techniques for reducing nitrate and nitrite nitrogen concentrations in aqueous solutions include physicochemical denitrification methods using ion exchange, reverse osmosis, and electrochemical dialysis, and biology using autotrophic bacteria. There have been reported an automatic denitrification method, an electrochemical denitrification method using electrolytic reduction, a catalytic method using hydrogen gas, and the like (see, for example, Patent Document 1 and Patent Document 2). However, in these conventional techniques, for example, there are problems such as low efficiency of concentration reduction, difficulty in application to large scale, and application to aqueous liquids containing high concentrations of nitrate nitrogen and nitrite nitrogen. There are problems such as difficulty, large equipment cost, environmental load is not sufficiently reduced, and harmful by-products are generated.

さらに、水性液中の硝酸性窒素や亜硝酸性窒素を低濃度化する技術を、貴金属製造・再生業などの各種産業において排出された廃液中の硝酸性窒素や亜硝酸性窒素の浄化に適用する際には、上記問題の解決に加えて、高い安全性が求められる。   Furthermore, the technology to reduce the concentration of nitrate nitrogen and nitrite nitrogen in aqueous liquids is applied to purification of nitrate nitrogen and nitrite nitrogen in waste liquids discharged in various industries such as precious metal manufacturing and recycling industries. In doing so, in addition to solving the above problems, high safety is required.

特開平11−90463号公報JP-A-11-90463 特開2000−308900号公報JP 2000-308900 A

本発明の課題は、水性液中の硝酸性窒素や亜硝酸性窒素を高効率で低濃度化する方法を提供することであって、ラージスケールへの適用が可能であり、高濃度の硝酸性窒素や亜硝酸性窒素を含む水性液への適用が可能であり、装置コストを低減でき、環境負荷が十分に低減され、有害な副生成物の発生を抑制でき、安全性の高い、水性液中の硝酸性窒素や亜硝酸性窒素の浄化方法を提供することにある。   An object of the present invention is to provide a method for reducing the concentration of nitrate nitrogen and nitrite nitrogen in an aqueous liquid with high efficiency, which can be applied to a large scale and has a high concentration of nitrate. It can be applied to aqueous liquids containing nitrogen and nitrite nitrogen, can reduce equipment costs, sufficiently reduce environmental impact, suppress the generation of harmful by-products, and is highly safe. It is to provide a purification method for nitrate nitrogen and nitrite nitrogen.

本発明は、亜硝酸性窒素の浄化方法に関する。本発明は、水性液中に含まれる亜硝酸性窒素を浄化する方法であって、光触媒およびアンモニウムイオンの存在下で光触媒反応を行う。   The present invention relates to a method for purifying nitrite nitrogen. The present invention is a method for purifying nitrite nitrogen contained in an aqueous liquid, and performs a photocatalytic reaction in the presence of a photocatalyst and ammonium ions.

好ましい実施形態においては、上記光触媒が酸化物半導体型光触媒である。   In a preferred embodiment, the photocatalyst is an oxide semiconductor photocatalyst.

好ましい実施形態においては、上記光触媒反応中の上記水性液の温度が50℃以下である。   In a preferred embodiment, the temperature of the aqueous liquid during the photocatalytic reaction is 50 ° C. or lower.

好ましい実施形態においては、上記アンモニウムイオンがアンモニア由来である。   In a preferred embodiment, the ammonium ion is derived from ammonia.

好ましい実施形態においては、上記光触媒反応開始時の上記水性液のpHを6〜8に調整する。   In a preferred embodiment, the pH of the aqueous liquid at the start of the photocatalytic reaction is adjusted to 6-8.

好ましい実施形態においては、上記pHの調整のためにアンモニアを用いる。   In a preferred embodiment, ammonia is used to adjust the pH.

好ましい実施形態においては、上記亜硝酸性窒素が、硝酸性窒素に対する光触媒反応によって得られる。   In a preferred embodiment, the nitrite nitrogen is obtained by a photocatalytic reaction on nitrate nitrogen.

好ましい実施形態においては、上記硝酸性窒素に対する光触媒反応が、酸化物半導体型光触媒および貴金属系助触媒の存在下で行われる。   In a preferred embodiment, the photocatalytic reaction with respect to nitrate nitrogen is performed in the presence of an oxide semiconductor type photocatalyst and a noble metal promoter.

好ましい実施形態においては、上記水性液が廃液である。   In a preferred embodiment, the aqueous liquid is a waste liquid.

好ましい実施形態においては、上記廃液が貴金属製造・再生業において排出される廃液である。   In a preferred embodiment, the waste liquid is a waste liquid discharged in a precious metal manufacturing / recycling industry.

本発明の浄化方法によれば、水性液中の硝酸性窒素や亜硝酸性窒素を高効率で低濃度化することができる。本発明の浄化方法は、ラージスケールへの適用が可能であり、高濃度の硝酸性窒素や亜硝酸性窒素を含む水性液への適用が可能であり、装置コストを低減でき、環境負荷が十分に低減され、有害な副生成物の発生を抑制でき、安全性が高い。   According to the purification method of the present invention, nitrate nitrogen and nitrite nitrogen in an aqueous liquid can be reduced with high efficiency. The purification method of the present invention can be applied to a large scale, can be applied to an aqueous liquid containing a high concentration of nitrate nitrogen or nitrite nitrogen, can reduce the cost of the apparatus, and has a sufficient environmental load. Therefore, the generation of harmful by-products can be suppressed and safety is high.

参考例1の結果を示すグラフ図である。10 is a graph showing the results of Reference Example 1. FIG. 参考例2の結果を示すグラフ図である。It is a graph which shows the result of the reference example 2. 実施例1の結果を示すグラフ図である。FIG. 3 is a graph showing the results of Example 1. 実施例3の結果を示すグラフ図である。FIG. 6 is a graph showing the results of Example 3. 実施例4の結果を示すグラフ図である。FIG. 6 is a graph showing the results of Example 4. 実施例5の結果を示すグラフ図である。FIG. 6 is a graph showing the results of Example 5. 実施例6の結果を示すグラフ図である。FIG. 10 is a graph showing the results of Example 6. 比較例1の結果を示すグラフ図である。10 is a graph showing the results of Comparative Example 1. FIG. 比較例2の結果を示すグラフ図である。10 is a graph showing the results of Comparative Example 2. FIG.

本発明は、亜硝酸性窒素(NO )の浄化方法に関する。具体的には、本発明は、水性液中に含まれる亜硝酸性窒素を浄化する方法である。 The present invention relates to a method for purifying nitrite nitrogen (NO 2 ). Specifically, the present invention is a method for purifying nitrite nitrogen contained in an aqueous liquid.

本発明は、水性液中に含まれる亜硝酸性窒素を浄化する方法であるが、水性液中に硝酸性窒素(NO )が含まれる場合にも適用できる。すなわち、後述するように、水性液中に硝酸性窒素(NO )が含まれる場合には、該硝酸性窒素を、任意の適切な反応を行うことによって、亜硝酸性窒素に変換すればよい。 The present invention is a method for purifying nitrite nitrogen contained in an aqueous liquid, but can also be applied to cases where nitrate nitrogen (NO 3 ) is contained in an aqueous liquid. That is, as will be described later, when nitrate nitrogen (NO 3 ) is contained in the aqueous liquid, the nitrate nitrogen can be converted into nitrite nitrogen by performing any appropriate reaction. Good.

本発明の浄化方法の好ましい実施形態の一つは、下記一般式(2)に示すように、水性液中に含まれる亜硝酸性窒素を浄化する方法であって、光触媒およびアンモニウムイオンの存在下で光触媒反応を行い、窒素に転化する。さらに好ましくは、下記一般式(1)に示すように、上記亜硝酸性窒素が、硝酸性窒素に対する光触媒反応によって得られる。

NO →〔光触媒反応〕→ NO ・・・(1)

NO + NH →〔光触媒反応〕→ N ・・・(2)
One preferred embodiment of the purification method of the present invention is a method for purifying nitrite nitrogen contained in an aqueous liquid as shown in the following general formula (2), in the presence of a photocatalyst and ammonium ions. To photocatalyze and convert to nitrogen. More preferably, as shown in the following general formula (1), the nitrite nitrogen is obtained by a photocatalytic reaction with respect to nitrate nitrogen.

NO 3 → [Photocatalytic reaction] → NO 2 (1)

NO 2 + NH 4 + → [photocatalytic reaction] → N 2 (2)

本発明の浄化方法を適用できる水性液中の亜硝酸性窒素の濃度としては、低濃度(例えば、100μmol/L以下)から高濃度(例えば、10mol/L以上)に至るまで、任意の適切な濃度を採用し得る。   The concentration of nitrite nitrogen in the aqueous liquid to which the purification method of the present invention can be applied is any appropriate value from low concentration (for example, 100 μmol / L or less) to high concentration (for example, 10 mol / L or more). Concentration can be employed.

本発明の浄化方法は、高濃度(例えば、10mol/L以上)の亜硝酸性窒素を含む水性液に適用できるので、貴金属製造・再生業などの各種産業において排出された廃液中の硝酸性窒素や亜硝酸性窒素の浄化に適用できる。   Since the purification method of the present invention can be applied to an aqueous liquid containing a high concentration (for example, 10 mol / L or more) of nitrite nitrogen, nitrate nitrogen in waste liquid discharged in various industries such as precious metal manufacturing / regeneration industries. It can be applied to purify nitrous acid nitrogen.

本発明の浄化方法においては、光触媒およびアンモニウムイオン(NH )の存在下で光触媒反応を行う。 In the purification method of the present invention, the photocatalytic reaction is carried out in the presence of a photocatalyst and ammonium ions (NH 4 + ).

上記光触媒としては、任意の適切な光触媒を採用し得る。このような光触媒としては、好ましくは、酸化物半導体型光触媒である。酸化物半導体型光触媒としては、例えば、BeO、MgO、CaO、SrO、BaO、CeO、ThO、UO、U、TiO、ZrO、V、Y、YS、Nb5、Ta、MoO、WO、MnO、Fe、MgFe、NiFe4、ZnFe4、ZnCo、ZnO、CdO、Al、MgAl、ZnAl、Tl、In、SiO、SnO、PbO、UO、Cr、MgCr、FeCrO、CoCrO、ZnCr、WO、MnO、Mn、Mn、FeO、NiO、CoO、Co、PdO、CuO、CuO、AgO、CoAl、NiAl、TlO、GeO、PbO、TiO、Ti、VO、MoO、IrO、RuO、CdS、CdSe、CdTeなどが挙げられる。これらの酸化物半導体型光触媒の中でも、触媒活性の高さ、入手のし易さなどの点からは、TiOが好ましい。 Any appropriate photocatalyst can be adopted as the photocatalyst. Such a photocatalyst is preferably an oxide semiconductor type photocatalyst. Examples of the oxide semiconductor type photocatalyst include BeO, MgO, CaO, SrO, BaO, CeO 2 , ThO 2 , UO 3 , U 3 O 8 , TiO 2 , ZrO 2 , V 2 O 5 , Y 2 O 3 , Y 2 O 2 S, Nb 2 O 5, Ta 2 O 5 , MoO 3 , WO 3 , MnO 2 , Fe 2 O 3 , MgFe 2 O 4 , NiFe 2 O 4, ZnFe 2 O 4, ZnCo 2 O 4 , ZnO, CdO, Al 2 O 3 , MgAl 2 O 4 , ZnAl 2 O 4 , Tl 2 O 3 , In 2 O 3 , SiO 2 , SnO 2 , PbO 2 , UO 2 , Cr 2 O 3 , MgCr 2 O 4 , FeCrO 4, CoCrO 4, ZnCr 2 O 4, WO 2, MnO, Mn 3 O 4, Mn 2 O 3, FeO, NiO, CoO, Co 3 O 4, PdO, CuO, Cu Include O, Ag 2 O, CoAl 2 O 4, NiAl 2 O 4, Tl 2 O, GeO, PbO, TiO, Ti 2 O 3, VO, MoO 2, IrO 2, RuO 2, CdS, CdSe, etc. CdTe is It is done. Among these oxide semiconductor photocatalysts, TiO 2 is preferable from the viewpoints of high catalytic activity and availability.

上記光触媒は、1種のみを用いてもよいし、2種以上を併用してもよい。   Only 1 type may be used for the said photocatalyst and it may use 2 or more types together.

上記光触媒には、助触媒が併用されてもよい。このような助触媒としては、例えば、金、白金、パラジウム、銀、銅、ロジウムなど、任意の適切な貴金属系助触媒が挙げられる。助触媒の量としては、任意の適切な量を採用し得る。このような助触媒は、1種のみを用いてもよいし、2種以上を併用してもよい。   A cocatalyst may be used in combination with the photocatalyst. Examples of such promoters include any suitable noble metal promoters such as gold, platinum, palladium, silver, copper, and rhodium. Any appropriate amount can be adopted as the amount of the cocatalyst. Only 1 type may be used for such a co-catalyst and it may use 2 or more types together.

水性液中の光触媒の量としては、光触媒反応が起こり得る量であれば、任意の適切な量を採用し得る。このような光触媒の量としては、水性液全量に対して、好ましくは0.02〜20重量%であり、より好ましくは0.2〜2.0重量%である。   As an amount of the photocatalyst in the aqueous liquid, any appropriate amount can be adopted as long as the photocatalytic reaction can occur. The amount of such a photocatalyst is preferably 0.02 to 20% by weight, more preferably 0.2 to 2.0% by weight, based on the total amount of the aqueous liquid.

上記アンモニウムイオンとしては、任意の適切なアンモニウムイオン発生源から供給されるアンモニウムイオンを採用し得る。このようなアンモニウムイオン発生源としては、好ましくは、アンモニア(NH)が挙げられる。 As said ammonium ion, the ammonium ion supplied from arbitrary appropriate ammonium ion generation sources can be employ | adopted. Such an ammonium ion generation source is preferably ammonia (NH 3 ).

アンモニウムイオン発生源としてアンモニアが採用される場合、該アンモニアは、例えば、別途入手したアンモニアであってもよいし、任意の適切な工業製品等の製造工程において排出されたアンモニアであってもよい。好ましい実施形態の一つとして、例えば、本発明の浄化方法が貴金属製造・再生業などの各種産業において排出された廃液中の硝酸性窒素や亜硝酸性窒素の浄化に適用される場合、該貴金属製造・再生業などにおける製造工程において排出されたアンモニアを、本発明の浄化方法におけるアンモニウムイオン発生源として用いる形態が挙げられる。   When ammonia is employed as the ammonium ion generation source, the ammonia may be, for example, ammonia obtained separately or ammonia discharged in a manufacturing process of any appropriate industrial product or the like. As one preferred embodiment, for example, when the purification method of the present invention is applied to purification of nitrate nitrogen or nitrite nitrogen in waste liquid discharged in various industries such as precious metal production / regeneration industry, the noble metal The form which uses the ammonia discharged | emitted in the manufacturing process in manufacture / regeneration industry etc. as an ammonium ion generation source in the purification method of this invention is mentioned.

水性液中のアンモニウムイオンの濃度としては、光触媒反応が起こり得る量であれば、任意の適切な量を採用し得る。このようなアンモニウムイオンの濃度としては、水性液全量に対して、好ましくは100μmol/L〜10mol/Lであり、より好ましくは1mmol/L〜5mol/Lである。   As the concentration of ammonium ions in the aqueous liquid, any appropriate amount can be adopted as long as the photocatalytic reaction can occur. The concentration of such ammonium ions is preferably 100 μmol / L to 10 mol / L, more preferably 1 mmol / L to 5 mol / L with respect to the total amount of the aqueous liquid.

上記光触媒反応の条件としては、任意の適切な条件を採用し得る。   Arbitrary appropriate conditions can be employ | adopted as conditions for the said photocatalytic reaction.

上記光触媒反応の条件として、例えば、照射光としては、太陽光などの自然光であってもよいし、蛍光灯、ブラックライト、キセノンランプ、水銀ランプ、ハロゲンランプ、LEDなどの人工光(紫外光など)であってもよい。   As conditions for the photocatalytic reaction, for example, the irradiation light may be natural light such as sunlight, or artificial light (such as ultraviolet light) such as a fluorescent lamp, a black light, a xenon lamp, a mercury lamp, a halogen lamp, or an LED. ).

上記光触媒反応の条件として、例えば、光触媒反応中の上記水性液の温度としては、任意の適切な温度を採用し得る。しかしながら、本発明の浄化方法においては、上記光触媒反応中の上記水性液の温度を常温付近で行うことが可能である。すなわち、本発明の浄化方法においては、上記光触媒反応中の上記水性液の温度が、好ましくは50℃以下であり、より好ましくは0〜45℃であり、さらに好ましくは2〜40℃以下であり、特に好ましくは5〜30℃である。本発明の浄化方法において、上記光触媒反応中の上記水性液の温度を常温付近で行うことが可能であれば、浄化に費やすエネルギーを低減できるだけでなく、該水性液が有毒な揮発性物質を含む廃液である場合には、該有毒な揮発性物質の揮散を抑制することが可能となり、また、水性液温度上昇による副反応の発生に起因する安全性低下の問題も回避可能となる。   As conditions for the photocatalytic reaction, for example, any appropriate temperature can be adopted as the temperature of the aqueous liquid during the photocatalytic reaction. However, in the purification method of the present invention, it is possible to perform the temperature of the aqueous liquid during the photocatalytic reaction at around room temperature. That is, in the purification method of the present invention, the temperature of the aqueous liquid during the photocatalytic reaction is preferably 50 ° C. or lower, more preferably 0 to 45 ° C., further preferably 2 to 40 ° C. or lower. Especially preferably, it is 5-30 degreeC. In the purification method of the present invention, if the temperature of the aqueous liquid during the photocatalytic reaction can be performed near room temperature, not only can the energy consumed for purification be reduced, but the aqueous liquid contains a toxic volatile substance. In the case of a waste liquid, it is possible to suppress the volatilization of the toxic volatile substance, and it is also possible to avoid the problem of a decrease in safety due to the occurrence of a side reaction due to an increase in aqueous liquid temperature.

従来、亜硝酸性窒素とアンモニウムイオンとは、熱化学反応によって反応して窒素に転化できることは知られているが、その反応を進行させるためには、70℃以上の熱エネルギーを与えることが必要であり、たとえそのような高い熱エネルギーを与えても、十分な反応は起こらない(5時間後の転化率として20%程度)。また、亜硝酸性窒素とアンモニウムイオンとを、光化学反応によって反応させて窒素に転化しようとしても、窒素はほとんど発生しない(5時間後の転化率として10%程度)。   Conventionally, it is known that nitrite nitrogen and ammonium ions can be converted into nitrogen by reaction through a thermochemical reaction, but it is necessary to give thermal energy of 70 ° C. or higher in order to advance the reaction. Even if such high heat energy is applied, sufficient reaction does not occur (the conversion rate after 5 hours is about 20%). Further, even if nitrite nitrogen and ammonium ions are reacted by a photochemical reaction and converted to nitrogen, nitrogen is hardly generated (the conversion rate after 5 hours is about 10%).

本発明の浄化方法においては、光触媒を用いた光触媒反応を、亜硝酸性窒素とアンモニウムイオンとの反応に利用したところ、驚くべきことに、非常に高い転化率で窒素に転化できることが判り、しかも、その光触媒反応中の上記水性液の温度を常温付近で行っても、非常に高い転化率で窒素に転化できることが判った。   In the purification method of the present invention, when the photocatalytic reaction using a photocatalyst is used for the reaction between nitrite nitrogen and ammonium ions, it is surprisingly found that it can be converted to nitrogen at a very high conversion rate. It was found that even if the temperature of the aqueous liquid during the photocatalytic reaction was carried out near room temperature, it could be converted to nitrogen at a very high conversion rate.

本発明の浄化方法においては、上記光触媒反応開始時の上記水性液のpHを6〜8に調整することが好ましい。上記光触媒反応開始時の上記水性液のpHを6〜8に調整することによって、より高い転化率で上記光触媒反応を進行させることができる。   In the purification method of the present invention, the pH of the aqueous liquid at the start of the photocatalytic reaction is preferably adjusted to 6-8. By adjusting the pH of the aqueous liquid at the start of the photocatalytic reaction to 6 to 8, the photocatalytic reaction can proceed at a higher conversion rate.

上記光触媒反応開始時の上記水性液のpHを6〜8に調整する手段としては、任意の適切な手段を採用し得る。好ましい実施形態の一つとして、例えば、本発明の浄化方法が貴金属製造・再生業などの各種産業において排出された廃液中の硝酸性窒素や亜硝酸性窒素の浄化に適用される場合、該貴金属製造・再生業などにおける製造工程において排出されたアンモニアを、pH調整のために用いる形態が挙げられる。   Any appropriate means can be adopted as means for adjusting the pH of the aqueous liquid at the start of the photocatalytic reaction to 6-8. As one preferred embodiment, for example, when the purification method of the present invention is applied to purification of nitrate nitrogen or nitrite nitrogen in waste liquid discharged in various industries such as precious metal production / regeneration industry, the noble metal The form which uses ammonia discharged | emitted in the manufacturing process in manufacture / regeneration industry etc. for pH adjustment is mentioned.

本発明の浄化方法において、上記亜硝酸性窒素は、水性液中に含まれる硝酸性窒素(NO )が任意の適切な反応によって亜硝酸性窒素に変換されたものであってもよい。このような反応としては、例えば、硝酸性窒素に対する光触媒反応が挙げられる。 In the purification method of the present invention, the nitrite nitrogen may be one in which nitrate nitrogen (NO 3 ) contained in the aqueous liquid is converted to nitrite nitrogen by any appropriate reaction. Examples of such a reaction include a photocatalytic reaction with respect to nitrate nitrogen.

上記のような硝酸性窒素に対する光触媒反応の条件としては、任意の適切な光触媒反応の条件を採用し得る。好ましくは、光触媒として、酸化物半導体型光触媒および貴金属系助触媒を用いる。   As conditions for the photocatalytic reaction with respect to nitrate nitrogen as described above, any appropriate conditions for the photocatalytic reaction can be adopted. Preferably, an oxide semiconductor type photocatalyst and a noble metal promoter are used as the photocatalyst.

上記酸化物半導体型光触媒としては、前述したものと同様のものを選択し得る。このような酸化物半導体型光触媒は、1種のみを用いてもよいし、2種以上を併用してもよい。   As the oxide semiconductor photocatalyst, the same one as described above can be selected. Such an oxide semiconductor type photocatalyst may be used alone or in combination of two or more.

上記貴金属系助触媒としては、例えば、金、白金、パラジウム、銀、銅、ロジウムなどが挙げられる。このような貴金属系助触媒は、1種のみを用いてもよいし、2種以上を併用してもよい。   Examples of the noble metal promoter include gold, platinum, palladium, silver, copper, and rhodium. Only 1 type may be used for such a noble metal type | system | group promoter, and 2 or more types may be used together.

本発明の浄化方法は、ラージスケールへの適用が可能であり、高濃度の硝酸性窒素や亜硝酸性窒素を含む水性液への適用が可能であり、装置コストを低減でき、環境負荷が十分に低減され、有害な副生成物の発生を抑制でき、安全性が高いので、好ましくは、水性液が廃液である場合に適用でき、より好ましくは、上記廃液が貴金属製造・再生業において排出される廃液である場合に適用できる。また、本発明の浄化方法で用いる光触媒は、再利用することも可能である。   The purification method of the present invention can be applied to a large scale, can be applied to an aqueous liquid containing a high concentration of nitrate nitrogen or nitrite nitrogen, can reduce the cost of the apparatus, and has a sufficient environmental load. Therefore, it can be applied when the aqueous liquid is a waste liquid, and more preferably, the waste liquid is discharged in the precious metal manufacturing / recycling industry. Applicable to waste liquids. The photocatalyst used in the purification method of the present invention can be reused.

〔参考例1〕:硝酸性窒素から亜硝酸性窒素への転化(Pd−Ag/TiO光触媒の使用)
パイレックス(登録商標)試験管に、触媒としてTiO(Degussa社製、P25):47.5mgを入れ、さらに、NaNO(関東化学株式会社製):500μmol(5cm)を入れて懸濁させ、シュウ酸ナトリウム:2mmolを加え、助触媒として硫酸パラジウム(関東化学株式会社製)および硫酸銀(関東化学株式会社製)を全触媒重量に対してPdが1重量%、Agが4重量%となるように加え、系内をAr雰囲気(バブリング:20min)にし、25℃(298K)にて、400W高圧水銀灯の紫外光(>300nm)を照射した。
反応終了後、気相生成物である水素(H)、N、一酸化窒素(NO)はガスクロマトグラフ(G.C.(GC−8A:Shimadzu社製、ステンレスカラム:Molecular Sieve 5A、INJ:313K、COL:323K))で定量した。液相のNO 、NO はイオンクロマトグラフ(CO−2060plus:日本分光社製)を用いて定量した。また、NHおよび気相の一酸化二窒素(NO)を定量する場合は、イオンクロマトグラフ(CO−2060plus、日本分光社製)およびG.C.(GC−8A:Shimadzu社製、ステンレスカラム:Pora Pack−Q、INJ:373K、COL:358K)で定量した。
結果を図1に示す。
本参考例1では、図1に示すように、窒素バランス(NB)を保ちつつ、24hで約95%のNO が還元された。還元生成物の多くはNO であった。
[Reference Example 1]: Conversion from nitrate nitrogen to nitrite nitrogen (use of Pd—Ag / TiO 2 photocatalyst)
In a Pyrex (registered trademark) test tube, TiO 2 (manufactured by Degussa, P25): 47.5 mg is added as a catalyst, and further NaNO 3 (manufactured by Kanto Chemical Co., Ltd.): 500 μmol (5 cm 3 ) is suspended. Sodium oxalate: 2 mmol was added, and palladium sulfate (manufactured by Kanto Chemical Co., Ltd.) and silver sulfate (manufactured by Kanto Chemical Co., Ltd.) as cocatalysts were 1% by weight of Pd and 4% by weight of Ag with respect to the total catalyst weight. In addition, the inside of the system was placed in an Ar atmosphere (bubbling: 20 min) and irradiated with ultraviolet light (> 300 nm) of a 400 W high-pressure mercury lamp at 25 ° C. (298 K).
After completion of the reaction, gas phase products such as hydrogen (H 2 ), N 2 , and nitric oxide (NO) were gas chromatograph (GC (GC-8A: manufactured by Shimadzu, stainless steel column: Molecular Sieve 5A, INJ). : 313K, COL: 323K)). The liquid phase NO 2 and NO 3 were quantified using an ion chromatograph (CO-2060 plus: manufactured by JASCO Corporation). In addition, when NH 3 and gas phase dinitrogen monoxide (N 2 O) are quantified, an ion chromatograph (CO-2060 plus, manufactured by JASCO Corporation) and G.I. C. (GC-8A: manufactured by Shimadzu, stainless steel column: Pora Pack-Q, INJ: 373K, COL: 358K).
The results are shown in FIG.
In Reference Example 1, as shown in FIG. 1, approximately 95% of NO 3 was reduced in 24 h while maintaining the nitrogen balance (NB). Many reduction product NO 2 - was.

〔参考例2〕:硝酸性窒素から亜硝酸性窒素への転化(Ag/TiO光触媒の使用)
助触媒として硫酸銀(関東化学株式会社製)を全触媒重量に対してAgが4重量%となるように加えた以外は、参考例1と同様に行った。
結果を図2に示す。
本参考例2では、図2に示すように、窒素バランス(NB)を保ちつつ、12hでNO の初期量の約90%がNO に還元された。これはAgの助触媒効果によりNO が選択的にNO へ還元されたものといえる。
[Reference Example 2]: Conversion from nitrate nitrogen to nitrite nitrogen (use of Ag / TiO 2 photocatalyst)
The same procedure as in Reference Example 1 was performed except that silver sulfate (manufactured by Kanto Chemical Co., Inc.) was added as a co-catalyst so that Ag was 4% by weight with respect to the total catalyst weight.
The results are shown in FIG.
In the present reference example 2, as shown in FIG. 2, while maintaining the nitrogen balance (NB), NO 3 at 12h - about 90% of the initial amount of NO 2 - was reduced to. This can be said that NO 3 was selectively reduced to NO 2 by the co-catalyst effect of Ag.

〔実施例1〕
パイレックス(登録商標)試験管に、光触媒としてTiO(Degussa社製、P25):50.0mgを入れ、さらに、NaNO(関東化学株式会社製):500μmol(5cm)および(NHSO(関東化学株式会社製):500μmol(5cm)を入れて懸濁させ、系内をAr雰囲気(バブリング:20min)にし、25℃(298K)にて、400W高圧水銀灯の紫外光(>300nm)を照射した。光触媒反応開始時の水性液のpHは7であった。
反応終了後、気相生成物である水素(H)、N、一酸化窒素(NO)はガスクロマトグラフ(G.C.(GC−8A:Shimadzu社製、ステンレスカラム:Molecular Sieve 5A、INJ:313K、COL:323K))で定量した。液相のNO 、NO はイオンクロマトグラフ(CO−2060plus:日本分光社製)を用いて定量した。また、NHおよび気相の一酸化二窒素(NO)を定量する場合は、イオンクロマトグラフ(CO−2060plus、日本分光社製)およびG.C.(GC−8A:Shimadzu社製、ステンレスカラム:Pora Pack−Q、INJ:373K、COL:358K)で定量した。
結果を図3に示す。
本実施例1では、図3に示すように、25℃(298K)にて、24h後においてNO とNH はほとんど消費され、Nが生成した。
[Example 1]
In a Pyrex (registered trademark) test tube, TiO 2 (manufactured by Degussa, P25): 50.0 mg was added as a photocatalyst, and NaNO 2 (manufactured by Kanto Chemical Co., Inc.): 500 μmol (5 cm 3 ) and (NH 4 ) 2 SO 4 (manufactured by Kanto Chemical Co., Inc.): 500 μmol (5 cm 3 ) is added and suspended, the inside of the system is placed in an Ar atmosphere (bubbling: 20 min), and ultraviolet light of a 400 W high-pressure mercury lamp at 25 ° C. (298 K) (> (300 nm). The pH of the aqueous liquid at the start of the photocatalytic reaction was 7.
After completion of the reaction, gas phase products such as hydrogen (H 2 ), N 2 , and nitric oxide (NO) were gas chromatograph (GC (GC-8A: manufactured by Shimadzu, stainless steel column: Molecular Sieve 5A, INJ). : 313K, COL: 323K)). The liquid phase NO 2 and NO 3 were quantified using an ion chromatograph (CO-2060 plus: manufactured by JASCO Corporation). In addition, when NH 3 and gas phase dinitrogen monoxide (N 2 O) are quantified, an ion chromatograph (CO-2060 plus, manufactured by JASCO Corporation) and G.I. C. (GC-8A: manufactured by Shimadzu, stainless steel column: Pora Pack-Q, INJ: 373K, COL: 358K).
The results are shown in FIG.
In Example 1, as shown in FIG. 3, NO 2 and NH 4 + were almost consumed after 24 hours at 25 ° C. (298 K), and N 2 was produced.

〔実施例2〕:助触媒の使用
光触媒として、TiO、Pt/TiO、Rh/TiO、Cu/TiO、Au/TiO、Pd/TiO、Ag/TiOを用い(助触媒金属はTiOの1重量%)、NaNOの量を50μmolとし、紫外光(>300nm)を3時間照射した以外は、実施例1と同様に行った。
3時間照射後の結果を表1に示す。
[Example 2]: Use of cocatalyst TiO 2 , Pt / TiO 2 , Rh / TiO 2 , Cu / TiO 2 , Au / TiO 2 , Pd / TiO 2 , Ag / TiO 2 were used as photocatalysts (cocatalyst) The same procedure as in Example 1 was performed except that the metal was 1% by weight of TiO 2 , the amount of NaNO 2 was 50 μmol, and ultraviolet light (> 300 nm) was irradiated for 3 hours.
The results after 3 hours of irradiation are shown in Table 1.

〔実施例3〕:光触媒反応開始時の水性液のpH=4の場合
SO(関東化学株式会社製)によって、光触媒反応開始時の水性液のpHを4に調整した以外は、実施例1と同様に行った。
結果を図4に示す。
本実施例3では、図4に示すように、Nの生成量がpH=7(実施例1)の場合に比べて少なくなった。
Example 3: The case of pH = 4 of the aqueous solution at the start of the photocatalytic reaction H 2 SO 4 (manufactured by Kanto Chemical Co., Inc.), except for adjusting the pH of the aqueous solution at the start of the photocatalytic reaction in 4, performed Performed as in Example 1.
The results are shown in FIG.
In Example 3, as shown in FIG. 4, the amount of N 2 produced was smaller than that in the case of pH = 7 (Example 1).

〔実施例4〕:光触媒反応開始時の水性液のpH=10の場合
NaOH(関東化学株式会社製)水溶液によって、光触媒反応開始時の水性液のpHを10に調整した以外は、実施例1と同様に行った。
結果を図5に示す。
本実施例4では、図5に示すように、Nの生成量がpH=7(実施例1)の場合に比べて少なくなった。
[Example 4]: pH of aqueous liquid at start of photocatalytic reaction = 10 Example 1 except that the pH of the aqueous liquid at the start of the photocatalytic reaction was adjusted to 10 with an aqueous solution of NaOH (manufactured by Kanto Chemical Co., Ltd.). As well as.
The results are shown in FIG.
In Example 4, as shown in FIG. 5, the amount of N 2 produced was smaller than that in the case of pH = 7 (Example 1).

〔実施例5〕:高濃度の場合
NaNO(関東化学株式会社製)および(NHSO(関東化学株式会社製)の濃度をいずれも5mmolとした以外は、実施例1と同様に行った。
結果を図6に示す。
本実施例5では、図6に示すように、基質の濃度が実施例1の10倍の高濃度の場合であっても、5時間で2000μmol近いNが生成し、その他の副反応も観察されなかった。また、図6のグラフより、反応時間を延ばせば、NO とNH はほとんど消費されてNが生成することが判る。
[Example 5]: Case of high concentration Same as Example 1 except that the concentration of NaNO 2 (manufactured by Kanto Chemical Co., Inc.) and (NH 4 ) 2 SO 4 (manufactured by Kanto Chemical Co., Ltd.) was 5 mmol. Went to.
The results are shown in FIG.
In Example 5, as shown in FIG. 6, even when the concentration of the substrate was 10 times higher than Example 1, N 2 produced nearly 2000 μmol in 5 hours, and other side reactions were also observed. Was not. Further, from the graph of FIG. 6, you wait reaction time, NO 2 - and NH 4 + is seen that almost consumed N 2 is produced.

〔実施例6〕:触媒の再利用
実施例1で使用した光触媒(TiO)を回収し、この回収した光触媒を用いて、再度、実施例1と同様に行った。
結果を図7に示す。
本実施例6では、図7に示すように、反応速度は小さくはなったが、回収した触媒を再利用することが十分に可能であることが判る。
[Example 6]: Reuse of catalyst The photocatalyst (TiO 2 ) used in Example 1 was recovered, and this recovered photocatalyst was used again in the same manner as in Example 1.
The results are shown in FIG.
In Example 6, as shown in FIG. 7, the reaction rate decreased, but it can be seen that the recovered catalyst can be sufficiently reused.

〔比較例1〕
光触媒を用いずに遮光して、25℃、50℃、75℃において、熱化学反応を行った以外は、実施例1と同様に行った。反応時間は5時間であった。
結果を図8に示す。
本比較例1では、図8に示すように、25℃では反応は進行せず、50℃、75℃と温度を上げていくにしたがって、少しずつNが発生した。しかし、75℃で発生したNはわずかに約100μmol程度であり、また、廃液処理においてこのような温度は危険であり、エネルギー使用量も過大となる。
[Comparative Example 1]
It was carried out in the same manner as in Example 1 except that the thermochemical reaction was carried out at 25 ° C., 50 ° C., and 75 ° C., without using a photocatalyst. The reaction time was 5 hours.
The results are shown in FIG.
In Comparative Example 1, as shown in FIG. 8, the reaction did not proceed at 25 ° C., and N 2 was generated little by little as the temperature was raised to 50 ° C. and 75 ° C. However, N 2 generated at 75 ° C. is only about 100 μmol, and such temperature is dangerous in waste liquid treatment, and the amount of energy used is excessive.

〔比較例2〕
光触媒を用いずに、25℃において、光化学反応を行った以外は、実施例1と同様に行った。
結果を図9に示す。
本比較例2では、図9に示すように、5時間でNO とNH が約20μmolずつ反応し、Nが生成した。しかし、光触媒反応ほどNは生成しなかった。
[Comparative Example 2]
It carried out similarly to Example 1 except having performed photochemical reaction at 25 degreeC, without using a photocatalyst.
The results are shown in FIG.
In this comparative example 2, as shown in FIG. 9, NO 2 and NH 4 + reacted by about 20 μmol each in 5 hours, and N 2 was produced. However, N 2 was not produced as much as the photocatalytic reaction.

本発明の浄化方法は、ラージスケールへの適用が可能であり、高濃度の硝酸性窒素や亜硝酸性窒素を含む水性液への適用が可能であり、装置コストを低減でき、環境負荷が十分に低減され、有害な副生成物の発生を抑制でき、安全性が高いので、好ましくは、水性液が廃液である場合に適用でき、より好ましくは、上記廃液が貴金属製造・再生業において排出される廃液である場合に適用できる。また、本発明の浄化方法で用いる光触媒は、再利用することも可能である。

The purification method of the present invention can be applied to a large scale, can be applied to an aqueous liquid containing a high concentration of nitrate nitrogen or nitrite nitrogen, can reduce the cost of the apparatus, and has a sufficient environmental load. Therefore, it can be applied when the aqueous liquid is a waste liquid, and more preferably, the waste liquid is discharged in the precious metal manufacturing / recycling industry. Applicable to waste liquids. The photocatalyst used in the purification method of the present invention can be reused.

Claims (10)

水性液中に含まれる亜硝酸性窒素を浄化する方法であって、
光触媒およびアンモニウムイオンの存在下で光触媒反応を行う、
亜硝酸性窒素の浄化方法。
A method for purifying nitrite nitrogen contained in an aqueous liquid,
Performing photocatalytic reaction in the presence of photocatalyst and ammonium ion,
Nitrite nitrogen purification method.
前記光触媒が酸化物半導体型光触媒である、請求項1に記載の浄化方法。   The purification method according to claim 1, wherein the photocatalyst is an oxide semiconductor photocatalyst. 前記光触媒反応中の前記水性液の温度が50℃以下である、請求項1または2に記載の浄化方法。   The purification method according to claim 1 or 2, wherein the temperature of the aqueous liquid during the photocatalytic reaction is 50 ° C or lower. 前記アンモニウムイオンがアンモニア由来である、請求項1から3までのいずれかに記載の浄化方法。   The purification method according to any one of claims 1 to 3, wherein the ammonium ion is derived from ammonia. 前記光触媒反応開始時の前記水性液のpHを6〜8に調整する、請求項1から4までのいずれかに記載の浄化方法。   The purification method according to any one of claims 1 to 4, wherein a pH of the aqueous liquid at the start of the photocatalytic reaction is adjusted to 6-8. 前記pHの調整のためにアンモニアを用いる、請求項5に記載の浄化方法。   The purification method according to claim 5, wherein ammonia is used for adjusting the pH. 前記亜硝酸性窒素が、硝酸性窒素に対する光触媒反応によって得られる、請求項1から6までのいずれかに記載の浄化方法。   The purification method according to any one of claims 1 to 6, wherein the nitrite nitrogen is obtained by a photocatalytic reaction with respect to nitrate nitrogen. 前記硝酸性窒素に対する光触媒反応が、酸化物半導体型光触媒および貴金属系助触媒の存在下で行われる、請求項7に記載の浄化方法。   The purification method according to claim 7, wherein the photocatalytic reaction for nitrate nitrogen is performed in the presence of an oxide semiconductor photocatalyst and a noble metal promoter. 前記水性液が廃液である、請求項1から8までのいずれかに記載の浄化方法。   The purification method according to claim 1, wherein the aqueous liquid is a waste liquid. 前記廃液が貴金属製造・再生業において排出される廃液である、請求項9に記載の浄化方法。
The purification method according to claim 9, wherein the waste liquid is a waste liquid discharged in a precious metal manufacturing / recycling industry.
JP2011052322A 2011-03-10 2011-03-10 Nitrite nitrogen purification method Expired - Fee Related JP5802027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011052322A JP5802027B2 (en) 2011-03-10 2011-03-10 Nitrite nitrogen purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052322A JP5802027B2 (en) 2011-03-10 2011-03-10 Nitrite nitrogen purification method

Publications (2)

Publication Number Publication Date
JP2012187490A true JP2012187490A (en) 2012-10-04
JP5802027B2 JP5802027B2 (en) 2015-10-28

Family

ID=47081260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052322A Expired - Fee Related JP5802027B2 (en) 2011-03-10 2011-03-10 Nitrite nitrogen purification method

Country Status (1)

Country Link
JP (1) JP5802027B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014030787A (en) * 2012-08-03 2014-02-20 Tanaka Kikinzoku Kogyo Kk Waste water treatment method
CN113042062A (en) * 2021-03-05 2021-06-29 景德镇陶瓷大学 Zinc ferrite-tin oxide composite material, preparation thereof and application thereof in photocatalysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126872A (en) * 2001-10-29 2003-05-07 Sumitomo Metal Mining Co Ltd Treating method of drainage containing nitrate nitrogen
JP2004074107A (en) * 2002-08-22 2004-03-11 Toshiba Corp Treatment method and treatment apparatus for nitrate nitrogen
JP2007105627A (en) * 2005-10-13 2007-04-26 Mitsubishi Heavy Ind Ltd Method for treating nitrate-containing waste liquid and device therefor
JP2009214033A (en) * 2008-03-11 2009-09-24 Tokyo Univ Of Science Photocatalyst and method for reducing nitrate ion and nitrite ion
JP2010149050A (en) * 2008-12-25 2010-07-08 Sud-Chemie Catalysts Inc Solid catalyst for treating nitrate nitrogen-containing water and method of treating nitrate nitrogen-containing water using the catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126872A (en) * 2001-10-29 2003-05-07 Sumitomo Metal Mining Co Ltd Treating method of drainage containing nitrate nitrogen
JP2004074107A (en) * 2002-08-22 2004-03-11 Toshiba Corp Treatment method and treatment apparatus for nitrate nitrogen
JP2007105627A (en) * 2005-10-13 2007-04-26 Mitsubishi Heavy Ind Ltd Method for treating nitrate-containing waste liquid and device therefor
JP2009214033A (en) * 2008-03-11 2009-09-24 Tokyo Univ Of Science Photocatalyst and method for reducing nitrate ion and nitrite ion
JP2010149050A (en) * 2008-12-25 2010-07-08 Sud-Chemie Catalysts Inc Solid catalyst for treating nitrate nitrogen-containing water and method of treating nitrate nitrogen-containing water using the catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014030787A (en) * 2012-08-03 2014-02-20 Tanaka Kikinzoku Kogyo Kk Waste water treatment method
CN113042062A (en) * 2021-03-05 2021-06-29 景德镇陶瓷大学 Zinc ferrite-tin oxide composite material, preparation thereof and application thereof in photocatalysis

Also Published As

Publication number Publication date
JP5802027B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
US20090130010A1 (en) Catalyst fo the decomposition of n2o in the ostwald
US20180230606A1 (en) Electrolysis apparatus for collecting nitrogen compound using ferric-ethylenediamine tetraacetic acid
CN102381811B (en) Method for removing pollutants in water through stepwise catalytic oxidation-biological activated carbon-ultraviolet (UV) combination
CN110538656B (en) Catalyst for degrading formaldehyde by photocatalyst and preparation method and application thereof
CN103028423A (en) Inactivation and regeneration method of formaldehyde room-temperature oxidation catalyst
Betancourt-Buitrago et al. Anoxic photocatalytic treatment of synthetic mining wastewater using TiO 2 and scavengers for complexed cyanide recovery
Shibuya et al. Influence of oxygen addition on photocatalytic oxidation of aqueous ammonia over platinum-loaded TiO2
KR101892342B1 (en) The catalyst for decomposing ozone and air pollutants and preparation therof
AU2005200720B2 (en) Catalyst for the decomposition of N2O in the Ostwald process
JP5802027B2 (en) Nitrite nitrogen purification method
CN207307579U (en) A kind of exhaust gas waste water coupling purification system based on electrochemistry
JP5436399B2 (en) Decomposition and removal method using photocatalytic material
JP5981799B2 (en) Wastewater treatment method
KR101823690B1 (en) Regeneration method of deactivated SCR catalyst by electrolyzed oxidized water
KR20170033833A (en) A Photocatalytic Filter for Efficient Removal of Mixed Gas and Manufacturing Method thereof
JP2007117911A (en) Catalyst for decomposing organic chlorine compound and method for removing organic chlorine compound using the same
JP4268831B2 (en) Oxide-based catalyst and method for detoxifying organic wastewater containing the catalyst
KR20230039631A (en) Non-platinum metal oxide catalyst for selective oxidation of ammonia and process for selective oxidation of ammonia using the same
CN115282752B (en) Low-temperature flue gas NOx and VOCs cooperative removal method based on coupling catalysis of pre-oxidation tempering
Wang et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe 2 O 3/TiO 2/γ-Al 2 O 3 catalyst
KR20120009894A (en) Regeneration method for activity of spent activated carbon catalyst for selective catalytic reduction
JP4759731B2 (en) Noble metal-containing catalyst having water repellency
CN111495411A (en) Catalyst for decomposing ozone and preparation method thereof
JPH09155364A (en) Treatment of waste water
JP4427357B2 (en) Ammonia purification catalyst, and ammonia purification method and ammonia purification apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150828

R150 Certificate of patent or registration of utility model

Ref document number: 5802027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees