JP2012184472A - Method for recovering silver from used display panel - Google Patents

Method for recovering silver from used display panel Download PDF

Info

Publication number
JP2012184472A
JP2012184472A JP2011048114A JP2011048114A JP2012184472A JP 2012184472 A JP2012184472 A JP 2012184472A JP 2011048114 A JP2011048114 A JP 2011048114A JP 2011048114 A JP2011048114 A JP 2011048114A JP 2012184472 A JP2012184472 A JP 2012184472A
Authority
JP
Japan
Prior art keywords
silver
display panel
used display
recovering
leaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011048114A
Other languages
Japanese (ja)
Inventor
Katsutoshi Inoue
勝利 井上
Biplob Kumar Biswas
クマール ビスワス,ビプローブ
Hidetaka Kawakita
英孝 川喜田
Keisuke Owatari
啓介 大渡
Atsushi Hoshino
篤 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHINIHON KADEN RECYCLE CORP
Saga University NUC
Original Assignee
NISHINIHON KADEN RECYCLE CORP
Saga University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHINIHON KADEN RECYCLE CORP, Saga University NUC filed Critical NISHINIHON KADEN RECYCLE CORP
Priority to JP2011048114A priority Critical patent/JP2012184472A/en
Publication of JP2012184472A publication Critical patent/JP2012184472A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently and safely separating and recovering silver from a used display panel containing the silver.SOLUTION: The used display panel is crushed and the silver contained in the used display panel is made to leach out by using mixed liquid of thiourea aqueous solution and acid to produce a leachate, and the effective separation and recovery of the silver can be achieved by applying a metal replacement method (for example, adding zinc powder) to the leachate or by using activated carbon.

Description

本発明は、使用済みのディスプレイパネル(例えば、プラズマディスプレイ、液晶ディスプレイ等、銀を含むディスプレイパネルをいう)から銀を高純度に分離・回収する技術に関するものである。 The present invention relates to a technique for separating and collecting silver with high purity from a used display panel (for example, a display panel containing silver such as a plasma display or a liquid crystal display).

銀は従来写真材料や宝飾品としての利用が大きな割合を占めていたが、近年は電気・電子材料等として多くの分野で利用されている。銀は比較的高価なことから従来も写真廃液やレントゲンのX線写真フィルム等の様々な廃棄物や廃液中からの回収が行われてきた。しかし使用済みのプラズマテレビディスプレイパネル等に含まれる銀の量は僅かであり、大過剰に存在するガラスや他の金属等からの銀の選択的な分離・回収は容易でなく、現在まで回収を試みた例はない。 Silver has traditionally been used as a photographic material and jewelry, but in recent years it has been used in many fields as an electrical / electronic material. Since silver is relatively expensive, it has been conventionally recovered from various wastes such as photographic waste liquids and X-ray photographic films of X-rays and waste liquids. However, the amount of silver contained in used plasma television display panels is very small, and it is not easy to selectively separate and recover silver from a large excess of glass or other metals. There has been no attempt.

固体廃棄物を含め、様々な固体中に含まれる銀の回収では、金の場合と同様に従来アルカリシアン溶液を用いて溶出させる方法が採られてきた。しかし強い毒性のためにシアンを用いる方法は今後実施困難になることが予想される。
鉱石からの金や銀の浸出方法としては、アルカリシアン溶液を用いる以外はチオシアン酸塩水溶液やチオ尿素水溶液の利用が研究されてきた。これらの技術については非特許文献1や2等に報告されている。
In the recovery of silver contained in various solids including solid waste, a conventional method of elution using an alkaline cyanide solution has been adopted as in the case of gold. However, due to its strong toxicity, the method using cyan is expected to be difficult to implement in the future.
As a method for leaching gold or silver from ore, use of an aqueous thiocyanate solution or an aqueous thiourea solution has been studied other than using an alkali cyan solution. These techniques are reported in Non-Patent Documents 1 and 2, etc.

J.Ficeriova, P.Balaz, C.L.Villachica; “Thiosulphate leaching of silver, gold and bismuth from a complex sulfide concentrates”, Hydrometallurgy, 77, 35-39(2005)J.Ficeriova, P.Balaz, C.L.Villachica; “Thiosulphate leaching of silver, gold and bismuth from a complex sulfide concentrates”, Hydrometallurgy, 77, 35-39 (2005) P.Balaz, J.Ficeriova, V.Sepelak, R.Kammel;“Thiourea leaching of silver from mechanically activated tetrahedrite”, Hydrometallurgy, 43, 367-377(1996)P. Balaz, J. Ficeriova, V. Sepelak, R. Kammel; “Thiourea leaching of silver from mechanically activated tetrahedrite”, Hydrometallurgy, 43, 367-377 (1996)

しかしながら使用済みディスプレイパネルからの銀の回収にこれらの技術を利用する試みは報告されておらず、これらの浸出液(浸出原液)により効果的な銀の浸出が達成できるかどうかは不明である。 However, there have been no reports of attempts to use these techniques to recover silver from used display panels, and it is unclear whether effective leaching of silver can be achieved with these leaching solutions (leaching stock solutions).

本発明はかかる事情に鑑みななされたもので、銀を含有する使用済みディスプレイパネルから銀を効率的に、しかも安全に分離・回収する方法を提供することをその課題とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for efficiently and safely separating and recovering silver from a used display panel containing silver.

前記目的に沿う本発明に係る使用済みディスプレイパネルからの銀の回収方法は、使用済みディスプレイパネル(以下、単に「ディスプレイパネル」と称する場合もある)を破砕又は粉砕し、チオ尿素水溶液と酸との混合液(「浸出原液」)を用いて前記使用済みディスプレイパネルから含まれる銀を浸出させて浸出液を造り、該浸出液から前記銀を回収する。ここで、破砕には処理容器に入る大きさに使用済みディスプレイパネルを破砕する他、使用済みディスプレイパネルを粉砕する場合も含む。なお、ディスプレイパネルは、単に破砕するより1mm以下(より好ましくは300μm以下)の粒径に粉砕するのがよい。 The method for recovering silver from a used display panel according to the present invention in accordance with the above object is to smash or pulverize a used display panel (hereinafter sometimes simply referred to as “display panel”), The mixed liquid (“leaching stock solution”) is used to leach silver contained from the used display panel to produce a leachate, and the silver is recovered from the leachate. Here, the crushing includes not only crushing the used display panel so as to fit into the processing container but also crushing the used display panel. The display panel is preferably pulverized to a particle size of 1 mm or less (more preferably 300 μm or less) rather than simply crushing.

本発明に係る使用済みディスプレイパネルからの銀の回収方法において、前記浸出液には前記銀が、Ag[CS(NH223の陽イオン錯体として溶解しているのが好ましい。 In the method for recovering silver from a used display panel according to the present invention, the silver is preferably dissolved as a cation complex of Ag [CS (NH 2 ) 2 ] 3 in the leachate.

また、本発明に係る使用済みディスプレイパネルからの銀の回収方法において、前記破砕した使用済みディスプレイパネルを前記混合液に浸漬した後、放置するより一定時間の振とう処理を行って、前記銀の浸出を行うのが好ましい。 Further, in the method for recovering silver from a used display panel according to the present invention, the crushed used display panel is immersed in the mixed solution and then left to stand for a certain period of time. It is preferred to perform leaching.

本発明に係る使用済みディスプレイパネルからの銀の回収方法において、前記混合液には、チオ尿素が0.05モル〜1モル(好ましくは、0.1〜0.25モル、更に好ましくは、0.1〜0.2モル)の範囲で含まれるのがよい。この理由は、チオ尿素の濃度がこの範囲より小さい場合には反応が遅くなり、更にチオ尿素の濃度をこの範囲より高くしても取り出せる銀の量は増加しないので、経済性も考慮してこの範囲が好ましい。 In the method for recovering silver from a used display panel according to the present invention, the mixed solution contains 0.05 to 1 mol of thiourea (preferably 0.1 to 0.25 mol, more preferably 0 to 0). .1 to 0.2 mol). The reason for this is that if the thiourea concentration is lower than this range, the reaction is slow, and even if the thiourea concentration is higher than this range, the amount of silver that can be extracted does not increase. A range is preferred.

本発明に係る使用済みディスプレイパネルからの銀の回収方法において、前記酸として毒性の少ない無機酸(例えば、塩酸、硫酸、硝酸)が使用されているのが好ましい。
本発明に係る使用済みディスプレイパネルからの銀の回収方法において、前記無機酸は硫酸であって、0.05モル〜0.25モルの範囲にあるのが好ましい。
In the method for recovering silver from a used display panel according to the present invention, it is preferable that an inorganic acid (for example, hydrochloric acid, sulfuric acid, nitric acid) having low toxicity is used as the acid.
In the method for recovering silver from a used display panel according to the present invention, the inorganic acid is sulfuric acid, preferably in the range of 0.05 mol to 0.25 mol.

また、本発明に係る使用済みディスプレイパネルからの銀の回収方法において、前記銀の回収は金属置換法(例えば、イオン化傾向の差を利用した方法)によって行う他、前記浸出液から銀の回収は活性炭を用いて、又は硫化ナトリウムを添加して、又は柿渋をpH13〜14の水に溶解した液を加えることによって行ってもよい。 In the method for recovering silver from a used display panel according to the present invention, the recovery of the silver is performed by a metal substitution method (for example, a method using a difference in ionization tendency), and the recovery of silver from the leachate is performed by activated carbon. Or by adding sodium sulfide or by adding a solution in which persimmon astringent is dissolved in water of pH 13-14.

そして、本発明に係る使用済みディスプレイパネルからの銀の回収方法において、前記チオ尿素水溶液と酸との混合液の代わりに、塩酸、硫酸、硝酸、チオ硫酸ナトリウムのいずれか1又は2以上の水溶液を用いることもできる。 In the method for recovering silver from a used display panel according to the present invention, one or more aqueous solutions of hydrochloric acid, sulfuric acid, nitric acid, and sodium thiosulfate are used instead of the mixed solution of the thiourea aqueous solution and the acid. Can also be used.

本発明に係る使用済みディスプレイパネルからの銀の回収方法において、化学処理を行って、使用済みディスプレイパネル中に含まれる銀を効率的に分離・回収することができる。この場合、従来のように処理液に人体に対して直接毒性を有する液を使用していないので安全性が高い。また、全体のシステムから排出される液も、その処理が容易である。 In the method for recovering silver from a used display panel according to the present invention, the silver contained in the used display panel can be efficiently separated and recovered by performing chemical treatment. In this case, since the liquid which has a direct toxicity with respect to a human body is not used for the process liquid conventionally, safety | security is high. Also, the liquid discharged from the entire system can be easily processed.

粉砕された使用済みディスプレイパネルの粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the grind | pulverized used display panel. 使用済みディスプレイパネルの粉砕物からの銀の浸出百分率に及ぼす固液比の影響(温度:30℃、振とう時間:4時間)を示すグラフである。It is a graph which shows the influence (Temperature: 30 degreeC, Shaking time: 4 hours) of the solid-liquid ratio to the leaching percentage of silver from the pulverized material of the used display panel. 使用済みディスプレイパネルの粉砕物からの銀の浸出に及ぼすチオ尿素の濃度と硫酸濃度の影響(固液比:250mL/g、温度:30℃、振とう時間:4時間)を示すグラフである。It is a graph which shows the influence (solid-liquid ratio: 250 mL / g, temperature: 30 degreeC, shaking time: 4 hours) of the concentration of thiourea and sulfuric acid concentration on the leaching of silver from the pulverized material of the used display panel. 0.05Mの濃度のチオ尿素と0.1Mの濃度の硫酸の混合水溶液を用いた場合の様々な温度における使用済みディスプレイパネルの粉砕物からの銀の浸出に及ぼす振とう時間の影響(固液比:250mL/g、振とう速度:200rpm)を示すグラフである。Effect of shaking time on the leaching of silver from pulverized spent display panels at various temperatures using a mixed aqueous solution of 0.05 M thiourea and 0.1 M sulfuric acid (solid liquid (Ratio: 250 mL / g, shaking speed: 200 rpm). 亜鉛粉末による金属置換法により0.05Mの濃度のチオ尿素と0.1Mの濃度の硫酸の混合水溶液の浸出液からの銀の回収を行った場合の銀の回収百分率と固液比との関係(温度:30℃)を示すグラフである。Relationship between silver recovery percentage and solid-liquid ratio when recovering silver from leaching solution of mixed aqueous solution of 0.05M thiourea and 0.1M sulfuric acid by metal substitution method with zinc powder ( It is a graph which shows temperature: 30 degreeC. 0.1〜5Mの濃度の硝酸を用いた場合の銀の浸出百分率と固液比との関係を示すグラフである。It is a graph which shows the relationship between the leaching percentage of silver at the time of using nitric acid with a density | concentration of 0.1-5M, and solid-liquid ratio. 0.1〜5Mの濃度の塩酸を用いた場合の銀の浸出百分率と固液比との関係を示すグラフである。It is a graph which shows the relationship between the silver leaching percentage and solid-liquid ratio at the time of using 0.1-5M concentration hydrochloric acid. 1.0、0.5、0.25Mの濃度のチオ硫酸ナトリウム水溶液を用いた場合の銀の浸出量百分率とpHとの関係を示すグラフである(固液比=150mL/g、振り混ぜ速度=150rpm)。It is a graph which shows the relationship between the leaching amount percentage of silver at the time of using sodium thiosulfate aqueous solution of the density | concentration of 1.0, 0.5, and 0.25M, and pH (solid-liquid ratio = 150mL / g, shaking speed) = 150 rpm). 1.0、0.5、0.25Mの濃度のチオ硫酸ナトリウム水溶液を用いた場合の銀の浸出量百分率と固液比との関係を示すグラフである(pH=3、振り混ぜ速度=150rpm)。It is a graph which shows the relationship between the leaching amount percentage of silver at the time of using the sodium thiosulfate aqueous solution of 1.0, 0.5, and 0.25M concentration, and a solid-liquid ratio (pH = 3, shaking speed = 150 rpm). ). 銀のチオ尿素−希硫酸混合液に硫化ナトリウム水溶液を添加した場合の添加量と硫化物による銀の回収百分率との関係を示すグラフである。It is a graph which shows the relationship between the addition amount at the time of adding sodium sulfide aqueous solution to the silver thiourea-dilute sulfuric acid liquid mixture, and the recovery percentage of silver by sulfide. 酸性チオ尿素水溶液からの活性炭及びミカンジュース粕吸着剤(Bioadsorbent)による銀の吸着百分率(縦軸)に対する固液比(1mLの液に加えられた吸着剤のmg数、横軸)との関係を示すグラフである(振り混ぜ時間=12時間、振り混ぜ速度=150rpm、温度30℃)。The relationship between the solid-liquid ratio (mg of adsorbent added to 1 mL of liquid, horizontal axis) with respect to the percentage of silver adsorption (vertical axis) by activated charcoal from acidic thiourea aqueous solution and mandarin orange juice adsorbent (Bioadsorbent) This is a graph showing (shaking time = 12 hours, shaking speed = 150 rpm, temperature 30 ° C.). 様々な凝集・沈殿剤を用いた場合の銀の回収百分率と凝集剤の添加割合の関係を示すグラフである(温度=30℃、振り混ぜ時間=6〜12時間、振り混ぜ速度=150rpm、静置時間=24時間)。6 is a graph showing the relationship between the percentage of silver recovered and the proportion of flocculant added when various flocculants / precipitants are used (temperature = 30 ° C., shaking time = 6-12 hours, shaking speed = 150 rpm, static (Set time = 24 hours).

続いて、添付した図面を参照して、本発明を具体化した実施の形態について説明する。
使用済みディスプレイパネルの一例である使用済みプラズマテレビディスプレイパネル(以下、単に「ディスプレイパネル」と称する場合もある)を粉砕し、その粉砕物の試料の篩分けによる粒径分布を測定したところ図1のような結果が得られた。
粒径が53〜75μmのもの、及び53μm以下のものが全体の74%を占めたので、以降の実施においては両者の混合物を試料として使用した。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
A used plasma television display panel (hereinafter sometimes simply referred to as a “display panel”), which is an example of a used display panel, was pulverized and the particle size distribution obtained by sieving a sample of the pulverized product was measured. The following results were obtained.
Since particles having a particle size of 53 to 75 μm and those having a particle size of 53 μm or less accounted for 74% of the total, a mixture of both was used as a sample in the subsequent implementation.

この試料を王水を用いて溶解し、溶解液中の成分を島津製ICPS8100型原子発光ICP分光光度計を用いて測定し、固体試料中の各成分の濃度として計算したところ以下の結果が得られた。
ナトリウム2.96、カリウム6.12、カルシウム6.63、鉄1.43、ニッケル0.16、銅0.37、亜鉛7.14、銀2.35、アルミニウム0.27、ケイ素3.21、鉛4.23、金0.18 (単位はmg/g)を有していた。銀の他、亜鉛や鉛、ケイ素等が比較的高濃度で含まれていることが分かる。
This sample was dissolved using aqua regia, and the components in the solution were measured using an ICPS8100 atomic emission ICP spectrophotometer manufactured by Shimadzu and calculated as the concentration of each component in the solid sample. The following results were obtained. It was.
Sodium 2.96, potassium 6.12, calcium 6.63, iron 1.43, nickel 0.16, copper 0.37, zinc 7.14, silver 2.35, aluminum 0.27, silicon 3.21, It had 4.22 lead, 0.18 gold (unit: mg / g). It can be seen that zinc, lead, silicon and the like are contained at a relatively high concentration in addition to silver.

使用済みディスプレイパネルの粉砕物からの銀の浸出には浸出液(浸出原液)としてチオ尿素の水溶液を用いて行った。所定濃度の浸出液と所定の重量の粉砕物試料とを50mLフラスコ中に取り、30℃の温度に保たれたTHOMAS製AT24R型恒温振とう器を用いて所定時間振り混ぜる(即ち振とう処理を行う)ことにより銀の浸出を行った。島津製ICPS8100型原子発光ICP分光光度計を用いて浸出後の浸出液中の銀の濃度を測定し、これより液中に溶出した銀の物質量を計算した。 The leaching of silver from the pulverized product of the used display panel was performed using an aqueous solution of thiourea as the leaching solution (leaching stock solution). A predetermined concentration of leachate and a pulverized sample of a predetermined weight are placed in a 50 mL flask and shaken for a predetermined time using a THOMAS AT24R type constant temperature shaker maintained at a temperature of 30 ° C. (ie, a shaking treatment is performed). ) To leaching silver. The concentration of silver in the leachate after leaching was measured using an Shimadzu ICPS8100 atomic emission ICP spectrophotometer, and the amount of silver eluted in the liquor was calculated from this.

また浸出に供した固体試料(粉砕物試料)の重量と上記の固体試料中の銀濃度より計算した固体試料中の銀の物質量を計算し、これらの計算値を用いて銀の溶出割合を百分率として求め、これを浸出百分率とした。様々な条件における、この銀の浸出百分率に及ぼす様々な効果について検討した。 Also, calculate the amount of silver in the solid sample calculated from the weight of the solid sample (crushed sample) subjected to leaching and the silver concentration in the solid sample, and use these calculated values to calculate the silver elution ratio. Obtained as a percentage, and this was regarded as the leaching percentage. Various effects on the silver leaching percentage under various conditions were investigated.

図2に、浸出液として1)0.05M(モル)の濃度のチオ尿素水溶液、2)0.1Mの濃度のチオ尿素水溶液、3)0.05Mの濃度のチオ尿素と0.05Mの濃度の硫酸との混合水溶液(混合液)を用いた場合のディスプレイパネルの粉砕物からの銀の浸出百分率に及ぼす固液比の影響を示す。ここで固液比とは1gの粉砕物に対する加えた浸出液の液量(mL)の比を意味する。
チオ尿素だけを用いた場合では、いずれの濃度においても銀の浸出は殆ど見られない。しかし硫酸と混合することにより、固液比が100mL/g以上の条件下では、100%近い浸出が得られることが分かる。
Fig. 2 shows 1) a thiourea aqueous solution having a concentration of 0.05 M (mole), 2) a thiourea aqueous solution having a concentration of 0.1 M, 3) a thiourea having a concentration of 0.05 M, and a concentration of 0.05 M. The influence of the solid-liquid ratio on the leaching percentage of silver from the pulverized product of the display panel when a mixed aqueous solution (mixed solution) with sulfuric acid is used is shown. Here, the solid-liquid ratio means the ratio of the amount (mL) of the added leachate to 1 g of the pulverized product.
When only thiourea is used, silver leaching is hardly observed at any concentration. However, by mixing with sulfuric acid, it can be seen that near 100% leaching can be obtained under a solid-liquid ratio of 100 mL / g or more.

図3に固液比を250mL/gと一定にした場合の使用済みディスプレイパネルの粉砕物からの銀の浸出に及ぼすチオ尿素の濃度と硫酸濃度の影響を示す。硫酸濃度の効果に関しては、濃度の増加と共に浸出百分率はやや減少しており、その減少の程度はチオ尿素濃度が低下するほど著しい。硫酸濃度が0.25Mあるいは0.05Mと低下するとチオ尿素の濃度の増加と共に浸出百分率は若干低下するが、その効果は小さい。 FIG. 3 shows the effects of the thiourea concentration and the sulfuric acid concentration on the leaching of silver from the pulverized material of the used display panel when the solid-liquid ratio is kept constant at 250 mL / g. Regarding the effect of sulfuric acid concentration, the percentage of leaching decreases slightly with increasing concentration, the degree of decrease being more pronounced as the thiourea concentration decreases. When the sulfuric acid concentration is lowered to 0.25M or 0.05M, the leaching percentage slightly decreases with the increase of the thiourea concentration, but the effect is small.

図4に0.05Mの濃度のチオ尿素と0.1Mの濃度の硫酸の混合水溶液を用いた場合の様々な温度における使用済みディスプレイパネルの粉砕物からの銀の浸出に及ぼす振とう時間の影響を示す。温度には影響されず、100%近い浸出が短い振とう時間で達成できることが分かる。 FIG. 4 shows the effect of shaking time on silver leaching from spent display panel grinds at various temperatures using a mixed aqueous solution of 0.05 M thiourea and 0.1 M sulfuric acid. Indicates. It can be seen that near 100% leaching can be achieved with a short shaking time, independent of temperature.

上記の結果より、使用済みディスプレイパネルの粉砕物からの銀の浸出においては低濃度のチオ尿素と硫酸の混合水溶液の使用が効果的である。具体的には、硫酸の濃度は0.25M以下の濃度、好ましくは0.1〜0.05Mの濃度で、またチオ尿素は1M以下の濃度、好ましくは、0.25M以下、更に好ましくは0.1〜0.05Mの濃度で浸出を行うと短時間で効果的な浸出が達成できる。また温度の効果は小さいので室温での浸出が好ましい。 From the above results, it is effective to use a mixed aqueous solution of thiourea and sulfuric acid at a low concentration in the leaching of silver from the pulverized product of the used display panel. Specifically, the concentration of sulfuric acid is 0.25 M or less, preferably 0.1 to 0.05 M, and thiourea is 1 M or less, preferably 0.25 M or less, more preferably 0. When leaching is performed at a concentration of 1 to 0.05M, effective leaching can be achieved in a short time. Further, since the effect of temperature is small, leaching at room temperature is preferable.

チオ尿素と硫酸との混合水溶液の浸出液中に浸出された銀の回収には様々な方法が考えられるが、元素状の固体の銀として回収するには、銀塩写真の定着廃液からの銀の回収に実施されてきた金属置換法によることが好ましい。この方法により銀よりもイオン化傾向の大きな、鉄、アルミニウム、亜鉛等の金属を対象の液に加え、異種金属間での酸化還元反応又はイオン化傾向の差によって銀を元素状の高純度の銀として回収することができる。 Various methods can be considered for recovering silver leached in the leaching solution of a mixed aqueous solution of thiourea and sulfuric acid. To recover it as elemental solid silver, silver from the fixing waste solution of silver salt photography can be recovered. It is preferable to use a metal substitution method that has been practiced for recovery. By this method, metals such as iron, aluminum and zinc, which have a higher ionization tendency than silver, are added to the target liquid, and silver is converted into elemental high-purity silver by the oxidation-reduction reaction or the difference in ionization tendency between different metals. It can be recovered.

上記の銀を含む0.05Mの濃度のチオ尿素と0.1Mの濃度の硫酸の混合水溶液の浸出液に様々な重量の亜鉛粉末を加えて銀の析出を行った。析出した銀を濾過して回収した後、島津製ICPS8100型原子発光ICP分光光度計を用いて 濾液中の銀の濃度を測定し、亜鉛粉末添加前の銀濃度と比較することにより、銀の回収百分率を求めた。図5に30℃において銀の回収を行った場合の銀の回収百分率と固液比との関係を示す。この場合の固液比は上記の浸出液の体積と加えた亜鉛粉末の重量との比を示す。図より1mLの浸出液に対して6mg以上の亜鉛粉末を添加することにより、100%の銀の回収が達成できることが分かる。 Various weights of zinc powder were added to the leachate of a mixed aqueous solution of 0.05 M thiourea and 0.1 M sulfuric acid containing silver to precipitate silver. After collecting the precipitated silver by filtration, the concentration of silver in the filtrate is measured using an ICPS8100 atomic emission ICP spectrophotometer manufactured by Shimadzu, and compared with the silver concentration before addition of zinc powder. Percentage was determined. FIG. 5 shows the relationship between the silver recovery percentage and the solid-liquid ratio when silver is recovered at 30 ° C. In this case, the solid-liquid ratio indicates the ratio between the volume of the leachate and the weight of the added zinc powder. From the figure, it can be seen that 100% of silver can be recovered by adding 6 mg or more of zinc powder to 1 mL of leachate.

以上の実施の形態においては、チオ尿素の水溶液のみを用いた場合は、銀浸出の効果はほとんどなく、硫酸を混入することで浸出効果が著しく高くなる。ここで、酸性チオ尿素水溶液を形成する酸として硫酸を用いたが、その他の無機酸(例えば、塩酸、硝酸等)をチオ尿素に混入して用いることもできる。 In the above embodiment, when only an aqueous solution of thiourea is used, there is almost no silver leaching effect, and the leaching effect is remarkably enhanced by mixing sulfuric acid. Here, although sulfuric acid was used as an acid for forming an acidic thiourea aqueous solution, other inorganic acids (for example, hydrochloric acid, nitric acid, etc.) can be mixed into thiourea and used.

次に、酸性チオ尿素水溶液の代わりに、0.1〜5Mの濃度の硝酸水溶液、0.1〜5Mの濃度の塩酸水溶液を使用した場合の、銀の浸出百分率を図6、図7に示す。ここで100%は0.5Mのチオ尿素と0.1Mの硫酸を混合して酸性チオ尿素の水溶液を用いた場合としている。
この図6、図7から硝酸の場合であっても、塩酸の場合であっても、酸性チオ尿素の水溶液に比較すると浸出率は下がるが銀の抽出ができることがわかる。
Next, FIG. 6 and FIG. 7 show the leaching percentage of silver when a nitric acid aqueous solution having a concentration of 0.1 to 5M and a hydrochloric acid aqueous solution having a concentration of 0.1 to 5M are used in place of the acidic thiourea aqueous solution. . Here, 100% is a case where 0.5 M thiourea and 0.1 M sulfuric acid are mixed and an aqueous solution of acidic thiourea is used.
6 and 7, it can be seen that silver can be extracted although the leaching rate is lower compared to the aqueous solution of acidic thiourea in the case of nitric acid or hydrochloric acid.

また、図8はチオ硫酸ナトリウム水溶液を用いた場合の銀の浸出量百分率に及ぼすpHの影響を示しているが、特に、pHは浸出率には関係ないことがわかる。
図9はチオ硫酸ナトリウム水溶液を用いた場合の銀の浸出百分率に対する固液比の影響を示すグラフであるが70mL/gを超えると特に銀の浸出量には影響しないことが分かる。
Further, FIG. 8 shows the influence of pH on the percentage of silver leaching when an aqueous sodium thiosulfate solution is used, and it can be seen that pH is not particularly related to the leaching rate.
FIG. 9 is a graph showing the influence of the solid-liquid ratio on the silver leaching percentage in the case of using an aqueous sodium thiosulfate solution.

銀はソフトなルイス(Lewis)酸であるため、ソフトなルイス塩基である硫黄化合物と選択的に反応すると予想される。そこで、供試液に硫化ナトリウムを加えて銀を硫化銀の沈殿として回収することを試みた。図10に20mL及び50mLの濃度の硫化ナトリウム水溶液を添加した場合の、銀の沈殿回収百分率に及ぼす添加量の液−液比(添加した硫化ナトリウム水溶液/供試液)の影響を示す。1mLの供試液に0.05mLの硫化ナトリウム水溶液を添加すれば定量的な回収ができることが分かる。 Since silver is a soft Lewis acid, it is expected to react selectively with a sulfur compound that is a soft Lewis base. Then, it tried to collect | recover silver as a silver sulfide precipitation by adding sodium sulfide to a test liquid. FIG. 10 shows the influence of the added liquid-liquid ratio (added sodium sulfide aqueous solution / test solution) on the silver precipitation recovery percentage when 20 mL and 50 mL sodium sulfide aqueous solutions were added. It can be seen that quantitative recovery can be achieved by adding 0.05 mL of an aqueous sodium sulfide solution to 1 mL of the test solution.

銀一チオ尿素錯体(Ag[CS(NH223 +)は陽イオンであるため、陽イオン交換帯であるミカンジュース粕の吸着剤と代表的な吸着剤である活性炭を用いた酸性チオ尿素水溶液からの銀の回収・吸着を行った。図11に銀の吸着百分率に対する吸着剤と酸性チオ尿素水溶液との関係を示す。活性炭では固液比のいかんによらず銀は定量的に回収されるのに対してミカンジュース粕による吸着は小さい。しかしながら、吸着後に銀を固体として取り出す必要があるので、活性炭により吸着された銀はその後焼却等の方法により回収される。 Since the silver monothiourea complex (Ag [CS (NH 2 ) 2 ] 3 + ) is a cation, it is acidic using an adsorbent for citrus juice that is a cation exchange zone and activated carbon that is a typical adsorbent. Silver was collected and adsorbed from the aqueous thiourea solution. FIG. 11 shows the relationship between the adsorbent and the acidic thiourea aqueous solution with respect to the silver adsorption percentage. In activated carbon, silver is recovered quantitatively regardless of the solid-liquid ratio, but adsorption by citrus juice is small. However, since it is necessary to take out the silver as a solid after the adsorption, the silver adsorbed by the activated carbon is subsequently recovered by a method such as incineration.

吸着法では吸着した銀をその後更に焼却等による固体の銀化合物にする必要がある。そこで、固体の銀化合物として回収するために、柿渋やカチオンセルロースを用いた凝集沈殿法による銀化合物の分離を試みた。柿渋は18%の柿タンニンを含む渋柿粉末を用いた。カチオンセルロースとしては、東邦化学製のカチオナールHC/LCを用いた。 In the adsorption method, the adsorbed silver needs to be further converted into a solid silver compound by incineration or the like. Then, in order to collect | recover as a solid silver compound, it tried to isolate | separate the silver compound by the coagulation precipitation method using astringent astringent or cationic cellulose. For the persimmon astringent, a persimmon powder containing 18% persimmon tannin was used. As cationic cellulose, Kathional HC / LC manufactured by Toho Chemical was used.

図12に様々な凝集剤の液を用いた場合の凝集沈殿による銀の回収百分率(=(最初の銀濃度−沈殿後の銀濃度)/最初の銀濃度 ×100)との銀の1mLの供試液に加えた凝集剤の液量(mL)の比率との関係を示す。60mgの柿渋粉末をpH=13.85の水30mLに溶解して調製した凝集剤(PTS−C)を用いると、0.3mL/mLの添加で銀をほぼ定量的に回収できることが分かる。これに対して他の凝集剤では供試液と同体積の凝集剤を入れても十分には回収できない。図12において、PTS−Aは2.5gの柿渋粉末を50mLのpH7の水に溶解させた液、PTS−Bは2.5gの柿渋粉末を50mLのpH12の水に溶解させた液、PTS−Cは60mgの柿渋粉末を30mLのpH13.85の水に溶解させた液、CationalHC/LCは0.25gのCationalHC/LCを100mLのpH7の水に溶解させた液を示す。 FIG. 12 shows the supply of 1 mL of silver with the percentage of silver recovered by aggregation precipitation (= (initial silver concentration−silver concentration after precipitation) / initial silver concentration × 100) using various coagulant liquids. The relationship with the ratio of the liquid volume (mL) of the flocculant added to the test liquid is shown. It can be seen that when a flocculant (PTS-C) prepared by dissolving 60 mg of persimmon astringent powder in 30 mL of pH = 13.85 water is used, silver can be recovered almost quantitatively by the addition of 0.3 mL / mL. On the other hand, other flocculants cannot be sufficiently recovered even when the same volume of flocculant as the test solution is added. In FIG. 12, PTS-A is a solution obtained by dissolving 2.5 g of persimmon astringent powder in 50 mL of pH 7 water, PTS-B is a solution obtained by dissolving 2.5 g of persimmon astringent powder in 50 mL of pH 12 water, PTS- C represents a solution obtained by dissolving 60 mg of persimmon astringent powder in 30 mL of pH 13.85 water, and National HC / LC represents a solution obtained by dissolving 0.25 g of National HC / LC in 100 mL of pH 7 water.

従って以上のことから以下のことが分かる。
1)プラズマテレビパネル廃棄物の粉体中の銀は希硫酸とチオ尿素の混合水溶液によって短時間で効率的に浸出可能である。また、塩酸、硝酸、硫酸、チオ硫酸ナトリウム等でも銀の浸出はできる。
2)浸出された銀は活性炭により定量的に吸着されるが、その後焼却処分などによる固体の銀が回収が必要となる。
3)柿渋粉末をpH=13〜14の水に溶解した液を上記の浸出液に加えると銀は定量的に沈殿として回収される。
4)硫化ナトリウムの添加によっても銀は硫化銀の沈殿として回収される。
Therefore, the following can be understood from the above.
1) Silver in the powder of plasma TV panel waste can be efficiently leached in a short time with a mixed aqueous solution of dilute sulfuric acid and thiourea. Silver can also be leached with hydrochloric acid, nitric acid, sulfuric acid, sodium thiosulfate, or the like.
2) The leached silver is adsorbed quantitatively by the activated carbon, but solid silver by incineration or the like thereafter needs to be recovered.
3) When a solution obtained by dissolving strawberry astringent powder in water of pH = 13 to 14 is added to the above leachate, silver is quantitatively recovered as a precipitate.
4) Silver is also recovered as a silver sulfide precipitate by the addition of sodium sulfide.

以上の実施の形態においては、使用済みプラズマテレビディスプレイパネルから銀を浸出する場合について説明したが、その他の使用済みディスプレイパネル(例えば、液晶パネル等)においても同様に処理できる。 In the above embodiment, the case where silver is leached from a used plasma television display panel has been described, but the same processing can be applied to other used display panels (for example, liquid crystal panels).

Claims (9)

使用済みディスプレイパネルを破砕し、チオ尿素水溶液と酸との混合液を用いて前記使用済みディスプレイパネルから含まれる銀を浸出させて浸出液を造り、該浸出液から前記銀を回収することを特徴とする使用済みディスプレイパネルからの銀の回収方法。 Crushing a used display panel, leaching silver contained in the used display panel using a mixed solution of a thiourea aqueous solution and an acid to make a leachate, and collecting the silver from the leachate How to recover silver from used display panels. 請求項1記載の使用済みディスプレイパネルからの銀の回収方法において、前記浸出液には前記銀が、Ag[CS(NH223の陽イオン錯体として溶解していることを特徴とする使用済みディスプレイパネルからの銀の回収方法。 2. The method for recovering silver from a used display panel according to claim 1, wherein the silver is dissolved as a cation complex of Ag [CS (NH 2 ) 2 ] 3 in the leachate. For collecting silver from used display panels. 請求項1又は2記載の使用済みディスプレイパネルからの銀の回収方法において、前記破砕した使用済みディスプレイパネルを前記混合液に浸漬した後、一定時間の振とう処理を行って、前記銀の浸出を行うことを特徴とする使用済みディスプレイパネルからの銀の回収方法。 3. The method for recovering silver from a used display panel according to claim 1 or 2, wherein the crushed used display panel is immersed in the mixed solution, and then subjected to a shaking treatment for a predetermined time, thereby leaching the silver. A method for recovering silver from a used display panel. 請求項1〜3のいずれか1に記載の使用済みディスプレイパネルからの銀の回収方法において、前記混合液には、チオ尿素が0.05モル〜1モルの範囲で含まれることを特徴とする使用済みディスプレイパネルからの銀の回収方法。 The method for recovering silver from a used display panel according to claim 1, wherein the mixed solution contains thiourea in a range of 0.05 mol to 1 mol. How to recover silver from used display panels. 請求項1〜4のいずれか1に記載の使用済みディスプレイパネルからの銀の回収方法において、前記酸として無機酸が使用されていることを特徴とする使用済みディスプレイパネルからの銀の回収方法。 The method for recovering silver from a used display panel according to claim 1, wherein an inorganic acid is used as the acid. 請求項5記載の使用済みディスプレイパネルからの銀の回収方法において、前記無機酸は硫酸であって、0.05モル〜0.25モルの範囲にあることを特徴とする使用済みディスプレイパネルからの銀の回収方法。 6. The method for recovering silver from a used display panel according to claim 5, wherein the inorganic acid is sulfuric acid and is in the range of 0.05 mol to 0.25 mol. Silver recovery method. 請求項1記載の使用済みディスプレイパネルからの銀の回収方法において、前記浸出液からの銀の回収は金属置換法によって行うことを特徴とする使用済みディスプレイパネルからの銀の回収方法。 The method for recovering silver from a used display panel according to claim 1, wherein the silver is recovered from the leachate by a metal substitution method. 請求項1記載の使用済みディスプレイパネルからの銀の回収方法において、前記浸出液からの銀の回収は活性炭を用いて、硫化ナトリウムを添加して、又は柿渋をpH13〜14の水に溶解した液を加えることによって行うことを特徴とする使用済みディスプレイパネルからの銀の回収方法。 The method for recovering silver from a used display panel according to claim 1, wherein the recovery of silver from the leachate is performed by using activated carbon, adding sodium sulfide, or dissolving a persimmon astringent in water having a pH of 13-14. A method for recovering silver from a used display panel, which is characterized by being added. 請求項1〜8のいずれか1に記載の使用済みディスプレイパネルからの銀の回収方法において、前記チオ尿素水溶液と酸との混合液の代わりに、塩酸、硫酸、硝酸及びチオ硫酸ナトリウムのいずれか1又は2の水溶液を用いたことを特徴とする使用済みディスプレイパネルからの銀の回収方法。 The method for recovering silver from a used display panel according to claim 1, wherein any one of hydrochloric acid, sulfuric acid, nitric acid, and sodium thiosulfate is used instead of the mixed solution of the thiourea aqueous solution and the acid. A method for recovering silver from a used display panel, wherein the aqueous solution 1 or 2 is used.
JP2011048114A 2011-03-04 2011-03-04 Method for recovering silver from used display panel Pending JP2012184472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048114A JP2012184472A (en) 2011-03-04 2011-03-04 Method for recovering silver from used display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048114A JP2012184472A (en) 2011-03-04 2011-03-04 Method for recovering silver from used display panel

Publications (1)

Publication Number Publication Date
JP2012184472A true JP2012184472A (en) 2012-09-27

Family

ID=47014783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048114A Pending JP2012184472A (en) 2011-03-04 2011-03-04 Method for recovering silver from used display panel

Country Status (1)

Country Link
JP (1) JP2012184472A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351127A (en) * 1976-10-19 1978-05-10 Mines Fond Zinc Vieille Method of recovering silver from solid raw materials
JPS60159135A (en) * 1983-12-27 1985-08-20 エス・カー・ウエー・トロストベルク・アクチエンゲゼルシヤフト Isolation of noble metal
JPS6360109A (en) * 1986-08-26 1988-03-16 ノランダ インコ−ポレ−テツド Collection of silver from zinc calcine or neutral or low acidic lixiviation residue
JPH0215128A (en) * 1988-06-30 1990-01-18 Koji Sakaguchi Method of adsorbing and recovering metal element such as noble metal by utilizing hydrous gel composition consisting of astringent persimmon-aldehyde-water, astringent persimmon-acid-water
JP2005334838A (en) * 2004-05-31 2005-12-08 Hitachi Zosen Corp Recycling system for valuable metal
JP2009185389A (en) * 2009-05-11 2009-08-20 Hitachi Zosen Corp Recycling method for valuable metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351127A (en) * 1976-10-19 1978-05-10 Mines Fond Zinc Vieille Method of recovering silver from solid raw materials
JPS60159135A (en) * 1983-12-27 1985-08-20 エス・カー・ウエー・トロストベルク・アクチエンゲゼルシヤフト Isolation of noble metal
JPS6360109A (en) * 1986-08-26 1988-03-16 ノランダ インコ−ポレ−テツド Collection of silver from zinc calcine or neutral or low acidic lixiviation residue
JPH0215128A (en) * 1988-06-30 1990-01-18 Koji Sakaguchi Method of adsorbing and recovering metal element such as noble metal by utilizing hydrous gel composition consisting of astringent persimmon-aldehyde-water, astringent persimmon-acid-water
JP2005334838A (en) * 2004-05-31 2005-12-08 Hitachi Zosen Corp Recycling system for valuable metal
JP2009185389A (en) * 2009-05-11 2009-08-20 Hitachi Zosen Corp Recycling method for valuable metal

Similar Documents

Publication Publication Date Title
Syed Recovery of gold from secondary sources—A review
CN103397189B (en) A kind of method of recover silver and other metal from Oily wastewater
Haver et al. Recovery of copper, iron, and sulfur from chalcopyrite concentrate using a ferric chloride leach
US10526682B2 (en) Methods, materials and techniques for precious metal recovery
US10563283B2 (en) Methods, materials and techniques for precious metal recovery
JP6011809B2 (en) Method for producing gold powder with high bulk density
Martinez et al. Kinetic aspects of gold and silver recovery in cementation with zinc power and electrocoagulation iron process
EP0233918A4 (en) Process for metal recovery and compositions useful therein.
CA2194137A1 (en) Precious metal extraction process
Li et al. Efficient separation of Zn (Ⅱ) from Cd (Ⅱ) in sulfate solution by mechanochemically activated serpentine
CA1107077A (en) Extraction of gold and silver
Betancur et al. Gold recovery from ammonia-thiosulfate leaching solution assisted by PEI-functionalized magnetite nanoparticles
Yanuar Leaching and adsorption of gold from lape-sumbawa rocks (Indonesia) by hypochlorite-chloride
Sun et al. Kinetics of gold chloride adsorption onto activated carbon
Figueroa et al. Recovery of gold and silver and removal of copper, zinc and lead ions in pregnant and barren cyanide solutions
EP4143354A1 (en) Methods for recovering a precious metal from refractory ores by near-ambient alkaline pre-oxidation and complexation
JP2012184472A (en) Method for recovering silver from used display panel
Aktas et al. Recovery of mercury from spent silver oxide button cells
Feng et al. Adsorption of gold on albite in acidic chloride media
JP2009102722A (en) Method for obtaining precious metal from strongly acidic wastewater containing precious metal and metal other than precious metal
Kassab Comparative study for leaching processes of uranium, copper and cadmium from gibbsite ore material of Talet Seleim, Southwestern, Sinai, Egypt
CA2595475C (en) Method and apparatus for the recovery of refractory mineral ores
Tache New possibilities in leaching of gold ores
Vázquez et al. Recovery of silver from cyanide solutions using electrochemical process like alternative for Merrill-Crowe process
Labra et al. Silver cementation with zinc from residual X ray fixer, experimental and thermochemical study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805