JP2012186316A5 - - Google Patents

Download PDF

Info

Publication number
JP2012186316A5
JP2012186316A5 JP2011048376A JP2011048376A JP2012186316A5 JP 2012186316 A5 JP2012186316 A5 JP 2012186316A5 JP 2011048376 A JP2011048376 A JP 2011048376A JP 2011048376 A JP2011048376 A JP 2011048376A JP 2012186316 A5 JP2012186316 A5 JP 2012186316A5
Authority
JP
Japan
Prior art keywords
layer
electrode
atomic
memory
memory element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011048376A
Other languages
Japanese (ja)
Other versions
JP2012186316A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2011048376A priority Critical patent/JP2012186316A/en
Priority claimed from JP2011048376A external-priority patent/JP2012186316A/en
Priority to EP12000686.1A priority patent/EP2495729A3/en
Priority to TW101104579A priority patent/TWI497491B/en
Priority to KR1020120015269A priority patent/KR101913860B1/en
Priority to CN201210042751.0A priority patent/CN102683378B/en
Priority to US13/403,560 priority patent/US9202560B2/en
Publication of JP2012186316A publication Critical patent/JP2012186316A/en
Publication of JP2012186316A5 publication Critical patent/JP2012186316A5/ja
Pending legal-status Critical Current

Links

Images

Description

なお、イオン源層21に含まれる金属元素としては上記金属元素に限定されるものではなく、例えばAlの他にMgを用いたZrTeMgとしてもよい。イオン化する金属元素としては、Zrの代わりに、TiやTaなどの他の遷移金属元素を選択した場合でも同様な添加元素を用いることは可能であり、例えばTaTeAlGeなどとすることも可能である。更に、イオン導電材料としては、Te以外に硫黄(S)やセレン(Se)、あるいはヨウ素(I)を用いてもよく、具体的にはZrSAl,ZrSeAl,ZrIAl,CuGeTeAl等を用いてもよい。また、必ずしもAlを含んでいる必要はなく、CuGeTeZr等を用いてもよい。 The metal element contained in the ion source layer 21 is not limited to the above metal element, and for example, ZrTeMg using Mg in addition to Al may be used. As a metal element to be ionized, a similar additive element can be used even when another transition metal element such as Ti or Ta is selected instead of Zr. For example, TaTeAlGe can also be used. Further, as the ion conductive material, sulfur (S), selenium (Se), or iodine (I) may be used in addition to Te, specifically, ZrSAl, ZrSeAl, ZrIAl , CuGeTeAl, or the like may be used. Moreover, it is not always necessary to contain Al, and CuGeTeZr or the like may be used.

[変形例]
次に、上記実施の形態の変形例に係る記憶素子2について説明する。図4は記憶素子2の断面構成を表すものである。なお、記憶素子2について説明するが、上記実施の形態と同一構成部分については同一符号を付してその説明は省略する。この記憶素子2は、下部電極10(第1電極)、記憶層60および上部電極30(第2電極)をこの順に有するものである。
[Modification]
Next, the memory element 2 according to a modification of the above embodiment will be described. FIG. 4 illustrates a cross-sectional configuration of the memory element 2. Although the memory element 2 will be described, the same components as those in the above embodiment are denoted by the same reference numerals and description thereof is omitted. The memory element 2 has a lower electrode 10 (first electrode), a memory layer 60, and an upper electrode 30 (second electrode) in this order.

第1抵抗変化層62Aおよび第2抵抗変化層62Bは、上記実施の形態の抵抗変化層22と同様に、電気伝導上のバリアとしての機能を有するものであり、互いに組成が異なっている。これにより、この記憶素子2では、複数の記憶素子2の初期状態もしくは消去状態の抵抗値のばらつきを低減すると共に、複数回の書き込み・消去動作に対して書き込み・消去時の抵抗値を保持することが可能となっている。 The first variable resistance layer 62A and the second resistance variable layer 62B, similarly to the variable resistance layer 22 in the form of the above you facilities, has a function as a barrier on the electrical conductivity is different in composition from each other . As a result, the memory element 2 reduces variations in resistance values in the initial state or the erased state of the plurality of memory elements 2 and holds resistance values at the time of writing / erasing with respect to a plurality of write / erase operations. It is possible.

第2抵抗変化層62Bとしては、上記実施の形態の抵抗変化層22と同様に陰イオン成分として挙動するTeを主成分とする化合物から構成されている。このような化合物としては、例えばAlTe,MgTeまたはZnTeなどが挙げられる。 The second variable resistance layer 62B, and a compound mainly containing Te that behaves as an anion component in the same manner as the resistance change layer 22 in the form states described above. Examples of such a compound include AlTe, MgTe, ZnTe, and the like.

(実験1)
(サンプル1−1〜1−61)
まず、図2および図3に示したように、半導体基板11にMOSトランジスタTrを形成した。次いで、半導体基板11の表面を覆うように絶縁層を形成し、この絶縁層にビアホールを形成した。続いて、CVD(Chemical Vapor Deposition)法によりビアホールの内部を、W(タングステン)から成る電極材で充填し、その表面をCMP(Chemical Mechanical Polishing)法により平坦化した。そして、これらの工程を繰り返すことにより、プラグ層15、金属配線層16、プラグ層17および下部電極10を形成して、更に下部電極10をメモリセル毎にパターニングした。
(Experiment 1)
(Samples 1-1 to 1-61)
First, as shown in FIGS. 2 and 3, a MOS transistor Tr was formed on the semiconductor substrate 11. Next, an insulating layer was formed so as to cover the surface of the semiconductor substrate 11, and a via hole was formed in the insulating layer. Subsequently, the inside of the via hole was filled with an electrode material made of W (tungsten) by a CVD (Chemical Vapor Deposition) method, and the surface thereof was flattened by a CMP (Chemical Mechanical Polishing) method. By repeating these steps, the plug layer 15, the metal wiring layer 16, to form the plug layer 17 and the lower electrode 10, and further patterning the lower electrode 10 in each memory cell.

サンプル1−1〜1−61におけるデータ保持特性および繰り返し特性の可否を、表1,2にイオン源層の組成一覧と共に示した。また、データ保持特性および繰り返し特性の特性図の一部を図5〜図7に示した。なお、繰り返し特性図は上段が条件(1−1),(2−1)、中断が条件(1−2),(2−2)、下段が条件(1−3),(2−3)である。更に、上記評価結果をAl,Cu+Zr,Teの3元組成図として図8に示した。図8(A)が組成図全体を表したものであり、図8(B)は図8(A)の実線内を拡大したものである。図中の○がデータ保持特性および繰り返し特性を両立したサンプルである。これらの結果から、データ保持特性および繰り返し特性を両立するイオン源層21,61の組成は、アルミニウム(Al)は27.7〜47.4原子%、銅(Cu)およびジルコニウム(Zr)の合計(Cu+Zr)は23.6〜39.4原子%、テルル(Te)は20.7〜42.7原子%であることがわかる。なお、図8(A),(B)に示した3元組成図はゲルマニウム(Ge)を含まない場合の含有割合になっているが、表1,2に記載されているように、Geの添加量は15原子%以下であることが望ましい。 Tables 1 and 2 show the data retention characteristics and repeatability characteristics of Samples 1-1 to 1-61 together with the composition list of the ion source layer. A part of the characteristic chart of the data retention characteristic and the repetition characteristic is shown in FIGS. In the repetitive characteristics diagram, the upper part is conditions (1-1) and (2-1), the interruption is conditions (1-2) and (2-2), and the lower part is conditions (1-3) and (2-3). It is. Further, the above evaluation results are shown in FIG. 8 as a ternary composition diagram of Al, Cu + Zr, and Te. FIG. 8A shows the entire composition diagram, and FIG. 8B is an enlarged view of the solid line in FIG. 8A. A circle in the figure is a sample having both data retention characteristics and repeatability characteristics. From these results, the composition of the ion source layers 21 and 61 satisfying both the data retention characteristics and the repetition characteristics is as follows: aluminum (Al) is 27.7 to 47.4 atomic%, and copper (Cu) and zirconium (Zr) are total. It can be seen that (Cu + Zr) is 23.6 to 39.4 atomic% and tellurium (Te) is 20.7 to 42.7 atomic%. In addition, although the ternary composition diagram shown in FIGS. 8A and 8B shows the content ratio in the case of not containing germanium (Ge), as described in Tables 1 and 2, The addition amount is desirably 15 atomic% or less.

JP2011048376A 2011-03-04 2011-03-04 Storage element and memory device Pending JP2012186316A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011048376A JP2012186316A (en) 2011-03-04 2011-03-04 Storage element and memory device
EP12000686.1A EP2495729A3 (en) 2011-03-04 2012-02-02 Memory element and memory device
TW101104579A TWI497491B (en) 2011-03-04 2012-02-13 Memory element and memory device
KR1020120015269A KR101913860B1 (en) 2011-03-04 2012-02-15 Memory element and memory device
CN201210042751.0A CN102683378B (en) 2011-03-04 2012-02-22 Memory element and storage device
US13/403,560 US9202560B2 (en) 2011-03-04 2012-02-23 Memory element and memory device with ion source layer and resistance change layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048376A JP2012186316A (en) 2011-03-04 2011-03-04 Storage element and memory device

Publications (2)

Publication Number Publication Date
JP2012186316A JP2012186316A (en) 2012-09-27
JP2012186316A5 true JP2012186316A5 (en) 2014-04-03

Family

ID=45654836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048376A Pending JP2012186316A (en) 2011-03-04 2011-03-04 Storage element and memory device

Country Status (6)

Country Link
US (1) US9202560B2 (en)
EP (1) EP2495729A3 (en)
JP (1) JP2012186316A (en)
KR (1) KR101913860B1 (en)
CN (1) CN102683378B (en)
TW (1) TWI497491B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201011909A (en) * 2008-09-02 2010-03-16 Sony Corp Storage element and storage device
CN102403044B (en) * 2010-09-08 2014-10-15 北京大学 Method for testing data retention characteristic of resistive random access memory device
JP5480233B2 (en) * 2011-12-20 2014-04-23 株式会社東芝 Nonvolatile memory device and manufacturing method thereof
US8921821B2 (en) 2013-01-10 2014-12-30 Micron Technology, Inc. Memory cells
US9202846B2 (en) 2013-03-22 2015-12-01 Kabushiki Kaisha Toshiba Resistance random access memory device
US8981334B1 (en) * 2013-11-01 2015-03-17 Micron Technology, Inc. Memory cells having regions containing one or both of carbon and boron
US9431606B1 (en) * 2015-08-12 2016-08-30 Micron Technology, Inc. Memory cells
CN107732010B (en) * 2017-09-29 2020-07-10 华中科技大学 Gate tube device and preparation method thereof
KR20190062819A (en) * 2017-11-29 2019-06-07 서울대학교산학협력단 Resistive switching memory device and operation method thereof
KR102549544B1 (en) * 2018-09-03 2023-06-29 삼성전자주식회사 Memory devices
JP2021048310A (en) * 2019-09-19 2021-03-25 ソニーセミコンダクタソリューションズ株式会社 Storage element and storage device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60034663D1 (en) 1999-02-11 2007-06-14 Univ Arizona PROGRAMMABLE MICROELECTRONIC STRUCTURE AND METHOD FOR THE PRODUCTION AND PROGRAMMING THEREOF
CA2469182C (en) * 2001-12-04 2014-06-03 Arichell Technologies, Inc. Electronic faucets for long-term operation
JP4830275B2 (en) * 2004-07-22 2011-12-07 ソニー株式会社 Memory element
US7658773B2 (en) * 2006-09-29 2010-02-09 Qimonda Ag Method for fabricating a solid electrolyte memory device and solid electrolyte memory device
US7463512B2 (en) * 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
JP5088036B2 (en) * 2007-08-06 2012-12-05 ソニー株式会社 Storage element and storage device
JP2009043905A (en) * 2007-08-08 2009-02-26 Hitachi Ltd Semiconductor device
US8134194B2 (en) * 2008-05-22 2012-03-13 Micron Technology, Inc. Memory cells, memory cell constructions, and memory cell programming methods
TW201011909A (en) * 2008-09-02 2010-03-16 Sony Corp Storage element and storage device
JP5397668B2 (en) * 2008-09-02 2014-01-22 ソニー株式会社 Storage element and storage device
US7750386B2 (en) * 2008-11-12 2010-07-06 Seagate Technology Llc Memory cells including nanoporous layers containing conductive material
US8134138B2 (en) * 2009-01-30 2012-03-13 Seagate Technology Llc Programmable metallization memory cell with planarized silver electrode
KR20110023036A (en) 2009-08-28 2011-03-08 동우 화인켐 주식회사 A colored photosensitive resin composition, color filter and display device having the same
JP5630021B2 (en) * 2010-01-19 2014-11-26 ソニー株式会社 Storage element and storage device

Similar Documents

Publication Publication Date Title
JP2012186316A5 (en)
US9685483B2 (en) Selector-based non-volatile cell fabrication utilizing IC-foundry compatible process
Lee et al. A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory
JP6120911B2 (en) Nonvolatile memory cell using volatile switching two-terminal device and MOS transistor
TWI497491B (en) Memory element and memory device
JP5649722B2 (en) Resistance variable memory cell structure and method
Lee et al. Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices
US20230157186A1 (en) Non-stoichiometric resistive switching memory device and fabrication methods
WO2015107945A1 (en) Switch element and memory device
CN110970555A (en) Memory structure with reduced via resistance
TW200805722A (en) Phase change memory cell employing a GeBiTe layer as a phase change material layer, phase change memory device including the same, electronic system including the same and method of fabricating the same
US8716059B2 (en) Combined conductive plug/conductive line memory arrays and methods of forming the same
CN109638153A (en) A kind of gating tube material, gating tube device and preparation method thereof
US20180269388A1 (en) Phase change memory unit and preparation method therefor
JP2012256772A5 (en)
TW201011909A (en) Storage element and storage device
JP2012182172A5 (en)
JP2012124374A5 (en)
Aziz et al. Discrete memristive levels and logic gate applications of Nb2O5 devices
JP2013016529A5 (en)
KR101521383B1 (en) Nonvolatile Resistance Switching Memory Device
EP3646394A1 (en) Memory cells having resistors and formation of the same
US20160351625A1 (en) Recessed high voltage metal oxide semiconductor transistor for rram cell
CN102593349A (en) SixNyBase resistance type memory and preparation method and application thereof
CN105895800B (en) Bipolar resistive random access memory and preparation method thereof