JP2012187149A - Magnetic stimulation coil - Google Patents

Magnetic stimulation coil Download PDF

Info

Publication number
JP2012187149A
JP2012187149A JP2011050779A JP2011050779A JP2012187149A JP 2012187149 A JP2012187149 A JP 2012187149A JP 2011050779 A JP2011050779 A JP 2011050779A JP 2011050779 A JP2011050779 A JP 2011050779A JP 2012187149 A JP2012187149 A JP 2012187149A
Authority
JP
Japan
Prior art keywords
coil
conductor core
magnetic stimulation
yoke
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011050779A
Other languages
Japanese (ja)
Inventor
Shigeru Aihara
茂 相原
Hiroyasu Shimoji
広泰 下地
Takashi Todaka
孝 戸高
Minoru Fujiki
稔 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OITAKEN SANGYO SOZO KIKO
Nishi Nippon Electric Wire and Cable Co Ltd
Original Assignee
OITAKEN SANGYO SOZO KIKO
Nishi Nippon Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OITAKEN SANGYO SOZO KIKO, Nishi Nippon Electric Wire and Cable Co Ltd filed Critical OITAKEN SANGYO SOZO KIKO
Priority to JP2011050779A priority Critical patent/JP2012187149A/en
Publication of JP2012187149A publication Critical patent/JP2012187149A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrotherapy Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic stimulation coil having high penetrance to a brainpan and suitable for TMS (Transcranial Magnetic Stimulation).SOLUTION: A coil surrounding the outer side face of a conductor core is held with a yoke from outside the coil. Thus, leakage magnetic fluxes are substantially reduced. Also, by forming a slit on the conductor core, an eddy current is concentrated on the slit, and a magnetic flux penetrates deep in the brain through the brainpan in TMS. Further, by forming the yoke into a cylindrical body with the U-shaped cross section, the brain can be stimulated to a position several times deeper compared to a magnetic simulation coil in the shape of a figure 8.

Description

この発明は磁気刺激コイル、詳しくは経頭蓋磁気刺激法にて用いられる磁気刺激コイルに関する。   The present invention relates to a magnetic stimulation coil, and more particularly to a magnetic stimulation coil used in a transcranial magnetic stimulation method.

経頭蓋磁気刺激法(Transcranial magnetic stimulation)は、TMSとも略され、急激な磁場の変化によって (ファラデーの電磁誘導の法則により) 弱い電流を組織内に誘起させることで、脳内のニューロンを興奮させる非侵襲的な方法である。この方法により、不快感を最小限にして脳活動を引き起こし、脳の回路接続の機能が調べられる。
反復経頭蓋磁気刺激法はrTMS (Repetitive transcranial magnetic stimulation) とも略され、脳に長期的な変化を与える。多くの小規模な先行研究により、この方法が多くの神経症状 (例えば、難治性中枢性疼痛、随意性運動障害、脊椎損傷後の痙性麻痺、パーキンソン病)や精神医学的な症状 (例えば うつ病、パニック障害) に有効な治療法であることが示されている。
TMS に用いられるコイルは単純に言えばファラデーの電磁誘導の法則を応用して、不快感を生じさせずに頭皮や頭蓋骨などの絶縁組織を通過して電流を流す装置である。コイルはプラスチック体の中に入れられ、頭部に当てられる。巨大なコンデンサからコイルに電圧が印加されると、その巻き線に急速な電流の変化が生まれる。それによりコイルの平面に直交するように磁場が生まれる。磁場は頭皮や頭蓋骨に妨げられることなく通過し、頭蓋骨に対する接線方向にコイルの電流と逆向きの電流を脳内で誘起する。脳内に生じた誘起電流は皮質表面への電気刺激と同様に付近の神経細胞を活性化させる。脳は一様な電気伝導体ではなく、不規則な形をしているため、この電流の経路はモデル化するには複雑である。MRIに基づく定位固定制御により、TMS 刺激の目標との誤差は数 mm 程度になるとされている(Hannula et al., Human Brain Mapping 2005)。
このようなTMSに用いられる可能性を有する従来技術としては、例えば特許文献1に開示された渦電流型交流磁場発生装置が知られている。
この装置では、円柱状の導電材ブロックの外周を電磁石を構成するコイルにより囲繞し、コイル通電により、このブロック内に中心軸に直交する方向の渦電流を生じさせている。円柱ブロックには中心軸位置に微小ホールが形成されるとともに、一端が微小ホールに連通し他端が外側面に開口する半径位置のスリットが設けられている。これにより、コイルによる均一分布磁束が実効的に微小ホール内に収束され、微小ホール内の磁束密度を増大させている。
Transcranial magnetic stimulation, also abbreviated as TMS, excites neurons in the brain by inducing weak currents in tissues (according to Faraday's law of electromagnetic induction) by rapid magnetic field changes. It is a non-invasive method. By this method, brain activity is caused with minimal discomfort, and the function of the circuit connection of the brain is examined.
The repetitive transcranial magnetic stimulation method is also abbreviated as rTMS (Repetitive transcranial magnetic stimulation) and gives long-term changes to the brain. Many small previous studies have shown that this method has many neurological symptoms (eg refractory central pain, voluntary movement disorders, spastic paralysis after spinal injury, Parkinson's disease) and psychiatric symptoms (eg depression) It has been shown to be an effective treatment for panic disorder.
In simple terms, the coil used in TMS is a device that applies Faraday's law of electromagnetic induction and passes current through insulating tissues such as the scalp and skull without causing discomfort. The coil is placed in a plastic body and applied to the head. When a voltage is applied to a coil from a huge capacitor, a rapid current change occurs in the winding. This creates a magnetic field that is perpendicular to the plane of the coil. The magnetic field passes through the scalp and skull without being obstructed, and induces a current in the brain opposite to the coil current in the tangential direction to the skull. The induced current generated in the brain activates nearby neurons as well as electrical stimulation to the cortical surface. Because the brain is not a uniform electrical conductor but has an irregular shape, this current path is complex to model. Due to stereotaxic control based on MRI, the error from the target of TMS stimulation is estimated to be several millimeters (Hannula et al., Human Brain Mapping 2005).
For example, an eddy current type AC magnetic field generator disclosed in Patent Document 1 is known as a prior art having a possibility of being used for such TMS.
In this apparatus, the outer periphery of a cylindrical conductive material block is surrounded by a coil constituting an electromagnet, and an eddy current in a direction perpendicular to the central axis is generated in the block by energizing the coil. In the cylindrical block, a minute hole is formed at the central axis position, and a slit at a radial position where one end communicates with the minute hole and the other end opens on the outer surface is provided. Thereby, the uniformly distributed magnetic flux by the coil is effectively converged in the minute hole, and the magnetic flux density in the minute hole is increased.

特開昭63−84103号公報JP 63-84103 A

しかしながら、特許文献1に開示された磁場発生装置では、これを経頭蓋磁気刺激法に採用した場合、その頭皮から頭蓋内部の脳への磁束の浸透度が未だ不十分であるものと予測することができた。   However, in the magnetic field generator disclosed in Patent Document 1, when this is adopted for transcranial magnetic stimulation, it is predicted that the permeability of magnetic flux from the scalp to the brain inside the skull is still insufficient. I was able to.

そこで、発明者は、鋭意研究の結果、略直径方向に沿って延びるスリットを導電体コアに設けるとともに、導電体コアを取り囲むコイルをヨークによって包持することで、その磁束密度を高度に集中させることができることを知見してこの発明を完成させた。   Therefore, as a result of intensive research, the inventor provided slits extending substantially in the diametrical direction in the conductor core, and by enclosing the coil surrounding the conductor core with the yoke, the magnetic flux density was highly concentrated. The present invention was completed by knowing that it was possible.

この発明は、頭蓋への浸透度が高くTMSに好適な磁気刺激コイルを提供することを目的としている。   An object of the present invention is to provide a magnetic stimulation coil having a high degree of penetration into the skull and suitable for TMS.

請求項1に記載の発明は、軸線と垂直な断面が円形、楕円形または多角形であって所定軸長の柱状体からなる導電体コアと、この導電体コアの外側面を囲繞するよう、この導電体コアに巻回されて導電体コアとともに電磁石を構成するコイルと、このコイルをその外側から包持するヨークと、を備え、上記導電体コアを端面視して、その一端がこの導電体コアの外側面に開口し、他端がこの開口位置とは反対側の外側面近傍位置で閉じたスリットを、この導電体コアの中心軸またはこの中心軸と平行な軸を含む平面に沿って延びて、所定幅、所定軸線方向長さ、所定横断線方向長さを有して形成した磁気刺激コイルである。   In the first aspect of the present invention, the cross section perpendicular to the axis is circular, elliptical, or polygonal, and is formed of a columnar body having a predetermined axial length, and surrounds the outer surface of the conductor core. A coil that is wound around the conductor core to form an electromagnet together with the conductor core, and a yoke that holds the coil from the outside thereof, and one end of the conductor core is electrically conductive when viewed from the end surface. A slit opened on the outer surface of the body core and closed at the position near the outer surface on the opposite side of the opening position along the plane including the central axis of the conductor core or an axis parallel to the central axis. And a magnetic stimulation coil formed to have a predetermined width, a predetermined axial length, and a predetermined transverse direction length.

請求項1に記載の発明によれば、例えば導電体コアに複数回巻回されて筒形状とされたコイルに対してパルス電流を通電することにより、導電体コアの端面に発生したその導電体コアの外周方向の渦電流を、スリットの壁沿いに集中させることができる。よって、この磁気刺激コイルをTMS法に用いた場合、その磁束の浸透度をより高めることができ、効果的な磁気刺激を行うことができる。
このとき、コイルはヨークにより包持されているため、当該包持された部分からは磁束の漏れが発生することがない。よって、コイルがヨークに包持されていない場合に比較して大幅にその磁束の集中度を高めることができる。
なお、励磁用のコイルに大電流を流す場合に生じる発熱は、導電体コアを例えば銅,銀などで構成することにより効率的に放散することができる。
According to the first aspect of the present invention, for example, the conductor generated on the end face of the conductor core by passing a pulse current through the coil that is wound around the conductor core and formed into a cylindrical shape. Eddy currents in the outer circumferential direction of the core can be concentrated along the wall of the slit. Therefore, when this magnetic stimulation coil is used for the TMS method, the permeability of the magnetic flux can be further increased, and effective magnetic stimulation can be performed.
At this time, since the coil is held by the yoke, magnetic flux leakage does not occur from the held portion. Therefore, the concentration of the magnetic flux can be greatly increased as compared with the case where the coil is not held by the yoke.
The heat generated when a large current is passed through the exciting coil can be efficiently dissipated by configuring the conductor core with, for example, copper or silver.

また、導電体コアは、その軸線と垂直な断面が円形、楕円形または多角形であって所定軸長を有する柱状体により形成されている。例えば軸線方向での断面積が一定の円柱体、楕円柱体または多角形の柱体として構成することができる。その上面および底面は平面で形成することができる。導電体コアは、導電性を有する材料、例えば金、銀、銅およびこれらの合金により製造することができる。
コイルは、導電体コアの外側面に例えば複数回にわたって巻き付けられて円筒形状をなし、この導電体コアの外側面をその全長にわたって取り囲むこととなる。
ヨークは例えば円筒形であって、その内部に円筒形のコイルを包み込むように保持することとなる。つまり、例えば電磁鋼板製の円筒形のヨークは、上記導電体コアおよびその外周面に巻き付けられた円筒形状のコイルを、その内側に抱き込むように構成される。ヨークの直径はコイルのそれより大きく、コイルの直径は導電体コアのそれよりも大きく、さらにヨークの軸長はコイル、コアのそれとほぼ同じかわずかに長い寸法に設計されることとなる。
スリットは、柱状体である導電体コアをその端面(上面)から視た場合、その端面(上面)の中心を含む横断線(例えば上面が円形の場合は直径)の位置に例えば直線状に設けられる。すなわち、端面視して直線状に延びるスリットの一端は導電体コアの外側面にて開口するとともに、その他端は反対側の外側面の近傍位置で閉じている。よって、このスリットは、この導電体コアの中心軸を含む平面に沿うようにその全軸長にわたって延びている。スリットは、例えば1mm程度の幅で、直径位置でほぼ直径と同じ長さ(深さ)で、円柱体の全軸長にわたって形成されることで、この円柱体である導電体コアを2分割する。換言すれば、導電体コアは、このスリットによって、その柱状体はその軸線を含む平面(または軸線と平行な平面)によりおよそ2分割される構成である。なお、スリットの形成位置は、断面円形の真円柱体製の導電体コアの場合、その直径位置に限られず、直径位置から少しだけ変位した位置に例えば端面視したときに直径と平行となるような位置に形成することもできる。
Further, the conductor core is formed of a columnar body having a predetermined axial length with a cross section perpendicular to the axis thereof being circular, elliptical or polygonal. For example, it can be configured as a cylindrical body, elliptical cylindrical body, or polygonal cylindrical body having a constant cross-sectional area in the axial direction. The top and bottom surfaces can be flat. The conductor core can be made of a conductive material such as gold, silver, copper, and alloys thereof.
The coil is wound around the outer surface of the conductor core, for example, a plurality of times to form a cylindrical shape, and surrounds the outer surface of the conductor core over its entire length.
The yoke has a cylindrical shape, for example, and holds the cylindrical coil so as to wrap inside the yoke. That is, for example, a cylindrical yoke made of an electromagnetic steel plate is configured to embrace the inside of the conductor core and a cylindrical coil wound around the outer peripheral surface thereof. The diameter of the yoke is larger than that of the coil, the diameter of the coil is larger than that of the conductor core, and the axial length of the yoke is designed to be approximately the same as or slightly longer than that of the coil and core.
The slit is provided, for example, in a straight line at a position of a transverse line (for example, a diameter when the upper surface is circular) including the center of the end surface (upper surface) when the conductor core as a columnar body is viewed from the end surface (upper surface). It is done. That is, one end of the slit extending linearly when viewed from the end face opens at the outer surface of the conductor core, and the other end is closed at a position near the outer surface on the opposite side. Therefore, the slit extends over the entire axial length so as to be along a plane including the central axis of the conductor core. The slit has a width of about 1 mm, for example, is formed over the entire axial length of the cylindrical body at the diameter position and substantially the same length (depth) as the diameter, thereby dividing the conductor core that is the cylindrical body into two. . In other words, the conductor core has a configuration in which the columnar body is roughly divided into two by the slit including a plane including the axis (or a plane parallel to the axis). In addition, in the case of a conductor core made of a true cylinder having a circular cross section, the slit is not limited to the diameter position, but is parallel to the diameter when viewed from the end face, for example, at a position slightly displaced from the diameter position. It can also be formed at various positions.

請求項2に記載の発明は、上記ヨークは上記コイルの軸線方向の両端部を包持するように断面コの字形状の円筒体で形成された請求項1に記載の磁気刺激コイルである。   A second aspect of the present invention is the magnetic stimulation coil according to the first aspect, wherein the yoke is formed of a cylindrical body having a U-shaped cross section so as to hold both ends of the coil in the axial direction.

請求項2に記載の発明によれば、コイルの軸線方向にあってその外方に向かって漏れようとする磁束についてその漏れを、磁路を構成するヨークの底部(断面コの字形状の上下端部)で防止することができ、磁束の集中度をさらに高めることができる。   According to the second aspect of the present invention, the leakage of the magnetic flux that is about to leak outward in the axial direction of the coil is indicated by the bottom of the yoke that forms the magnetic path. End), and the concentration of magnetic flux can be further increased.

請求項1,2に記載の発明によれば、コイルの外面をヨークで覆うこととしたため、漏れ磁束を大幅に低減することができ、導電体コアのスリットに渦電流を集中させることができ、経頭蓋磁気刺激に使用した場合、その頭蓋を経て脳のより深くまで集中した磁束を浸透させることができる。   According to the first and second aspects of the invention, since the outer surface of the coil is covered with the yoke, the leakage magnetic flux can be greatly reduced, and the eddy current can be concentrated on the slit of the conductor core, When used for transcranial magnetic stimulation, magnetic flux concentrated deeper into the brain can be penetrated through the skull.

また、この発明に係る磁気刺激コイルは、従来より知られている例えば8の字型に構成された磁気刺激コイルに比べて、数倍の深さ位置までの脳を刺激することができる。   In addition, the magnetic stimulation coil according to the present invention can stimulate the brain up to several times deeper than a conventionally known magnetic stimulation coil configured in, for example, an 8-shape.

この発明の実施例1に係る磁気刺激コイルのその一部を破断して示す斜視図である。It is a perspective view which fractures | ruptures and shows the one part of the magnetic stimulation coil which concerns on Example 1 of this invention. この発明の実施例1に係る磁気刺激コイルの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the magnetic stimulation coil which concerns on Example 1 of this invention. この発明の実施例1に係る磁気刺激コイルの平面図である。It is a top view of the magnetic stimulation coil which concerns on Example 1 of this invention. この発明の実施例1に係る磁気刺激コイルの図3のA−A線による断面図である。It is sectional drawing by the AA line of FIG. 3 of the magnetic stimulation coil which concerns on Example 1 of this invention. この発明の実施例1に係る磁気刺激コイルを用いて経頭蓋磁気刺激を行った際の経頭蓋深さ位置と脳内電流密度との関係を示すグラフである。It is a graph which shows the relationship between the transcranial depth position at the time of performing transcranial magnetic stimulation using the magnetic stimulation coil which concerns on Example 1 of this invention, and the brain current density.

以下、この発明の実施例を図面を参照して具体的に説明する。   Embodiments of the present invention will be specifically described below with reference to the drawings.

図1〜図4において、磁気刺激コイル100は、所定長さ(高さ)の円柱体(長さ方向においてその断面が同じ面積の円形で形成されている)で形成された導電体コア110と、この導電体コア110の外周面のほぼ全面に対して螺旋状に例えば10ターン程度巻回されて全体として円筒形状の励磁コイル120と、この円筒形状の励磁コイル120を包持する(円筒形状の励磁コイル120をその内方に包むように保持する)ヨーク200とを有している。ヨーク200は励磁コイル120の外径よりもわずかに大きな外径を有する円筒形状であって、その軸線を含む面での断面が半径方向の内方に向かって開いたコの字形状を呈している。このヨーク200の内方に向かって開いたその凹部210には、上記励磁コイル120が巻回された導電体コア110が収容されていることとなる。詳しくは、全体として所定厚みの円筒体であるヨーク200の内周面をその半径方向に向かって所定深さ(コイルを収容できる深さ)だけ穿ち、その軸線を含む面での断面(片断面)がコの字形状としたものである。上記励磁コイル120は、この凹部210内に収納されている。なお、ヨーク200の厚みは任意とする。
すなわち、ヨーク200は、導電体コア110を取り囲むように、所定高さ、所定半径の円筒体で形成されている。このヨーク200の材質は例えばパーメンジュール、電磁鋼板であって、薄板を励磁コイル120に巻き付けて巻鉄芯として構成することができる。または、凹形状に形成した薄板を励磁コイル120の外周面に多数枚積層し、全体として円筒形状とすることでヨーク200を構成することもできる。
これらの導電体コア110、これを囲繞する励磁コイル120および励磁コイル120を包持するヨーク200により磁気刺激コイル100が構成される。
導電体コア110は銅製(鉄、ニッケルなどでも良い)でその軸線方向に同一面積・形状の円断面で構成される円柱体(例えば直径70mm、高さ40mm)であって、この導電体コア110にはこれを縦方向(軸線方向)にほぼ半割りとする所定幅のスリット130が形成されている。すなわち、導電体コア110は、スリット130によって断面半円形の2つの半円柱部分(ハーフブロック)にほぼ等分割された形状となっている。
なお、導電体コア110は楕円柱体または角柱体であってもよい。この場合には、励磁コイル120を包持するヨーク200も導電体コア110の形状に合わせて楕円筒体または角筒体とする。
1 to 4, a magnetic stimulation coil 100 includes a conductor core 110 formed of a cylindrical body having a predetermined length (height) (a cross section of which is formed in a circle having the same area in the length direction). The conductor core 110 is spirally wound, for example, about 10 turns around the entire outer peripheral surface of the conductor core 110, and encloses the cylindrical excitation coil 120 as a whole (cylindrical shape). And a yoke 200 that holds the exciting coil 120 so as to be wrapped inward. The yoke 200 has a cylindrical shape having an outer diameter that is slightly larger than the outer diameter of the exciting coil 120, and has a U-shaped cross section with its axis including the axis opened inward in the radial direction. Yes. The conductor core 110 around which the exciting coil 120 is wound is accommodated in the concave portion 210 opened inward of the yoke 200. Specifically, the inner circumferential surface of the yoke 200, which is a cylindrical body having a predetermined thickness as a whole, is bored by a predetermined depth (a depth that can accommodate the coil) in the radial direction, and a cross section (single cross section) on a plane including the axis thereof ) Is a U-shape. The exciting coil 120 is accommodated in the recess 210. The thickness of the yoke 200 is arbitrary.
That is, the yoke 200 is formed of a cylindrical body having a predetermined height and a predetermined radius so as to surround the conductor core 110. The material of the yoke 200 is, for example, permendur or an electromagnetic steel plate, and a thin plate can be wound around the exciting coil 120 to form a wound iron core. Alternatively, the yoke 200 can be configured by stacking a number of thin plates formed in a concave shape on the outer peripheral surface of the exciting coil 120 to form a cylindrical shape as a whole.
The magnetic stimulation coil 100 is composed of the conductor core 110, the exciting coil 120 surrounding the conductor core 110, and the yoke 200 that holds the exciting coil 120.
The conductor core 110 is a cylindrical body (for example, a diameter of 70 mm and a height of 40 mm) made of copper (may be iron, nickel, etc.) and having a circular cross section having the same area and shape in the axial direction. Is formed with a slit 130 having a predetermined width that substantially halves this in the vertical direction (axial direction). That is, the conductor core 110 has a shape that is substantially equally divided into two half-cylindrical portions (half blocks) having a semicircular cross section by the slit 130.
The conductor core 110 may be an elliptic cylinder or a prism. In this case, the yoke 200 that holds the exciting coil 120 is also an elliptical cylinder or a rectangular cylinder according to the shape of the conductor core 110.

詳しくは、上記スリット130は、上記導電体コア110を端面視(平面視)した場合、図3に示すように、その上端面の円中心を含む横断線(直径)の位置にて、その一端130Bが導電体コア110の外周面に開口し、その他端130Aがその外周面近傍位置(1mm程度の厚さの壁を残して)で閉じている。このように円柱体(導電体コア110)の直径とほぼ同じ長さのスリット130は、この導電体コア110の中心軸を含む平面に沿って延びており、その幅(例えば1mm幅)は一定である。
この場合、このスリット130の加工は、例えばワイヤカット放電加工などによる。
Specifically, when the conductor core 110 is viewed in an end view (plan view), the slit 130 has one end at a position of a transverse line (diameter) including the circle center of the upper end surface as shown in FIG. 130B opens to the outer peripheral surface of the conductor core 110, and the other end 130A is closed at a position near the outer peripheral surface (leaving a wall having a thickness of about 1 mm). As described above, the slit 130 having a length substantially equal to the diameter of the cylindrical body (conductor core 110) extends along a plane including the central axis of the conductor core 110, and its width (for example, 1 mm width) is constant. It is.
In this case, the slit 130 is processed by, for example, wire cut electric discharge machining.

以上のように構成された磁気刺激コイル100にあっては、図外の手段により励磁コイル120に対してパルス通電されると、励磁コイル120により生じた磁束によって導電体コア110にその円周方向への渦電流が発生する。
この場合、導電体コア110はスリット130によってその分離された部分同士は離間・絶縁されているため、渦電流の回路の一部はスリット130の延びる方向に沿って形成されることとなる。すなわち、電流は導電体コア110の円周方向に沿って流れ、そしてスリット130に沿って直径方向に流れ、スリット終端部であるブリッジ部(2つの半円柱部分同士を結合する部分)を流れ、再びスリット130に沿って上記対岸の流れとは逆で直径方向に流れ、さらには円周方向に沿って流れることとなる。
換言すると、スリットの対岸にあってその電流の流れ方向が逆になることから電流密度が増大される。この結果、この磁気刺激コイル100を磁気刺激装置に適用したとき、スリット部分での渦電流の電流密度が大となり、頭蓋を介しての磁束の浸透度が飛躍的に高まることとなる。
また、このとき、円筒形状の励磁コイル120はその背面(外面)全体がヨーク200の凹部に包持されているため、その漏れ磁束を最小限とすることができるとともに、その磁気刺激コイル100全体としての機械的強度をも高めることができる。これは、励磁コイル120に電流を流すときスリット130を境界として半円柱部分同士が開く方向に外力が作用するが、これを励磁コイル120を包持する円筒体であるヨーク200により支持することで励磁コイル120および導電体コア110の機械的劣化・破断を防ぐことを意味している。
In the magnetic stimulation coil 100 configured as described above, when a pulse current is applied to the exciting coil 120 by means not shown, the circumferential direction of the conductor core 110 is caused by the magnetic flux generated by the exciting coil 120. An eddy current is generated.
In this case, since the conductor core 110 is separated and insulated from each other by the slit 130, a part of the eddy current circuit is formed along the direction in which the slit 130 extends. That is, the current flows along the circumferential direction of the conductor core 110, then flows in the diameter direction along the slit 130, and flows through the bridge portion (the portion connecting the two semi-cylindrical portions) that is the slit terminal portion, The flow again flows along the slit 130 in the diametrical direction opposite to the flow on the opposite bank, and further flows along the circumferential direction.
In other words, the current density is increased because the current flow direction is reversed on the opposite bank of the slit. As a result, when this magnetic stimulation coil 100 is applied to a magnetic stimulation device, the current density of eddy current in the slit portion becomes large, and the penetration degree of magnetic flux through the cranium increases dramatically.
Further, at this time, since the entire back surface (outer surface) of the cylindrical excitation coil 120 is held in the concave portion of the yoke 200, the leakage magnetic flux can be minimized and the entire magnetic stimulation coil 100 is also provided. As a result, the mechanical strength can be increased. This is because when an electric current is passed through the exciting coil 120, an external force acts in the direction in which the semicylindrical portions open with the slit 130 as a boundary, and this is supported by the yoke 200 which is a cylindrical body that holds the exciting coil 120. This means that mechanical deterioration and breakage of the exciting coil 120 and the conductor core 110 are prevented.

ここで、この発明の実施例1に係るヨーク付きの磁気刺激コイル100(ECコイル)と、従来公知の8の字型コイルとを用いて磁気刺激を行った際、それぞれのコイル中心部の頭部深さと脳内電流密度との関係を求めた。このコイル中心の頭部深さと脳内電流密度との関係は数値解析によって求めた。この数値解析の結果を図5に示す。なお、8の字型コイルの外径と磁気刺激コイル100の外径とは一致させている。
この結果より、この発明に係る磁気刺激コイル(ECコイル)は、従来の8の字型の磁気刺激コイルに比べて、数倍の深さの部位まで脳を刺激することができることが判明した。
Here, when magnetic stimulation was performed using the magnetic stimulation coil 100 with an yoke (EC coil) according to Example 1 of the present invention and a conventionally known 8-shaped coil, the heads of the central portions of the respective coils were used. The relationship between head depth and brain current density was determined. The relationship between the head depth at the center of the coil and the current density in the brain was obtained by numerical analysis. The result of this numerical analysis is shown in FIG. Note that the outer diameter of the 8-shaped coil and the outer diameter of the magnetic stimulation coil 100 are matched.
From this result, it was found that the magnetic stimulation coil (EC coil) according to the present invention can stimulate the brain to a site several times deeper than the conventional 8-shaped magnetic stimulation coil.

この発明に係る磁気刺激コイルは、例えばTMS法に用いられる磁気刺激装置にきわめて有用である。   The magnetic stimulation coil according to the present invention is extremely useful for a magnetic stimulation apparatus used in, for example, the TMS method.

100 磁気刺激コイル、
110 導電体コア、
120 励磁コイル、
130 スリット、
200 ヨーク。
100 magnetic stimulation coil,
110 conductor core,
120 exciting coil,
130 slits,
200 York.

Claims (2)

軸線と垂直な断面が円形、楕円形または多角形であって所定軸長の柱状体からなる導電体コアと、
この導電体コアの外側面を囲繞するよう、この導電体コアに巻回されて導電体コアとともに電磁石を構成するコイルと、
このコイルをその外側から包持するヨークと、を備え、
上記導電体コアを端面視して、その一端がこの導電体コアの外側面に開口し、他端がこの開口位置とは反対側の外側面近傍位置で閉じたスリットを、この導電体コアの中心軸またはこの中心軸と平行な軸を含む平面に沿って延びて、所定幅、所定軸線方向長さ、所定横断線方向長さを有して形成した磁気刺激コイル。
A conductor core made of a columnar body having a predetermined axial length and having a circular, elliptical or polygonal cross section perpendicular to the axis;
A coil that is wound around the conductor core to form an electromagnet together with the conductor core so as to surround the outer surface of the conductor core;
A yoke for holding the coil from the outside thereof,
When the conductor core is viewed from the end surface, a slit whose one end opens on the outer surface of the conductor core and the other end closes at a position near the outer surface opposite to the opening position is formed on the conductor core. A magnetic stimulation coil extending along a plane including a central axis or an axis parallel to the central axis and having a predetermined width, a predetermined axial length, and a predetermined transverse line length.
上記ヨークは上記コイルの軸線方向の両端部を包持するように断面コの字形状の円筒体で形成された請求項1に記載の磁気刺激コイル。   The magnetic stimulation coil according to claim 1, wherein the yoke is formed of a cylindrical body having a U-shaped cross section so as to hold both ends of the coil in the axial direction.
JP2011050779A 2011-03-08 2011-03-08 Magnetic stimulation coil Withdrawn JP2012187149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011050779A JP2012187149A (en) 2011-03-08 2011-03-08 Magnetic stimulation coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011050779A JP2012187149A (en) 2011-03-08 2011-03-08 Magnetic stimulation coil

Publications (1)

Publication Number Publication Date
JP2012187149A true JP2012187149A (en) 2012-10-04

Family

ID=47080995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050779A Withdrawn JP2012187149A (en) 2011-03-08 2011-03-08 Magnetic stimulation coil

Country Status (1)

Country Link
JP (1) JP2012187149A (en)

Similar Documents

Publication Publication Date Title
JP2018065025A (en) Magnetic core for medical procedures
JP6448009B2 (en) Coil device for transcranial magnetic stimulation device
JP6344772B2 (en) Magnetic coil unit for treatment and transcranial magnetic stimulation device
US20090108969A1 (en) Apparatus and method for transcranial and nerve magnetic stimulation
KR20180114543A (en) Coil and magnetic stimulator using same
US9248308B2 (en) Circular coils for deep transcranial magnetic stimulation
JP2009502350A5 (en)
US20150080637A1 (en) Microscopic magnetic coils for neural stimulation
KR102514148B1 (en) magnetic stimulation device
KR100484618B1 (en) Apparatus for stimulating nerves
JP2014527895A5 (en)
JPWO2005104622A1 (en) Coil device and magnetic field generator
JP2012000341A (en) Magnetic stimulation coil
JP2012187149A (en) Magnetic stimulation coil
Liu et al. Optimal design of transcranial magnetic stimulation thin core coil with trade-off between stimulation effect and heat energy
CN114931704A (en) Stimulating coil
WO2016093213A1 (en) Excitation coil and coil unit
Sarreal et al. Development and characterization of a micromagnetic alternative to cochlear implant electrode arrays
Bonmassar et al. EM fields comparison between planar vs. solenoidal μMS coil designs for nerve stimulation
Sathi et al. Analysis of Induced Field in the Brain Tissue by Transcranial Magnetic Stimulation Using Halo‐V Assembly Coil
WO2024000925A1 (en) Magnetic stimulation device and magnetic stimulation apparatus
EP4069350B1 (en) A wide-ranging neutralizer of electromagnetic waves which are harmful to humans
JP2009039326A (en) Converging magnetic field generation coil for transcranial magnetic stimulation
JP2016106888A (en) Exciting coil, and coil unit
US11850441B2 (en) Adjustable focus magnetic stimulation coil

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513