JP2012186878A - Signal receiving device for train control - Google Patents

Signal receiving device for train control Download PDF

Info

Publication number
JP2012186878A
JP2012186878A JP2011046314A JP2011046314A JP2012186878A JP 2012186878 A JP2012186878 A JP 2012186878A JP 2011046314 A JP2011046314 A JP 2011046314A JP 2011046314 A JP2011046314 A JP 2011046314A JP 2012186878 A JP2012186878 A JP 2012186878A
Authority
JP
Japan
Prior art keywords
signal
value
frequency
reception level
train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011046314A
Other languages
Japanese (ja)
Other versions
JP5750279B2 (en
Inventor
Kazuhiro Tanaka
和広 田中
Tadahiro Hayashi
忠宏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2011046314A priority Critical patent/JP5750279B2/en
Publication of JP2012186878A publication Critical patent/JP2012186878A/en
Application granted granted Critical
Publication of JP5750279B2 publication Critical patent/JP5750279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a signal receiving device for train control that can properly determine whether the received signal is a regular signal, and can surely prevent an improper control by the false detection of the signal.SOLUTION: The signal receiving device includes: a signal generation means 1 that carries out diffusion modulation of a prescribed frequency signal based on the car information and outputs it as a spectrum diffusion signal; a pickup coil 2 that is supplied with the spectrum diffusion signal from a signal generation means 1; a signal detecting means 3 that detects a receiving level of a receiving signal sent to a secondary side of the pickup coil 2 by electromagnetic coupling of a wayside coil 9 installed along a track on which a train 5 runs and the pickup coil 2; and a determination means 4 that calculates a Q value of a peak frequency of the received signal, when the receiving level larger than the threshold set beforehand is detected by a signal detecting means 3, and when the Q value is within the range of upper and lower limit values, determines that the receiving signal is the regular signal by the electromagnetic coupling by the wayside coil 9 and the pickup coil 2.

Description

本発明は列車制御用信号受信装置に関し、特に、受信した信号が列車制御用の正規の信号であるか否かを判定する技術に関する。   The present invention relates to a train control signal receiver, and more particularly to a technique for determining whether or not a received signal is a regular signal for train control.

従来、ATSやATC等の列車制御装置は、列車に搭載された車上子と、軌道に沿って配置された地上子とを電磁結合させることにより、車上側から地上側に信号を送信し、地上側において所定の制御を行うと共に、地上側から車上側に信号を送信し車上側で所定の制御を行っている。そして、車上側の受信装置(以下、「列車制御用信号受信装置」と言う)は、一般的に、地上側からの信号を検出する方式として変周方式を用いていたが、近年、地上装置の受信装置としても使用可能な汎用性を確保すると共に地上子の共振周波数が変動しても確実に信号を受信することができるようにするために、信号送出の方式としてスペクトラム拡散方式を採用するようになったことに伴い、地上側からの信号を検出する方式は、変周方式から、スペクトラム拡散方式による信号に対応した方式に移行されている。   Conventionally, train control devices such as ATS and ATC transmit signals from the vehicle upper side to the ground side by electromagnetically coupling the vehicle upper element mounted on the train and the ground element arranged along the track, In addition to performing predetermined control on the ground side, a signal is transmitted from the ground side to the upper side of the vehicle and predetermined control is performed on the upper side of the vehicle. And, a receiving device on the vehicle upper side (hereinafter referred to as “train control signal receiving device”) generally uses a frequency changing method as a method for detecting a signal from the ground side. In order to ensure versatility that can also be used as a receiver, and to ensure that signals can be received even if the resonance frequency of the ground element fluctuates, a spread spectrum method is adopted as a signal transmission method. Along with this, the method for detecting a signal from the ground side has been shifted from a frequency change method to a method corresponding to a signal by a spread spectrum method.

この種の、スペクトラム拡散方式による信号に対応した信号検出の方式を適用した列車制御用信号受信装置としては、例えば、特許文献1等に記載されたものがある。特許文献1に記載された車上側の列車制御用信号受信装置においては、列車が地上子上を通過すると車上子と地上子が電磁結合し、この際、車上子の二次側から送られる受信信号は、地上子の周波数に対応した周波数においてピーク性を有する周波数分布を示す。そして、この列車制御用信号受信装置は、ピーク周波数における受信レベルが一定のレベルを超えた場合に、地上子からの列車制御用信号を受信したものと判断するように構成されている。このように、従来の列車制御用信号受信装置は、受信レベルが所定のレベルを超えたか否かに基づいて、地上子との電磁結合による列車制御用信号の有無を検知する構成である。   As a train control signal receiving apparatus to which this type of signal detection method corresponding to a signal by a spread spectrum method is applied, for example, there is one described in Patent Document 1 or the like. In the train control signal receiving apparatus on the vehicle upper side described in Patent Document 1, when the train passes over the ground element, the vehicle upper element and the ground element are electromagnetically coupled, and at this time, the signal is transmitted from the secondary side of the vehicle upper element. The received signal shows a frequency distribution having a peak at a frequency corresponding to the frequency of the ground unit. The train control signal receiving device is configured to determine that the train control signal from the ground unit is received when the reception level at the peak frequency exceeds a certain level. Thus, the conventional train control signal receiving device is configured to detect the presence or absence of a train control signal by electromagnetic coupling with the ground unit based on whether or not the reception level exceeds a predetermined level.

特開2007−28877号公報JP 2007-28877 A

しかしながら、上述の特許文献1等に記載される従来の車上側に搭載される列車制御用信号受信装置おいて、例えば、地上子の共振周波数と同じ周波数又はそれに近似した周波数のインパルスノイズを受信した場合には、地上子の共振周波数近傍において受信信号の受信レベルが局所的に上昇してしまうことがある。また、軌道上の鉄板、又は軌道下の鉄筋コンクリート床(スラブ)内の鉄筋などの物体が存在していた場合には、列車の車上子がこの物体上を通過すると、受信信号の受信レベルが受信信号の全周波数にわたり全体的に上昇してしまうことがある。したがって、従来の列車制御用信号受信装置は、列車制御用信号の検知を単に受信レベルが所定のレベルを超えたか否かに基づいて行っているため、インパルスノイズや軌道上の鉄板等に起因して受信レベルが上昇してしまう場合、車上子と地上子とが電磁結合していないにもかかわらず、列車制御用の信号を受信したと判断してしまうおそれがあり、信号の誤検知を招いて不適当な制御を行う可能性があるという問題を有している。   However, in the conventional train control signal receiving apparatus mounted on the upper side of the vehicle described in the above-mentioned Patent Document 1 or the like, for example, impulse noise having the same frequency as the resonance frequency of the ground element or a frequency approximate thereto is received. In some cases, the reception level of the reception signal may locally increase in the vicinity of the resonance frequency of the ground element. In addition, if there is an object such as a steel plate on the track or a reinforcing bar in the reinforced concrete floor (slab) under the track, the reception level of the received signal will be increased when the train upper element passes over the object. It may increase overall over the entire frequency of the received signal. Therefore, since the conventional train control signal receiving apparatus simply detects the train control signal based on whether the reception level exceeds a predetermined level, it is caused by impulse noise, iron plates on the track, etc. If the reception level rises, there is a risk that it may be judged that a signal for train control has been received even though the car upper and the ground are not electromagnetically coupled. There is a problem that it may invite inappropriate control.

本発明は前記問題点に着目してなされたもので、外部からのインパルスノイズや、軌道上の鉄板等に起因する受信レベルの上昇が発生する可能性がある環境においても、受信信号が正規の信号であるか否かを適正に判定することができ、信号の誤検知による不適当な制御を確実に防止することのできる列車制御用信号受信装置を提供することを目的とする。   The present invention has been made paying attention to the above problems, and even in an environment where there is a possibility that the reception level will increase due to impulse noise from the outside, an iron plate on the orbit, etc., the received signal is normal. It is an object of the present invention to provide a train control signal receiving apparatus that can appropriately determine whether or not a signal is present and can reliably prevent inappropriate control due to erroneous detection of the signal.

前記目的を達成するために、本発明による列車制御用信号受信装置は、車上情報に基づいて所定の周波数信号を拡散変調して、スペクトラム拡散信号として出力する信号発生手段と、前記信号発生手段からのスペクトラム拡散信号が供給される車上子と、列車の走行する軌道に沿って設けられた地上子と前記車上子との電磁結合により、前記車上子の二次側に送られる受信信号の受信レベルを検出する信号検出手段と、予め定めるしきい値以上の受信レベルが前記信号検出手段により検出された場合に、前記受信信号のピーク周波数のQ値を算出し、該Q値が予め定める上下限値の範囲内である場合に、前記受信信号は前記地上子と前記車上子との電磁結合による正規の信号であると判定する判定手段と、を備えたことを特徴とする。   In order to achieve the above object, a signal receiving apparatus for train control according to the present invention comprises a signal generating means for spreading and modulating a predetermined frequency signal based on on-board information and outputting it as a spread spectrum signal, and the signal generating means. Received from the vehicle upper member to which the spread spectrum signal from the vehicle is supplied, and to the secondary side of the vehicle upper member by electromagnetic coupling between the ground member provided along the trajectory of the train and the vehicle upper member. A signal detection means for detecting a reception level of the signal; and when a reception level equal to or higher than a predetermined threshold is detected by the signal detection means, a Q value of a peak frequency of the reception signal is calculated, and the Q value is And determining means for determining that the received signal is a normal signal due to electromagnetic coupling between the ground element and the vehicle element when it is within a predetermined upper and lower limit value range. .

このような構成により、車上子と地上子との電磁結合により、車上子の二次側に送られる受信信号の受信レベルを検出し、予め定めるしきい値以上の受信レベルが前記信号検出手段により検出された場合に、ピーク周波数のQ値を算出し、このQ値が予め定める上下限値の範囲内である場合に、受信信号は地上子と車上子との電磁結合による正規の信号であると判定する。   With such a configuration, the reception level of the reception signal sent to the secondary side of the vehicle upper element is detected by electromagnetic coupling between the vehicle upper element and the ground element, and the reception level equal to or higher than a predetermined threshold is detected by the signal detection. When detected by the means, the Q value of the peak frequency is calculated, and when this Q value is within a predetermined upper and lower limit value range, the received signal is a normal signal due to electromagnetic coupling between the ground element and the vehicle upper element. It is determined that it is a signal.

本発明の列車制御用信号受信装置によれば、しきい値以上の受信レベルが検出された時に、算出したQ値が予め定める上下限値の範囲内である場合に、車上子の二次側に送られる受信信号が地上子と車上子との電磁結合による正規の信号であると判定することができる。したがって、正規の信号であると判定するためのQ値の範囲を適切に設定しておくことにより、例えば、外部からのインパルスノイズ等に起因するQ値の高い外乱や、地上側に敷設されている鉄板等に起因するQ値の低い外乱が発生した場合においても、正規の信号を受信したと誤って判断することはない。このようにして、信号の誤検知を確実に防止することができ、適正な制御を行うことが可能な列車制御用信号受信装置を提供することができる。   According to the train control signal receiving apparatus of the present invention, when the calculated Q value is within a predetermined upper and lower limit value when a reception level equal to or higher than the threshold is detected, It can be determined that the received signal sent to the side is a normal signal due to electromagnetic coupling between the ground element and the vehicle upper element. Therefore, by appropriately setting the range of the Q value for determining that it is a regular signal, for example, a disturbance with a high Q value caused by impulse noise from the outside, or the like is laid on the ground side. Even when a disturbance having a low Q value due to an iron plate or the like is generated, it is not erroneously determined that a regular signal has been received. In this way, it is possible to provide a train control signal receiving apparatus that can reliably prevent erroneous signal detection and can perform appropriate control.

本発明に係る列車制御用信号受信装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the signal receiving apparatus for train control which concerns on this invention. 本実施形態において、車上子と地上子との電磁結合により受信レベルが上昇した場合の、受信レベルの波形を示すグラフである。In this embodiment, it is a graph which shows the waveform of a reception level when a reception level rises by the electromagnetic coupling of a vehicle upper child and a ground child. 本実施形態において、インパルスノイズにより地上子の共振周波数近傍の受信レベルが上昇した場合の、受信レベルの波形を示すグラフである。In this embodiment, it is a graph which shows the waveform of a reception level when the reception level near the resonant frequency of a ground element rises by impulse noise. 本実施形態において、鉄板等により受信レベルが上昇した場合の、受信レベルの波形を示すグラフである。In this embodiment, it is a graph which shows the waveform of a reception level when a reception level raises with an iron plate etc. FIG. 本実施形態に係る列車制御用信号受信装置の制御動作を示すフロー図である。It is a flowchart which shows control operation of the signal receiving apparatus for train control which concerns on this embodiment.

以下、本発明に係る列車制御用信号受信装置の一実施形態を図面に基づいて説明する。
図1は、前記列車制御用信号受信装置の実施形態を示す概略構成図である。
図1において、本実施形態の列車制御用信号受信装置は、スペクトラム拡散信号を出力する信号発生手段1と、前記スペクトラム拡散信号が供給される車上子2と、信号検出手段3と、判定手段4とを備えて構成されている。なお、本実施形態において、列車制御用信号受信装置は、列車5を制御する列車制御装置の車上装置10を構成するものでもあり、また、信号発生手段1と車上子2は、一般的な車上装置10における列車制御用信号送信装置を構成するものでもある。
Hereinafter, an embodiment of a signal receiving apparatus for train control according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an embodiment of the train control signal receiving apparatus.
In FIG. 1, a signal receiving device for train control of this embodiment includes a signal generating means 1 for outputting a spread spectrum signal, a vehicle upper 2 to which the spread spectrum signal is supplied, a signal detecting means 3, and a judging means. 4. In this embodiment, the train control signal receiving device also constitutes the onboard device 10 of the train control device that controls the train 5, and the signal generating means 1 and the onboard child 2 are generally used. It also constitutes a train control signal transmission device in the on-board device 10.

前記信号発生手段1は、車上情報に基づいて所定の周波数信号を拡散変調して、スペクトラム拡散信号として出力するものであり、列車5に搭載された車上装置10に設けられており、変調器6と信号発生回路7と第1接続トランス8とを備えて構成されている。   The signal generating means 1 spreads and modulates a predetermined frequency signal based on the on-board information and outputs it as a spread spectrum signal. The signal generating means 1 is provided in the on-board device 10 mounted on the train 5 and modulates the signal. And a signal generating circuit 7 and a first connecting transformer 8.

前記変調器6は、車上子2から列車の走行する軌道に沿って設けられた地上子9に送出するための車上情報を生成するものであり、信号発生回路7と接続されており、車上情報を信号発生回路7に出力する。   The modulator 6 generates on-board information to be sent from the vehicle upper element 2 to the ground element 9 provided along the trajectory traveled by the train, and is connected to the signal generating circuit 7. The on-vehicle information is output to the signal generation circuit 7.

前記信号発生回路7は、変調器6から出力された車上情報に基づいて所定の周波数信号を拡散変調して、スペクトラム拡散信号を出力するものである。このスペクトラム拡散信号は、例えば、後述する図4に発信信号として示したように、地上子9が有する共振周波数f(例えば、103kHz)を中心として、列車制御に使用する周波数帯域を含むように広帯域に拡散された周波数特性を示す。   The signal generation circuit 7 spreads and modulates a predetermined frequency signal based on the on-board information output from the modulator 6 and outputs a spread spectrum signal. For example, as shown as a transmission signal in FIG. 4 to be described later, this spread spectrum signal has a wide band so as to include a frequency band used for train control centered on a resonance frequency f (eg, 103 kHz) of the ground unit 9. Shows the spread frequency characteristics.

前記第1接続トランス8は、信号発生回路7と接続されており、信号発生回路7から出力されるスペクトラム拡散信号を車上子2へ出力するものである。   The first connection transformer 8 is connected to the signal generation circuit 7 and outputs the spread spectrum signal output from the signal generation circuit 7 to the vehicle upper element 2.

前記車上子2は、信号発生手段1からのスペクトラム拡散信号が供給されるものであり、一次側コイル2aと二次側コイル2bとを備えて構成されており、列車5の先端下部に設けられている。車上子2の一次側コイル2aは、第1接続トランス8を介して、信号発生回路7と接続されている。車上子2の二次側コイル2bは、後述する第2接続トランス11の一次側と接続している。信号発生手段1で生成されたスペクトラム拡散信号は、車上子2の一次側コイル2aを介して、地上側へ送出されると共に、二次側コイル2bにも送出される。列車5が地上子9上を通過すると車上子2と地上子9は電磁結合し、この際、車上子2の二次側コイル2bから第2接続トランス11に送られる受信信号(スペクトラム拡散信号)は、地上子9の共振周波数に対応した周波数においてピーク性を有する周波数分布を示し、そのスペクトルエネルギー密度が変化する。   The vehicle upper 2 is supplied with a spread spectrum signal from the signal generating means 1, and includes a primary side coil 2 a and a secondary side coil 2 b, and is provided at a lower end of the train 5. It has been. The primary coil 2 a of the vehicle upper 2 is connected to the signal generation circuit 7 via the first connection transformer 8. The secondary coil 2b of the vehicle upper 2 is connected to the primary side of the second connection transformer 11 described later. The spread spectrum signal generated by the signal generating means 1 is sent to the ground side via the primary coil 2a of the vehicle upper 2 and also sent to the secondary coil 2b. When the train 5 passes over the ground element 9, the vehicle upper element 2 and the ground element 9 are electromagnetically coupled. At this time, a received signal (spread spectrum) sent from the secondary coil 2 b of the vehicle upper element 2 to the second connection transformer 11. Signal) shows a frequency distribution having a peak at a frequency corresponding to the resonance frequency of the ground element 9, and its spectral energy density changes.

前記信号検出手段3は、車上子2と地上子9との電磁結合により車上子2の二次側コイル2bに送られる受信信号の受信レベルを検出するものであり、第2接続トランス11とA/D変換回路12とFFT演算処理部13と信号検出部14を備えて構成されている。   The signal detection means 3 detects the reception level of the received signal sent to the secondary coil 2b of the vehicle upper element 2 by electromagnetic coupling between the vehicle upper element 2 and the ground element 9, and the second connecting transformer 11 And an A / D conversion circuit 12, an FFT operation processing unit 13, and a signal detection unit 14.

前記第2接続トランス11は、前述したように車上子2の二次側コイル2bと接続しており、車上子2の二次側コイル2bからの信号をA/D変換回路12に出力する。   As described above, the second connection transformer 11 is connected to the secondary coil 2b of the vehicle upper 2 and outputs a signal from the secondary coil 2b of the vehicle upper 2 to the A / D conversion circuit 12. To do.

前記A/D変換回路12は、第2接続トランス11の二次側に接続されており、第2接続トランス11の二次側から得られるアナログ信号をデジタル信号に変換するものである。   The A / D conversion circuit 12 is connected to the secondary side of the second connection transformer 11 and converts an analog signal obtained from the secondary side of the second connection transformer 11 into a digital signal.

前記FFT演算処理部13は、A/D変換回路12によってデジタル信号に変換された受信信号を一定時間毎にサンプリングして周波数分析を行い、周波数毎の受信レベルを演算し、信号検出部14へ出力する。   The FFT calculation processing unit 13 samples the reception signal converted into a digital signal by the A / D conversion circuit 12 at a predetermined time, performs frequency analysis, calculates a reception level for each frequency, and outputs the signal to the signal detection unit 14. Output.

前記信号検出部14は、従来と同様に地上からの受信信号の有無を検出するしきい値としての最小動作レベルを予め設定し、FFT演算処理部13の出力信号内に最小動作レベルを超える受信レベルの信号が有るか否かを検出する。信号検出部14は、判定手段4と接続しており、最小動作レベル以上の受信レベルを検出すると、FFT演算処理部13からの周波数毎の受信レベルの信号を判定手段4に出力する。   The signal detection unit 14 presets a minimum operation level as a threshold for detecting the presence / absence of a reception signal from the ground in the same manner as in the past, and a reception exceeding the minimum operation level in the output signal of the FFT operation processing unit 13 It detects whether or not there is a level signal. The signal detection unit 14 is connected to the determination unit 4 and outputs a signal having a reception level for each frequency from the FFT calculation processing unit 13 to the determination unit 4 when a reception level equal to or higher than the minimum operation level is detected.

前記判定手段4は、最小動作レベル(しきい値)以上の受信レベルが信号検出手段3により検出された場合に、受信信号のピーク周波数f0のQ値を算出し、このQ値が予め定める上下限値の範囲内である場合に、受信信号は地上子9と車上子2との電磁結合による正規の信号であると判定するものである。具体的には、判定手段4は、例えば、CPUによって構成されており、信号検出部14から出力される信号に基づきピーク周波数f0を検出し、該ピーク周波数f0のQ値を算出する。ピーク周波数f0は、FFT演算処理部13により演算される受信信号の周波数毎の受信レベルのうち最大の受信レベルを示す周波数であり、地上子9が有する共振周波数f(例えば、103kHz)と一致する。なお、地上子9の共振周波数fは地上子9の経年変化等によりわずかに変動することがあるため、ピーク周波数f0もその変動に応じてわずかに変動する。また、判定手段4は、例えば、検出したピーク周波数f0と、予め記憶した地上子9の共振周波数fとの差を演算し、この差が前述した地上子9の共振周波数fのわずかな変動等を考慮して定める許容値内であるか否かを判定するように構成されている。判定手段4は、例えば、予め記憶した地上子9の共振周波数fとの差が、許容値以下である場合は、前述したようにQ値の算出をし、許容値を超える場合は、Q値を算出するこのなくノイズを受信したものと判定するように構成されている。   The determination unit 4 calculates the Q value of the peak frequency f0 of the received signal when the reception level equal to or higher than the minimum operation level (threshold) is detected by the signal detection unit 3, and this Q value is determined in advance. When it is within the range of the lower limit value, the received signal is determined to be a normal signal due to electromagnetic coupling between the ground element 9 and the vehicle upper element 2. Specifically, the determination unit 4 is constituted by, for example, a CPU, detects a peak frequency f0 based on a signal output from the signal detection unit 14, and calculates a Q value of the peak frequency f0. The peak frequency f0 is a frequency indicating the maximum reception level among the reception levels for each frequency of the reception signal calculated by the FFT calculation processing unit 13, and coincides with the resonance frequency f (for example, 103 kHz) that the ground unit 9 has. . In addition, since the resonance frequency f of the ground element 9 may fluctuate slightly due to aging of the ground element 9 or the like, the peak frequency f0 also varies slightly according to the fluctuation. Further, the determination means 4 calculates, for example, the difference between the detected peak frequency f0 and the previously stored resonance frequency f of the ground element 9, and this difference is the slight fluctuation of the resonance frequency f of the ground element 9 described above. It is configured to determine whether or not it is within an allowable value determined in consideration of the above. For example, the determination means 4 calculates the Q value as described above when the difference from the resonance frequency f of the ground element 9 stored in advance is equal to or less than the allowable value, and if the difference exceeds the allowable value, the Q value It is configured to determine that noise has been received without this.

ここで、Q値とは、ピーク周波数f0の尖鋭度を示す値であり、Q値が大きいほど尖鋭度が高く、Q値が小さいほど尖鋭度は低い。Q値は、ピーク周波数f0の受信レベルから3dBv下がった受信レベルに対応する周波数f1,f2(ピーク周波数f0の上下近傍の周波数)とピーク周波数f0に基づいて一般的に定義される値とし、以下の式で表されるものである。
Q=f0/(f2−f1)・・・・・・式(1)
また、Q値の下限値Qminは、軌道上の鉄板等に起因する尖鋭度の低い外乱に対応して適切に設定され、また、Q値の上限値Qmaxはインパルスノイズ等に起因する尖鋭度の高い外乱に対応して適切に設定されている。
Here, the Q value is a value indicating the sharpness of the peak frequency f0. The higher the Q value, the higher the sharpness, and the smaller the Q value, the lower the sharpness. The Q value is a value generally defined based on the frequencies f1 and f2 (the frequencies near the top and bottom of the peak frequency f0) corresponding to the reception level that is 3 dBv lower than the reception level of the peak frequency f0 and the peak frequency f0. It is represented by the formula of
Q = f0 / (f2-f1)... Formula (1)
The lower limit value Qmin of the Q value is appropriately set corresponding to a disturbance with low sharpness caused by an iron plate or the like on the track, and the upper limit value Qmax of the Q value is a sharpness value caused by impulse noise or the like. Appropriately set for high disturbances.

本実施形態において、判定手段4は、前記式(1)に基づく一般的な方法によってQ値を直接算出するのではなく、データテーブルに基づいてQ値を算出する構成である。具体的には、判定手段4は、図2に示すように、ピーク周波数f0における受信レベルとピーク周波数f0から予め定める周波数dfだけ隔てた上下近傍の周波数(f1,f2)における受信レベルとの差分値(α、β)をそれぞれ算出すると共に、Q値と差分値との対応関係を示すデータを予め保存するデータテーブル内のデータに基づいて算出した差分値に対応するQ値を求めるように構成されている。ここで、予め定める周波数dfは、FFT演算処理部13等の周波数分解能に応じて任意に設定することができ、例えば、1kHzに設定されている。このような構成により、本実施形態における判定手段4は、ピーク周波数f0における受信レベルと周波数f1における受信レベルとの差分値αと、ピーク周波数f0における受信レベルと周波数f2における受信レベルとの差分値βとを求め、求めた各差分値を加算し、その加算値(α+β)と対応付けられたQ値をデータテーブルより読み出すことによりQ値を求める。   In the present embodiment, the determination unit 4 is configured to calculate the Q value based on the data table instead of directly calculating the Q value by the general method based on the formula (1). Specifically, as shown in FIG. 2, the determination means 4 determines the difference between the reception level at the peak frequency f0 and the reception level at frequencies near the top and bottom (f1, f2) separated from the peak frequency f0 by a predetermined frequency df. Each of the values (α, β) is calculated, and the Q value corresponding to the difference value calculated based on the data in the data table that stores the data indicating the correspondence relationship between the Q value and the difference value in advance is obtained. Has been. Here, the predetermined frequency df can be arbitrarily set according to the frequency resolution of the FFT arithmetic processing unit 13 or the like, and is set to 1 kHz, for example. With such a configuration, the determination unit 4 in this embodiment is configured such that the difference value α between the reception level at the peak frequency f0 and the reception level at the frequency f1, and the difference value between the reception level at the peak frequency f0 and the reception level at the frequency f2. β is obtained, the obtained difference values are added, and the Q value associated with the added value (α + β) is read from the data table to obtain the Q value.

判定手段4は、図2に示すように、算出したQ値が下限値Qminと上限値Qmaxの範囲内である場合には、正規の信号が入力されたと判定し、例えば、図示省略の出力制御部に判定結果を出力する。そして、この出力制御部は、判定手段4から得られた判定結果に基づいて列車の駆動モータやブレーキ等の所定の機器に対する制御信号を出力する。   As shown in FIG. 2, when the calculated Q value is within the range between the lower limit value Qmin and the upper limit value Qmax, the determination means 4 determines that a regular signal has been input, for example, output control not shown. The determination result is output to the section. And this output control part outputs the control signal with respect to predetermined apparatuses, such as a drive motor and a brake of a train, based on the determination result obtained from the determination means 4.

また、判定手段4は、図3に示すように、算出したQ値が上限値Qmaxより大きい場合は、外部から地上子9の共振周波数(スペクトラム拡散信号の中心周波数)と同じ周波数又はそれに近似した周波数のインパルスノイズを受信し、受信信号の受信レベルがそのインパルスノイズによって上昇してしまったと判定し、受信信号は異常な信号であると判断する。この場合、例えば、前述した出力制御部への受信信号の出力を行わないようにして、異常信号による不適切な列車の制御を防止する。また、図示しないが、地上子9が有する共振周波数fと大きく異なる周波数のインパルスノイズが発生している場合においては、判定手段4は、前述したように検出したピーク周波数f0と予め記憶した地上子9の共振周波数fとの差が許容値を超えたことを検出し、Q値を算出するまでもなく、受信信号は異常な信号であると判断する。   In addition, as shown in FIG. 3, when the calculated Q value is larger than the upper limit value Qmax, the determination means 4 is externally the same frequency as the resonance frequency of the ground element 9 (the center frequency of the spread spectrum signal) or an approximation thereof. Frequency impulse noise is received, it is determined that the reception level of the received signal has increased due to the impulse noise, and the received signal is determined to be an abnormal signal. In this case, for example, the reception signal is not output to the above-described output control unit, and inappropriate train control due to the abnormal signal is prevented. Although not shown, when impulse noise having a frequency significantly different from the resonance frequency f of the ground element 9 is generated, the determination means 4 uses the detected peak frequency f0 and the ground element stored in advance as described above. It is determined that the received signal is an abnormal signal without detecting that the difference from the resonance frequency f of 9 exceeds the allowable value and calculating the Q value.

そして、判定手段4は、図4に示すように、算出したQ値が下限値Qminより小さい場合は、軌道上の鉄板等の地上子9以外の物体により受信レベルが全体的に高くなったものと判定し、受信信号は異常な信号であると判断し、Q値が上限値Qmaxより大きい場合と同様にして、不適切な列車の制御を防止する。   Then, as shown in FIG. 4, when the calculated Q value is smaller than the lower limit value Qmin, the determination means 4 has an overall reception level increased by an object other than the ground element 9 such as an iron plate on the orbit. It is determined that the received signal is an abnormal signal, and inappropriate control of the train is prevented as in the case where the Q value is larger than the upper limit value Qmax.

また、軌道に沿って設けられた前述した地上子9は、軌道の所定箇所に所定の間隔を保って複数個設けられるものである。地上子9は、車上子2と電磁結合したときに車上装置10の信号発生手段1で生成されたスペクトラム拡散信号を地上装置20に出力できるように構成されている。地上装置20は、信号発生回路7から出力されたスペクトラム拡散信号に基づいて車上情報を認識し、この車上情報は、各種列車5の制御に利用される。また、地上子9は、共振回路により構成されている。このように構成することにより、地上子9と車上子2が電磁結合した際に、車上子2の二次側コイル2bから第2接続トランスに送られる受信信号(スペクトラム拡散信号)のスペクトルエネルギー密度を、地上子9の共振周波数に対応して変化させている。車上装置10は、車上子2の二次側コイル2bより受信されたスペクトラム拡散信号に基づいて地上子9からの信号を認識し、この地上子9からの信号は、前述した出力制御部へ出力されて、列車5の駆動モータやブレーキ等の所定の機器制御に利用される。   A plurality of the above-mentioned ground elements 9 provided along the trajectory are provided at predetermined locations in the trajectory with a predetermined interval. The ground unit 9 is configured to output the spread spectrum signal generated by the signal generating means 1 of the on-board device 10 to the ground device 20 when electromagnetically coupled to the on-board unit 2. The ground device 20 recognizes on-board information based on the spread spectrum signal output from the signal generation circuit 7, and this on-board information is used for controlling various trains 5. The ground element 9 is constituted by a resonance circuit. With this configuration, when the ground element 9 and the vehicle upper element 2 are electromagnetically coupled, the spectrum of the received signal (spread spectrum signal) sent from the secondary coil 2b of the vehicle upper element 2 to the second connection transformer The energy density is changed corresponding to the resonance frequency of the ground element 9. The on-board device 10 recognizes a signal from the ground element 9 based on the spread spectrum signal received from the secondary coil 2b of the on-board element 2, and the signal from the ground element 9 is the output control unit described above. And used for predetermined device control such as a drive motor and a brake of the train 5.

次に、本実施形態に係る列車制御用信号受信装置の制御動作について図5に示すフローチャートを参照して説明する。なお、以下の説明において、インパルスノイズの周波数と地上子9の共振周波数fとの差は、前述した地上子9の共振周波数fのわずかな変動等を考慮して定める許容値内であるものとして説明する。   Next, the control operation of the train control signal receiving apparatus according to the present embodiment will be described with reference to the flowchart shown in FIG. In the following description, it is assumed that the difference between the frequency of the impulse noise and the resonance frequency f of the ground element 9 is within an allowable value determined in consideration of the slight variation of the resonance frequency f of the ground element 9 described above. explain.

列車5の運転開始により車上装置10の電源が投入されると(STEP1;Yes)、変調器6は、所定の車上情報を生成して信号発生回路7に出力する。信号発生回路7は、変調器6からの車上情報に基づいて、所定の周波数信号を拡散変調させたスペクトラム拡散信号を生成し(STEP2)、第1接続トランス8を介して車上子2に出力する(STEP3)。そして、列車5の走行により車上子2が地上子9に電磁結合されると、スペクトラム拡散信号がその地上子9で受信され、受信されたスペクトラム拡散信号は、地上装置20に出力され、地上装置20における列車制御用の車上情報として用いられる。また、車上子2の二次側コイル2bから受信信号が入力されると、受信信号は、第2接続トランス11を介してA/D変換回路12に出力され、A/D変換回路12によりデジタル信号に変換される。そして、デジタル変換された受信信号は、FFT演算処理部13により一定時間毎にサンプリングして周波数の分析処理が行われ、信号検出部14により、このFFT演算処理部13の出力が検波され、受信レベルがしきい値以上である場合(STEP4;Yes)は、FFT演算処理部13からの周波数毎の受信レベルの信号が判定手段4に出力される。次に、判定手段4は、ピーク周波数f0を検出し、検出したピーク周波数f0における受信レベルと、ピーク周波数f0から予め定める周波数dfだけ隔てた上下近傍の周波数(f1,f2)における受信レベルとの差分値(α、β)をそれぞれ算出し、各差分値(α、β)を加算し、その加算して算出した差分値(α+β)に対応するQ値をデータテーブル内のデータに基づいて算出する(STEP5)。そして、このQ値が下限値Qmin以上の場合(STEP6;Yes)は、次のステップへ進み、STEP7において、Q値が上限値Qmax以下の場合(STEP7;Yes)は、受信信号は地上子と車上子との電磁結合による正規の信号であると判定し(STEP8)、受信信号に基づき車上側の制御を行うように前述した出力制御部へ信号を出力する(STEP9)。そして、車上装置10の電源が遮断されていない場合はSTEP2に戻り(STEP10;No)、車上装置10の電源が遮断されると制御動作は終了する(STEP10;Yes)。また、STEP6においてQ値が下限値Qminより小さい場合(STEP6;No)は、軌道上の鉄板等に起因する信号誤検知と判定し(STEP11)、STEP7においてQ値が上限値Qmaxより大きい場合(STEP7;No)は、外部からのインパルスノイズに起因する信号誤検知と判定し(STEP12)、いずれの場合(STEP6;No、及びSTEP7;No)も受信信号は地上子と車上子との電磁結合による正規の信号ではないと判定し(STEP13)、STEP10へ進む。なお、STEP4において受信レベルがしきい値未満である場合(STEP4;No)も、上記同様、受信信号は地上子と車上子との電磁結合による正規の信号ではないと判定し(STEP13)、STEP10へ進む。   When the on-board device 10 is turned on by starting operation of the train 5 (STEP 1; Yes), the modulator 6 generates predetermined on-board information and outputs it to the signal generation circuit 7. Based on the on-board information from the modulator 6, the signal generation circuit 7 generates a spread spectrum signal obtained by spreading and modulating a predetermined frequency signal (STEP 2), and sends it to the on-board element 2 via the first connection transformer 8. Output (STEP 3). Then, when the vehicle upper element 2 is electromagnetically coupled to the ground element 9 by the traveling of the train 5, the spread spectrum signal is received by the ground element 9, and the received spread spectrum signal is output to the ground device 20, It is used as on-board information for train control in the apparatus 20. When a reception signal is input from the secondary coil 2 b of the vehicle upper element 2, the reception signal is output to the A / D conversion circuit 12 via the second connection transformer 11, and is output by the A / D conversion circuit 12. Converted to a digital signal. Then, the digitally converted received signal is sampled at a certain time interval by the FFT arithmetic processing unit 13 and subjected to frequency analysis processing. The output of the FFT arithmetic processing unit 13 is detected by the signal detecting unit 14 and received. When the level is equal to or higher than the threshold value (STEP 4; Yes), a signal of the reception level for each frequency from the FFT calculation processing unit 13 is output to the determination unit 4. Next, the determination unit 4 detects the peak frequency f0, and compares the received level at the detected peak frequency f0 with the received level at frequencies near the top and bottom (f1, f2) separated from the peak frequency f0 by a predetermined frequency df. The difference values (α, β) are calculated, the difference values (α, β) are added, and the Q value corresponding to the difference value (α + β) calculated by the addition is calculated based on the data in the data table. (STEP 5). If the Q value is equal to or greater than the lower limit value Qmin (STEP 6; Yes), the process proceeds to the next step. In STEP 7, if the Q value is equal to or less than the upper limit value Qmax (STEP 7; Yes), the received signal is a ground signal. It is determined that the signal is a regular signal due to electromagnetic coupling with the vehicle top (STEP 8), and a signal is output to the above-described output control unit so as to control the vehicle upper side based on the received signal (STEP 9). When the power of the on-board device 10 is not cut off, the process returns to STEP 2 (STEP 10; No), and when the power of the on-board device 10 is cut off, the control operation ends (STEP 10; Yes). Further, if the Q value is smaller than the lower limit value Qmin in STEP 6 (STEP 6; No), it is determined that the signal is erroneously detected due to an iron plate or the like on the track (STEP 11), and if the Q value is larger than the upper limit value Qmax in STEP 7 ( (STEP 7; No) is determined as a signal misdetection caused by impulse noise from outside (STEP 12), and in any case (STEP 6; No, and STEP 7; No), the received signal is an electromagnetic wave between the ground element and the vehicle upper element. It is determined that the signal is not a regular signal due to coupling (STEP 13), and the process proceeds to STEP 10. Even when the reception level is lower than the threshold value in STEP 4 (STEP 4; No), it is determined that the received signal is not a normal signal due to electromagnetic coupling between the ground element and the vehicle upper element (STEP 13). Proceed to STEP 10.

なお、本実施形態のように、判定手段4をデータテーブルに基づいてQ値を間接的に算出する構成にすることにより、FFT演算処理部13の周波数分解性能が低く、ピーク周波数f0の受信レベルから3dBv下がった受信レベルに対応する周波数を算出できない場合であっても、インパルスノイズのように極めて高いQ値を算出することができる。このように、本実施形態における列車制御用信号受信装置は、比較的コストの低い低分解能のFFT演算処理部13を用いることができるため、コストを高めることなく極めて高いQ値をも算出することができる。   Note that, as in the present embodiment, the determination unit 4 is configured to indirectly calculate the Q value based on the data table, so that the frequency resolution performance of the FFT processing unit 13 is low and the reception level of the peak frequency f0 is low. Even when it is not possible to calculate a frequency corresponding to a reception level that is 3 dBv lower than that, an extremely high Q value can be calculated like impulse noise. As described above, the train control signal receiving apparatus according to the present embodiment can use the low-resolution FFT arithmetic processing unit 13 that is relatively low in cost, and therefore calculates an extremely high Q value without increasing the cost. Can do.

以上全ての説明において、判定手段4は、データテーブルに基づいてQ値を間接的に算出する構成で説明したが、これに限らず、ピーク周波数f0の受信レベルから3dBv下がった受信レベルに対応する周波数を算出可能な高分解能のFFT演算処理部13を用いて、Q値を直接前記式(1)に基づいて算出する構成であってもよい。   In all the descriptions above, the determination unit 4 has been described with a configuration in which the Q value is indirectly calculated based on the data table. However, the determination unit 4 is not limited to this and corresponds to a reception level that is 3 dBv lower than the reception level of the peak frequency f0. The configuration may be such that the Q value is directly calculated based on the equation (1) using the high-resolution FFT calculation processing unit 13 capable of calculating the frequency.

1 信号発生手段
2 車上子
2b 車上子の二次側(車上子の二次側コイル)
3 信号検出手段
4 判定手段
5 列車
9 地上子
1 Signal generating means 2 Car upper 2b Secondary side of the car upper (secondary coil of the car upper)
3 Signal detection means 4 Judgment means 5 Train 9 Ground unit

Claims (2)

車上情報に基づいて所定の周波数信号を拡散変調して、スペクトラム拡散信号として出力する信号発生手段と、
前記信号発生手段からのスペクトラム拡散信号が供給される車上子と、
列車の走行する軌道に沿って設けられた地上子と前記車上子との電磁結合により、前記車上子の二次側に送られる受信信号の受信レベルを検出する信号検出手段と、
予め定めるしきい値以上の受信レベルが前記信号検出手段により検出された場合に、前記受信信号のピーク周波数のQ値を算出し、該Q値が予め定める上下限値の範囲内である場合に、前記受信信号は前記地上子と前記車上子との電磁結合による正規の信号であると判定する判定手段と、
を備えたことを特徴とする列車制御用信号受信装置。
A signal generating means for spreading and modulating a predetermined frequency signal based on on-vehicle information and outputting it as a spread spectrum signal;
A vehicle upper arm to which a spread spectrum signal from the signal generating means is supplied,
A signal detection means for detecting a reception level of a reception signal sent to a secondary side of the vehicle upper element by electromagnetic coupling between a ground element provided along a track traveled by a train and the vehicle upper element;
When a reception level equal to or higher than a predetermined threshold is detected by the signal detection means, the Q value of the peak frequency of the reception signal is calculated, and the Q value is within a predetermined upper and lower limit value range Determining means for determining that the received signal is a regular signal due to electromagnetic coupling between the ground element and the vehicle upper element;
A signal receiver for train control, comprising:
前記判定手段は、前記ピーク周波数における受信レベルと前記ピーク周波数から予め定める周波数だけ隔てた周波数における受信レベルとの差分値を算出すると共に、Q値と差分値との対応関係を示すデータを予め保存するデータテーブル内の前記データに基づいて前記算出した差分値に対応するQ値を求めることを特徴とする請求項1に記載の列車制御用信号受信装置。   The determination means calculates a difference value between a reception level at the peak frequency and a reception level at a frequency separated from the peak frequency by a predetermined frequency, and stores in advance data indicating a correspondence relationship between the Q value and the difference value The train control signal receiving apparatus according to claim 1, wherein a Q value corresponding to the calculated difference value is obtained based on the data in the data table.
JP2011046314A 2011-03-03 2011-03-03 Train control signal receiver Active JP5750279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046314A JP5750279B2 (en) 2011-03-03 2011-03-03 Train control signal receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046314A JP5750279B2 (en) 2011-03-03 2011-03-03 Train control signal receiver

Publications (2)

Publication Number Publication Date
JP2012186878A true JP2012186878A (en) 2012-09-27
JP5750279B2 JP5750279B2 (en) 2015-07-15

Family

ID=47016451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046314A Active JP5750279B2 (en) 2011-03-03 2011-03-03 Train control signal receiver

Country Status (1)

Country Link
JP (1) JP5750279B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177602A (en) * 2014-03-13 2015-10-05 株式会社東芝 On-train train control device
CN109263684A (en) * 2017-07-18 2019-01-25 株式会社京三制作所 Car-mounted device, ground installation and the information transmission system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038653A (en) * 1976-03-16 1977-07-26 International Standard Electric Corporation Train position indicator
JPS55122177A (en) * 1979-03-14 1980-09-19 Sankosha:Kk Method of molding ats ground unit or the like with resin
JPH04344478A (en) * 1991-05-21 1992-12-01 Tdk Corp Method and device for measuring resonance characteristic of resonator
US5451941A (en) * 1992-05-15 1995-09-19 Matra Transport System for detecting the passage of a mobile including a passive responder
JPH1155164A (en) * 1997-08-01 1999-02-26 Kokusai Denshin Denwa Co Ltd <Kdd> Cable transmission network confluent noise measurement instrument
JP2001233211A (en) * 2000-02-28 2001-08-28 Kenwood Corp Measuring device of pickup on ground of automatic train stopping device
JP2005229789A (en) * 2003-10-22 2005-08-25 Nippon Signal Co Ltd:The Ats device
JP2006160161A (en) * 2004-12-09 2006-06-22 Ntt Advanced Technology Corp Wayside coil sensing device
JP2007185045A (en) * 2006-01-06 2007-07-19 Univ Nihon Device and method for measuring q-value of ats ground element
JP2008001348A (en) * 2006-05-24 2008-01-10 Mitsubishi Electric Corp Ground information reader
JP2009194948A (en) * 2008-02-12 2009-08-27 Nippon Signal Co Ltd:The Signal detector for train control
JP2012121400A (en) * 2010-12-07 2012-06-28 Toshiba Corp On-vehicle train control apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038653A (en) * 1976-03-16 1977-07-26 International Standard Electric Corporation Train position indicator
JPS55122177A (en) * 1979-03-14 1980-09-19 Sankosha:Kk Method of molding ats ground unit or the like with resin
JPH04344478A (en) * 1991-05-21 1992-12-01 Tdk Corp Method and device for measuring resonance characteristic of resonator
US5451941A (en) * 1992-05-15 1995-09-19 Matra Transport System for detecting the passage of a mobile including a passive responder
JPH1155164A (en) * 1997-08-01 1999-02-26 Kokusai Denshin Denwa Co Ltd <Kdd> Cable transmission network confluent noise measurement instrument
JP2001233211A (en) * 2000-02-28 2001-08-28 Kenwood Corp Measuring device of pickup on ground of automatic train stopping device
JP2005229789A (en) * 2003-10-22 2005-08-25 Nippon Signal Co Ltd:The Ats device
JP2006160161A (en) * 2004-12-09 2006-06-22 Ntt Advanced Technology Corp Wayside coil sensing device
JP2007185045A (en) * 2006-01-06 2007-07-19 Univ Nihon Device and method for measuring q-value of ats ground element
JP2008001348A (en) * 2006-05-24 2008-01-10 Mitsubishi Electric Corp Ground information reader
JP2009194948A (en) * 2008-02-12 2009-08-27 Nippon Signal Co Ltd:The Signal detector for train control
JP2012121400A (en) * 2010-12-07 2012-06-28 Toshiba Corp On-vehicle train control apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177602A (en) * 2014-03-13 2015-10-05 株式会社東芝 On-train train control device
CN109263684A (en) * 2017-07-18 2019-01-25 株式会社京三制作所 Car-mounted device, ground installation and the information transmission system
JP2019022337A (en) * 2017-07-18 2019-02-07 株式会社京三製作所 On-board device, ground device, and information transmission system
CN109263684B (en) * 2017-07-18 2021-10-22 株式会社京三制作所 Vehicle-mounted device, ground device, and information transmission system
US11180169B2 (en) 2017-07-18 2021-11-23 Kyosan Electric Mfg. Co., Ltd. Onboard system, ground system, and information transmission system
TWI749246B (en) * 2017-07-18 2021-12-11 日商京三製作所股份有限公司 Onboard system, ground system, and information transmission system

Also Published As

Publication number Publication date
JP5750279B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
EP1610450B1 (en) Power converter system for railway vehicles
CN103534603A (en) Ultrasonic measurement system having reduced minimum range and method for detecting an obstacle
JP4652086B2 (en) Radar equipment
US9076272B2 (en) Wheel speed sensor and interface systems and methods
JP5681512B2 (en) Rail break detection device
JP4956056B2 (en) Information transmission system
US9139211B2 (en) Device for detecting the occupied or available status of a track segment and method for operating such a device
JP5227602B2 (en) Train control signal detector
JP5750279B2 (en) Train control signal receiver
JP5204205B2 (en) Train control on-board equipment
JP5279682B2 (en) Train control device
JP2012135147A (en) Device and method for automatically stopping train
CN109229093A (en) Method and apparatus for being located in motor vehicles above bottom plate
JP4596819B2 (en) ATS equipment
JP5615103B2 (en) Train control apparatus and train control method
JP2014057498A (en) Train control apparatus
JP4906000B2 (en) Narrow band multi-frequency track circuit device
TWI635978B (en) Wheel detector for detecting a wheel of a rail vehicle
KR101749890B1 (en) System for detecting wheel
JP4799321B2 (en) ATS car upper
JP6987018B2 (en) Train running speed calculation system
JP2020196376A (en) Electric power source synchronous transceiver
JP4958307B2 (en) Low frequency track circuit
JP5951240B2 (en) On-board transmitter
KR100700199B1 (en) Protection-System for ATS&#39;s malfunction and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150518

R150 Certificate of patent or registration of utility model

Ref document number: 5750279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150