JP2012184293A - Polyamide composition and molded article - Google Patents

Polyamide composition and molded article Download PDF

Info

Publication number
JP2012184293A
JP2012184293A JP2011046978A JP2011046978A JP2012184293A JP 2012184293 A JP2012184293 A JP 2012184293A JP 2011046978 A JP2011046978 A JP 2011046978A JP 2011046978 A JP2011046978 A JP 2011046978A JP 2012184293 A JP2012184293 A JP 2012184293A
Authority
JP
Japan
Prior art keywords
polyamide
acid
diamine
polyamide composition
dicarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011046978A
Other languages
Japanese (ja)
Other versions
JP5718101B2 (en
Inventor
Kazunori Terada
和範 寺田
Shinji Ieda
真次 家田
Yu Hinoto
祐 日戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2011046978A priority Critical patent/JP5718101B2/en
Publication of JP2012184293A publication Critical patent/JP2012184293A/en
Application granted granted Critical
Publication of JP5718101B2 publication Critical patent/JP5718101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyamide composition having excellent toughness and color, and further having excellent discoloration resistance.SOLUTION: The polyamide composition includes (A) the following polyamide and (B) titanium oxide: the polyamide (A) obtained by polymerizing (a) dicarboxylic acids containing at least 50 mol% of an alicyclic dicarboxylic acid, and (b) diamines containing at least 50 mol% of a diamine having a pentamethylenediamine skeleton, and having 30-60 μeq/g of the content of cyclic amino terminals.

Description

本発明は、ポリアミド組成物及び成形品に関する。   The present invention relates to a polyamide composition and a molded article.

ポリアミド6及びポリアミド66(以下、それぞれ、「PA6」及び「PA66」と略称する場合がある。)等に代表されるポリアミドは、成形加工性、機械物性及び耐薬品性に優れていることから、自動車用、電気及び電子用、産業資材用、並びに日用及び家庭品用等の各種部品材料として広く用いられている。   Polyamides typified by polyamide 6 and polyamide 66 (hereinafter sometimes abbreviated as “PA6” and “PA66”, respectively) and the like are excellent in molding processability, mechanical properties and chemical resistance. Widely used as various parts materials for automobiles, electric and electronic, industrial materials, daily use and household goods.

自動車産業において、環境に対する取り組みとして、排出ガス低減のために金属代替による車体軽量化の要求がある。この要求に応えるために、外装材料や内装材料等にポリアミド材料が一段と用いられるようになり、ポリアミド材料に対する耐熱性、強度、及び外観等の要求特性のレベルは一層向上している。特にエンジンルーム内の温度が上昇傾向にあるため、ポリアミド材料に対する高耐熱化の要求が強まっている。
また、家電等の電気及び電子産業において、表面実装(SMT)ハンダの鉛フリー化に対応すべく、ハンダの融点上昇に耐えることができる、ポリアミド材料に対する高耐熱化が要求されている。
In the automobile industry, as an environmental measure, there is a demand for weight reduction of a vehicle body by metal replacement in order to reduce exhaust gas. In order to meet this requirement, polyamide materials are increasingly used for exterior materials, interior materials, and the like, and the level of required properties such as heat resistance, strength, and appearance with respect to polyamide materials is further improved. In particular, since the temperature in the engine room is on the rise, there is an increasing demand for higher heat resistance for polyamide materials.
Further, in the electrical and electronic industries such as home appliances, in order to cope with the lead-free surface mount (SMT) solder, it is required to increase the heat resistance of the polyamide material that can withstand the rise in the melting point of the solder.

PA6及びPA66等のポリアミドでは、融点が低く、耐熱性の点でこれらの要求を満たすことができない。
PA6及びPA66等の従来のポリアミドの前記耐熱性に関する問題点を解決するために、高融点ポリアミドが提案されている。具体的には、テレフタル酸とヘキサメチレンジアミンからなるポリアミド(以下、「PA6T」と略称する場合がある。)等が提案されている。
しかしながら、PA6Tは、融点が370℃程度という高融点ポリアミドであるため、溶融成形により成形品を得ようとしても、ポリアミドの熱分解が激しく起こり、十分な特性を有する成形品を得ることが難しい。
Polyamides such as PA6 and PA66 have a low melting point and cannot satisfy these requirements in terms of heat resistance.
In order to solve the problems related to the heat resistance of conventional polyamides such as PA6 and PA66, high melting point polyamides have been proposed. Specifically, a polyamide composed of terephthalic acid and hexamethylenediamine (hereinafter sometimes abbreviated as “PA6T”) has been proposed.
However, since PA6T is a high-melting-point polyamide having a melting point of about 370 ° C., even if an attempt is made to obtain a molded product by melt molding, the polyamide undergoes severe thermal decomposition, making it difficult to obtain a molded product having sufficient characteristics.

PA6Tの前記熱分解に関する問題点を解決するために、PA6TにPA6及びPA66等の脂肪族ポリアミドや、イソフタル酸とヘキサメチレンジアミンとからなる非晶性芳香族ポリアミド(以下、「PA6I」と略称する場合がある。)等を共重合させ、融点を220〜340℃程度にまで低融点化したテレフタル酸とヘキサメチレンジアミンとを主成分とする高融点半芳香族ポリアミド(以下、「6T系共重合ポリアミド」と略称する場合がある。)等が提案されている。
6T系共重合体ポリアミドとして、特許文献1には、芳香族ジカルボン酸と脂肪族ジアミンからなり、脂肪族ジアミンがヘキサメチレンジアミン及び2−メチルペンタメチレンジアミンの混合物である芳香族ポリアミド(以下、「PA6T/2MPDT」と略称する場合がある。)が開示されている。
In order to solve the problems related to the thermal decomposition of PA6T, PA6T is composed of an aliphatic polyamide such as PA6 and PA66, or an amorphous aromatic polyamide composed of isophthalic acid and hexamethylenediamine (hereinafter abbreviated as “PA6I”). High melting point semi-aromatic polyamide (hereinafter referred to as “6T copolymer”) containing terephthalic acid and hexamethylenediamine as main components, which have been melted to about 220-340 ° C. And may be abbreviated as “polyamide”).
As a 6T copolymer polyamide, Patent Document 1 discloses an aromatic polyamide (hereinafter referred to as “a mixture of hexamethylene diamine and 2-methylpentamethylene diamine”), which is composed of an aromatic dicarboxylic acid and an aliphatic diamine. May be abbreviated as “PA6T / 2MPDT”).

また、芳香族ジカルボン酸と脂肪族ジアミンからなる芳香族ポリアミドに対して、アジピン酸とテトラメチレンジアミンからなる高融点脂肪族ポリアミド(以下、「PA46」と略称する場合がある。)や、脂環族ジカルボン酸と脂肪族ジアミンからなる脂環族ポリアミド等が提案されている。
例えば、特許文献2及び3には、1,4−シクロヘキサンジカルボン酸とヘキサメチレンジアミンからなる脂環族ポリアミド(以下、「PA6C」と略称する場合がある。)と他のポリアミドとの半脂環族ポリアミド(以下、「PA6C共重合ポリアミド」と略称する場合がある。)が開示されている。
特許文献2には、ジカルボン酸単位として1,4−シクロヘキサンジカルボン酸を1〜40%配合した半脂環族ポリアミドの電気及び電子部材は、ハンダ耐熱性が向上することが開示され、特許文献3には、半脂環族ポリアミドの自動車部品は、流動性及び靭性等に優れていることが開示されている。
Further, in contrast to an aromatic polyamide composed of an aromatic dicarboxylic acid and an aliphatic diamine, a high melting point aliphatic polyamide composed of adipic acid and tetramethylene diamine (hereinafter sometimes abbreviated as “PA46”) or an alicyclic ring. An alicyclic polyamide composed of an aliphatic dicarboxylic acid and an aliphatic diamine has been proposed.
For example, in Patent Documents 2 and 3, a semi-alicyclic ring of an alicyclic polyamide (hereinafter sometimes abbreviated as “PA6C”) composed of 1,4-cyclohexanedicarboxylic acid and hexamethylenediamine and another polyamide. Group polyamides (hereinafter may be abbreviated as “PA6C copolymerized polyamides”) are disclosed.
Patent Document 2 discloses that semi-alicyclic polyamide electrical and electronic members containing 1 to 40% 1,4-cyclohexanedicarboxylic acid as a dicarboxylic acid unit have improved solder heat resistance. Discloses that semi-alicyclic polyamide automobile parts are excellent in fluidity and toughness.

特許文献4には、脂環族ジカルボン酸と分岐した置換基を持つジアミンとからなる脂環族ポリアミドが、耐熱性、流動性、靭性、低吸水性、及び剛性に優れると共に、高い融点を有するポリアミドであることが開示されている。
特許文献5には、1,4−シクロヘキサンジカルボン酸を含むジカルボン酸単位と2−メチル−1,8−オクタンジアミンを含むジアミン単位とからなるポリアミドが耐光性、靭性、成形性、軽量性、及び耐熱性等に優れることが開示されている。また、該ポリアミドの製造方法として、1,4−シクロヘキサンジカルボン酸及び1,9−ノナンジアミンを230℃以下で反応してプレポリマーを作り、そのプレポリマーを230℃で固相重合し融点311℃のポリアミドを製造することが開示されている。
また、特許文献6には、トランス/シス比が50/50から97/3である1,4−シクロヘキサンジカルボン酸を原料として用いたポリアミドが、耐熱性、低吸水性、及び耐光性などに優れることが開示されている。
In Patent Document 4, an alicyclic polyamide composed of an alicyclic dicarboxylic acid and a diamine having a branched substituent has excellent heat resistance, fluidity, toughness, low water absorption, rigidity, and a high melting point. It is disclosed to be a polyamide.
Patent Document 5 discloses that a polyamide comprising a dicarboxylic acid unit containing 1,4-cyclohexanedicarboxylic acid and a diamine unit containing 2-methyl-1,8-octanediamine is light resistance, toughness, moldability, lightness, and It is disclosed that it is excellent in heat resistance and the like. Further, as a method for producing the polyamide, 1,4-cyclohexanedicarboxylic acid and 1,9-nonanediamine are reacted at 230 ° C. or lower to form a prepolymer, and the prepolymer is solid-phase polymerized at 230 ° C. to have a melting point of 311 ° C. The production of polyamides is disclosed.
In Patent Document 6, a polyamide using 1,4-cyclohexanedicarboxylic acid having a trans / cis ratio of 50/50 to 97/3 as a raw material is excellent in heat resistance, low water absorption, light resistance, and the like. It is disclosed.

特許文献7には、テレフタル酸を含む芳香族二酸と2−メチルペンタンジアミンとを含むジアミン成分からなるポリアミドの製造において、蟻酸の添加により2−メチルペンタメチレンジアミンの環化(環状アミノ基となる)が有意に低くなることが開示されている。
また、特許文献8及び9には、ポリペンタメチレンアジパミド樹脂において、ペンタメチレンジアミン由来の環状アミノ基がポリマー末端に結合することを重合温度の制御等によって低減することにより、ポリアミドの滞留安定性と耐熱性とを向上できることが開示されている。
In Patent Document 7, in the production of a polyamide comprising a diamine component containing an aromatic diacid containing terephthalic acid and 2-methylpentanediamine, cyclization of 2-methylpentamethylenediamine by addition of formic acid (with cyclic amino group and Is significantly reduced.
In Patent Documents 8 and 9, in polypentamethylene adipamide resin, the retention of the polyamide is stabilized by reducing the bonding of the cyclic amino group derived from pentamethylenediamine to the polymer terminal by controlling the polymerization temperature. It is disclosed that the heat resistance and the heat resistance can be improved.

特表平6−503590号公報JP-T 6-503590 特表平11−512476号公報Japanese National Patent Publication No. 11-512476 特表2001−514695号公報Special table 2001-514695 gazette 国際公開第2009/113590号パンフレットInternational Publication No. 2009/113590 特開平9−12868号公報Japanese Patent Laid-Open No. 9-12868 国際公開第2002/048239号パンフレットInternational Publication No. 2002/048239 Pamphlet 特表平8−503018号公報Japanese National Patent Publication No. 8-503018 特開2003−292612号公報JP 2003-292612 A 特開2004−75932号公報JP 2004-75932 A

6T系共重合ポリアミドは、確かに低吸水性、高耐熱性、及び高耐薬品性という特性を有してはいるものの、流動性が低く成形性や成形品表面外観が不十分であり、靭性及び耐光性に劣る。そのため、外装部品のような成形品として優れた外観が要求されたり、日光等に曝されたりする用途に用いられる場合には、それらの特性の改善が要求される。
また、6T系共重合ポリアミドは、比重も大きく、軽量性の面でも改善が望まれている。
Although 6T copolymer polyamide certainly has the characteristics of low water absorption, high heat resistance, and high chemical resistance, it has low flowability and insufficient moldability and molded product surface appearance, and toughness. Inferior to light resistance. For this reason, when it is used for an application that requires an excellent appearance as a molded product such as an exterior part or is exposed to sunlight or the like, improvement of those characteristics is required.
In addition, 6T copolymer polyamide has a large specific gravity, and improvement in lightness is also desired.

特許文献1に開示されているPA6T/2MPDTは、従来のPA6T共重合ポリアミドの問題点を一部改善することができるが、流動性、成形性、靭性、成形品表面外観、及び耐光性の面でその改善水準は不十分である。
また、PA46は、良好な耐熱性及び成形性を有するものの、吸水率が高く、また、吸水による寸法変化や機械物性の低下が著しく大きいという問題点を持っており、自動車用途等で要求される寸法変化の面で要求を満たせない場合がある。
The PA6T / 2MPDT disclosed in Patent Document 1 can partially improve the problems of the conventional PA6T copolymerized polyamide, but the flowability, moldability, toughness, surface appearance of the molded product, and light resistance However, the level of improvement is insufficient.
In addition, PA46 has good heat resistance and moldability, but has a high water absorption rate, and has a problem that a dimensional change and a decrease in mechanical properties due to water absorption are remarkably large. There are cases where the requirements cannot be met in terms of dimensional changes.

特許文献2及び3に開示されているPA6C共重合ポリアミドも、吸水率が高く、また、流動性が十分でない等の問題がある。
さらに、特許文献5及び6に開示されているポリアミドも、靭性、剛性、及び流動性の面で改善が不十分である。
The PA6C copolymer polyamides disclosed in Patent Documents 2 and 3 also have problems such as high water absorption and insufficient fluidity.
Furthermore, the polyamides disclosed in Patent Documents 5 and 6 are also insufficiently improved in terms of toughness, rigidity, and fluidity.

また、特許文献7に開示されているポリアミドに関しては、ポリマー末端に結合する環状アミノ基の量を低下させることによって高分子量体が得られることが記載されているが、ポリマー末端に結合する環状アミノ基の量をある一定以上を有することによる利点についての記載はない。
また、特許文献8及び9に開示されているポリアミドに関しては、ポリマー末端に結合する環状アミノ基の量をある一定以上有することによる利点についての記載はなく、また重縮合温度を低下させることによりポリマー末端に結合する環状アミノ基の量が低減するため300℃以上の高融点のポリアミドを製造することは想定していない。
In addition, regarding the polyamide disclosed in Patent Document 7, it is described that a high molecular weight product can be obtained by reducing the amount of cyclic amino group bonded to the polymer terminal, but cyclic amino bonded to the polymer terminal is described. There is no mention of the advantages of having a certain amount of groups.
In addition, with respect to the polyamides disclosed in Patent Documents 8 and 9, there is no description about the advantage of having a certain amount or more of the cyclic amino group bonded to the polymer terminal, and the polymer is obtained by lowering the polycondensation temperature. Since the amount of the cyclic amino group bonded to the terminal is reduced, it is not assumed that a polyamide having a high melting point of 300 ° C. or higher is produced.

また、これら従来提案されているポリアミドでは、特に靭性や耐変色性という観点においても、電気及び電子産業における要求を満足することができない。   In addition, these conventionally proposed polyamides cannot satisfy the requirements in the electrical and electronic industries, particularly in terms of toughness and discoloration resistance.

本発明が解決しようとする課題は、靭性及び色調に優れ、さらに耐変色性に優れる、ポリアミド組成物及び成形体を提供することにある。   The problem to be solved by the present invention is to provide a polyamide composition and a molded article which are excellent in toughness and color tone and further excellent in discoloration resistance.

本発明者らは、前記課題を解決するため鋭意検討を重ねた結果、少なくとも50モル%の脂環族ジカルボン酸を含むジカルボン酸と、少なくとも50モル%のペンタメチレンジアミン骨格を有するジアミンを含むジアミンとを重合させたポリアミドであって、環状アミノ末端量を特定量有するポリアミドと、酸化チタンとを含有するポリアミド組成物が、前記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下のとおりである。
As a result of intensive studies to solve the above problems, the present inventors have found that a diamine containing a dicarboxylic acid containing at least 50 mol% of an alicyclic dicarboxylic acid and a diamine having a pentamethylenediamine skeleton of at least 50 mol%. It was found that a polyamide composition containing a specific amount of a cyclic amino terminal and a titanium oxide can solve the above-mentioned problems, and has completed the present invention.
That is, the present invention is as follows.

〔1〕
(a)少なくとも50モル%の脂環族ジカルボン酸を含むジカルボン酸と、(b)少なくとも50モル%のペンタメチレンジアミン骨格を有するジアミンを含むジアミンと、を重合させたポリアミドであって、環状アミノ末端量が30〜60μ当量/gである、(A)ポリアミドと、
(B)酸化チタンと、
を、含有するポリアミド組成物。
〔2〕
前記(A)ポリアミドの25℃の硫酸相対粘度ηrが2.3以上である、前記〔1〕に記載のポリアミド組成物。
〔3〕
前記(A)ポリアミドが、(c)ラクタム及び/又はアミノカルボン酸を、さらに共重合させたポリアミドである前記〔1〕又は〔2〕に記載のポリアミド組成物。
〔4〕
前記(A)ポリアミドの環状アミノ末端が、ペンタメチレンジアミン骨格を有するジアミンの環化反応により形成されたものである、前記〔1〕乃至〔3〕のいずれか一に記載のポリアミド組成物。
〔5〕
前記(A)ポリアミドが、重合工程の少なくとも一部において固相重合工程を経て得られるポリアミドである、前記〔1〕乃至〔4〕のいずれか一に記載のポリアミド組成物。
〔6〕
前記(A)ポリアミドの融点が270〜350℃である、前記〔1〕乃至〔5〕のいずれか一に記載のポリアミド組成物。
〔7〕
前記(B)酸化チタンが、数平均粒子径が0.1〜0.8μmの酸化チタンである、前記〔1〕乃至〔6〕のいずれか一に記載のポリアミド組成物。
〔8〕
前記(B)酸化チタンが、無機コーティング及び/又は有機コーティングされている、前記〔1〕乃至〔7〕のいずれか一に記載のポリアミド組成物。
〔9〕
前記無機コーティングが金属酸化物コーティングである、前記〔8〕に記載のポリアミド組成物。
〔10〕
(C)無機充填材をさらに含有する、前記〔1〕乃至〔9〕のいずれか一に記載のポリアミド組成物。
〔11〕
前記(C)無機充填材が、ガラス繊維、チタン酸カリウム繊維、タルク、ウォラストナイト、カオリン、マイカ、炭酸カルシウム及びクレーからなる群から選ばれる1種以上である、前記〔10〕に記載のポリアミド組成物。
〔12〕
(D)フェノール系熱安定剤をさらに含有する、前記〔1〕乃至〔11〕のいずれか一に記載のポリアミド組成物。
〔13〕
(E)アミン系光安定剤をさらに含有する、前記〔1〕乃至〔12〕のいずれか一に記載のポリアミド組成物。
〔14〕
前記(E)アミン系光安定剤の分子量が1,000未満である、前記〔13〕に記載のポリアミド組成物。
〔15〕
(A)(a)少なくとも50モル%の脂環族ジカルボン酸を含むジカルボン酸と、(b)少なくとも50モル%のペンタメチレンジアミン骨格を有するジアミンを含むジアミンと、を重合させたポリアミドであって、環状アミノ末端量が30〜60μ当量/gである、ポリアミドを30〜95質量%、
(B)酸化チタンを5〜45質量%、
(C)無機充填材を0〜50質量%、
(D)フェノール系熱安定剤を0〜1質量%、
(E)アミン系光安定剤を0〜1質量%、
含有するポリアミド組成物。
〔16〕
前記〔1〕乃至〔15〕のいずれか一に記載のポリアミド組成物からなる成形品。
[1]
A polyamide obtained by polymerizing (a) a dicarboxylic acid containing at least 50 mol% alicyclic dicarboxylic acid and (b) a diamine containing a diamine having a pentamethylenediamine skeleton at least 50 mol%, (A) polyamide having a terminal amount of 30 to 60 μeq / g;
(B) titanium oxide;
A polyamide composition.
[2]
The polyamide composition according to [1], wherein the polyamide (A) has a sulfuric acid relative viscosity ηr at 25 ° C. of 2.3 or more.
[3]
The polyamide composition according to [1] or [2], wherein the (A) polyamide is a polyamide obtained by further copolymerizing (c) a lactam and / or an aminocarboxylic acid.
[4]
The polyamide composition according to any one of [1] to [3], wherein the cyclic amino terminal of the polyamide (A) is formed by a cyclization reaction of a diamine having a pentamethylenediamine skeleton.
[5]
The polyamide composition according to any one of [1] to [4], wherein (A) the polyamide is a polyamide obtained through a solid phase polymerization step in at least a part of the polymerization step.
[6]
The polyamide composition according to any one of [1] to [5], wherein the polyamide (A) has a melting point of 270 to 350 ° C.
[7]
The polyamide composition according to any one of [1] to [6], wherein (B) titanium oxide is titanium oxide having a number average particle diameter of 0.1 to 0.8 μm.
[8]
The polyamide composition according to any one of [1] to [7], wherein the (B) titanium oxide is coated with an inorganic coating and / or an organic coating.
[9]
The polyamide composition according to [8], wherein the inorganic coating is a metal oxide coating.
[10]
(C) The polyamide composition according to any one of [1] to [9], further including an inorganic filler.
[11]
(C) The inorganic filler is at least one selected from the group consisting of glass fiber, potassium titanate fiber, talc, wollastonite, kaolin, mica, calcium carbonate, and clay. Polyamide composition.
[12]
(D) The polyamide composition according to any one of [1] to [11], further including a phenol-based heat stabilizer.
[13]
(E) The polyamide composition according to any one of [1] to [12], further including an amine light stabilizer.
[14]
The polyamide composition according to [13] above, wherein the molecular weight of the (E) amine light stabilizer is less than 1,000.
[15]
(A) a polyamide obtained by polymerizing (a) a dicarboxylic acid containing at least 50 mol% of an alicyclic dicarboxylic acid and (b) a diamine containing a diamine having a pentamethylenediamine skeleton of at least 50 mol%. 30 to 95% by mass of polyamide having a cyclic amino terminal amount of 30 to 60 μeq / g,
(B) 5 to 45% by mass of titanium oxide,
(C) 0-50 mass% of inorganic filler,
(D) 0 to 1% by mass of a phenol-based heat stabilizer,
(E) 0 to 1% by mass of an amine light stabilizer,
Containing polyamide composition.
[16]
A molded article comprising the polyamide composition according to any one of [1] to [15].

本発明によれば、靭性及び色調に優れ、さらに耐変色性に優れる、ポリアミド組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the polyamide composition which is excellent in toughness and a color tone, and also excellent in discoloration resistance can be provided.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

〔ポリアミド組成物〕
本実施形態のポリアミド組成物は、
(A):(a)少なくとも50モル%の脂環族ジカルボン酸を含むジカルボン酸と、(b)少なくとも50モル%のペンタメチレンジアミン骨格を有するジアミンを含むジアミンと、を重合させたポリアミドであって、環状アミノ末端量が30〜60μ当量/gである、ポリアミドと、
(B):酸化チタンと、
を、含有するポリアミド組成物である。
[Polyamide composition]
The polyamide composition of this embodiment is
(A): a polyamide obtained by polymerizing (a) a dicarboxylic acid containing at least 50 mol% of an alicyclic dicarboxylic acid and (b) a diamine containing a diamine having a pentamethylenediamine skeleton of at least 50 mol%. A polyamide having a cyclic amino terminal amount of 30 to 60 μeq / g;
(B): titanium oxide;
Is a polyamide composition containing

((A)ポリアミド)
(A)ポリアミドは、下記(a)及び(b)を重合させたポリアミドである。
(a)少なくとも50モル%の脂環族ジカルボン酸を含むジカルボン酸。
(b)少なくとも50モル%のペンタメチレンジアミン骨格を有するジアミンを含むジアミン。
なお、本明細書中、ポリアミドとは主鎖中にアミド(−NHCO−)結合を有する重合体を意味する。
((A) Polyamide)
(A) Polyamide is a polyamide obtained by polymerizing the following (a) and (b).
(A) A dicarboxylic acid containing at least 50 mol% of an alicyclic dicarboxylic acid.
(B) A diamine containing a diamine having a pentamethylenediamine skeleton of at least 50 mol%.
In the present specification, polyamide means a polymer having an amide (—NHCO—) bond in the main chain.

<(a)ジカルボン酸>
(A)ポリアミドを構成する(a)ジカルボン酸は、少なくとも50モル%の脂環族ジカルボン酸を含む(ジカルボン酸全モル数基準)。
(a)ジカルボン酸として、脂環族ジカルボン酸を少なくとも50モル%含むものを使用することにより、耐熱性、流動性、靭性、低吸水性、及び剛性等を同時に満足する、ポリアミドを得ることができる。
<(A) Dicarboxylic acid>
(A) The (a) dicarboxylic acid constituting the polyamide contains at least 50 mol% of an alicyclic dicarboxylic acid (based on the total number of moles of dicarboxylic acid).
(A) By using a dicarboxylic acid containing at least 50 mol% of an alicyclic dicarboxylic acid, it is possible to obtain a polyamide that simultaneously satisfies heat resistance, fluidity, toughness, low water absorption, rigidity, and the like. it can.

前記脂環族ジカルボン酸(以下、(a−1)脂環族ジカルボン酸、と記載することがあり、また、単に脂環式ジカルボン酸と記載することもある。)としては、例えば、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、及び1,3−シクロペンタンジカルボン酸等の、脂環構造の炭素数が3〜10、好ましくは5〜10の脂環族ジカルボン酸が挙げられる。
脂環族ジカルボン酸は、無置換でも置換基を有していてもよい。
この置換基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、及びtert−ブチル基等の炭素数1〜4のアルキル基等が挙げられる。
脂環族ジカルボン酸としては、耐熱性、低吸水性、及び剛性等の観点で、1,4−シクロヘキサンジカルボン酸であることが好ましい。
脂環族ジカルボン酸としては、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the alicyclic dicarboxylic acid (hereinafter sometimes referred to as (a-1) alicyclic dicarboxylic acid, or simply referred to as alicyclic dicarboxylic acid) include, for example, 1, Examples thereof include alicyclic dicarboxylic acids having 3 to 10 carbon atoms, preferably 5 to 10 carbon atoms, such as 4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,3-cyclopentanedicarboxylic acid. It is done.
The alicyclic dicarboxylic acid may be unsubstituted or may have a substituent.
Examples of this substituent include alkyl groups having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group.
The alicyclic dicarboxylic acid is preferably 1,4-cyclohexanedicarboxylic acid from the viewpoints of heat resistance, low water absorption, rigidity, and the like.
As alicyclic dicarboxylic acid, you may use individually by 1 type and may be used in combination of 2 or more type.

脂環族ジカルボン酸には、トランス体とシス体の幾何異性体が存在する。
原料モノマーとしての脂環族ジカルボン酸は、トランス体とシス体のどちらか一方を用いてもよく、トランス体とシス体の種々の比率の混合物として用いてもよい。
脂環族ジカルボン酸は、高温で異性化し一定の比率になることや、シス体の方がトランス体に比べて、ジアミンとの当量塩の水溶性が高いことから、原料モノマーとしては、トランス体/シス体比がモル比として、好ましくは50/50〜0/100であり、より好ましくは40/60〜10/90であり、さらに好ましくは35/65〜15/85である。
脂環族ジカルボン酸のトランス体/シス体比(モル比)は、液体クロマトグラフィー(HPLC)や核磁気共鳴分光法(NMR)により求めることができる。
An alicyclic dicarboxylic acid has a trans isomer and a cis geometric isomer.
As the alicyclic dicarboxylic acid as a raw material monomer, either a trans isomer or a cis isomer may be used, or a mixture of various ratios of a trans isomer and a cis isomer may be used.
The alicyclic dicarboxylic acid is isomerized at a high temperature to a certain ratio, and the cis isomer has a higher water solubility in the equivalent salt with the diamine than the trans isomer. The cis-isomer ratio is preferably 50/50 to 0/100, more preferably 40/60 to 10/90, and still more preferably 35/65 to 15/85 as a molar ratio.
The trans / cis ratio (molar ratio) of the alicyclic dicarboxylic acid can be determined by liquid chromatography (HPLC) or nuclear magnetic resonance spectroscopy (NMR).

(a)ジカルボン酸のうちの、脂環族カルボン酸以外のジカルボン酸(以下、(a−2)脂環族ジカルボン酸以外のジカルボン酸、と記載することがある。)としては、例えば、脂肪族ジカルボン酸及び芳香族ジカルボン酸等が挙げられる。   Examples of (a) dicarboxylic acids other than alicyclic carboxylic acids (hereinafter referred to as (a-2) dicarboxylic acids other than alicyclic dicarboxylic acids) in dicarboxylic acids include, for example, fatty acids. Group dicarboxylic acid and aromatic dicarboxylic acid.

前記脂肪族ジカルボン酸としては、例えば、マロン酸、ジメチルマロン酸、コハク酸、2,2−ジメチルコハク酸、2,3−ジメチルグルタル酸、2,2−ジエチルコハク酸、2,3−ジエチルグルタル酸、グルタル酸、2,2−ジメチルグルタル酸、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸、及びジグリコール酸等の炭素数3〜20の直鎖又は分岐状飽和脂肪族ジカルボン酸等が挙げられる。   Examples of the aliphatic dicarboxylic acid include malonic acid, dimethylmalonic acid, succinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylglutaric acid, 2,2-diethylsuccinic acid, and 2,3-diethylglutaric acid. Acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, Examples thereof include linear or branched saturated aliphatic dicarboxylic acids having 3 to 20 carbon atoms such as octadecanedioic acid, eicosanedioic acid, and diglycolic acid.

前記芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2−クロロテレフタル酸、2−メチルテレフタル酸、5−メチルイソフタル酸、及び5−ナトリウムスルホイソフタル酸等の無置換又は種々の置換基で置換された炭素数8〜20の芳香族ジカルボン酸等が挙げられる。
芳香族ジカルボン酸における種々の置換基としては、例えば、炭素数1〜4のアルキル基、炭素数6〜10のアリール基、炭素数7〜10のアリールアルキル基、クロロ基及びブロモ基等のハロゲン基、炭素数1〜6のシリル基、並びにスルホン酸基及びその塩(ナトリウム塩等)等が挙げられる。
Examples of the aromatic dicarboxylic acid include unsubstituted terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, and 5-sodium sulfoisophthalic acid. Examples thereof include aromatic dicarboxylic acids having 8 to 20 carbon atoms substituted with various substituents.
Examples of the various substituents in the aromatic dicarboxylic acid include halogens such as alkyl groups having 1 to 4 carbon atoms, aryl groups having 6 to 10 carbon atoms, arylalkyl groups having 7 to 10 carbon atoms, chloro groups, and bromo groups. Groups, silyl groups having 1 to 6 carbon atoms, sulfonic acid groups and salts thereof (sodium salts and the like), and the like.

(a−2)脂環族ジカルボン酸以外のジカルボン酸を共重合する場合、耐熱性、流動性、靭性、低吸水性、及び剛性等の観点で、脂肪族ジカルボン酸を用いることが好ましく、より好ましくは、炭素数が6以上である脂肪族ジカルボン酸を用いる。
中でも、耐熱性及び低吸水性等の観点で、炭素数が10以上である脂肪族ジカルボン酸が好ましい。
炭素数が10以上である脂肪族ジカルボン酸としては、例えば、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、及びエイコサン二酸等が挙げられる。中でも、耐熱性等の観点で、セバシン酸及びドデカン二酸が好ましい。
脂環族ジカルボン酸以外のジカルボン酸としては、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(A-2) When dicarboxylic acid other than alicyclic dicarboxylic acid is copolymerized, it is preferable to use aliphatic dicarboxylic acid from the viewpoint of heat resistance, fluidity, toughness, low water absorption, rigidity, and the like. Preferably, an aliphatic dicarboxylic acid having 6 or more carbon atoms is used.
Among these, aliphatic dicarboxylic acids having 10 or more carbon atoms are preferable from the viewpoints of heat resistance and low water absorption.
Examples of the aliphatic dicarboxylic acid having 10 or more carbon atoms include sebacic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid, and eicosanedioic acid. Of these, sebacic acid and dodecanedioic acid are preferable from the viewpoint of heat resistance and the like.
As the dicarboxylic acid other than the alicyclic dicarboxylic acid, one kind may be used alone, or two or more kinds may be used in combination.

(a)ジカルボン酸として、さらに、本実施形態の目的を損なわない範囲で、トリメリット酸、トリメシン酸、及びピロメリット酸等の3価以上の多価カルボン酸を含んでもよい。
多価カルボン酸は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(A) The dicarboxylic acid may further contain a trivalent or higher polyvalent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid as long as the object of the present embodiment is not impaired.
A polyvalent carboxylic acid may be used individually by 1 type, and may be used in combination of 2 or more type.

(a)ジカルボン酸中の(a−1)脂環族ジカルボン酸の割合(モル%)は、少なくとも50モル%である。(a)ジカルボン酸中の(a−1)脂環族ジカルボン酸の割合は、50〜100モル%であり、好ましくは60〜100モル%であり、より好ましくは70〜100モル%であり、さらに好ましくは100モル%である。
脂環族ジカルボン酸の割合が、少なくとも50モル%であることにより、耐熱性、低吸水性、及び剛性等に優れるポリアミドとすることができる。
(a)ジカルボン酸中の(a−2)脂環族ジカルボン酸以外のジカルボン酸の割合(モル%)は、0〜50モル%であり、0〜40モル%であることが好ましい。
The proportion (mol%) of (a-1) alicyclic dicarboxylic acid in (a) dicarboxylic acid is at least 50 mol%. The proportion of (a-1) alicyclic dicarboxylic acid in (a) dicarboxylic acid is 50 to 100 mol%, preferably 60 to 100 mol%, more preferably 70 to 100 mol%, More preferably, it is 100 mol%.
When the proportion of the alicyclic dicarboxylic acid is at least 50 mol%, a polyamide having excellent heat resistance, low water absorption, rigidity and the like can be obtained.
(A) The ratio (mol%) of dicarboxylic acid other than (a-2) alicyclic dicarboxylic acid in dicarboxylic acid is 0 to 50 mol%, and preferably 0 to 40 mol%.

(a)ジカルボン酸中の、(a−2)脂環族ジカルボン酸以外のジカルボン酸として、炭素数10以上の脂肪族ジカルボン酸を含む場合には、(a−1)脂環族ジカルボン酸が50〜99.9モル%及び(a−2)炭素数10以上の脂肪族ジカルボン酸が0.1〜50モル%であることが好ましく、(a−1)脂環族ジカルボン酸が60〜95モル%及び(a−2)炭素数10以上の脂肪族ジカルボン酸が5〜40モル%であることがより好ましく、(a−1)脂環族ジカルボン酸が80〜95モル%及び(a−2)炭素数10以上の脂肪族ジカルボン酸が5〜20モル%であることがさらに好ましい。   (A) When dicarboxylic acid other than (a-2) alicyclic dicarboxylic acid in dicarboxylic acid contains aliphatic dicarboxylic acid having 10 or more carbon atoms, (a-1) alicyclic dicarboxylic acid is It is preferable that 50-99.9 mol% and (a-2) C10 or more aliphatic dicarboxylic acid is 0.1-50 mol%, and (a-1) alicyclic dicarboxylic acid is 60-95. It is more preferable that the mol% and (a-2) the aliphatic dicarboxylic acid having 10 or more carbon atoms is 5 to 40 mol%, and (a-1) the alicyclic dicarboxylic acid is 80 to 95 mol% and (a- 2) More preferably, the aliphatic dicarboxylic acid having 10 or more carbon atoms is 5 to 20 mol%.

本実施形態において、(a)ジカルボン酸としては、上記ジカルボン酸として記載の化合物に限定されるものではなく、上記ジカルボン酸と等価な化合物であってもよい。
ジカルボン酸と等価な化合物としては、上記ジカルボン酸に由来するジカルボン酸構造と同様のジカルボン酸構造となり得る化合物であれば特に限定されるものではなく、例えば、ジカルボン酸の無水物及びハロゲン化物等が挙げられる。
In the present embodiment, the (a) dicarboxylic acid is not limited to the compounds described as the dicarboxylic acid, and may be a compound equivalent to the dicarboxylic acid.
The compound equivalent to the dicarboxylic acid is not particularly limited as long as it can be a dicarboxylic acid structure similar to the dicarboxylic acid structure derived from the dicarboxylic acid, and examples thereof include anhydrides and halides of dicarboxylic acids. Can be mentioned.

<(b)ジアミン>
(A)ポリアミドを構成する(b)ジアミンは、少なくとも50モル%の、ペンタメチレンジアミン骨格を有するジアミン(以下、(b−1)ペンタメチレンジアミン骨格を有するジアミン、と記載することがある。)を含む。
(b)ジアミンとして、ペンタメチレンジアミン骨格を有するジアミンを少なくとも50モル%含むものを使用することにより、強度、熱時強度、耐久性等に優れるポリアミドを得ることができる。また、成形性にも優れるポリアミドとして得ることができる。
(b−1)ペンタメチレンジアミン骨格を有するジアミンとは、1,5−ジアミノペンタン骨格を有するジアミンと表すこともできる。
<(B) Diamine>
(A) The (b) diamine constituting the polyamide is at least 50 mol% of a diamine having a pentamethylenediamine skeleton (hereinafter, referred to as (b-1) a diamine having a pentamethylenediamine skeleton). including.
(B) By using a diamine containing at least 50 mol% of a diamine having a pentamethylenediamine skeleton, a polyamide having excellent strength, strength at heat, durability, and the like can be obtained. It can also be obtained as a polyamide having excellent moldability.
(B-1) The diamine having a pentamethylenediamine skeleton can also be expressed as a diamine having a 1,5-diaminopentane skeleton.

(b−1)ペンタメチレンジアミン骨格を有するジアミンとしては、例えば、ペンタメチレンジアミン、2−メチルペンタメチレンジアミン、2−エチルペンタメチレンジアミン、3−n−ブチルペンタメチレンジアミン、2,4−ジメチルペンタメチレンジアミン、2−メチル−3−エチルペンタメチレンジアミン、及び2,2,4−トリメチルペンタメチレンジアミン等の炭素数5〜20の飽和脂肪族ジアミン等が挙げられる。
上記ペンタメチレンジアミン骨格を有するジアミンは、それぞれ、1,5−ジアミノペンタン、2−メチル−1,5−ジアミノペンタン、2−エチル−1,5−ジアミノペンタン、3−n−ブチル−1,5−ジアミノペンタン、2,4−ジメチル−1,5−ジアミノペンタン、2−メチル−3−エチル−1,5−ジアミノペンタン、2,2,4−トリメチル−1,5−ジアミノペンタンとも記される。
ペンタメチレンジアミン骨格を有するジアミンとしては、耐熱性及び強度等の観点で、好ましくはペンタメチレンジアミン及び2−メチルペンタメチレンジアミンであり、より好ましくは2−メチルペンタメチレンジアミンである。
ペンタメチレンジアミン骨格を有するジアミンは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(B-1) Examples of the diamine having a pentamethylenediamine skeleton include pentamethylenediamine, 2-methylpentamethylenediamine, 2-ethylpentamethylenediamine, 3-n-butylpentamethylenediamine, and 2,4-dimethylpenta. Examples thereof include saturated aliphatic diamines having 5 to 20 carbon atoms such as methylenediamine, 2-methyl-3-ethylpentamethylenediamine, and 2,2,4-trimethylpentamethylenediamine.
The diamines having the pentamethylenediamine skeleton are 1,5-diaminopentane, 2-methyl-1,5-diaminopentane, 2-ethyl-1,5-diaminopentane, and 3-n-butyl-1,5, respectively. -Diaminopentane, 2,4-dimethyl-1,5-diaminopentane, 2-methyl-3-ethyl-1,5-diaminopentane, 2,2,4-trimethyl-1,5-diaminopentane .
The diamine having a pentamethylenediamine skeleton is preferably pentamethylenediamine and 2-methylpentamethylenediamine, more preferably 2-methylpentamethylenediamine, from the viewpoints of heat resistance and strength.
One type of diamine having a pentamethylenediamine skeleton may be used alone, or two or more types may be used in combination.

(b)ジアミンのうちの、ペンタメチレンジアミン骨格を有するジアミン以外のジアミン(以下、(b−2)ペンタメチレンジアミン骨格を有するジアミン以外のジアミン、と記載することがある。)としては、例えば、脂肪族ジアミン、脂環族ジアミン、及び芳香族ジアミン等が挙げられる。   (B) Among diamines, diamines other than diamines having a pentamethylenediamine skeleton (hereinafter referred to as (b-2) diamines other than diamines having a pentamethylenediamine skeleton) may be, for example, Aliphatic diamines, alicyclic diamines, aromatic diamines and the like can be mentioned.

前記脂肪族ジアミンとしては、例えば、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、2−メチルヘキサメチレンジアミン、2,4−ジメチルヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、2−メチルオクタメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、及びトリデカメチレンジアミン等の炭素数2〜20の飽和脂肪族ジアミン等が挙げられる。
脂肪族ジアミンには、ペンタメチレンジアミン骨格を有するジアミンは含まれない。
Examples of the aliphatic diamine include ethylenediamine, propylenediamine, tetramethylenediamine, hexamethylenediamine, 2-methylhexamethylenediamine, 2,4-dimethylhexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, Examples thereof include saturated aliphatic diamines having 2 to 20 carbon atoms such as 2-methyloctamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, and tridecamethylenediamine.
Aliphatic diamines do not include diamines having a pentamethylenediamine skeleton.

前記脂環族ジアミン(脂環式ジアミンとも記される。)としては、例えば、1,4−シクロヘキサンジアミン、1,3−シクロヘキサンジアミン、及び1,3−シクロペンタンジアミン等が挙げられる。   Examples of the alicyclic diamine (also referred to as alicyclic diamine) include 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, 1,3-cyclopentanediamine, and the like.

前記芳香族ジアミンとしては、例えば、メタキシリレンジアミン等の芳香族構造を有するジアミン等が挙げられる。   Examples of the aromatic diamine include diamines having an aromatic structure such as metaxylylenediamine.

(b−2)ペンタメチレンジアミン骨格を有するジアミン以外のジアミンとしては、耐熱性、流動性、靭性、低吸水性、及び強度等の観点で、好ましくは脂肪族ジアミン及び脂環族ジアミンであり、より好ましくは炭素数4〜13の直鎖飽和脂肪族ジアミンであり、さらに好ましくは炭素数6〜10の直鎖飽和脂肪族ジアミンであり、さらにより好ましくはヘキサメチレンジアミンである。
(b−2)ペンタメチレンジアミン骨格を有するジアミン以外のジアミンは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(B-2) The diamine other than the diamine having a pentamethylenediamine skeleton is preferably an aliphatic diamine and an alicyclic diamine in terms of heat resistance, fluidity, toughness, low water absorption, strength, and the like. More preferably, it is a linear saturated aliphatic diamine having 4 to 13 carbon atoms, more preferably a linear saturated aliphatic diamine having 6 to 10 carbon atoms, and even more preferably hexamethylene diamine.
(B-2) A diamine other than a diamine having a pentamethylenediamine skeleton may be used singly or in combination of two or more.

(b)ジアミンとして、さらに、本実施形態の目的を損なわない範囲で、ビスヘキサメチレントリアミン等の3価以上の多価脂肪族アミンを含んでもよい。
多価脂肪族アミンは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(B) As the diamine, a trivalent or higher polyvalent aliphatic amine such as bishexamethylenetriamine may be further included within a range not impairing the object of the present embodiment.
A polyvalent aliphatic amine may be used individually by 1 type, and may be used in combination of 2 or more type.

(b)ジアミン中の(b−1)ペンタメチレンジアミン骨格を有するジアミンの割合(モル%)は少なくとも50モル%である。(b)ジアミン中の(b−1)ペンタメチレンジアミン骨格を有するジアミンの割合は50〜100モル%であり、好ましくは60〜100モル%であり、より好ましくは80〜100モル%であり、さらに好ましくは85〜100モル%であり、よりさらに好ましくは90〜100モル%であり、特に好ましくは100モル%である。
(b−1)ペンタメチレンジアミン骨格を有するジアミンの割合が、少なくとも50モル%であること、すなわち50モル%以上であることにより、靭性及び強度に優れるポリアミドとすることができる。
(b)ジアミン中の(b−2)ペンタメチレンジアミン骨格を有するジアミン以外のジアミンの割合(モル%)は0〜50モル%であり、好ましくは0〜40モル%であり、より好ましくは0〜20モル%であり、さらに好ましくは0〜15モル%であり、よりさらに好ましくは0〜10モル%であり、特に好ましくは0モル%である。
The proportion (mol%) of the diamine having (b-1) pentamethylenediamine skeleton in (b) diamine is at least 50 mol%. (B) The proportion of the diamine having a (b-1) pentamethylenediamine skeleton in the diamine is 50 to 100 mol%, preferably 60 to 100 mol%, more preferably 80 to 100 mol%, More preferably, it is 85-100 mol%, More preferably, it is 90-100 mol%, Most preferably, it is 100 mol%.
(B-1) When the ratio of the diamine having a pentamethylenediamine skeleton is at least 50 mol%, that is, 50 mol% or more, a polyamide having excellent toughness and strength can be obtained.
The ratio (mol%) of diamine other than the diamine having (b-2) pentamethylenediamine skeleton in (b) diamine is 0 to 50 mol%, preferably 0 to 40 mol%, more preferably 0. It is -20 mol%, More preferably, it is 0-15 mol%, More preferably, it is 0-10 mol%, Most preferably, it is 0 mol%.

(a)ジカルボン酸の添加量と(b)ジアミンの添加量とは、同モル量付近であることが好ましい。重合反応中の(b)ジアミンの反応系外への逃散分もモル比においては考慮して、(a)ジカルボン酸全体のモル量1に対して、(b)ジアミン全体のモル量は、好ましくは0.9〜1.2であり、より好ましくは0.95〜1.1であり、さらに好ましくは0.98〜1.05である。   The addition amount of (a) dicarboxylic acid and the addition amount of (b) diamine are preferably around the same molar amount. In view of the molar ratio of (b) the escape of diamine out of the reaction system during the polymerization reaction, the molar amount of (b) diamine is preferably Is 0.9 to 1.2, more preferably 0.95 to 1.1, and still more preferably 0.98 to 1.05.

<(c)ラクタム及び/又はアミノカルボン酸>
本実施形態のポリアミド組成物を構成する(A)ポリアミドは、靭性の観点で、(c)ラクタム及び/又はアミノカルボン酸をさらに共重合させたポリアミドであってもよい。
なお、(c)ラクタム及び/又はアミノカルボン酸とは、重(縮)合可能なラクタム及び/又はアミノカルボン酸を意味する。
(A)ポリアミドが、(a)ジカルボン酸、(b)ジアミン、並びに(c)ラクタム及び/又はアミノカルボン酸を共重合させたポリアミドである場合には、(c)ラクタム及び/又はアミノカルボン酸は、炭素数が4〜14のラクタム及び/又はアミノカルボン酸が好ましく、炭素数6〜12のラクタム及び/又はアミノカルボン酸を用いることがより好ましい。
<(C) Lactam and / or aminocarboxylic acid>
The polyamide (A) constituting the polyamide composition of the present embodiment may be a polyamide obtained by further copolymerizing (c) lactam and / or aminocarboxylic acid from the viewpoint of toughness.
In addition, (c) lactam and / or aminocarboxylic acid means lactam and / or aminocarboxylic acid capable of heavy (condensation).
When (A) the polyamide is a polyamide obtained by copolymerizing (a) dicarboxylic acid, (b) diamine, and (c) lactam and / or aminocarboxylic acid, (c) lactam and / or aminocarboxylic acid Is preferably a lactam and / or aminocarboxylic acid having 4 to 14 carbon atoms, and more preferably a lactam and / or aminocarboxylic acid having 6 to 12 carbon atoms.

ラクタムとしては、例えば、ブチロラクタム、ピバロラクタム、ε−カプロラクタム、カプリロラクタム、エナントラクタム、ウンデカノラクタム、及びラウロラクタム(ドデカノラクタム)等が挙げられる。中でも、靭性の観点で、ε−カプロラクタム、ラウロラクタム等が好ましく、ε−カプロラクタムがより好ましい。
アミノカルボン酸としては、例えば、前記ラクタムが開環した化合物であるω−アミノカルボン酸やα,ω−アミノ酸等が挙げられる。
アミノカルボン酸としては、ω位がアミノ基で置換された炭素数4〜14の直鎖又は分岐状飽和脂肪族カルボン酸であることが好ましく、例えば、6−アミノカプロン酸、11−アミノウンデカン酸、及び12−アミノドデカン酸等が挙げられ、アミノカルボン酸としては、パラアミノメチル安息香酸等も挙げられる。
ラクタム及び/又はアミノカルボン酸としては、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the lactam include butyrolactam, pivalolactam, ε-caprolactam, caprilactam, enantolactam, undecanolactam, laurolactam (dodecanolactam), and the like. Among these, from the viewpoint of toughness, ε-caprolactam and laurolactam are preferable, and ε-caprolactam is more preferable.
Examples of the aminocarboxylic acid include ω-aminocarboxylic acid and α, ω-amino acid that are compounds in which the lactam is ring-opened.
The aminocarboxylic acid is preferably a linear or branched saturated aliphatic carboxylic acid having 4 to 14 carbon atoms substituted with an amino group at the ω position, such as 6-aminocaproic acid, 11-aminoundecanoic acid, And 12-aminododecanoic acid and the like, and examples of the aminocarboxylic acid include paraaminomethylbenzoic acid and the like.
As the lactam and / or aminocarboxylic acid, one kind may be used alone, or two or more kinds may be used in combination.

(c)ラクタム及び/又はアミノカルボン酸の添加量(モル%)は、(a)、(b)及び(c)の各モノマー全体のモル量に対して、0〜20モル%であることが好ましい。   (C) The addition amount (mol%) of the lactam and / or aminocarboxylic acid is 0 to 20 mol% with respect to the molar amount of each monomer in (a), (b) and (c). preferable.

<末端封止剤>
(a)ジカルボン酸と(b)ジアミンとからポリアミドを重合する際に、分子量調節のために公知の末端封止剤をさらに添加することができる。
末端封止剤としては、例えば、モノカルボン酸、モノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、及びモノアルコール類等が挙げられ、熱安定性の観点で、モノカルボン酸、及びモノアミンが好ましい。
末端封止剤としては、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<End sealant>
When the polyamide is polymerized from (a) dicarboxylic acid and (b) diamine, a known end-capping agent can be further added to adjust the molecular weight.
Examples of the end-capping agent include monocarboxylic acids, monoamines, acid anhydrides such as phthalic anhydride, monoisocyanates, monoacid halides, monoesters, monoalcohols, and the like, from the viewpoint of thermal stability. And monocarboxylic acids and monoamines are preferred.
As the terminal blocking agent, one kind may be used alone, or two or more kinds may be used in combination.

末端封止剤として使用できるモノカルボン酸としては、アミノ基との反応性を有するものであれば、特に限定されるものではなく、例えば、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パルミチン酸、ステアリン酸、ピバリン酸、及びイソブチル酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環族モノカルボン酸;並びに安息香酸、トルイル酸、α−ナフタレンカルボン酸、β−ナフタレンカルボン酸、メチルナフタレンカルボン酸、及びフェニル酢酸等の芳香族モノカルボン酸等が挙げられる。
モノカルボン酸としては、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The monocarboxylic acid that can be used as the end-capping agent is not particularly limited as long as it has reactivity with an amino group. For example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid , Caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid; alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid; and benzoic acid, toluyl Examples thereof include aromatic monocarboxylic acids such as acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, and phenylacetic acid.
As monocarboxylic acid, 1 type may be used independently and 2 or more types may be used in combination.

末端封止剤として使用できるモノアミンとしては、カルボキシル基との反応性を有するものであれば、特に限定されるものではなく、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、及びジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン及びジシクロヘキシルアミン等の脂環族モノアミン;アニリン、トルイジン、ジフェニルアミン、及びナフチルアミン等の芳香族モノアミン等が挙げられる。
モノアミンとしては、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The monoamine that can be used as the end-capping agent is not particularly limited as long as it has reactivity with a carboxyl group. For example, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, Aliphatic monoamines such as decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine; alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; aromatic monoamines such as aniline, toluidine, diphenylamine, and naphthylamine Can be mentioned.
As the monoamine, one kind may be used alone, or two or more kinds may be used in combination.

(a)ジカルボン酸及び(b)ジアミンの組み合わせは、特に限定されるものではなく、例えば、(a−1)少なくとも50モル%の脂環族ジカルボン酸及び(b−1)少なくとも50モル%の2−メチルペンタメチレンジアミンの組み合わせが好ましく、(a−1)少なくとも50モル%の1,4−シクロヘキサンジカルボン酸及び(b−1)少なくとも50モル%の2−メチルペンタメチレンジアミンがより好ましい。
これらの組み合わせの(a)ジカルボン酸及び(b)ジアミンをポリアミドの成分として重合させることにより、耐熱性、流動性、靭性、低吸水性、及び剛性に優れ、高い融点を有するポリアミドとすることができる。
The combination of (a) dicarboxylic acid and (b) diamine is not particularly limited. For example, (a-1) at least 50 mol% of alicyclic dicarboxylic acid and (b-1) at least 50 mol% of A combination of 2-methylpentamethylenediamine is preferred, with (a-1) at least 50 mol% 1,4-cyclohexanedicarboxylic acid and (b-1) at least 50 mol% 2-methylpentamethylenediamine being more preferred.
By polymerizing these combinations of (a) dicarboxylic acid and (b) diamine as components of polyamide, a polyamide having excellent heat resistance, fluidity, toughness, low water absorption, rigidity, and high melting point can be obtained. it can.

<モノマーとポリアミドのトランス異性体比率>
本実施形態のポリアミド組成物を構成する(A)ポリアミドにおいて、脂環族ジカルボン酸構造は、トランス異性体及びシス異性体の幾何異性体として存在する。
(A)ポリアミド中における脂環族ジカルボン酸構造のトランス異性体比率は、(A)ポリアミド中の脂環族ジカルボン酸全体中のトランス異性体の比率を表し、トランス異性体比率は、好ましくは50〜85モル%であり、より好ましくは50〜80モル%であり、さらに好ましくは60〜80モル%である。
(A)ポリアミドを重合するときのモノマーである(a−1)脂環族ジカルボン酸としては、トランス体/シス体比(モル比)が50/50〜0/100である脂環族ジカルボン酸を用いることが好ましいが、(a)ジカルボン酸と(b)ジアミンの重合により得られるポリアミドとしては、トランス異性体比率が50〜85モル%であることが好ましい。
トランス異性体比率が上記範囲内にあることにより、ポリアミドは、高融点、靭性及び剛性に優れるという特徴に加えて、高いガラス転移温度(Tg)による熱時剛性と、通常では耐熱性と相反する性質である流動性と、高い結晶性を同時に満足するという性質を持つ。
ポリアミドのこれらの特徴は、(a)少なくとも50モル%以上の1,4−シクロヘキサンジカルボン酸、(b)少なくとも50モル%以上の2−メチルペンタメチレンジアミンの組み合わせからなり、かつトランス異性体比率が50〜85モル%であるポリアミドで特に顕著である。
本実施形態において、ポリアミドのトランス異性体比率は、以下の実施例に記載の方法により測定することができる。
<Ratio of monomer and polyamide trans isomer>
In the polyamide (A) constituting the polyamide composition of the present embodiment, the alicyclic dicarboxylic acid structure exists as a geometric isomer of a trans isomer and a cis isomer.
(A) The trans isomer ratio of the alicyclic dicarboxylic acid structure in the polyamide represents the ratio of the trans isomer in the entire alicyclic dicarboxylic acid in the (A) polyamide, and the trans isomer ratio is preferably 50 It is -85 mol%, More preferably, it is 50-80 mol%, More preferably, it is 60-80 mol%.
(A) As an alicyclic dicarboxylic acid which is a monomer for polymerizing polyamide, an alicyclic dicarboxylic acid having a trans isomer / cis isomer ratio (molar ratio) of 50/50 to 0/100 However, the polyamide obtained by polymerization of (a) dicarboxylic acid and (b) diamine preferably has a trans isomer ratio of 50 to 85 mol%.
When the trans isomer ratio is within the above range, the polyamide is contrary to the characteristics of high melting point, toughness, and rigidity, as well as the thermal rigidity due to the high glass transition temperature (Tg), and usually the heat resistance. It has the properties of satisfying both the fluidity and high crystallinity that are properties.
These characteristics of the polyamide consist of a combination of (a) at least 50 mol% or more of 1,4-cyclohexanedicarboxylic acid, (b) at least 50 mol% or more of 2-methylpentamethylenediamine, and the trans isomer ratio is This is particularly noticeable with polyamides of 50 to 85 mol%.
In this embodiment, the trans isomer ratio of polyamide can be measured by the method described in the following examples.

((A)ポリアミドの製造方法)
本実施形態のポリアミド組成物を構成する(A)ポリアミドの製造方法としては、特に限定されるものではなく、(a)少なくとも50モル%の脂環族ジカルボン酸を含むジカルボン酸と、(b)少なくとも50モル%の、ペンタメチレンジアミン骨格を有するジアミンを含むジアミンと、を重合させる工程を含む、ポリアミドの製造方法により製造することができる。
(A)ポリアミドの製造方法としては、ポリアミドの重合度を上昇させる工程を、さらに含むことが好ましい。
(A)ポリアミドの製造方法としては、特に限定されるものではなく、例えば、以下に例示するように種々の方法が挙げられる。
1)ジカルボン酸・ジアミン塩又はその混合物の水溶液又は水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(以下、「熱溶融重合法」と略称する場合がある。)、
2)熱溶融重合法で得られたポリアミドを融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(以下、「熱溶融重合・固相重合法」と略称する場合がある。)、
3)ジアミン・ジカルボン酸塩又はその混合物の水溶液又は水の懸濁液を加熱し、析出したプレポリマーをさらにニーダー等の押出機で再び溶融して重合度を上昇させる方法(以下、「プレポリマー・押出重合法」と略称する場合がある。)、
4)ジアミン・ジカルボン酸塩又はその混合物の、水溶液又は水の懸濁液を加熱、析出したプレポリマーをさらにポリアミドの融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(以下、「プレポリマー・固相重合法」と略称する場合がある。)、
5)ジアミン・ジカルボン酸塩又はその混合物を固体状態を維持したまま重合させる方法(以下、「固相重合法」と略称する場合がある。)、
6)ジカルボン酸と等価なジカルボン酸ハライド成分とジアミン成分を用いたて重合させる方法(以下、「溶液法」と略称する場合がある。)。
((A) Polyamide production method)
The method for producing the polyamide (A) constituting the polyamide composition of the present embodiment is not particularly limited, and (a) a dicarboxylic acid containing at least 50 mol% of an alicyclic dicarboxylic acid, and (b) It can be produced by a polyamide production method comprising a step of polymerizing at least 50 mol% of a diamine containing a diamine having a pentamethylenediamine skeleton.
(A) As a manufacturing method of polyamide, it is preferable to further include the process of raising the polymerization degree of polyamide.
(A) It does not specifically limit as a manufacturing method of polyamide, For example, various methods are mentioned so that it may illustrate below.
1) A method in which an aqueous solution or a suspension of water of a dicarboxylic acid / diamine salt or a mixture thereof is heated and polymerized while maintaining a molten state (hereinafter sometimes referred to as “hot melt polymerization method”),
2) A method of increasing the degree of polymerization while maintaining the solid state of the polyamide obtained by the hot melt polymerization method at a temperature below the melting point (hereinafter, sometimes abbreviated as “hot melt polymerization / solid phase polymerization method”). ,
3) A method in which an aqueous solution or suspension of water of a diamine / dicarboxylate salt or a mixture thereof is heated and the precipitated prepolymer is melted again with an extruder such as a kneader to increase the degree of polymerization (hereinafter referred to as “prepolymer”).・ It may be abbreviated as “extrusion polymerization method”),
4) A method of heating an aqueous solution or a suspension of water of a diamine dicarboxylate or a mixture thereof and increasing the degree of polymerization while maintaining the solid state of the precipitated prepolymer at a temperature below the melting point of the polyamide (hereinafter, And may be abbreviated as “prepolymer / solid phase polymerization method”).
5) A method of polymerizing a diamine dicarboxylate or a mixture thereof while maintaining a solid state (hereinafter, sometimes abbreviated as “solid phase polymerization method”),
6) A method of polymerizing using a dicarboxylic acid halide component equivalent to a dicarboxylic acid and a diamine component (hereinafter sometimes abbreviated as “solution method”).

(A)ポリアミドの製造方法としては、好ましくは1)熱溶融重合法、2)熱溶融重合・固相重合法、4)プレポリマー・固相重合法、及び5)一段固相重合法であり、より好ましくは、2)熱溶融重合・固相重合法及び4)プレポリマー・固相重合法である。
(A)ポリアミドの製造方法において、ポリアミドの分子量を向上させる点で、固相重合を行うことが好ましく、また、固相重合を行いポリアミドの分子量を向上させる方法は、熱溶融重合法で分子量を向上させるよりも、ポリアミドの環状アミノ末端量を所定の量に制御することができる点で好適である。
(A) The production method of polyamide is preferably 1) hot melt polymerization method, 2) hot melt polymerization / solid phase polymerization method, 4) prepolymer / solid phase polymerization method, and 5) one-stage solid phase polymerization method. More preferably, 2) hot melt polymerization / solid phase polymerization and 4) prepolymer / solid phase polymerization.
(A) In the method for producing a polyamide, it is preferable to perform solid phase polymerization in terms of improving the molecular weight of the polyamide, and the method for improving the molecular weight of the polyamide by performing solid phase polymerization is to increase the molecular weight by a hot melt polymerization method. Rather than improving, it is preferable in that the cyclic amino terminal amount of the polyamide can be controlled to a predetermined amount.

(A)ポリアミドの製造方法において、熱溶融重合を行う際には、重合時に添加物を加えておくことが好適である。
重合時の添加物としては、ポリアミドの原料である(b)ジアミンが挙げられる。
重合時の添加物としての(b)ジアミンの添加量は、等モル量のジカルボン酸・ジアミン塩の製造に用いた(b)ジアミンに対して、さらに加えるジアミンの量を意味し、好ましくは0.1〜10モル%であり、より好ましくは0.5〜5モル%であり、さらに好ましくは1.5〜4.5モル%であり、よりさらに好ましくは2.6〜4モル%である。
(b)ジアミンの添加量が上記範囲内であることにより、環状アミノ末端量を、また、アミノ末端量を目的の値に制御することができる。
(A) In the polyamide production method, when performing hot melt polymerization, it is preferable to add an additive during the polymerization.
As an additive at the time of polymerization, (b) diamine which is a raw material of polyamide is mentioned.
The amount of (b) diamine added as an additive during polymerization means the amount of diamine added to (b) diamine used in the production of an equimolar amount of dicarboxylic acid / diamine salt, preferably 0. 0.1 to 10 mol%, more preferably 0.5 to 5 mol%, still more preferably 1.5 to 4.5 mol%, still more preferably 2.6 to 4 mol%. .
(B) When the addition amount of the diamine is within the above range, the cyclic amino terminal amount and the amino terminal amount can be controlled to target values.

重合時の添加物としては、蟻酸及び酢酸等の有機酸等を添加することもできる。蟻酸等を加えることでポリマー末端の環状アミノ末端量の制御をより容易にすることができる場合がある。   As additives during polymerization, organic acids such as formic acid and acetic acid can also be added. By adding formic acid or the like, it may be possible to more easily control the amount of cyclic amino terminal at the polymer terminal.

(A)ポリアミドの製造方法において、重合形態としては、バッチ式でも連続式でもよい。
熱溶融重合法においては、例えば、オートクレーブ型の反応器、タンブラー型反応器、及び、ニーダー等の押出機型反応器等を用いて重合反応を行うことができる。
(A) In the method for producing polyamide, the polymerization form may be a batch type or a continuous type.
In the hot melt polymerization method, for example, the polymerization reaction can be performed using an autoclave type reactor, a tumbler type reactor, an extruder type reactor such as a kneader, or the like.

(A)ポリアミドの製造方法としては、特に限定されるものではなく、バッチ式の熱溶融重合法によりポリアミドを製造することができる。
バッチ式の熱溶融重合法としては、例えば、水を溶媒として、ポリアミド成分((a)ジカルボン酸、(b)ジアミン、及び、必要に応じて、(c)ラクタム及び/又はアミノカルボン酸)を含有する約40〜60質量%の溶液を、110〜180℃の温度及び約0.035〜0.6MPa(ゲージ圧)の圧力で操作される濃縮槽で、約65〜90質量%に濃縮して濃縮溶液を得る。次いで、該濃縮溶液をオートクレーブに移し、容器における圧力が約1.5〜5.0MPa(ゲージ圧)になるまで加熱を続ける。その後、水及び/又はガス成分を抜きながら圧力を約1.5〜5.0MPa(ゲージ圧)に保ち、温度が約250〜350℃に達した時点で、大気圧まで降圧を開始する(ゲージ圧は、0MPa)。大気圧に降圧後、必要に応じて減圧することにより、副生する水を効果的に除くことができる。反応終了時の反応温度が、最高温度になるように温度制御することが好ましく、最高温度は280〜400℃であることが好ましい。窒素等の不活性ガスで加圧し、ポリアミド溶融物をストランドとして押し出す。該ストランドを、冷却、カッティングしてペレットを得る。
(A) The method for producing the polyamide is not particularly limited, and the polyamide can be produced by a batch-type hot melt polymerization method.
Examples of the batch-type hot melt polymerization method include, for example, a polyamide component ((a) dicarboxylic acid, (b) diamine, and, if necessary, (c) lactam and / or aminocarboxylic acid) using water as a solvent. About 40 to 60% by mass of the contained solution is concentrated to about 65 to 90% by mass in a concentration tank operated at a temperature of 110 to 180 ° C. and a pressure of about 0.035 to 0.6 MPa (gauge pressure). To obtain a concentrated solution. The concentrated solution is then transferred to an autoclave and heating is continued until the pressure in the container is about 1.5-5.0 MPa (gauge pressure). Thereafter, the pressure is maintained at about 1.5 to 5.0 MPa (gauge pressure) while draining water and / or gas components, and when the temperature reaches about 250 to 350 ° C., pressure reduction is started to atmospheric pressure (gauge The pressure is 0 MPa). By reducing the pressure to atmospheric pressure and then reducing the pressure as necessary, by-product water can be effectively removed. It is preferable to control the temperature so that the reaction temperature at the end of the reaction becomes the maximum temperature, and the maximum temperature is preferably 280 to 400 ° C. Pressurize with an inert gas such as nitrogen to extrude the polyamide melt as a strand. The strand is cooled and cut to obtain pellets.

(A)ポリアミドの製造方法としては、特に限定されるものではなく、連続式の熱溶融重合法によりポリアミドを製造することができる。
連続式の熱溶融重合法としては、例えば、水を溶媒として、ポリアミド成分((a)ジカルボン酸、(b)ジアミン、及び、必要に応じて、(c)ラクタム及び/又はアミノカルボン酸)を含有する約40〜60質量%の溶液を、予備装置の容器において約40〜100℃まで予備加熱し、次いで、濃縮槽/反応器に移し、約0.1〜0.5MPa(ゲージ圧)の圧力及び約200〜270℃の温度で、約70〜90%に濃縮して濃縮溶液を得る。次いで、該濃縮溶液を約200〜400℃の温度に保ったフラッシャーに排出し、その後、大気圧まで降圧する(ゲージ圧は、0MPa)。大気圧に降圧後、必要に応じて減圧する。反応終了時の反応温度が、最高温度になるように温度制御することが好ましく、最高温度は280〜400℃であることが好ましい。ポリアミド溶融物は押し出されてストランドとなり、冷却、カッティングされペレットとなる。
(A) The method for producing the polyamide is not particularly limited, and the polyamide can be produced by a continuous hot melt polymerization method.
Examples of the continuous hot melt polymerization method include, for example, a polyamide component ((a) dicarboxylic acid, (b) diamine, and, if necessary, (c) lactam and / or aminocarboxylic acid) using water as a solvent. About 40-60 wt% solution containing is preheated to about 40-100 ° C. in a pre-container vessel and then transferred to a concentrator / reactor and about 0.1-0.5 MPa (gauge pressure) Concentrate to about 70-90% under pressure and temperature of about 200-270 ° C. to obtain a concentrated solution. Next, the concentrated solution is discharged to a flasher maintained at a temperature of about 200 to 400 ° C., and then the pressure is reduced to atmospheric pressure (gauge pressure is 0 MPa). After reducing the pressure to atmospheric pressure, reduce the pressure as necessary. It is preferable to control the temperature so that the reaction temperature at the end of the reaction becomes the maximum temperature, and the maximum temperature is preferably 280 to 400 ° C. The polyamide melt is extruded into strands, cooled and cut into pellets.

熱溶融重合における反応温度の最高温度は、好ましくは280〜400℃であり、より好ましくは300℃を超える温度である。また、該最高温度が360℃以下であることがより好ましい。熱溶融重合において反応温度を上記範囲内の最高温度にすることでポリアミドの熱分解を抑制しながら、環状アミノ末端の量を容易に制御できる。   The maximum reaction temperature in the hot melt polymerization is preferably 280 to 400 ° C, more preferably a temperature exceeding 300 ° C. The maximum temperature is more preferably 360 ° C. or lower. In the hot melt polymerization, the amount of the cyclic amino terminal can be easily controlled while suppressing the thermal decomposition of the polyamide by setting the reaction temperature to the highest temperature within the above range.

(A)ポリアミドの製造方法としては、特に限定されるものではなく、以下に記載する固相重合法によりポリアミドを製造することができる。
固相重合法としては、例えば、タンブラー型の反応器、振動乾燥機型の反応器、ナウターミキサー型の反応器、及び攪拌型の反応器等を用いて行うことができる。
ポリアミドのペレット、フレーク、又は粉体を上記反応器に入れ、窒素、アルゴン、及びヘリウム等の不活性ガスの気流下又は減圧下で、また、反応器上部で減圧に内部気体を引きながら反応器下部から不活性ガスを供給してもよく、ポリアミドの融点以下の温度で加熱することによって、ポリアミドの分子量は向上する。固相重合の反応温度は、好ましくは100〜350℃であり、より好ましくは120〜300℃であり、さらに好ましくは150〜270℃である。
不活性ガスの気流下又は減圧下で、また、反応器上部で減圧に内部気体を引きながら反応器下部から不活性ガスを供給してもよく、加熱を停止し、好ましくは0〜100℃、より好ましくは室温から60℃に反応温度が低下してから、反応機よりポリアミドを取り出して得ることができる。
(A) It does not specifically limit as a manufacturing method of polyamide, Polyamide can be manufactured with the solid-phase polymerization method described below.
As the solid phase polymerization method, for example, a tumbler type reactor, a vibration dryer type reactor, a nauter mixer type reactor, a stirring type reactor, or the like can be used.
Put polyamide pellets, flakes, or powder into the above reactor, under an inert gas stream such as nitrogen, argon, and helium, or under reduced pressure, and while pulling the internal gas under reduced pressure at the top of the reactor An inert gas may be supplied from below, and the molecular weight of the polyamide is improved by heating at a temperature below the melting point of the polyamide. The reaction temperature of the solid phase polymerization is preferably 100 to 350 ° C, more preferably 120 to 300 ° C, and further preferably 150 to 270 ° C.
The inert gas may be supplied from the lower part of the reactor under the flow of inert gas or under reduced pressure, and while pulling the internal gas to the reduced pressure at the upper part of the reactor, and the heating is stopped, preferably 0 to 100 ° C. More preferably, after the reaction temperature is lowered from room temperature to 60 ° C., the polyamide can be taken out from the reactor.

(A)ポリアミドの製造方法としては、好ましくは反応温度の最高温度が300℃を超える温度で熱溶融重合を行い、ジカルボン酸とジアミン(必要に応じて、ラクタム及び/又はアミノカルボン酸を含む)とを重合させることが好ましく、また、熱溶融重合法又はプレポリマー法で得られたポリアミドを、ポリアミドの融点以下の反応温度で固相重合により重合させて得られるポリアミドの製造方法であることが好ましい。これらの製造方法により、環状アミノ末端の量を容易に制御しながら、高分子量化でき、強度、熱時強度、耐久性等に優れるポリアミドとすることができる。   (A) As a production method of polyamide, preferably, hot melt polymerization is performed at a maximum reaction temperature exceeding 300 ° C., and dicarboxylic acid and diamine (including lactam and / or aminocarboxylic acid, if necessary). And a polyamide produced by polymerizing a polyamide obtained by a hot melt polymerization method or a prepolymer method by solid phase polymerization at a reaction temperature not higher than the melting point of the polyamide. preferable. By these production methods, a high molecular weight can be obtained while easily controlling the amount of the cyclic amino terminus, and a polyamide excellent in strength, hot strength, durability and the like can be obtained.

(A)ポリアミドのポリマー末端は、1)アミノ末端、2)カルボキシル末端、3)環状アミノ末端、4)末端封止剤による末端、及び5)その他の末端のいずれかである。
ポリアミドのポリマー末端とは、ジカルボン酸とジアミン(必要に応じて、ラクタム及び/又はアミノカルボン酸を含む)とが、アミド結合により重合した重合体のポリマー鎖の末端部分を意味する。
(A) The polymer terminal of the polyamide is any one of 1) amino terminal, 2) carboxyl terminal, 3) cyclic amino terminal, 4) terminal by end capping agent, and 5) other terminal.
The polymer terminal of the polyamide means a terminal part of a polymer chain of a polymer obtained by polymerizing dicarboxylic acid and diamine (including lactam and / or aminocarboxylic acid, if necessary) by an amide bond.

1)アミノ末端は、ポリマー末端がアミノ基(−NH2基)であることを意味し、ポリマー鎖の末端が原料のジアミンに由来する。
2)カルボキシル末端は、ポリマー末端がカルボキシル基(−COOH基)であることを意味し、ポリマー鎖の末端が原料のジカルボン酸に由来する。
3)環状アミノ末端は、ポリマー末端が環状アミノ基であることを意味する。
環状アミノ基は、下記式(1)で表される基である。
1) The amino terminal means that the polymer terminal is an amino group (—NH 2 group), and the terminal of the polymer chain is derived from the raw material diamine.
2) The carboxyl end means that the polymer end is a carboxyl group (—COOH group), and the end of the polymer chain is derived from the raw dicarboxylic acid.
3) Cyclic amino terminal means that the polymer terminal is a cyclic amino group.
The cyclic amino group is a group represented by the following formula (1).

Figure 2012184293
Figure 2012184293

上記式(1)中、Rは、水素原子、又はメチル基、エチル基、あるいはt−ブチル基等の炭素数1〜4のアルキル基を示す。
環状アミノ末端は、原料のペンタメチレンジアミン骨格を有するジアミンの脱アンモニア反応により環化して形成されるピペリジン構造であってもよく、その場合、Rは、ペンタメチレンジアミン骨格を有するジアミンのペンタメチレン骨格以外の側鎖部分のアルキル基を示す。上記式においては、Rは一置換として例示しているが、ペンタメチレンジアミン骨格を有するジアミンの側鎖部分に合致するように、二置換であってもよく、三置換以上の多置換であってもよい。
In said formula (1), R shows a C1-C4 alkyl group, such as a hydrogen atom or a methyl group, an ethyl group, or a t-butyl group.
The cyclic amino terminal may be a piperidine structure formed by cyclization by a deammonification reaction of a diamine having a pentamethylenediamine skeleton as a raw material. In this case, R is a pentamethylene skeleton of a diamine having a pentamethylenediamine skeleton. The alkyl group of the side chain part other than is shown. In the above formula, R is exemplified as mono-substitution, but may be di-substitution or poly-substitution of three or more substitutions so as to match the side chain portion of the diamine having a pentamethylenediamine skeleton. Also good.

4)末端封止剤による末端は、重合時に添加した末端封止剤で、ポリマー末端が封止されていることを意味し、モノカルボン酸及びモノアミン等の末端封止剤に由来する構造を有する。
5)その他の末端は、上述した1)〜4)に分類されないポリマー末端であり、例えば、アミノ末端が脱アンモニア反応して生成した末端及びカルボキシル末端が脱炭酸反応して生成した末端等が挙げられる。
4) The end by the end-capping agent means that the end of the polymer is capped by the end-capping agent added at the time of polymerization, and has a structure derived from end-capping agents such as monocarboxylic acid and monoamine. .
5) The other terminal is a polymer terminal not classified in the above 1) to 4), and examples thereof include a terminal generated by deammonia reaction at the amino terminal and a terminal generated by decarboxylation reaction at the carboxyl terminal. It is done.

(A)ポリアミドの環状アミノ末端量は30〜60μ当量/gであり、好ましくは35〜55μ当量/gである。
環状アミノ末端量が上記範囲内であることにより、本実施形態のポリアミド組成物の靭性、色調及び耐変色性の向上を図ることができる。
The cyclic amino terminal amount of (A) polyamide is 30 to 60 μeq / g, preferably 35 to 55 μeq / g.
When the cyclic amino terminal amount is within the above range, the toughness, color tone and discoloration resistance of the polyamide composition of the present embodiment can be improved.

環状アミノ末端量は、ポリアミド1g中に存在する環状アミノ末端のモル数で表す。
環状アミノ末端量は、下記実施例に記載するように、1H−NMRを用いて測定することができる。
例えば、ピペリジン環の窒素原子に隣接する炭素に結合する水素とポリアミド主鎖のアミド結合の窒素原子に隣接する炭素に結合する水素の積分比を基に算出することができる。
The cyclic amino terminal amount is represented by the number of moles of cyclic amino terminal present in 1 g of polyamide.
The amount of cyclic amino terminal can be measured using 1H-NMR as described in the following examples.
For example, it can be calculated based on the integral ratio of hydrogen bonded to carbon adjacent to the nitrogen atom of the piperidine ring and hydrogen bonded to carbon adjacent to the nitrogen atom of the amide bond of the polyamide main chain.

環状アミノ末端は、(1)ピペリジン環を有する環状アミン化合物とカルボキシル末端とが脱水反応することによって生成するか、(2)ポリマー末端のアミノ末端がポリマー分子内で脱アンモニア反応することによって生成する。
(1)ピペリジン環を有する環状アミン化合物とカルボキシル末端とが脱水反応することによって生成する環状アミノ末端は、(1a)ピペリジン環を有する環状アミン化合物を末端封止剤として、重合反応系中に添加することでも生成可能であり、(1b)ペンタメチレンジアミン骨格を有するジアミンがモノマー分子内で脱アンモニア反応することにより重合反応系中で生成する環状アミン化合物からも生成可能である。
The cyclic amino terminus is generated by (1) a dehydration reaction between a cyclic amine compound having a piperidine ring and a carboxyl terminus, or (2) a deammonia reaction within the polymer molecule at the amino terminus of the polymer terminus. .
(1) The cyclic amino compound produced by the dehydration reaction between the cyclic amine compound having a piperidine ring and the carboxyl terminal is added to the polymerization reaction system using (1a) the cyclic amine compound having a piperidine ring as a terminal blocking agent. (1b) A diamine having a pentamethylenediamine skeleton can also be produced from a cyclic amine compound produced in a polymerization reaction system by deammonia reaction in the monomer molecule.

(A)ポリアミドの環状アミノ末端は、ペンタメチレンジアミン骨格を有する原料のジアミンの環化反応に由来する末端であることが好ましい。すなわち、前記(1b)ペンタメチレンジアミン骨格を有するジアミンがモノマー分子内で脱アンモニア反応することにより重合反応系中で生成する環状アミン化合物とカルボキシル基とが脱水反応することによって得られるか、前記(2)ポリマー末端のアミノ末端がポリマー分子内で脱アンモニア反応することによって得られることが好ましい。
末端封止剤としてピペリジン環を有する環状アミン化合物を重合初期に添加することは低分子量のカルボキシル末端を重合初期の段階で封止することになるため、ポリアミドの重合反応速度を低くし、結果として高分子量体が得られにくい原因になるのに対して、反応の途中で生成するピペリジン環を有する環状アミンであれば、ある程度高分子量化した重合後期に封止することになるためポリアミドの高分子量体を得ることはより容易になる。
高分子量化した重合後期に、末端封止剤としてピペリジン環を有する環状アミン化合物を添加することも可能であるが、高圧状態にある重合系内に添加する設備が必要になることから、上記(1b)や(2)の製法が簡便であることから好ましい。
(A) The cyclic amino terminal of the polyamide is preferably a terminal derived from a cyclization reaction of a raw material diamine having a pentamethylenediamine skeleton. That is, the diamine having the (1b) pentamethylenediamine skeleton is obtained by a deammonia reaction in the monomer molecule to cause a dehydration reaction between the cyclic amine compound generated in the polymerization reaction system and the carboxyl group, or ( 2) The amino terminal of the polymer terminal is preferably obtained by deammonia reaction in the polymer molecule.
Adding a cyclic amine compound having a piperidine ring as an end capping agent at the initial stage of polymerization results in the low molecular weight carboxyl end being capped at the initial stage of polymerization, thus reducing the polymerization reaction rate of the polyamide. While it is difficult to obtain a high molecular weight product, a cyclic amine having a piperidine ring generated in the middle of the reaction will be sealed at a later stage of polymerization after a certain degree of high molecular weight. Getting a body becomes easier.
Although it is possible to add a cyclic amine compound having a piperidine ring as an end-capping agent in the latter stage of polymerization with a high molecular weight, it is necessary to provide equipment to be added to the polymerization system in a high pressure state. It is preferable because the production methods 1b) and (2) are simple.

重合系内でペンタメチレンジアミン骨格を有する原料のジアミンから環状アミノ末端を生成させ、環状アミノ末端量を本発明の範囲に調整するためには、重合温度、反応時間や、環状アミンを生成するジアミンの添加量等を適宜調整することで制御する方法が有効である。
(A)ポリアミドの環状アミノ末端量を本発明の範囲にするためには、ピペリジン環を有する環状アミンの生成を促す必要があり、ポリアミドの重合の反応温度は、好ましくは280〜400℃であり、300℃を超えることがより好ましく、320℃以上がさらに好ましい。ポリアミドの重合の反応温度は、360℃以下であることが好ましい。
環状アミノ末端の生成を促進させる観点から反応温度は280℃以上が好ましく、一方で過剰な環状アミノ末端の生成を抑制させる観点から400℃以下が好ましい。
また、反応時間の調整も有効な方法であり、特に300℃を超える反応温度の時間を適宜調整することが特に有効である。
In order to produce a cyclic amino terminus from a raw material diamine having a pentamethylenediamine skeleton in the polymerization system and adjust the amount of cyclic amino terminus within the scope of the present invention, a polymerization temperature, a reaction time, and a diamine that produces a cyclic amine. A method of controlling by appropriately adjusting the amount of addition and the like is effective.
(A) In order to bring the cyclic amino terminal amount of the polyamide within the scope of the present invention, it is necessary to promote the formation of a cyclic amine having a piperidine ring, and the reaction temperature of the polymerization of the polyamide is preferably 280 to 400 ° C. More preferably, it exceeds 300 ° C., more preferably 320 ° C. or higher. The reaction temperature for polyamide polymerization is preferably 360 ° C. or lower.
The reaction temperature is preferably 280 ° C. or higher from the viewpoint of promoting the formation of the cyclic amino terminus, while 400 ° C. or lower is preferable from the viewpoint of suppressing the formation of an excessive cyclic amino terminus.
Moreover, the adjustment of the reaction time is also an effective method, and it is particularly effective to adjust the time of the reaction temperature exceeding 300 ° C. as appropriate.

(A)ポリアミドのアミノ末端量は、好ましくは20μ当量/g以上であり、より好ましくは20〜100μ当量/gであり、さらに好ましくは25〜70μ当量/gである。
アミノ末端量が上記範囲内であることにより、(A)ポリアミドの耐加水分解性及び熱滞留安定性を向上させることができる。
(A) The amino terminal amount of polyamide is preferably 20 μeq / g or more, more preferably 20 to 100 μeq / g, and even more preferably 25 to 70 μeq / g.
When the amino terminal amount is within the above range, the hydrolysis resistance and heat retention stability of the (A) polyamide can be improved.

アミノ末端量は、ポリアミド1g中に存在するアミノ末端のモル数で表す。
アミノ末端量は、下記実施例に記載する方法を用いて測定することができる。
The amino terminal amount is represented by the number of moles of amino terminal present in 1 g of polyamide.
Amino terminal amount can be measured using the method described in the following Example.

(A)ポリアミドの分子量としては、25℃の硫酸相対粘度ηrを指標とし、25℃の硫酸相対粘度ηrが2.3以上であることが好ましい。より好ましくは2.3〜7.0であり、さらに好ましくは2.5〜5.5であり、さらにより好ましくは2.8〜4.0である。
25℃の硫酸相対粘度ηrが2.3以上であることで、本実施形態のポリアミド組成物は、強度、耐久性等に優れたものとなる。(A)ポリアミドの25℃の硫酸相対粘度ηrが7.0以下であると、流動性に優れるポリアミド組成物とすることができる。
(A) The molecular weight of the polyamide is preferably 25 ° C. sulfuric acid relative viscosity ηr as an index, and the sulfuric acid relative viscosity ηr at 25 ° C. is preferably 2.3 or more. More preferably, it is 2.3-7.0, More preferably, it is 2.5-5.5, More preferably, it is 2.8-4.0.
When the sulfuric acid relative viscosity ηr at 25 ° C. is 2.3 or more, the polyamide composition of the present embodiment is excellent in strength, durability, and the like. (A) When the relative viscosity ηr of sulfuric acid at 25 ° C. of the polyamide is 7.0 or less, a polyamide composition having excellent fluidity can be obtained.

25℃の硫酸相対粘度の測定は、下記実施例に記載するように、JIS−K6920に準じて98%硫酸中、25℃で測定することができる。   Measurement of the relative viscosity of sulfuric acid at 25 ° C. can be measured at 25 ° C. in 98% sulfuric acid according to JIS-K6920 as described in the following examples.

(A)ポリアミドの融点は、耐熱性の観点から、Tm2が270〜350℃であることが好ましい。融点Tm2は、好ましくは270℃以上であり、より好ましくは275℃以上であり、さらに好ましくは280℃以上である。また、融点Tm2は、好ましくは350℃以下であり、より好ましくは340℃以下であり、さらに好ましくは335℃以下であり、よりさらに好ましくは330℃以下である。
ポリアミドの融点Tm2が270℃以上であることにより、耐熱性に優れるポリアミドとすることができる。また、ポリアミドの融点Tm2が350℃以下であることにより、押出、成形等の溶融加工でのポリアミドの熱分解等を抑制することができる。
(A) As for melting | fusing point of polyamide, it is preferable that Tm2 is 270-350 degreeC from a heat resistant viewpoint. Melting | fusing point Tm2 becomes like this. Preferably it is 270 degreeC or more, More preferably, it is 275 degreeC or more, More preferably, it is 280 degreeC or more. The melting point Tm2 is preferably 350 ° C. or lower, more preferably 340 ° C. or lower, further preferably 335 ° C. or lower, and still more preferably 330 ° C. or lower.
When the melting point Tm2 of the polyamide is 270 ° C. or higher, a polyamide having excellent heat resistance can be obtained. Moreover, when the melting point Tm2 of the polyamide is 350 ° C. or less, the thermal decomposition of the polyamide in the melt processing such as extrusion and molding can be suppressed.

(A)ポリアミドの融点(Tm1又はTm2)の測定は、下記実施例に記載するように、JIS−K7121に準じて行うことができる。
融点の測定装置としては、例えば、PERKIN−ELMER社製Diamond−DSC等が挙げられる。
(A) Melting | fusing point (Tm1 or Tm2) of a polyamide can be measured according to JIS-K7121 as described in the following Example.
Examples of the melting point measuring device include Diamond-DSC manufactured by PERKIN-ELMER.

ポリアミド組成物中の(A)ポリアミドの配合量は、ポリアミド組成物100質量%に対して、好ましくは30〜95質量%であり、より好ましくは35〜80質量%であり、さらに好ましくは35〜70質量%である。上記の範囲内の場合、強度、靭性、色調、耐変色性等をバランス良く保つことができる。   The blending amount of (A) polyamide in the polyamide composition is preferably 30 to 95% by mass, more preferably 35 to 80% by mass, and still more preferably 35 to 95% by mass with respect to 100% by mass of the polyamide composition. 70% by mass. When it is within the above range, the strength, toughness, color tone, discoloration resistance and the like can be maintained in a well-balanced manner.

((B)酸化チタン)
本実施形態におけるポリアミド組成物に含有されている(B)酸化チタンについて説明する。
(B)酸化チタンとしては、例えば、酸化チタン(TiO)、三酸化二チタン(Ti23)、及び二酸化チタン(TiO2)等が挙げられる。中でも、二酸化チタンが好ましい。
これら酸化チタンの結晶構造に特に制限はないが、耐光性の観点から好ましくはルチル型である。
(B)酸化チタンの数平均粒子径は、靭性、押出加工性の観点から、0.1〜0.8μmが好ましく、より好ましくは0.15〜0.4μmであり、さらに好ましくは0.15〜0.3μmである。
(B)酸化チタンの数平均粒子径は、電子顕微鏡写真法により測定することができる。例えば、ポリアミド組成物を電気炉に入れて、含まれる有機物を焼却処理し、残渣分から、例えば100本以上の酸化チタンを任意に選択し、電子顕微鏡で観察して、これらの粒子径を測定し、数平均粒子径を算出することにより求められる。
((B) Titanium oxide)
The (B) titanium oxide contained in the polyamide composition in the present embodiment will be described.
Examples of (B) titanium oxide include titanium oxide (TiO), dititanium trioxide (Ti 2 O 3 ), and titanium dioxide (TiO 2 ). Of these, titanium dioxide is preferable.
The crystal structure of these titanium oxides is not particularly limited, but is preferably a rutile type from the viewpoint of light resistance.
(B) The number average particle diameter of titanium oxide is preferably 0.1 to 0.8 μm, more preferably 0.15 to 0.4 μm, and still more preferably 0.15, from the viewpoint of toughness and extrusion processability. ~ 0.3 μm.
(B) The number average particle diameter of titanium oxide can be measured by an electron micrograph. For example, the polyamide composition is put into an electric furnace, the contained organic matter is incinerated, and, for example, 100 or more titanium oxides are arbitrarily selected from the residue, and these particle sizes are measured by observing with an electron microscope. It is obtained by calculating the number average particle size.

(B)酸化チタンは、例えば、硫酸チタン溶液を加水分解するいわゆる硫酸法や、あるいはハロゲン化チタンを気相酸化するいわゆる塩素法によって得ることができ、特に制限は無い。   (B) Titanium oxide can be obtained, for example, by a so-called sulfuric acid method in which a titanium sulfate solution is hydrolyzed or a so-called chlorine method in which titanium halide is vapor-phase oxidized, and is not particularly limited.

(B)酸化チタン粒子は、表面を無機コーティング及び/又は有機コーティングすることが好ましい。具体的には、最初に無機コーティングを行い、次に無機コーティング上に有機コーティングを行うことが好ましい。
なお、(B)酸化チタン粒子の表面コーティングは前記例に限定されず、当該分野で公知のいかなる方法を使用してコーティングされてもよい。
(B) It is preferable that the titanium oxide particles have an inorganic coating and / or an organic coating on the surface. Specifically, it is preferable to first perform an inorganic coating and then perform an organic coating on the inorganic coating.
In addition, the surface coating of (B) titanium oxide particles is not limited to the above example, and may be coated using any method known in the art.

前記無機コーティングは、金属酸化物を含むことが好ましい。
前記有機コーティングは、カルボン酸類、ポリオール類、アルカノールアミン類及び/又は有機ケイ素化合物の1つ又は複数を含むことが好ましい。特に耐光性、フィルム加工性の観点から、ポリオール類、有機ケイ素化合物がより好ましく、加工時の発生ガスの低減の観点から、有機ケイ素化合物がさらに好ましい。
The inorganic coating preferably includes a metal oxide.
The organic coating preferably includes one or more of carboxylic acids, polyols, alkanolamines and / or organosilicon compounds. In particular, polyols and organosilicon compounds are more preferable from the viewpoints of light resistance and film processability, and organosilicon compounds are more preferable from the viewpoint of reducing gas generated during processing.

前記有機コーティング材料のカルボン酸類としては、例えば、アジピン酸、テレフタル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ポリヒドロキシステアリン酸、オレイン酸、サリチル酸、リンゴ酸及びマレイン酸が挙げられる。これらは、カルボン酸類のエステルや金属塩であってもよい。金属塩としては、アルミニウム塩、亜鉛塩、マグネシウム塩、カルシウム塩、バリウム塩等が挙げられる。   Examples of the carboxylic acids of the organic coating material include adipic acid, terephthalic acid, lauric acid, myristic acid, palmitic acid, stearic acid, polyhydroxystearic acid, oleic acid, salicylic acid, malic acid and maleic acid. These may be esters or metal salts of carboxylic acids. Examples of the metal salt include aluminum salt, zinc salt, magnesium salt, calcium salt, barium salt and the like.

前記有機コーティング材料のアルカノールアミン類としては、例えば、モノエタノールアミン、モノプロパノールアミン、ジエタノールアミン、ジプロパノールアミン、トリエタノールアミン、トリプロパノールアミン等が挙げられ、これらの誘導体であってもよい。誘導体としては、酢酸塩、シュウ酸塩、酒石酸塩、ギ酸塩、安息香酸塩等の有機酸塩等が挙げられる。   Examples of the alkanolamines of the organic coating material include monoethanolamine, monopropanolamine, diethanolamine, dipropanolamine, triethanolamine, and tripropanolamine, and may be derivatives thereof. Examples of the derivatives include organic acid salts such as acetate, oxalate, tartrate, formate and benzoate.

前記有機コーティング材料のポリオール類としては、例えば、トリメチロールプロパン、トリメチロールエタン、ジトリメチロールプロパン、トリメチロールプロパンエトキシレート、ペンタエリスリトール等が挙げられ、トリメチロールプロパン、トリメチロールエタンが好ましい。   Examples of the polyol of the organic coating material include trimethylolpropane, trimethylolethane, ditrimethylolpropane, trimethylolpropane ethoxylate, pentaerythritol and the like, and trimethylolpropane and trimethylolethane are preferable.

前記有機コーティング材料の有機ケイ素化合物としては、例えば、オルガノシラン類、オルガノポリシロキサン類、オルガノシラザン類が挙げられる。   Examples of the organic silicon compound of the organic coating material include organosilanes, organopolysiloxanes, and organosilazanes.

オルガノシラン類としては、例えば、(a)アミノシラン(アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等)、(b)エポキシシラン(γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等)、(c)メタクリルシラン(γ−(メタクリロイルオキシプロピル)トリメトキシシラン等)、(d)ビニルシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等)、(e)メルカプトシラン(3−メルカプトプロピルトリメトキシシラン等)、(f)クロロアルキルシラン(3−クロロプロピルトリエトキシシラン等)、(g)アルキルシラン(n−ブチルトリエトキシシラン、イソブチルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルメチルジメトキシシラン、ヘキシルメチルジエトキシシラン、シクロヘキシルメチルジエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン等)、(h)フェニルシラン(フェニルトリエトキシシラン等)、(i)フルオロアルキルシラン(トリフルオロプロピルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン等)等、及びそれらの加水分解生成物が挙げられる。   Examples of organosilanes include (a) aminosilane (aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, etc.), (b ) Epoxy silane (γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, etc.), (c) methacrylsilane (γ- (methacryloyloxypropyl) trimethoxysilane, etc.), (D) vinylsilane (vinyltrimethoxysilane, vinyltriethoxysilane, etc.), (e) mercaptosilane (3-mercaptopropyltrimethoxysilane, etc.), (f) chloroalkylsilane (3-chloropropyltriethoxysilane, etc.), (G) Alkylsilane (n-butyl Riethoxysilane, isobutyltrimethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, hexylmethyldimethoxysilane, hexylmethyldiethoxysilane, cyclohexylmethyldiethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane Etc.), (h) phenylsilane (phenyltriethoxysilane etc.), (i) fluoroalkylsilane (trifluoropropyltrimethoxysilane, tridecafluorooctyltrimethoxysilane etc.) and the like, and their hydrolysis products. It is done.

また、オルガノポリシロキサン類としては、例えば、(a)ストレート型ポリシロキサン(ジメチルポリシロキサン、メチル水素ポリシロキサン、メチルメトキシポリシロキサン、メチルフェニルポリシロキサン等)、(b)変性型ポリシロキサン(ジメチルポリシロキサンジオール、ジメチルポリシロキサンジハイドロジェン、側鎖又は両末端アミノ変性ポリシロキサン、側鎖又は両末端又は片末端エポキシ変性ポリシロキサン、両末端又は片末端メタクリル変性ポリシロキサン、側鎖又は両末端カルボキシル変性ポリシロキサン、側鎖又は両末端又は片末端カルビノール変性ポリシロキサン、両末端フェノール変性ポリシロキサン、側鎖又は両末端メルカプト変性ポリシロキサン、両末端又は側鎖ポリエーテル変性ポリシロキサン、側鎖アルキル変性ポリシロキサン、側鎖メチルスチリル変性ポリシロキサン、側鎖高級カルボン酸エステル変性ポリシロキサン、側鎖フルオロアルキル変性ポリシロキサン、側鎖アルキル・カルビノール変性ポリシロキサン、側鎖アミノ・両末端カルビノール変性ポリシロキサン等)等、又はそれらの共重合体が挙げられる。   Examples of organopolysiloxanes include (a) straight polysiloxane (dimethylpolysiloxane, methylhydrogen polysiloxane, methylmethoxypolysiloxane, methylphenylpolysiloxane, etc.), (b) modified polysiloxane (dimethylpolysiloxane). Siloxane diol, dimethylpolysiloxane dihydrogen, side-chain or both-end amino-modified polysiloxane, side-chain or both-end or one-end epoxy-modified polysiloxane, both-end or one-end methacryl-modified polysiloxane, side-chain or both-end carboxyl-modified Polysiloxane, side chain or both ends or one end carbinol modified polysiloxane, both ends phenol modified polysiloxane, side chain or both ends mercapto modified polysiloxane, both ends or side chain polyether modified polysiloxane, side chain Lukyl modified polysiloxane, side chain methylstyryl modified polysiloxane, side chain higher carboxylic acid ester modified polysiloxane, side chain fluoroalkyl modified polysiloxane, side chain alkyl / carbinol modified polysiloxane, side chain amino / both end carbinol modified Polysiloxane and the like) or copolymers thereof.

さらに、オルガノシラザン類としては、例えば、ヘキサメチルシラザン、ヘキサメチルシクロトリシラザン等が挙げられる。   Furthermore, examples of organosilazanes include hexamethylsilazane and hexamethylcyclotrisilazane.

前記有機ケイ素化合物の中でも、疎水性の官能基、例えば、メタクリル基(−OCOC(CH3)=CH2)、ビニル基(−CH=CH2)、アルキル基(−R)、アリール基(−Ph、−Ar等)、カルボン酸エステル基(−OCOR)、アシル基(−COR)、ポリエーテル基(−(R1O)n(R2O)m3)、フッ素含有基(−(CH2nCF3、−(CF2nCF3等)等を有する有機ケイ素化合物がより好ましく、疎水性官能基を有するオルガノシラン類又はオルガノポリシロキサン類であればさらに好ましい。
なお、R1、R2、R3は、いずれもアルキル基を示す。
また、上述した有機コーティング材料として使用可能な有機ケイ素化合物の中でも、炭素数が4〜10のアルキルシラン、その加水分解生成物、ジメチルポリシロキサン、メチル水素ポリシロキサンから選ばれる少なくとも一種であればいっそう好ましい。アルキルシランとして、アルキル基の中で炭素数が最大のものが6(ヘキシル基)であるアルキルシランを用いると、より一層分散性と耐熱性とに優れる。
なお、前記オルガノシラン類の加水分解生成物とは、オルガノシラン類が有する加水分解性基が加水分解されてシラノールになったもの、シラノール同士が縮重合してダイマー、オリゴマー、ポリマーになったものを言う。
Among the organosilicon compounds, hydrophobic functional groups such as a methacryl group (—OCOC (CH 3 ) ═CH 2 ), a vinyl group (—CH═CH 2 ), an alkyl group (—R), an aryl group (— Ph, -Ar, etc.), a carboxylic acid ester group (-OCOR), an acyl group (-COR), a polyether group (- (R 1 O) n (R 2 O) m R 3), the fluorine-containing group (- ( CH 2 ) n CF 3 , — (CF 2 ) n CF 3, etc.) are more preferable, and organosilanes or organopolysiloxanes having a hydrophobic functional group are more preferable.
R 1 , R 2 and R 3 all represent an alkyl group.
Further, among the organosilicon compounds that can be used as the organic coating material described above, at least one selected from alkylsilanes having 4 to 10 carbon atoms, hydrolysis products thereof, dimethylpolysiloxane, and methylhydrogenpolysiloxane are more preferable. preferable. When an alkylsilane having 6 (hexyl group) having the largest number of carbon atoms in the alkyl group is used as the alkylsilane, the dispersibility and heat resistance are further improved.
The hydrolyzed products of the organosilanes are those in which the hydrolyzable groups of the organosilanes are hydrolyzed to form silanols, and those in which silanols are condensed to form dimers, oligomers, and polymers. Say.

前記無機コーティング材料としては、ケイ素、アルミニウム、ジルコニウム、リン、亜鉛、希土類元素等の酸化物及び水和酸化物を含む金属酸化物及び水和酸化物が挙げられる。中でも好ましい金属酸化物は、耐光性の観点からシリカ、アルミナ、ジルコニアであり、より好ましくはシリカ、アルミナである。これら無機コーティングは1種類の金属酸化物であってもよいし、2種類以上の金属酸化物の組み合わせであってもよい。   Examples of the inorganic coating material include metal oxides and hydrated oxides including oxides and hydrated oxides of silicon, aluminum, zirconium, phosphorus, zinc, rare earth elements, and the like. Among these, preferred metal oxides are silica, alumina, and zirconia from the viewpoint of light resistance, and more preferred are silica and alumina. These inorganic coatings may be one kind of metal oxide or a combination of two or more kinds of metal oxides.

前記無機コーティングの塗布量は、(B)酸化チタン全量100質量%に対し、0.25〜50質量%であることが好ましく、0.25〜10質量%であることがより好ましく、1〜10質量%であることがさらに好ましい。
(B)酸化チタンは、強熱減量に特に制限はないが、酸化チタン全量100質量%に対し、0.7〜2.5質量%の範囲であることが、押出加工性の観点から好ましい。より好ましくは0.7〜2.0質量%であり、さらに好ましくは0.8〜1.5質量%である。ここで、強熱減量とは、酸化チタンを120℃で4時間乾燥させて、表面の付着水分を除去した後、650℃にて2時間加熱処理した際の重量減少率により算出することができる。
The coating amount of the inorganic coating is preferably 0.25 to 50% by mass, more preferably 0.25 to 10% by mass, with respect to (B) 100% by mass of the total amount of titanium oxide. More preferably, it is mass%.
(B) Although there is no restriction | limiting in particular in a titanium oxide, an ignition loss does not have a restriction | limiting, It is preferable from a viewpoint of extrusion workability that it is the range of 0.7-2.5 mass% with respect to 100 mass% of titanium oxide whole quantity. More preferably, it is 0.7-2.0 mass%, More preferably, it is 0.8-1.5 mass%. Here, the loss on ignition can be calculated from the weight loss rate when titanium oxide is dried at 120 ° C. for 4 hours to remove moisture adhering to the surface and then heat-treated at 650 ° C. for 2 hours. .

(B)酸化チタンの有機及び/又は無機コーティングの材料は、上述した各種材料を1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   (B) As the material for the organic and / or inorganic coating of titanium oxide, one of the various materials described above may be used alone, or two or more of them may be used in combination.

本実施形態のポリアミド組成物中の(B)酸化チタンの配合量は、ポリアミド組成物100質量%に対して、好ましくは5〜45質量%であり、より好ましくは10〜45質量%であり、さらに好ましくは20〜45質量%である。上記の範囲内の場合、靭性、色調、耐変色性等をバランス良く保つことができる。   The blending amount of (B) titanium oxide in the polyamide composition of the present embodiment is preferably 5 to 45% by mass, more preferably 10 to 45% by mass with respect to 100% by mass of the polyamide composition. More preferably, it is 20-45 mass%. When it is within the above range, toughness, color tone, discoloration resistance and the like can be maintained in a well-balanced manner.

((C)無機充填材)
本実施形態のポリアミド組成物においては、強度、剛性等の機械物性の観点から、(C)無機充填材をさらに含有していてもよい。
(C)無機充填材としては、特に限定されるものではないが、例えば、ガラス繊維や炭素繊維、ケイ酸カルシウム繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維、ガラスフレーク、タルク、カオリン、マイカ、ハイドロタルサイト、炭酸カルシウム、炭酸亜鉛、酸化亜鉛、リン酸一水素カルシウム、ウォラストナイト、シリカ、ゼオライト、アルミナ、ベーマイト、水酸化アルミニウム、酸化ケイ素、酸化マグネシウム、ケイ酸カルシウム、アルミノケイ酸ナトリウム、ケイ酸マグネシウム、ケッチェンブラック、アセチレンブラック、ファーネスブラック、カーボンナノチューブ、グラファイト、黄銅、銅、銀、アルミニウム、ニッケル、鉄、フッ化カルシウム、雲母、モンモリロナイト、膨潤性フッ素雲母、及びアパタイト等が挙げられる。
これらの中でも、ガラス繊維やチタン酸カリウム繊維、タルク、ウォラストナイト、カオリン、マイカ、炭酸カルシウム及びクレーからなる群から選ばれる1種以上であることが、機械的強度、外観、白色度等の観点から好ましい。
前記ガラス繊維や炭素繊維は、断面が真円状でも扁平状でもよい。扁平状の断面としては、例えば、長方形、長方形に近い長円形、楕円形、長手方向の中央部がくびれた繭型等が挙げられる。また、扁平率は、繊維断面の長径をD2、繊維の断面の短径をD1とするとき、D2/D1で表される。(真円状は扁平率約1となる)
((C) inorganic filler)
The polyamide composition of the present embodiment may further contain (C) an inorganic filler from the viewpoint of mechanical properties such as strength and rigidity.
(C) The inorganic filler is not particularly limited. For example, glass fiber, carbon fiber, calcium silicate fiber, potassium titanate fiber, aluminum borate fiber, glass flake, talc, kaolin, mica, Hydrotalcite, calcium carbonate, zinc carbonate, zinc oxide, calcium monohydrogen phosphate, wollastonite, silica, zeolite, alumina, boehmite, aluminum hydroxide, silicon oxide, magnesium oxide, calcium silicate, sodium aluminosilicate, silica Magnesium oxide, ketjen black, acetylene black, furnace black, carbon nanotube, graphite, brass, copper, silver, aluminum, nickel, iron, calcium fluoride, mica, montmorillonite, swellable fluoromica, apatite, etc. It is below.
Among these, it is at least one selected from the group consisting of glass fiber, potassium titanate fiber, talc, wollastonite, kaolin, mica, calcium carbonate and clay, such as mechanical strength, appearance, whiteness, etc. It is preferable from the viewpoint.
The glass fiber or carbon fiber may have a perfect cross section or a flat cross section. Examples of the flat cross section include a rectangle, an oval close to a rectangle, an ellipse, and a bowl shape with a narrowed central portion in the longitudinal direction. The flatness ratio is expressed by D2 / D1, where D2 is the major axis of the fiber cross section and D1 is the minor axis of the fiber cross section. (A perfect circle has a flatness ratio of about 1)

前記ガラス繊維や炭素繊維の中でも、優れた機械的強度特性をポリアミド組成物に付与できるという観点から、数平均繊維径が3〜30μmであり、かつポリアミド樹脂組成物中において、重量平均繊維長が100〜750μmであり、重量平均繊維長と数平均繊維径とのアスペクト比(L/D)が10〜100であるものが、さらに好ましく用いられる。
ここで、数平均繊維径及び重量平均繊維長の測定方法としては、例えば、ポリアミド組成物を電気炉に入れて、含まれる有機物を焼却処理し、残渣分から、例えば100本以上のガラス繊維や炭素繊維を任意に選択し、SEMで観察して、これらのガラス繊維や炭素繊維の繊維径を測定することにより数平均繊維径を算出するとともに、倍率1000倍でのSEM写真を用いて繊維長を計測することにより重量平均繊維長を求める方法がある。
Among the glass fibers and carbon fibers, from the viewpoint that excellent mechanical strength characteristics can be imparted to the polyamide composition, the number average fiber diameter is 3 to 30 μm, and in the polyamide resin composition, the weight average fiber length is It is 100-750 micrometers, and the thing whose aspect ratio (L / D) of a weight average fiber length and a number average fiber diameter is 10-100 is used more preferably.
Here, as a method for measuring the number average fiber diameter and the weight average fiber length, for example, the polyamide composition is put in an electric furnace, the contained organic matter is incinerated, and from the residue, for example, 100 or more glass fibers or carbon The fiber is arbitrarily selected, observed with an SEM, and the number average fiber diameter is calculated by measuring the fiber diameter of these glass fibers and carbon fibers, and the fiber length is calculated using an SEM photograph at a magnification of 1000 times. There is a method of obtaining the weight average fiber length by measuring.

また、ポリアミド組成物を板状に成形した成形品の反りの低減、耐熱性、靭性、低吸水性、耐熱エージング性の観点から、(C)無機充填材、特にガラス繊維や炭素繊維の断面形状の扁平率は、1.5以上であることが好ましい。より好ましくは1.5〜10.0、さらに好ましくは2.5〜10.0であり、さらにより好ましくは3.1〜6.0である。扁平率が極端に大きい場合、他の成分との混合の他、混練、成形等の処理の際、破砕されてしまう場合があり、所望する効果が小さくなる場合がある。
前記扁平率が1.5以上のガラス繊維や炭素繊維の太さは、任意であるが、繊維の断面の短径D1が0.5〜25μm、繊維の断面の長径D2が1.25〜250μmであることが好ましい。細すぎる場合は繊維の紡糸が困難な場合があり、太すぎる場合は樹脂との接触面積の減少等により成形品の強度が低下する場合がある。短径D1は3μm以上が好ましい。さらには、短径D1が3μm以上でかつ扁平率が3より大きい値であることが好ましい。
前記扁平率が1.5以上のガラス繊維や炭素繊維は、例えば、特公平3−59019号公報、特公平4−13300号公報、特公平4−32775号公報等に記載の方法で製造することができる。特に、底面に多数のオリフィスを有するオリフィスプレートにおいて、複数のオリフィス出口を囲み、当該オリフィスプレート底面より下方に延びる凸状縁を設けたオリフィスプレート、又は、単数もしくは複数のオリフィス孔を有するノズルチップの外周部先端から下方に延びる複数の凸状縁を設けた異形断面ガラス繊維紡糸用ノズルチップを使用して製造された扁平率が1.5以上のガラス繊維及び炭素繊維が好ましい。これらの(C)無機充填材は、繊維ストランドをロービングとしてそのまま使用してもよく、さらに切断工程を得て、チョップドガラスストランドとして使用してもよい。
In addition, from the viewpoint of reducing warpage, heat resistance, toughness, low water absorption, and heat aging resistance of a molded product obtained by molding a polyamide composition into a plate shape, (C) a cross-sectional shape of an inorganic filler, particularly glass fiber or carbon fiber The flatness is preferably 1.5 or more. More preferably, it is 1.5-10.0, More preferably, it is 2.5-10.0, More preferably, it is 3.1-6.0. When the aspect ratio is extremely large, in addition to mixing with other components, it may be crushed during processing such as kneading and molding, and the desired effect may be reduced.
The thickness of the glass fiber or carbon fiber having an aspect ratio of 1.5 or more is arbitrary, but the minor axis D1 of the fiber cross section is 0.5 to 25 μm, and the major axis D2 of the fiber cross section is 1.25 to 250 μm. It is preferable that If it is too thin, it may be difficult to spin the fiber. If it is too thick, the strength of the molded product may decrease due to a decrease in the contact area with the resin. The short diameter D1 is preferably 3 μm or more. Furthermore, it is preferable that the minor axis D1 is 3 μm or more and the flatness is a value larger than 3.
The glass fiber or carbon fiber having a flatness ratio of 1.5 or more is produced by the method described in, for example, Japanese Patent Publication No. 3-59019, Japanese Patent Publication No. 4-13300, Japanese Patent Publication No. 4-32775, and the like. Can do. Particularly, in an orifice plate having a large number of orifices on the bottom surface, an orifice plate that surrounds a plurality of orifice outlets and has a convex edge extending downward from the bottom surface of the orifice plate, or a nozzle tip having one or more orifice holes. Glass fibers and carbon fibers having a flatness ratio of 1.5 or more manufactured using a nozzle chip for spinning a modified cross-section glass fiber provided with a plurality of convex edges extending downward from the front end of the outer periphery are preferred. These (C) inorganic fillers may use fiber strands as rovings as they are, or may be used as chopped glass strands by further obtaining a cutting step.

上記の(C)無機充填材には、シランカップリング剤等により表面処理を施してもよい。
前記シランカップリング剤としては、特に制限されないが、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシランやN−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン等のアミノシラン類;γ−メルカプトプロピルトリメトキシシランやγ−メルカプトプロピルトリエトキシシラン等のメルカプトシラン類;エポキシシラン類;ビニルシラン類が挙げられる。特に上記の列挙成分から選択される1種以上であることが好ましく、アミノシラン類がより好ましい。
The (C) inorganic filler may be subjected to a surface treatment with a silane coupling agent or the like.
Although it does not restrict | limit especially as said silane coupling agent, For example, aminosilanes, such as (gamma) -aminopropyl triethoxysilane, (gamma) -aminopropyl trimethoxysilane, and N- (beta)-(aminoethyl) -gamma-aminopropylmethyldimethoxysilane. And the like; mercaptosilanes such as γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane; epoxysilanes; vinylsilanes. In particular, at least one selected from the above listed components is preferable, and aminosilanes are more preferable.

また、上記のガラス繊維や炭素繊維については、さらに集束剤として、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体、エポキシ化合物、ポリウレタン樹脂、アクリル酸のホモポリマー、アクリル酸とその他共重合性モノマーとのコポリマー、並びにこれらの第1級、第2級及び第3級アミンとの塩、並びにカルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体を含む共重合体等を含んでもよい。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
中でも、ポリアミド組成物の機械的強度の観点から、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体、エポキシ化合物及びポリウレタン樹脂、並びにこれらの組み合わせが好ましく、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体及びポリウレタン樹脂、並びにこれらの組み合わせがより好ましい。
In addition, for the above glass fiber and carbon fiber, as a sizing agent, an unsaturated vinyl monomer excluding the carboxylic anhydride-containing unsaturated vinyl monomer and the unsaturated vinyl monomer containing the carboxylic anhydride Copolymer, epoxy compound, polyurethane resin, homopolymer of acrylic acid, copolymer of acrylic acid and other copolymerizable monomers, and these primary, secondary and tertiary amines A salt, a copolymer containing an unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer, and the unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer may be included. These may be used individually by 1 type and may be used in combination of 2 or more type.
Among them, from the viewpoint of the mechanical strength of the polyamide composition, the carboxylic acid anhydride-containing unsaturated vinyl monomer and the unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer as structural units. Including copolymers, epoxy compounds and polyurethane resins, and combinations thereof, unsaturated vinyl monomers excluding carboxylic acid anhydride-containing unsaturated vinyl monomers and said carboxylic acid anhydride-containing unsaturated vinyl monomers And a combination of these as a structural unit and a polyurethane resin, and combinations thereof are more preferable.

ガラス繊維や炭素繊維は、上記の集束剤を、公知のガラス繊維や炭素繊維の製造工程において、ローラー型アプリケーター等の公知の方法を用いて、ガラス繊維や炭素繊維に付与して製造した繊維ストランドを乾燥することによって連続的に反応させて得られる。前記繊維ストランドをロービングとしてそのまま使用してもよく、さらに切断工程を得て、チョップドガラスストランドとして使用してもよい。
かかる集束剤は、ガラス繊維又は炭素繊維100質量%に対し、固形分率として0.2〜3質量%相当を付与(添加)することが好ましく、より好ましくは0.3〜2質量%付与(添加)する。ガラス繊維や炭素繊維の集束を維持する観点から、集束剤の添加量が、ガラス繊維又は炭素繊維100質量%に対し、固形分率として0.2質量%以上であることが好ましい。一方、ポリアミド組成物の熱安定性向上の観点から、3質量%以下であることが好ましい。また、ストランドの乾燥は切断工程後に行ってもよく、又はストランドを乾燥した後に切断してもよい。
Glass fiber or carbon fiber is a fiber strand produced by applying the above bundling agent to glass fiber or carbon fiber using a known method such as a roller-type applicator in the known glass fiber or carbon fiber production process. Can be obtained by continuous reaction by drying. The fiber strand may be used as a roving as it is, or may be used as a chopped glass strand by further obtaining a cutting step.
The sizing agent preferably imparts (adds) 0.2 to 3% by mass, more preferably 0.3 to 2% by mass (as a solid fraction), with respect to 100% by mass of glass fiber or carbon fiber. Added. From the viewpoint of maintaining the bundling of the glass fiber or carbon fiber, the addition amount of the bundling agent is preferably 0.2% by mass or more as a solid content with respect to 100% by mass of the glass fiber or carbon fiber. On the other hand, from the viewpoint of improving the thermal stability of the polyamide composition, it is preferably 3% by mass or less. The strand may be dried after the cutting step, or may be cut after the strand is dried.

ガラス繊維や炭素繊維以外の(C)無機充填材としては、強度及び剛性、表面外観の観点から、ウォラストナイト、カオリン、マイカ、タルク、炭酸カルシウム、炭酸マグネシウム、チタン酸カリウム、ホウ酸アルミニウム、クレーが好ましく使用できる。より好ましくは、ウォラストナイト、カオリン、マイカ、タルクであり、さらに好ましくは、ウォラストナイト、マイカであり、さらにより好ましくはウォラストナイトである。これら無機充填材は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   (C) inorganic fillers other than glass fibers and carbon fibers include wollastonite, kaolin, mica, talc, calcium carbonate, magnesium carbonate, potassium titanate, aluminum borate, from the viewpoint of strength and rigidity, and surface appearance. Clay can be preferably used. More preferred are wollastonite, kaolin, mica and talc, still more preferred are wollastonite and mica, and even more preferred is wollastonite. These inorganic fillers may be used individually by 1 type, and may be used in combination of 2 or more type.

ガラス繊維や炭素繊維以外の(C)無機充填材の粒径は、靭性、表面外観の観点で、0.01〜38μmが好ましく、0.03〜30μmがより好ましく、0.05〜25μmがさらに好ましく、0.1〜20μmがさらにより好ましく、0.15〜15μmがよりさらに好ましい。
(C)無機充填材の平均粒径を38μm以下にすることにより、靭性、表面外観に優れるポリアミド組成物にすることができる。また、0.1μm以上にすることにより、コスト面、粉体のハンドリング面と物性のバランスに優れる。
また、(C)無機充填材の中でも、ウォラストナイトのような針状の形状を持つものに関しては、平均繊維径を平均粒径とする。さらに、断面が円でない場合はその長さの最大値を繊維径とみなし、当該繊維径から平均繊維径を算出し、これを平均粒径とみなす。
The particle size of the inorganic filler (C) other than glass fiber or carbon fiber is preferably 0.01 to 38 μm, more preferably 0.03 to 30 μm, and more preferably 0.05 to 25 μm from the viewpoint of toughness and surface appearance. Preferably, 0.1-20 micrometers is still more preferable, and 0.15-15 micrometers is still more preferable.
(C) By setting the average particle size of the inorganic filler to 38 μm or less, a polyamide composition having excellent toughness and surface appearance can be obtained. Further, when the thickness is 0.1 μm or more, the balance between cost, powder handling surface and physical properties is excellent.
Further, among the inorganic fillers (C), those having an acicular shape such as wollastonite have an average fiber diameter as an average particle diameter. Further, when the cross section is not a circle, the maximum value of the length is regarded as the fiber diameter, the average fiber diameter is calculated from the fiber diameter, and this is regarded as the average particle diameter.

針状の形状を持つものの重量平均繊維長(L)と数平均繊維径(D)とのアスペクト比(L/D)に関しては、成形品外観、射出成形機等の金属性パーツの磨耗の観点から、1.5〜10が好ましく、2.0〜5がさらに好ましく、2.5〜4がよりさらに好ましい。   Regarding the aspect ratio (L / D) between the weight average fiber length (L) and the number average fiber diameter (D) of the needle-shaped one, the appearance of the molded product and the viewpoint of wear of metallic parts such as injection molding machines Therefore, 1.5 to 10 is preferable, 2.0 to 5 is more preferable, and 2.5 to 4 is still more preferable.

また、ガラス繊維や炭素繊維以外の(C)無機充填材は通常の表面処理剤、例えばシラン系カップリング剤、チタネート系カップリング剤等のカップリング剤等で表面処理を施したものを使用しても差し支えない。シラン系カップリング剤としてはエポキシシランカップリング剤を好ましく挙げることができる。また、ポリアルコキシシロキサンとエポキシシランカップリング剤との混合物及び/又はポリアルコキシシロキサンとエポキシシランカップリング剤との反応物も好ましく使用することができる。このような表面処理剤は、予め無機充填材表面に処理することもできるし、(A)ポリアミドと(C)無機充填材を混合する際に添加してもかまわない。また、好ましい表面処理剤の量は、(C)無機充填材に対して0.05質量%〜1.5質量%の範囲である。   In addition, (C) inorganic fillers other than glass fiber and carbon fiber are those subjected to surface treatment with a normal surface treatment agent, for example, a coupling agent such as a silane coupling agent or a titanate coupling agent. There is no problem. As the silane coupling agent, an epoxy silane coupling agent can be preferably exemplified. Further, a mixture of a polyalkoxysiloxane and an epoxy silane coupling agent and / or a reaction product of a polyalkoxy siloxane and an epoxy silane coupling agent can also be preferably used. Such a surface treating agent may be previously treated on the surface of the inorganic filler, or may be added when (A) the polyamide and (C) the inorganic filler are mixed. Moreover, the quantity of a preferable surface treating agent is the range of 0.05 mass%-1.5 mass% with respect to (C) inorganic filler.

本実施形態のポリアミド組成物中の(C)無機充填材の配合量は、ポリアミド組成物100質量%に対して、好ましくは0〜50質量%であり、より好ましくは1〜50質量%であり、さらに好ましくは5〜40質量%である。上記の範囲内の場合、強度、剛性と靭性をバランス良く保つことができる。   The blending amount of the inorganic filler (C) in the polyamide composition of the present embodiment is preferably 0 to 50% by mass, more preferably 1 to 50% by mass with respect to 100% by mass of the polyamide composition. More preferably, it is 5 to 40% by mass. In the case of the above range, the strength, rigidity and toughness can be kept in a good balance.

((D)フェノール系安定剤)
本実施形態のポリアミド組成物においては、熱安定性の観点から、(D)フェノール系熱安定剤をさらに含有していてもよい。
(D)フェノール系熱安定剤としては、以下に制限されないが、例えば、ヒンダートフェノール化合物が挙げられる。ヒンダードフェノール化合物は、ポリアミド等の樹脂や繊維に耐熱性や耐光性を付与する性質を有する。
ヒンダードフェノール化合物としては、以下に制限されないが、例えば、N,N'−へキサン−1,6−ジイルビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルプロピオンアミド)、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N'−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、3,9−ビス{2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピニロキシ]−1,1−ジメチルエチル}−2,4,8,10−テトラオキサピロ[5,5]ウンデカン、3,5−ジ−t−ブチル−4−ヒドロキシベンジルホスホネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、及び1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌル酸が挙げられる。
これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、耐熱エージング性向上の観点から、N,N'−へキサン−1,6−ジイルビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルプロピオンアミド)]が好ましい。
((D) Phenolic stabilizer)
The polyamide composition of the present embodiment may further contain (D) a phenol-based heat stabilizer from the viewpoint of heat stability.
(D) Although it does not restrict | limit as a phenol type heat stabilizer below, For example, a hindered phenol compound is mentioned. The hindered phenol compound has a property of imparting heat resistance and light resistance to resins and fibers such as polyamide.
Examples of the hindered phenol compound include, but are not limited to, for example, N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropionamide), Pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-) Hydrocinnamamide), triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis {2- [3- (3-t-butyl) -4-hydroxy-5-methylphenyl) propynyloxy] -1,1-dimethylethyl} -2,4,8,10-tetraoxapyro [5,5] undecane, 3,5-di t-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, and 1,3 , 5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid.
These may be used alone or in combination of two or more. Among these, N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropionamide)] is preferable from the viewpoint of improving heat aging resistance.

本実施形態のポリアミド組成物中の(D)フェノール系熱安定剤の配合量は、ポリアミド組成物100質量%に対して、好ましくは0〜1質量%であり、より好ましくは0.01〜1質量%であり、さらに好ましくは0.1〜1質量%である。上記の範囲内の場合、耐熱エージング性を一層向上させ、さらに発生ガス量を低減させることができる。   The blending amount of the (D) phenol-based heat stabilizer in the polyamide composition of the present embodiment is preferably 0 to 1% by mass, more preferably 0.01 to 1% with respect to 100% by mass of the polyamide composition. It is mass%, More preferably, it is 0.1-1 mass%. When it is within the above range, the heat aging resistance can be further improved and the amount of generated gas can be further reduced.

本実施形態のポリアミド組成物においては、光安定性の観点から、(E)アミン系光安定剤をさらに含有していてもよい。
((E)アミン系光安定剤)
(E)アミン系光安定剤としては、以下に制限されないが、例えば、4−アセトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−(フェニルアセトキシ)−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアリルオキシ−2,2,6,6−テトラメチルピペリジン、4−シクロヘキシルオキシ−2,2,6,6−テトラメチルピペリジン、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジン、4−フェノキシ−2,2,6,6−テトラメチルピペリジン、4−(エチルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(シクロヘキシルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(フェニルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)カーボネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)オキサレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)マロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)アジペート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)テレフタレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)カーボネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)オキサレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)マロネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)アジペート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)テレフタレート、N,N’−ビス−2,2,6,6−テトラメチル−4−ピペリジニル−1,3−ベンゼンジカルボキシアミド、1,2−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)エタン、α,α'−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)−p−キシレン、ビス(2,2,6,6−テトラメチル−4−ピペリジルトリレン−2,4−ジカルバメート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−ヘキサメチレン−1,6−ジカルバメート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,5−トリカルボキシレート、N,N’,N’’,N’’’−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン、ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシラート、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシラート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,4−トリカルボキシレート、1−[2−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}ブチル]−4−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6−テトラメチルピペリジン、及び1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールとβ,β,β',β'−テトラメチル−3,9−[2,4,8,10−テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物が挙げられる。
これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The polyamide composition of the present embodiment may further contain (E) an amine light stabilizer from the viewpoint of light stability.
((E) amine light stabilizer)
Examples of (E) amine light stabilizers include, but are not limited to, 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethyl. Piperidine, 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (phenylacetoxy) -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6 -Tetramethylpiperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6 -Tetramethylpiperidine, 4-benzyloxy-2,2,6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine Gin, 4- (ethylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (cyclohexylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (phenylcarbamoyloxy)- 2,2,6,6-tetramethylpiperidine, bis (2,2,6,6-tetramethyl-4-piperidyl) carbonate, bis (2,2,6,6-tetramethyl-4-piperidyl) oxalate, Bis (2,2,6,6-tetramethyl-4-piperidyl) malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl) -4-piperidyl) adipate, bis (2,2,6,6-tetramethyl-4-piperidyl) terephthalate, bis (1,2,2,6,6-pentameth) Ru-4-piperidyl) carbonate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) oxalate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) malonate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) adipate, bis (1,2,2,6,6- Pentamethyl-4-piperidyl) terephthalate, N, N′-bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3-benzenedicarboxamide, 1,2-bis (2,2,6) , 6-Tetramethyl-4-piperidyloxy) ethane, α, α′-bis (2,2,6,6-tetramethyl-4-piperidyloxy) -p-xylene, bis (2,2,6,6) -Tetramethi -4-piperidyltolylene-2,4-dicarbamate, bis (2,2,6,6-tetramethyl-4-piperidyl) -hexamethylene-1,6-dicarbamate, tris (2,2,6, 6-tetramethyl-4-piperidyl) -benzene-1,3,5-tricarboxylate, N, N ′, N ″, N ′ ″-tetrakis- (4,6-bis- (butyl- (N -Methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10-diamine, dibutylamine 1,3,5- Triazine N, N'-bis (2,2,6,6-tetramethyl-4-piperidyl) -1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl ) Butylamine polycondensate, poly [{6- 1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene { (2,2,6,6-tetramethyl-4-piperidyl) imino}], tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate Tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tris (2,2,6,6-tetramethyl-4-piperidyl) Benzene-1,3,4-tricarboxylate, 1- [2- {3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy} butyl] -4- [3- (3 , 5-Di-t-butyl- 4-hydroxyphenyl) propionyloxy] 2,2,6,6-tetramethylpiperidine, and 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol Examples include condensates with β, β, β ′, β′-tetramethyl-3,9- [2,4,8,10-tetraoxaspiro (5,5) undecane] diethanol.
These may be used alone or in combination of two or more.

これらアミン系光安定剤の中でも、分子量が2,000未満の低分子型の材料が、光安定性のより一層の向上の観点から好ましい。より好ましくは、分子量は1,000未満である。   Among these amine light stabilizers, low molecular weight materials having a molecular weight of less than 2,000 are preferable from the viewpoint of further improving light stability. More preferably, the molecular weight is less than 1,000.

また、アミン系光安定剤は、N−H型(アミノ基に水素が結合していることを示す)、N−R型(アミノ基にアルキル基が結合していることを示す)、NOR型(アミノ基にアルコキシ基が結合していることを示す)等のタイプがあるが、中でもN−H型であることが光安定性のより一層の向上の観点から好ましい。   In addition, the amine light stabilizers are NH type (indicating that hydrogen is bonded to the amino group), NR type (indicating that the alkyl group is bonded to the amino group), NOR type. There are types such as (indicating that an alkoxy group is bonded to an amino group). Among them, the NH type is preferable from the viewpoint of further improving the light stability.

これらアミン系光安定剤の中でも、ビス(2,2,6,6−テトラメチル−4−ピペリジル)カーボネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)オキサレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)マロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)アジペート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)テレフタレート、N,N’−ビス−2,2,6,6−テトラメチル−4−ピペリジニル−1,3−ベンゼンジカルボキシアミド、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシラートが好ましく、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、N,N’−ビス−2,2,6,6−テトラメチル−4−ピペリジニル−1,3−ベンゼンジカルボキシアミド、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシラートがより好ましく、N,N’−ビス−2,2,6,6−テトラメチル−4−ピペリジニル−1,3−ベンゼンジカルボキシアミドがさらに好ましい。   Among these amine light stabilizers, bis (2,2,6,6-tetramethyl-4-piperidyl) carbonate, bis (2,2,6,6-tetramethyl-4-piperidyl) oxalate, bis (2 , 2,6,6-tetramethyl-4-piperidyl) malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4- Piperidyl) adipate, bis (2,2,6,6-tetramethyl-4-piperidyl) terephthalate, N, N′-bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3-benzene Dicarboxyamide, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate is preferred, and bis (2,2,6,6-tetra Methyl-4-piperidyl) sebacate, N, N′-bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3-benzenedicarboxamide, tetrakis (2,2,6,6-tetra More preferred is methyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, N, N′-bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3-benzene More preferred is dicarboxamide.

本実施形態のポリアミド組成物中の(E)アミン系光安定剤の配合量は、ポリアミド組成物100質量%に対して好ましくは0〜1質量%であり、より好ましくは0.01〜1質量%であり、さらに好ましくは0.1〜1質量%である。上記の範囲内の場合、光安定性、耐熱エージング性を一層向上させることができ、さらに発生ガス量を低減させることができる。   The blending amount of the (E) amine light stabilizer in the polyamide composition of the present embodiment is preferably 0 to 1% by mass, more preferably 0.01 to 1% by mass with respect to 100% by mass of the polyamide composition. %, And more preferably 0.1 to 1% by mass. In the above range, light stability and heat aging resistance can be further improved, and the amount of generated gas can be reduced.

(リン系熱安定剤)
本実施形態のポリアミド組成物においては、本実施形態の目的を損なわない範囲で、リン系熱安定剤を配合することができる。
リン系熱安定剤としては、以下に制限されないが、例えば、ペンタエリスリトール型ホスファイト化合物、トリオクチルホスファイト、トリラウリルホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、トリスイソデシルホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイト、ジフェニルイソオクチルホスファイト、ジフェニルイソデシルホスファイト、ジフェニル(トリデシル)ホスファイト、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチル−5−メチルフェニル)ホスファイト、トリス(ブトキシエチル)ホスファイト、4,4'−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−テトラ−トリデシル)ジホスファイト、テトラ(C12〜C15混合アルキル)−4,4'−イソプロピリデンジフェニルジホスファイト、4,4'−イソプロピリデンビス(2−t−ブチルフェニル)・ジ(ノニルフェニル)ホスファイト、トリス(ビフェニル)ホスファイト、テトラ(トリデシル)−1,1,3−トリス(2−メチル−5−t−ブチル−4−ヒドロキシフェニル)ブタンジホスファイト、テトラ(トリデシル)−4,4'−ブチリデンビス(3−メチル−6−t−ブチルフェニル)ジホスファイト、テトラ(C1〜C15混合アルキル)−4,4'−イソプロピリデンジフェニルジホスファイト、トリス(モノ、ジ混合ノニルフェニル)ホスファイト、4,4'−イソプロピリデンビス(2−t−ブチルフェニル)・ジ(ノニルフェニル)ホスファイト、9,10−ジ−ヒドロ−9−オキサ−9−オキサ−10−ホスファフェナンスレン−10−オキサイド、トリス(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)ホスファイト、水素化−4,4'−イソプロピリデンジフェニルポリホスファイト、ビス(オクチルフェニル)・ビス(4,4'−ブチリデンビス(3−メチル−6−t−ブチルフェニル))・1,6−ヘキサノールジホスファイト、ヘキサトリデシル−1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ジホスファイト、トリス(4、4'−イソプロピリデンビス(2−t−ブチルフェニル))ホスファイト、トリス(1,3−ステアロイルオキシイソプロピル)ホスファイト、2、2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、2,2−メチレンビス(3−メチル−4,6−ジ−t−ブチルフェニル)2−エチルヘキシルホスファイト、テトラキス(2,4−ジ−t−ブチル−5−メチルフェニル)−4,4'−ビフェニレンジホスファイト、及びテトラキス(2,4−ジ−t−ブチルフェニル)−4,4'−ビフェニレンジホスファイトが挙げられる。
これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Phosphorus heat stabilizer)
In the polyamide composition of this embodiment, a phosphorus-based heat stabilizer can be blended within a range that does not impair the purpose of this embodiment.
Examples of the phosphorus-based heat stabilizer include, but are not limited to, for example, pentaerythritol type phosphite compound, trioctyl phosphite, trilauryl phosphite, tridecyl phosphite, octyl diphenyl phosphite, trisisodecyl phosphite, phenyl Diisodecyl phosphite, phenyl di (tridecyl) phosphite, diphenyl isooctyl phosphite, diphenyl isodecyl phosphite, diphenyl (tridecyl) phosphite, triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2,4-di -T-butylphenyl) phosphite, tris (2,4-di-t-butyl-5-methylphenyl) phosphite, tris (butoxyethyl) phosphite, 4,4'-butylidene-bis (3- Til-6-tert-butylphenyl-tetra-tridecyl) diphosphite, tetra (C12-C15 mixed alkyl) -4,4′-isopropylidene diphenyldiphosphite, 4,4′-isopropylidenebis (2-tert-butyl) Phenyl) .di (nonylphenyl) phosphite, tris (biphenyl) phosphite, tetra (tridecyl) -1,1,3-tris (2-methyl-5-tert-butyl-4-hydroxyphenyl) butanediphosphite , Tetra (tridecyl) -4,4′-butylidenebis (3-methyl-6-tert-butylphenyl) diphosphite, tetra (C1-C15 mixed alkyl) -4,4′-isopropylidene diphenyldiphosphite, tris (mono , Dimixed nonylphenyl) phosphite, 4,4′-isopropylidenebis (2- -Butylphenyl) .di (nonylphenyl) phosphite, 9,10-di-hydro-9-oxa-9-oxa-10-phosphaphenanthrene-10-oxide, tris (3,5-di-t -Butyl-4-hydroxyphenyl) phosphite, hydrogenated-4,4'-isopropylidenediphenyl polyphosphite, bis (octylphenyl) bis (4,4'-butylidenebis (3-methyl-6-tert-butyl) Phenyl)) · 1,6-hexanol diphosphite, hexatridecyl-1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) diphosphite, tris (4,4′-isopropyl Redenbis (2-t-butylphenyl)) phosphite, tris (1,3-stearoyloxyisopropyl) phosphite, 2, 2 Methylene bis (4,6-di-t-butylphenyl) octyl phosphite, 2,2-methylene bis (3-methyl-4,6-di-t-butylphenyl) 2-ethylhexyl phosphite, tetrakis (2,4- And di-t-butyl-5-methylphenyl) -4,4′-biphenylene diphosphite and tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylene diphosphite.
These may be used alone or in combination of two or more.

上記の列挙したものの中でも、耐熱エージング性の一層の向上及び発生ガスの低減という観点から、ペンタエリスリトール型ホスファイト化合物、トリス(2,4−ジ−t−ブチルフェニル)ホスファイトが好ましい。
前記ペンタエリスリトール型ホスファイト化合物としては、以下に制限されないが、例えば、2,6−ジ−t−ブチル−4−メチルフェニル−フェニル−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−メチル−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・2−エチルヘキシル−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−イソデシル−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−ラウリル−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−イソトリデシル−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−ステアリル−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−シクロヘキシル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−ベンジル−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−エチルセロソルブ−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−ブチルカルビトール−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−オクチルフェニル−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−ノニルフェニル・ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−2,6−ジ−t−ブチルフェニル−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−2,4−ジ−t−ブチルフェニル−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−2,4−ジ−t−オクチルフェニル−ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル−2−シクロヘキシルフェニル−ペンタエリスリトールジホスファイト、2,6−ジ−t−アミル−4−メチルフェニル−フェニル−ペンタエリストリトールジホスファイト、ビス(2,6−ジ−t−アミル−4−メチルフェニル)ペンタエリスリトールジホスファイト、及びビス(2,6−ジ−t−オクチル−4−メチルフェニル)ペンタエリスリトールジホスファイトが挙げられる。
これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Among those listed above, pentaerythritol phosphite compounds and tris (2,4-di-t-butylphenyl) phosphite are preferable from the viewpoint of further improving the heat aging resistance and reducing the generated gas.
Examples of the pentaerythritol phosphite compound include, but are not limited to, for example, 2,6-di-t-butyl-4-methylphenyl-phenyl-pentaerythritol diphosphite, 2,6-di-t-butyl. -4-methylphenyl-methyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl 2-ethylhexyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4 -Methylphenyl-isodecyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-lauryl-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl- Isotridecyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4 Methylphenyl-stearyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-cyclohexyl pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-benzyl -Pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-ethyl cellosolve-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-butylcarbitol- Pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-octylphenyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-nonylphenyl pentaerythritol Diphosphite, bis (2,6-di-t- Til-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-ethylphenyl) pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl -2,6-di-t-butylphenyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-2,4-di-t-butylphenyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-2,4-di-t-octylphenyl-pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl-2-cyclohexyl Phenyl-pentaerythritol diphosphite, 2,6-di-t-amyl-4-methylphenyl-phenyl-pentaerythritol Diphosphite, bis (2,6-di-t-amyl-4-methylphenyl) pentaerythritol diphosphite, and bis (2,6-di-t-octyl-4-methylphenyl) pentaerythritol diphos Fight is mentioned.
These may be used alone or in combination of two or more.

上記で列挙したペンタエリスリトール型ホスファイト化合物の中でも、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−アミル−4−メチルフェニル)ペンタエリスリトールジホスファイト、及びビス(2、6−ジ−t−オクチル−4−メチルフェニル)ペンタエリスリトールジホスファイトが好ましく、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトがより好ましい。   Among the pentaerythritol type phosphite compounds listed above, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-) Ethylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-amyl-4-methylphenyl) pentaerythritol diphosphite, and bis (2,6-di-t-octyl-4-methylphenyl) Pentaerythritol diphosphite is preferred, and bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite is more preferred.

リン系熱安定剤を用いる場合、ポリアミド組成物中のリン系熱安定剤の配合量は、ポリアミド組成物100質量%に対して、好ましくは0.01〜1質量%であり、より好ましくは0.1〜1質量%である。上記の範囲内の場合、耐熱エージング性を一層向上させ、さらに発生ガス量を低減させることができる。   When using a phosphorus heat stabilizer, the compounding amount of the phosphorus heat stabilizer in the polyamide composition is preferably 0.01 to 1% by mass, more preferably 0, relative to 100% by mass of the polyamide composition. 0.1 to 1% by mass. When it is within the above range, the heat aging resistance can be further improved and the amount of generated gas can be further reduced.

(リン化合物)
本実施形態のポリアミド組成物においては、本実施形態の目的を損なわない範囲で、リン化合物を配合することができる。
リン化合物としては、以下に制限されないが、例えば、1)リン酸、亜リン酸、次亜リン酸、及びそれらの分子内及び/又は分子間縮合物、2)リン酸、亜リン酸、次亜リン酸、及びそれらの分子内及び/又は分子間縮合物の金属塩類等、からなる群より選ばれる1種以上が挙げられる。
前記1)のリン酸、亜リン酸、次亜リン酸、及びそれらの分子内及び/又は分子間縮合物とは、例えば、リン酸、ピロリン酸、メタリン酸、亜リン酸、次亜リン酸、ピロ亜リン酸、二亜リン酸等が挙げられる。
前記2)リン酸、亜リン酸、次亜リン酸、及びそれらの分子内及び/又は分子間縮合物の金属塩類とは、前記1)のリン化合物と周期律表第1族及び第2族、マンガン、亜鉛、アルミニウムとの塩が挙げられる。
(Phosphorus compound)
In the polyamide composition of this embodiment, a phosphorus compound can be mix | blended in the range which does not impair the objective of this embodiment.
Examples of phosphorus compounds include, but are not limited to, 1) phosphoric acid, phosphorous acid, hypophosphorous acid, and intramolecular and / or intermolecular condensates thereof, 2) phosphoric acid, phosphorous acid, One or more selected from the group consisting of phosphorous acid and metal salts of intramolecular and / or intermolecular condensates thereof may be mentioned.
Examples of 1) phosphoric acid, phosphorous acid, hypophosphorous acid, and intramolecular and / or intermolecular condensates thereof include, for example, phosphoric acid, pyrophosphoric acid, metaphosphoric acid, phosphorous acid, and hypophosphorous acid. , Pyrophosphorous acid, diphosphorous acid and the like.
2) Phosphoric acid, phosphorous acid, hypophosphorous acid, and metal salts of intramolecular and / or intermolecular condensates thereof are the phosphorous compounds of 1) and groups 1 and 2 of the periodic table. , Salts with manganese, zinc and aluminum.

好ましいリン化合物としては、リン酸金属塩類、亜リン酸金属塩類あるいは次亜リン酸金属塩類、及びそれらの分子内及び/又は分子間縮合物から選ばれる1種以上であり、より好ましくは、リン酸、亜リン酸、次亜リン酸から選ばれるリン化合物と、周期律表第1族及び第2族、マンガン、亜鉛、アルミニウムから選ばれる金属との塩、及びそれらの分子内及び/又は分子間縮合物である。さらに好ましくは、リン酸、亜リン酸及び次亜リン酸から選ばれるリン化合物と周期律表第1族及び第2族から選ばれる金属とからなる金属塩であり、例えば、リン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、リン酸一カルシウム、リン酸二カルシウム、リン酸三カルシウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、メタリン酸カルシウム、次亜リン酸ナトリウム、次亜リン酸カルシウム等が挙げられ、これらの無水塩、水和物が挙げられる。これらの中でも次亜リン酸ナトリウム、次亜リン酸カルシウムがさらにより好ましい。
リン化合物を用いる場合、本実施形態のポリアミド組成物中のリン化合物の配合量は、ポリアミド組成物100質量%に対して好ましくは0.01〜1質量%であり、より好ましくは0.05〜1質量%である。上記の範囲内の場合、耐熱変色性を一層向上させることができる。
The preferred phosphorus compound is one or more selected from metal phosphates, metal phosphites or metal hypophosphites, and intramolecular and / or intermolecular condensates thereof, more preferably phosphorus. Salts of phosphorus compounds selected from acids, phosphorous acid, hypophosphorous acid and metals selected from Groups 1 and 2 of the periodic table, manganese, zinc, and aluminum, and their molecules and / or molecules It is an intercondensate. More preferably, it is a metal salt consisting of a phosphorus compound selected from phosphoric acid, phosphorous acid and hypophosphorous acid and a metal selected from Groups 1 and 2 of the periodic table, for example, monosodium phosphate, Disodium phosphate, trisodium phosphate, monocalcium phosphate, dicalcium phosphate, tricalcium phosphate, sodium pyrophosphate, sodium metaphosphate, calcium metaphosphate, sodium hypophosphite, calcium hypophosphite, etc. These anhydrous salts and hydrates can be mentioned. Among these, sodium hypophosphite and calcium hypophosphite are even more preferable.
When using a phosphorus compound, the compounding amount of the phosphorus compound in the polyamide composition of the present embodiment is preferably 0.01 to 1% by mass, more preferably 0.05 to 100% by mass with respect to 100% by mass of the polyamide composition. 1% by mass. In the above range, the heat discoloration can be further improved.

(その他の成分)
上述した成分の他に、本実施形態の効果を損なわない範囲で、必要に応じてさらに他の
他の成分を添加してもよい。
例えば、顔料及び染料等の着色剤(着色マスターバッチ含む)、離型剤、難燃剤、フィブリル化剤、潤滑剤、蛍光増白剤、可塑化剤、銅化合物、ハロゲン化アルカリ金属化合物、酸化防止剤、安定剤、紫外線吸収剤、帯電防止剤、流動性改良剤、充填剤、補強剤、展着剤、結晶核剤、ゴム、強化剤並びに他のポリマー等を混合してもよい。
ここで、上記他の成分は、それぞれ性質が大きく異なるため、各成分についての、本実施形態の効果をほとんど損なわない好適な含有率は様々である。そして、当業者であれば、上記した他の成分ごとの好適な含有率は容易に設定可能である。
(Other ingredients)
In addition to the components described above, other other components may be added as necessary within the range not impairing the effects of the present embodiment.
For example, coloring agents such as pigments and dyes (including colored master batches), mold release agents, flame retardants, fibrillating agents, lubricants, optical brighteners, plasticizers, copper compounds, alkali metal halide compounds, antioxidants Agents, stabilizers, ultraviolet absorbers, antistatic agents, fluidity improvers, fillers, reinforcing agents, spreading agents, crystal nucleating agents, rubbers, reinforcing agents, and other polymers may be mixed.
Here, since the above-mentioned other components have greatly different properties, there are various suitable contents for each component that hardly impair the effects of the present embodiment. A person skilled in the art can easily set a suitable content for each of the other components described above.

〔ポリアミド組成物の製造方法〕
本実施形態のポリアミド組成物の製造方法は、前記(A)ポリアミドと(B)酸化チタンとを混合する工程を有する方法であれば、特に限定されるものではない。
(A)ポリアミドと(B)酸化チタンの混合方法として、例えば、(A)ポリアミドと(B)酸化チタンとを、タンブラー、ヘンシェルミキサー等を用いて混合し、溶融混練機に供給し、混練する方法や、単軸又は二軸押出機で溶融状態にしたポリアミドに、サイドフィダーから酸化チタンを配合する方法等が挙げられる。
(C)無機充填材を配合する場合も同様の方法が用いることができ、(A)ポリアミド等と混合して溶融混練機に供給して供給する方法や、単軸又は二軸押出機で溶融状態にした(A)ポリアミドと(B)酸化チタンに、サイドフィダーから(C)無機充填材を配合する方法等が挙げられる。
ポリアミド組成物を構成する成分を溶融混練機に供給する方法は、すべての構成成分を同一の供給口に一度に供給してもよいし、構成成分をそれぞれ異なる供給口から供給してもよい。
溶融混練温度は、樹脂温度にして250〜375℃程度であることが好ましく、溶融混練時間は、0.25〜5分程度であることが好ましい。
溶融混練を行う装置としては、特に限定されるものではなく、公知の装置、例えば、単軸又は二軸押出機、バンバリーミキサー、及びミキシングロール等の溶融混練機を用いることができる。
[Production method of polyamide composition]
The manufacturing method of the polyamide composition of this embodiment will not be specifically limited if it is a method which has the process of mixing the said (A) polyamide and (B) titanium oxide.
As a mixing method of (A) polyamide and (B) titanium oxide, for example, (A) polyamide and (B) titanium oxide are mixed using a tumbler, a Henschel mixer, etc., supplied to a melt kneader, and kneaded. Examples thereof include a method and a method of blending titanium oxide from a side feeder into a polyamide melted with a single or twin screw extruder.
(C) The same method can also be used when blending inorganic fillers. (A) A method of mixing with polyamide or the like and supplying it to a melt-kneader or melting with a single-screw or twin-screw extruder Examples include a method of blending (C) inorganic filler from the side feeder into (A) polyamide and (B) titanium oxide in a state.
In the method of supplying the components constituting the polyamide composition to the melt kneader, all the components may be supplied to the same supply port at once, or the components may be supplied from different supply ports.
The melt kneading temperature is preferably about 250 to 375 ° C. as the resin temperature, and the melt kneading time is preferably about 0.25 to 5 minutes.
The apparatus for performing melt kneading is not particularly limited, and a known apparatus, for example, a melt kneader such as a single or twin screw extruder, a Banbury mixer, and a mixing roll can be used.

〔ポリアミド組成物の物性〕
本実施形態のポリアミド組成物の25℃の硫酸相対粘度ηr、融点Tm2は、前記(A)ポリアミドにおける測定方法と同様の方法により測定することができる。
すなわち、25℃の硫酸相対粘度の測定は、下記実施例に記載するように、JIS−K6920に準じて98%硫酸中、25℃で測定することができる。
融点(Tm1又はTm2)の測定は、下記実施例に記載するように、JIS−K7121に準じて行うことができる。融点の測定装置としては、例えば、PERKIN−ELMER社製Diamond−DSC等が挙げられる。
また、ポリアミド組成物における測定値が、前記ポリアミドの測定値として好ましい範囲と同様の範囲にあることにより、色調、耐変色性、及び成形性に優れるポリアミド組成物を得ることができる。
[Physical properties of polyamide composition]
The polyamide composition of the present embodiment can be measured for the sulfuric acid relative viscosity ηr and the melting point Tm2 at 25 ° C. by the same method as that for the polyamide (A).
That is, the measurement of sulfuric acid relative viscosity at 25 ° C. can be performed at 25 ° C. in 98% sulfuric acid according to JIS-K6920 as described in the following examples.
The measurement of melting | fusing point (Tm1 or Tm2) can be performed according to JIS-K7121 as described in the following Example. Examples of the melting point measuring device include Diamond-DSC manufactured by PERKIN-ELMER.
Moreover, when the measured value in a polyamide composition exists in the range similar to a preferable range as a measured value of the said polyamide, the polyamide composition excellent in color tone, discoloration resistance, and moldability can be obtained.

〔ポリアミド組成物の成形体〕
本実施形態のポリアミド組成物の成形品は、公知の成形方法、例えばプレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形、及び溶融紡糸等、一般に知られているプラスチック成形方法を用いて得ることができる。
本実施形態のポリアミド組成物から得られる成形品は、靭性、色調、耐変色性に優れる。したがって、本実施形態のポリアミド組成物は、自動車用、電気及び電子用、産業資材用、及び日用及び家庭品用等の各種部品材料として、また、押出用途等に好適に用いることができる。
自動車用としては、特に限定されるものではなく、例えば、吸気系部品、冷却系部品、燃料系部品、内装部品、外装部品、及び電装部品等に用いられる。中でも内装、外装部品に好適である。
内装部品としては、特に限定されるものではなく、例えば、インストルメンタルパネル、コンソールボックス、グローブボックス、ステアリングホイール、及びトリム等が挙げられる。
外装部品としては、特に限定されるものではなく、例えば、モール、ランプハウジング、フロントグリル、マッドガード、サイドバンパー、及びドアミラーステイ、ルーフレール等が挙げられる。
電気及び電子用としては、特に限定されるものではなく、例えば、コネクター、スイッチ、リレー、プリント配線板、電子部品のハウジング、コンセント、ノイズフィルター、コイルボビン、及びモーターエンドキャップ等に用いられる。
産業機器用としては、特に限定されるものではなく、例えば、ギヤ、カム、絶縁ブロック、バルブ、電動工具部品、農機具部品、エンジンカバー等に用いられる。
日用及び家庭品用としては、特に限定されるものではなく、例えば、ボタン、食品容器、及びオフィス家具等に用いられる。
押し出し用途としては、特に限定されるものではなく、例えば、フィルム、シート、フィラメント、チューブ、棒、及び中空成形品等に用いられる。
[Molded body of polyamide composition]
Molded articles of the polyamide composition of this embodiment are known molding methods such as press molding, injection molding, gas assist injection molding, welding molding, extrusion molding, blow molding, film molding, hollow molding, multilayer molding, and melt spinning. Etc., and can be obtained by using a generally known plastic molding method.
The molded product obtained from the polyamide composition of this embodiment is excellent in toughness, color tone, and discoloration resistance. Therefore, the polyamide composition of the present embodiment can be suitably used as various parts materials for automobiles, electrical and electronic products, industrial materials, daily products and household products, and for extrusion applications.
It is not particularly limited for automobiles, and is used for, for example, intake system parts, cooling system parts, fuel system parts, interior parts, exterior parts, and electrical parts. Among these, it is suitable for interior and exterior parts.
The interior part is not particularly limited, and examples thereof include an instrument panel, a console box, a glove box, a steering wheel, and a trim.
The exterior parts are not particularly limited, and examples include a mall, a lamp housing, a front grille, a mud guard, a side bumper, a door mirror stay, and a roof rail.
The electric and electronic devices are not particularly limited, and are used for connectors, switches, relays, printed wiring boards, electronic component housings, outlets, noise filters, coil bobbins, motor end caps, and the like.
For industrial equipment, it is not particularly limited. For example, it is used for gears, cams, insulating blocks, valves, electric tool parts, agricultural equipment parts, engine covers, and the like.
It is not specifically limited as for daily use and household goods, for example, it is used for buttons, food containers, office furniture and the like.
The extrusion application is not particularly limited. For example, it is used for a film, a sheet, a filament, a tube, a rod, a hollow molded article, and the like.

以下、本実施形態を実施例及び比較例によってさらに具体的に説明するが、本実施形態はこれらの実施例のみに限定されるものではない。
実施例及び比較例に用いた原材料及び測定方法を以下に示す。なお、本実施例において、1kg/cm2は、0.098MPaを意味する。
Hereinafter, the present embodiment will be described more specifically with reference to examples and comparative examples, but the present embodiment is not limited to only these examples.
The raw materials and measurement methods used in Examples and Comparative Examples are shown below. In this example, 1 kg / cm 2 means 0.098 MPa.

[原材料]
本実施例において下記化合物を用いた。
〔(A)ポリアミド原料〕
<(a)ジカルボン酸>
(a−1)1,4−シクロヘキサンジカルボン酸(CHDA)(商品名:1,4−CHDA HPグレード(トランス体/シス体=25/75)(イーストマンケミカル社製))
(a−2)テレフタル酸(TPA)(和光純薬工業社製)
(a−3)アジピン酸(ADA)(和光純薬工業社製)
(a−4)ドデカン二酸(C12DA)(和光純薬工業社製)
<(b)ジアミン>
(b−1)2−メチルペンタメチレンジアミン(2MPD)(東京化成工業製)
(b−2)ペンタメチレンジアミン(PMD)(和光純薬工業社製)
(b−3)ヘキサメチレンジアミン(HMD)(和光純薬工業社製)
<(c)ラクタム及び/又はアミノカルボン酸>
(c−1)ε−カプロラクタム(CPL)(和光純薬工業社製)
[raw materials]
The following compounds were used in this example.
[(A) Polyamide raw material]
<(A) Dicarboxylic acid>
(A-1) 1,4-cyclohexanedicarboxylic acid (CHDA) (trade name: 1,4-CHDA HP grade (trans isomer / cis isomer = 25/75) (manufactured by Eastman Chemical Co.))
(A-2) Terephthalic acid (TPA) (manufactured by Wako Pure Chemical Industries, Ltd.)
(A-3) Adipic acid (ADA) (Wako Pure Chemical Industries, Ltd.)
(A-4) Dodecanedioic acid (C12DA) (manufactured by Wako Pure Chemical Industries, Ltd.)
<(B) Diamine>
(B-1) 2-methylpentamethylenediamine (2MPD) (manufactured by Tokyo Chemical Industry)
(B-2) Pentamethylenediamine (PMD) (manufactured by Wako Pure Chemical Industries, Ltd.)
(B-3) Hexamethylenediamine (HMD) (manufactured by Wako Pure Chemical Industries, Ltd.)
<(C) Lactam and / or aminocarboxylic acid>
(C-1) ε-caprolactam (CPL) (manufactured by Wako Pure Chemical Industries, Ltd.)

〔(B)酸化チタン:ルチル型酸化チタン〕
数平均粒子径:0.21μm
コーティング:アルミナ、シリカ、シロキサン化合物
強熱減量:1.21質量%
[(B) titanium oxide: rutile titanium oxide]
Number average particle diameter: 0.21 μm
Coating: Alumina, silica, siloxane compound Loss on ignition: 1.21% by mass

〔(C)無機充填材:ガラス繊維〕
商品名:ECS 03T−275H(日本電気硝子社製)
平均繊維径10μmφ、カット長3mm
[(C) inorganic filler: glass fiber]
Product name: ECS 03T-275H (Nippon Electric Glass Co., Ltd.)
Average fiber diameter 10μmφ, cut length 3mm

〔(D)フェノール系熱安定剤〕
商品名:IRGANOX(登録商標)1098(BASF社製)
[(D) Phenolic heat stabilizer]
Product name: IRGANOX (registered trademark) 1098 (manufactured by BASF)

〔(E)アミン系光安定剤〕
商品名:Nylostab(登録商標)S−EED(クラリアント社製)
分子量:443
[(E) amine light stabilizer]
Product name: Nylostab (registered trademark) S-EED (manufactured by Clariant)
Molecular weight: 443

〔(F)リン化合物〕
商品名:次亜リン酸ナトリウム一水和物(和光純薬工業社製)
[(F) phosphorus compound]
Product name: Sodium hypophosphite monohydrate (Wako Pure Chemical Industries, Ltd.)

〔(G)結晶核剤:窒化ホウ素〕
商品名:デンカボロンナイトライドSP−2(電気化学工業社製)
[(G) Crystal nucleating agent: Boron nitride]
Product name: DENKABORON NITRIDE SP-2 (manufactured by Denki Kagaku Kogyo Co., Ltd.)

[ポリアミド成分量の計算]
(a−1)脂環族ジカルボン酸のモル%は、(原料モノマーとして加えた(a−1)脂環族ジカルボン酸のモル数/原料モノマーとして加えた全ての(a)ジカルボン酸のモル数)×100として、計算により求めた。
(b−1)ペンタメチレンジアミン骨格を有するジアミンのモル%は、(原料モノマーとして加えた(b−1)ペンタメチレンジアミン骨格を有するジアミンのモル数/原料モノマーとして加えた全ての(b)ジアミンのモル数)×100として、計算により求めた。
(c)ラクタム及び/又はアミノカルボン酸のモル%は、(原料モノマーとして加えた(c)ラクタム及び/又はアミノカルボン酸のモル数/原料モノマーとして加えた、全ての(a)ジカルボン酸のモル数+(b)全てのジアミンのモル数+(c)ラクタム及び/又はアミノカルボン酸のモル数)×100として、計算により求めた。
なお、上記式により計算する際に、分母及び分子には、溶融重合時の添加物として加えた(b−1)ペンタメチレンジアミン骨格を有するジアミンのモル数は含まれない。
[Calculation of polyamide content]
(A-1) The mol% of the alicyclic dicarboxylic acid is (the number of moles of (a-1) alicyclic dicarboxylic acid added as a raw material monomer / the number of moles of all (a) dicarboxylic acids added as raw material monomers. ) × 100.
(B-1) The mol% of the diamine having a pentamethylenediamine skeleton is ((b-1) moles of diamine having a pentamethylenediamine skeleton added as a raw material monomer / all (b) diamines added as a raw material monomer. The number of moles) was determined by calculation as 100.
The mole% of (c) lactam and / or aminocarboxylic acid is: (c) moles of lactam and / or aminocarboxylic acid added as raw monomer / moles of all (a) dicarboxylic acid added as raw monomer Number + (b) mole number of all diamines + (c) mole number of lactam and / or aminocarboxylic acid) × 100.
In addition, when calculating by the above formula, the denominator and numerator do not include the number of moles of diamine having (b-1) pentamethylenediamine skeleton added as an additive during melt polymerization.

[物性の測定方法]
<(1)融点Tm1、Tm2(℃)>
JIS−K7121に準じて、PERKIN−ELMER社製Diamond−DSCを用いて測定した。測定条件は、窒素雰囲気下、試料約10mgを昇温速度20℃/minでサンプルの融点に応じて300〜350℃まで昇温したときに現れる吸熱ピーク(融解ピーク)の温度をTm1(℃)とし、昇温の最高温度の溶融状態で温度を2分間保った後、降温速度20℃/minで30℃まで降温し、30℃で2分間保持した後、昇温速度20℃/minで同様に昇温したときに現れる吸熱ピーク(融解ピーク)の最大ピーク温度を融点Tm2(℃)とした。
[Measurement method of physical properties]
<(1) Melting points Tm1, Tm2 (° C.)>
According to JIS-K7121, it measured using Diamond-DSC by PERKIN-ELMER. The measurement condition is that the temperature of an endothermic peak (melting peak) that appears when about 10 mg of a sample is heated to 300 to 350 ° C. according to the melting point of the sample at a heating rate of 20 ° C./min in a nitrogen atmosphere is Tm1 (° C.). After maintaining the temperature in the molten state at the highest temperature rise for 2 minutes, the temperature was lowered to 30 ° C. at a temperature drop rate of 20 ° C./min, held at 30 ° C. for 2 minutes, and the same at the temperature rise rate of 20 ° C./min. The maximum peak temperature of the endothermic peak (melting peak) that appears when the temperature is raised to is the melting point Tm2 (° C.).

<(2)25℃の硫酸相対粘度ηr>
JIS−K6920に準じて実施した。具体的には、98%硫酸を用いて、ポリマー溶解液((ポリアミド1g)/(98%硫酸100mL)の割合)を作成し、25℃の温度条件下で測定した。
<(2) Sulfuric acid relative viscosity ηr at 25 ° C.>
It carried out according to JIS-K6920. Specifically, a polymer solution (a ratio of (polyamide 1 g) / (98% sulfuric acid 100 mL)) was prepared using 98% sulfuric acid and measured under a temperature condition of 25 ° C.

<(3)環状アミノ末端量(μ当量/g)>
環状アミノ末端量は、1H−NMRを用いて測定した。
窒素の複素環の窒素原子に隣接する炭素に結合する水素のシグナル(化学シフト値3.5〜4.0ppm)とポリアミド主鎖のアミド結合の窒素原子に隣接する炭素に結合する水素のシグナル(化学シフト値3.0〜3.5ppm)の積分比を用いて環状アミノ末端量を算出した。その際に使用する、ポリマー末端の総末端数はGPC(東ソー株式会社製、HLC−8020、ヘキサフルオロプロパノール溶媒、PMMA標準サンプル(ポリマーラボラトリー社製)換算)で測定したMnを用いて、2/Mn×1,000,000として計算した。
<(3) Cyclic amino terminal amount (μ equivalent / g)>
The amount of cyclic amino terminal was measured using 1H-NMR.
Signal of hydrogen bonded to carbon adjacent to nitrogen atom of nitrogen heterocycle (chemical shift value 3.5 to 4.0 ppm) and signal of hydrogen bonded to carbon adjacent to nitrogen atom of amide bond of polyamide main chain ( The cyclic amino terminal amount was calculated using an integral ratio of chemical shift value of 3.0 to 3.5 ppm. The total number of polymer terminals used at that time is 2 / using Mn measured by GPC (converted by Tosoh Corporation, HLC-8020, hexafluoropropanol solvent, PMMA standard sample (manufactured by Polymer Laboratories)). Calculated as Mn × 1,000,000.

<(4)酸化チタンの強熱減量>
酸化チタンを120℃で4時間乾燥させて、表面の付着水分を除去した後、デシケーター中で30分間静置し冷却した。続いて、磁性るつぼに約10g精秤し、650℃の電気炉にて2時間加熱した。加熱後、デシケーター中で30分間静置し冷却した後、重量を測定した。加熱前後の重量減少率を算出し、強熱減量とした。
<(4) Loss on ignition of titanium oxide>
Titanium oxide was dried at 120 ° C. for 4 hours to remove moisture adhering to the surface, and then allowed to stand for 30 minutes in a desiccator and cooled. Subsequently, about 10 g was precisely weighed in a magnetic crucible and heated in an electric furnace at 650 ° C. for 2 hours. After heating, it was allowed to stand for 30 minutes in a desiccator and cooled, and then the weight was measured. The weight loss rate before and after heating was calculated and used as ignition loss.

<(5)曲げたわみ量(mm)>
実施例又は比較例で得られたポリアミド組成物ペレットを、射出成形機[PS−40E:日精樹脂株式会社製]を用いて、射出+保圧時間10秒、冷却時間15秒、金型温度を120℃、溶融樹脂温度を(A)ポリアミドのTm2+20℃に設定し、長さ128mm×巾12.8mm×厚さ0.7mmの短冊状成形片(試験片)を成形した。
得られた試験片を用いて、スパン間距離28mm、圧縮速度5mm/minにて曲げ試験を行い、最大荷重時のたわみ量を測定した。
<(5) Bending amount (mm)>
Using the injection molding machine [PS-40E: manufactured by Nissei Resin Co., Ltd.], the polyamide composition pellets obtained in the examples or comparative examples were injected + pressure holding time 10 seconds, cooling time 15 seconds, and mold temperature. A strip-shaped molded piece (test piece) having a length of 128 mm, a width of 12.8 mm, and a thickness of 0.7 mm was formed by setting the molten resin temperature to 120 ° C. and Tm2 + 20 ° C. of (A) polyamide.
Using the obtained test piece, a bending test was performed at a span distance of 28 mm and a compression speed of 5 mm / min, and the amount of deflection at the maximum load was measured.

<(6)白色度、色調(b値)>
実施例又は比較例で得られたポリアミド組成物ペレットを、射出成形機[PS−40E:日精樹脂株式会社製]を用いて、射出+保圧時間10秒、冷却時間15秒、金型温度を120℃、溶融樹脂温度を(A)ポリアミドのTm2+20℃に設定し、長さ60mm×巾60mm×厚さ1.0mmの成形片を成形した。
得られた成形片を、分光色差計[SE6000:日本電色工業株式会社製]を用いて、JIS Z8730に準拠し、ハンターの色差式による明度(L値)、赤色度(a値)、黄色度(b値)を求め、白色度(W値)を算出した。
W=100−[(100−L)+a+b1/2
なお、後述する実施例13〜15、比較例11については、押出成形により得られたシートをそのまま用いて色調を測定し、白色度を算出した。
<(6) Whiteness, color tone (b value)>
Using the injection molding machine [PS-40E: manufactured by Nissei Resin Co., Ltd.], the polyamide composition pellets obtained in the examples or comparative examples were injected + pressure holding time 10 seconds, cooling time 15 seconds, and mold temperature. A molded resin piece having a length of 60 mm, a width of 60 mm and a thickness of 1.0 mm was molded at 120 ° C. and the molten resin temperature was set to Tm2 + 20 ° C. of (A) polyamide.
Using the spectral color difference meter [SE6000: manufactured by Nippon Denshoku Industries Co., Ltd.], the obtained molded piece is compliant with JIS Z8730, brightness (L value), redness (a value), yellow according to Hunter's color difference formula. The degree (b value) was determined, and the whiteness (W value) was calculated.
W = 100 − [(100−L) 2 + a 2 + b 2 ] 1/2
In Examples 13 to 15 and Comparative Example 11 described later, the color tone was measured using the sheet obtained by extrusion as it was, and the whiteness was calculated.

<(7)初期の白色度、色調(b値)>
上記(6)のようにして得られた成形片を23℃で24時間静置した後、色差計により色調を測定し、白色度を算出した。
なお、後述する実施例13〜15、比較例11については、押出成形により得られたシートをそのまま用いて色調を測定し、白色度を算出した。
<(7) Initial whiteness, color tone (b value)>
The molded piece obtained as described in (6) above was allowed to stand at 23 ° C. for 24 hours, and then the color tone was measured with a color difference meter to calculate the whiteness.
In Examples 13 to 15 and Comparative Example 11 described later, the color tone was measured using the sheet obtained by extrusion as it was, and the whiteness was calculated.

<(8)熱処理後の白色度>
上記(6)のようにして得られた成形片を、150℃の熱風乾燥機中で48時間加熱処理した。処理後の成形片を上記と同様にして色差計により色調を測定し、白色度を算出した。
なお、初期と比較して熱処理後の白色度に変化が少ないことは、高温雰囲気下にさらされる用途に好適であることを示しており、産業上有用であると判断した。
<(8) Whiteness after heat treatment>
The molded piece obtained as described in (6) above was heat-treated in a hot air dryer at 150 ° C. for 48 hours. The processed molded piece was measured for color tone with a color difference meter in the same manner as described above, and the whiteness was calculated.
In addition, it was judged that it was suitable for the use exposed to a high temperature atmosphere that there was little change in the whiteness after heat processing compared with the initial stage, and it was judged industrially useful.

<(9)再溶融処理後の白色度>
上記(6)のようにして得られた成形片を、粉砕機を用いて粉砕した後、シリンダー、ダイスの温度を(A)ポリアミドのTm2+20℃に設定したスクリュー径40mmの単軸押出機を用いて、溶融混練してペレットを作製した。
得られたペレットを用いて、上記(6)のようにして成形片を得て、23℃で24時間静置した後、色差計により色調を測定し、白色度を算出した。
なお、初期と比較して再溶融処理後の白色度に変化が少ないことは、リサイクル等に好適であることを示しており、産業上有用であると判断した。
また、後述する実施例13〜15、比較例11についても同様にして、押出成形により得られたシートを粉砕した後に、単軸押出機を用いてペレットを作製し、そのペレットを用いて押出成形により得られたシートの色調を測定し、白色度を算出した。
<(9) Whiteness after remelting>
After the molded piece obtained as described in (6) above was pulverized using a pulverizer, a single screw extruder with a screw diameter of 40 mm was used in which the temperature of the cylinder and the die was set to Tm2 + 20 ° C. of (A) polyamide. Then, the mixture was melt-kneaded to produce pellets.
Using the obtained pellets, a molded piece was obtained as in (6) above, and allowed to stand at 23 ° C. for 24 hours, and then the color tone was measured with a color difference meter to calculate the whiteness.
Note that less change in whiteness after remelting compared to the initial value indicates that it is suitable for recycling and the like, and was judged to be industrially useful.
Similarly, in Examples 13 to 15 and Comparative Example 11 described later, after a sheet obtained by extrusion molding is pulverized, pellets are produced using a single screw extruder, and extrusion molding is performed using the pellets. The color tone of the obtained sheet was measured, and the whiteness was calculated.

<(10)調湿処理後の色調(b値)>
上記(6)のようにして得られた成形片を、85℃、湿度85%の恒温恒湿機中で100時間調湿処理した。処理後の成形片を上記と同様にして色差計により色調を測定した。
なお、初期と比較して調湿処理後の色調に変化が少ないことは、高湿雰囲気下にさらされる用途に好適であることを示しており、産業上有用であると判断した。
<(10) Hue-conditioning color tone (b value)>
The molded piece obtained as described in the above (6) was subjected to humidity control for 100 hours in a constant temperature and humidity chamber at 85 ° C. and 85% humidity. The tone of the molded piece after treatment was measured with a color difference meter in the same manner as described above.
Note that the fact that the change in the color tone after the humidity conditioning treatment is small compared to the initial value indicates that the color tone is suitable for applications exposed to a high humidity atmosphere, and was judged to be industrially useful.

<(11)リフロー耐熱性>
実施例又は比較例で得られたポリアミド組成物ペレットを、射出成形機[PS−40E:日精樹脂株式会社製]を用いて、射出+保圧時間10秒、冷却時間15秒、金型温度を120℃、溶融樹脂温度を(A)ポリアミドのTm2+20℃に設定し、長さ60mm×巾60mm×厚さ1.0mmの成形片を成形した。
得られた成形片を、熱風リフロー炉で加熱して、成形片の形状変化を確認し、以下の基準で判定した。
○:成形片の変形なし。
△:成形片にわずかな変形が認められる。
×:成形片に明らかな変形がある。
なお、このときに使用した熱風リフロー炉は、鉛フリーハンダ対応リフロー炉(UNI−6116H、日本アントム社製)であり、温度設定について、プレヒートゾーンの温度を180℃、ソルダリングゾーンの温度を280℃に設定した。また、リフロー炉内のコンベア−ベルト速度は0.3m/分に設定した。この条件下において、炉内の温度プロファイルを確認したところ、140℃〜200℃の熱暴露時間が90秒、220℃以上の熱暴露時間が48秒、260℃以上の熱暴露時間が11秒であり、最高到達温度は265℃であった。
<(11) Reflow heat resistance>
Using the injection molding machine [PS-40E: manufactured by Nissei Resin Co., Ltd.], the polyamide composition pellets obtained in the examples or comparative examples were injected + pressure holding time 10 seconds, cooling time 15 seconds, and mold temperature. A molded resin piece having a length of 60 mm, a width of 60 mm and a thickness of 1.0 mm was molded at 120 ° C. and the molten resin temperature was set to Tm2 + 20 ° C. of (A) polyamide.
The obtained molded piece was heated in a hot air reflow furnace to confirm the shape change of the molded piece, and judged according to the following criteria.
○: No deformation of the molded piece.
Δ: Slight deformation is observed in the molded piece.
X: There is obvious deformation in the molded piece.
The hot-air reflow furnace used at this time was a lead-free solder compatible reflow furnace (UNI-6116H, manufactured by Nippon Antom Co., Ltd.). Set to ° C. The conveyor belt speed in the reflow furnace was set to 0.3 m / min. Under this condition, the temperature profile in the furnace was confirmed. The heat exposure time at 140 ° C. to 200 ° C. was 90 seconds, the heat exposure time at 220 ° C. or higher was 48 seconds, and the heat exposure time at 260 ° C. or higher was 11 seconds. There was a maximum temperature of 265 ° C.

<(12)耐折曲げ性>
実施例又は比較例で得られたポリアミド組成物ペレットを、シリンダーの温度、Tダイス(幅:40cm)の温度を(A)ポリアミドのTm2+20℃に設定したスクリュー径40mmの単軸押出機を用いて、スクリュー回転数30rpm、吐出量6kg/hで押出成形を行った。このときシートが150μmの厚さになるようにTダイスのクリアランス、シートの引き取り速度を調整した。
得られたシートを長さ128mm×巾12.8mmに打ち抜いた。得られた打ち抜きシートを、長手方向に半分(長さ64mm×巾12.8mm)になるように180度折曲げ、以下の基準で判定した。
○:成形片に折目はつくが、亀裂は発生しなかった。
×:成形片が2つに割れた。
<(12) Bending resistance>
Using a single screw extruder with a screw diameter of 40 mm, the polyamide composition pellets obtained in the examples or comparative examples were set to a cylinder temperature and a T die (width: 40 cm) temperature (A) polyamide Tm2 + 20 ° C. Extrusion molding was performed at a screw speed of 30 rpm and a discharge rate of 6 kg / h. At this time, the clearance of the T die and the take-up speed of the sheet were adjusted so that the sheet had a thickness of 150 μm.
The obtained sheet was punched into a length of 128 mm and a width of 12.8 mm. The obtained punched sheet was bent 180 degrees so as to be half in the longitudinal direction (length 64 mm × width 12.8 mm), and judged according to the following criteria.
○: The molded piece had a crease, but no crack occurred.
X: The molded piece was broken into two.

[ポリアミド]
〔製造例1〕
「熱溶融重合法」によりポリアミドの重合反応を実施した。
(a)CHDA896g(5.20モル)、及び(b)2MPD604g(5.20モル)を蒸留水1500gに溶解させ、等モルの原料モノマーを含む50質量%水溶液を作った。
得られた水溶液と、溶融重合時の添加物である、2MPD21g(0.18モル)を内容積5.4Lのオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。液温約50℃から、オートクレーブの槽内の圧力が、ゲージ圧として(以下、槽内の圧力は全てゲージ圧として表記する。)、約2.5kg/cm2になるまで、加熱を続けた。槽内の圧力を約2.5kg/cm2に保つため水を系外に除去しながら、加熱を続けて、水溶液の濃度が約85%になるまで濃縮した。水の除去を止め、槽内の圧力が約30kg/cm2になるまで加熱を続けた。槽内の圧力を30kg/cm2に保つため水を系外に除去しながら、液温の最終温度−50℃になるまで加熱を続けた。さらに加熱は続けながら、槽内の圧力を60分間かけて30kg/cm2から大気圧(ゲージ圧は0kg/cm2)になるまで降圧した。液温の最終温度が345℃になるようにヒーター温度を調整した。液温はその状態のまま、槽内を真空装置で100torrの減圧下に10分維持した。その後、窒素で加圧し下部紡口(ノズル)からストランド状にし、水冷、カッティングを行いペレット状で排出して、ポリアミドを得た。
得られたポリアミドを窒素気流中で乾燥し水分率を約0.2質量%未満になるように調整してから、上記(1)〜(3)の測定を行った。測定結果を表1に示す。
[polyamide]
[Production Example 1]
Polymerization reaction of polyamide was carried out by “hot melt polymerization method”.
(A) CHDA 896 g (5.20 mol) and (b) 2MPD 604 g (5.20 mol) were dissolved in distilled water 1500 g to prepare a 50% by mass aqueous solution containing equimolar raw material monomers.
The obtained aqueous solution and 2MPD 21 g (0.18 mol), which is an additive at the time of melt polymerization, are charged into an autoclave (made by Nitto Koatsu) with an internal volume of 5.4 L until the liquid temperature (internal temperature) reaches 50 ° C. The temperature inside the autoclave was replaced with nitrogen. From the liquid temperature of about 50 ° C., heating was continued until the pressure in the tank of the autoclave reached about 2.5 kg / cm 2 as gauge pressure (hereinafter, all pressure in the tank was expressed as gauge pressure). . In order to keep the pressure in the tank at about 2.5 kg / cm 2 , heating was continued while removing water out of the system, and the aqueous solution was concentrated to a concentration of about 85%. The removal of water was stopped, and heating was continued until the pressure in the tank reached about 30 kg / cm 2 . In order to keep the pressure in the tank at 30 kg / cm 2 , heating was continued until the final temperature of the liquid temperature reached −50 ° C. while removing water out of the system. Further, while the heating was continued, the pressure in the tank was reduced from 30 kg / cm 2 to atmospheric pressure (gauge pressure was 0 kg / cm 2 ) over 60 minutes. The heater temperature was adjusted so that the final temperature of the liquid temperature was 345 ° C. The liquid temperature was maintained in that state for 10 minutes under a reduced pressure of 100 torr with a vacuum apparatus. Thereafter, it was pressurized with nitrogen to form a strand from the lower nozzle (nozzle), water-cooled, cut, and discharged in a pellet form to obtain a polyamide.
The obtained polyamide was dried in a nitrogen stream and the moisture content was adjusted to be less than about 0.2% by mass, and then the above measurements (1) to (3) were performed. The measurement results are shown in Table 1.

〔製造例2〕
溶融重合時の添加物の量として、下記表1に記載の量にしたこと以外は、製造例1に記載した熱溶融重合法でポリアミドの重合を行った。
さらに「固相重合」を実施した。
溶融重合で得られたポリアミドペレット10kgを円錐型リボン真空乾燥機(株式会社大川原製作所製、商品名リボコーンRM−10V)に入れ、充分に窒素置換を行った。1L/分で窒素を流したまま、攪拌を行いながら260℃で6時間の加熱を行った。その後、窒素を流通したまま温度を下げていき約50℃になったところでペレットのまま装置から取り出し、ポリアミドを得た。
得られたポリアミドの上記測定方法に基づいて行った測定結果を下記表1に示す。
[Production Example 2]
Polyamide was polymerized by the hot melt polymerization method described in Production Example 1 except that the amount of the additive during melt polymerization was the amount described in Table 1 below.
Further, “solid phase polymerization” was performed.
10 kg of polyamide pellets obtained by melt polymerization were placed in a conical ribbon vacuum dryer (trade name ribocorn RM-10V, manufactured by Okawara Seisakusho Co., Ltd.), and sufficiently substituted with nitrogen. While flowing nitrogen at 1 L / min, heating was performed at 260 ° C. for 6 hours while stirring. Thereafter, the temperature was lowered while flowing nitrogen, and when the temperature reached about 50 ° C., the pellets were taken out from the apparatus to obtain polyamide.
Table 1 below shows the measurement results of the obtained polyamide based on the above-described measurement method.

〔製造例3〕
槽内の圧力を30kg/cm2から大気圧に下げるのにかけた時間を90分としたこと以外は、製造例1に記載した熱溶融重合法でポリアミドの重合を行った。得られたポリアミドの上記測定方法に基づいて行った測定結果を下記表1に示す。
[Production Example 3]
Polyamide was polymerized by the hot melt polymerization method described in Production Example 1 except that the time taken to lower the pressure in the tank from 30 kg / cm 2 to atmospheric pressure was 90 minutes. Table 1 below shows the measurement results of the obtained polyamide based on the above-described measurement method.

〔製造例4〜9〕
(a)ジカルボン酸、(b)ジアミン、(c)ラクタム及び/又はアミノカルボン酸、及び溶融重合時の添加物として、下記表1に記載の化合物と量を用いた。
また、溶融重合の最終温度を下記表1に記載の温度にしたこと以外は、製造例1に記載した熱溶融重合法でポリアミドの重合を行った。
製造例4、5、7〜9については、さらに、固相重合の温度と時間として、下記表1に記載の温度と時間をかけたこと以外は、製造例2に記載した固相重合を行った。得られたポリアミドの上記測定方法に基づいて行った測定結果を表1に示す。
[Production Examples 4 to 9]
The compounds and amounts shown in Table 1 below were used as (a) dicarboxylic acid, (b) diamine, (c) lactam and / or aminocarboxylic acid, and additives during melt polymerization.
Further, polyamide was polymerized by the hot melt polymerization method described in Production Example 1 except that the final temperature of the melt polymerization was set to the temperature described in Table 1 below.
For Production Examples 4, 5, and 7-9, the solid phase polymerization described in Production Example 2 was performed except that the temperature and time described in Table 1 below were applied as the solid phase polymerization temperature and time. It was. Table 1 shows the measurement results of the obtained polyamide based on the above measurement method.

〔比較製造例1〕
槽内の圧力を30kg/cm2から大気圧に下げるのにかけた時間を120分としたことと、溶融重合の最終温度を350℃としたこと以外は、製造例1に記載した熱溶融重合法でポリアミドの重合を行った。
得られたポリアミドの上記測定方法に基づいて行った測定結果を下記表2に示す。
[Comparative Production Example 1]
The hot melt polymerization method described in Production Example 1 except that the time taken to lower the pressure in the tank from 30 kg / cm 2 to atmospheric pressure was 120 minutes and the final temperature of the melt polymerization was 350 ° C. Polymerization of polyamide was performed.
Table 2 below shows the results of measurements performed on the obtained polyamide based on the above-described measurement method.

〔比較製造例2〕
(a)ジカルボン酸、(b)ジアミン、及び溶融重合時の添加物として、下記表2に記載の化合物と量を用いた。
また、溶融重合の最終温度を下記表2に記載の温度にしたこと以外は、製造例1に記載した熱溶融重合法でポリアミドの重合を行った。さらに、固相重合の温度と時間として、下記表2に記載の温度と時間をかけたこと以外は、製造例2に記載した固相重合を行った。
得られたポリアミドの上記測定方法に基づいて行った測定結果を下記表2に示す。
[Comparative Production Example 2]
As the (a) dicarboxylic acid, (b) diamine, and additives during melt polymerization, the compounds and amounts shown in Table 2 below were used.
Further, the polyamide was polymerized by the hot melt polymerization method described in Production Example 1 except that the final temperature of the melt polymerization was set to the temperature described in Table 2 below. Furthermore, the solid phase polymerization described in Production Example 2 was performed except that the temperature and time described in Table 2 below were applied as the solid phase polymerization temperature and time.
Table 2 below shows the results of measurements performed on the obtained polyamide based on the above-described measurement method.

〔比較製造例3〜9〕
(a)ジカルボン酸、(b)ジアミン、及び溶融重合時の添加物として、下記表2に記載の化合物と量を用いた。
また、溶融重合の最終温度を下記表2に記載の温度にしたこと以外は、製造例1に記載した熱溶融重合法でポリアミドの重合を行った。
得られたポリアミドの上記測定方法に基づいて行った測定結果を下記表2に示す。
[Comparative Production Examples 3 to 9]
As the (a) dicarboxylic acid, (b) diamine, and additives during melt polymerization, the compounds and amounts shown in Table 2 below were used.
Further, the polyamide was polymerized by the hot melt polymerization method described in Production Example 1 except that the final temperature of the melt polymerization was set to the temperature described in Table 2 below.
Table 2 below shows the results of measurements performed on the obtained polyamide based on the above-described measurement method.

Figure 2012184293
Figure 2012184293

Figure 2012184293
Figure 2012184293

[ポリアミド組成物]
〔実施例1〜9〕
上述した製造例1〜9のポリアミドを、窒素気流中で乾燥し水分率を約0.2質量%に調整して用いた。
押出機上流側から1番目のバレルに上流側供給口を有し、6番目のバレルに下流第1供給口、9番目のバレルに下流第2供給口を有した、L/D(押出機のシリンダーの長さ/押出機のシリンダー径)=48(バレル数:12)の二軸押出機[ZSK−26MC:コペリオン社製(ドイツ)]を用いて、上流側供給口からダイまでを製造例にて製造した(A)ポリアミドのTm2+20℃に設定し、スクリュー回転数250rpm、吐出量25kg/hで、表3記載の割合となるように、上流側供給口よりポリアミド、フェノール系熱安定剤、アミン系光安定剤、リン化合物、結晶核剤をドライブレンドした後に供給し、下流側第1供給口より酸化チタン、下流側第2供給口より無機充填材を供給して溶融混練しポリアミド組成物ペレットを作製した。
得られたポリアミド組成物を窒素気流中で乾燥し、水分を500ppm以下にした後、成形し、各種評価を実施した。物性値を組成と共に下記表3に示す。
[Polyamide composition]
[Examples 1 to 9]
The polyamides of Production Examples 1 to 9 described above were used by drying in a nitrogen stream and adjusting the water content to about 0.2% by mass.
L / D (of the extruder) having an upstream supply port in the first barrel from the upstream side of the extruder, a downstream first supply port in the sixth barrel, and a downstream second supply port in the ninth barrel. Production example from upstream feed port to die using twin screw extruder [ZSK-26MC: Coperion (Germany)] with cylinder length / cylinder diameter of extruder = 48 (number of barrels: 12) The polyamide (A) produced in (1) was set to Tm2 + 20 ° C., the rotation speed of the screw was 250 rpm, the discharge amount was 25 kg / h, and the polyamide, phenol-based heat stabilizer, Amine-based light stabilizer, phosphorus compound, and crystal nucleating agent are supplied after dry blending, titanium oxide is supplied from the downstream first supply port, and inorganic filler is supplied from the downstream second supply port, and melt-kneaded and polyamide composition. Pellet It was manufactured.
The obtained polyamide composition was dried in a nitrogen stream to reduce the water content to 500 ppm or less, and then molded and subjected to various evaluations. The physical property values are shown in Table 3 below together with the composition.

Figure 2012184293
Figure 2012184293

〔比較例1〜9〕
上述した比較製造例1〜9のポリアミドを用いて、下記表4記載の割合になるようにした以外は、実施例1と同様にして溶融混練しポリアミド組成物ペレットを作製した。
得られたポリアミド組成物を窒素気流中で乾燥し、水分を500ppm以下にした後、成形し、各種評価を実施した。物性値を組成と共に下記表4に示す。
[Comparative Examples 1-9]
Using the polyamides of Comparative Production Examples 1 to 9 described above, polyamide composition pellets were prepared by melt-kneading in the same manner as in Example 1 except that the ratios shown in Table 4 below were obtained.
The obtained polyamide composition was dried in a nitrogen stream to reduce the water content to 500 ppm or less, and then molded and subjected to various evaluations. The physical property values are shown in Table 4 below together with the composition.

Figure 2012184293
Figure 2012184293

表3と表4の結果の対比から、少なくとも50モル%の脂環族ジカルボン酸と少なくとも50モル%のペンタメチレンジアミン骨格を有するジアミンを含み、環状アミノ末端量が30〜60μ当量/gであるポリアミドと酸化チタンとを含有するポリアミド組成物は、曲げたわみ量が大きく靭性に優れ、初期の白色度が高く、b値が低いことから、色調に優れることを確認した。
また、熱処理後の白色度や再溶融処理後の白色度が高く、調湿処理後のb値が低いことから、耐変色性にも優れることを確認した。
さらに、リフロー耐熱性試験において変形もなく、耐熱性が高いことも併せて確認した。
From the comparison of the results of Table 3 and Table 4, it contains at least 50 mol% alicyclic dicarboxylic acid and at least 50 mol% diamine having a pentamethylenediamine skeleton, and the cyclic amino terminal amount is 30-60 μeq / g. It was confirmed that the polyamide composition containing polyamide and titanium oxide had a large amount of bending deflection and excellent toughness, a high initial whiteness, and a low b value.
Moreover, since the whiteness after heat processing and the whiteness after a remelt process are high and b value after a humidity control process is low, it confirmed that it was excellent also in discoloration resistance.
Furthermore, the reflow heat resistance test also confirmed that there was no deformation and the heat resistance was high.

〔実施例10〜12、比較例10〕
製造例2、4、5又は比較製造例6のポリアミドを用いて、下記表5記載の割合になるようにした以外は、実施例1と同様にして溶融混練しポリアミド組成物ペレットを作製した。
得られたポリアミド組成物を窒素気流中で乾燥し、水分を500ppm以下にした後、成形し、各種評価を実施した。物性値を組成と共に下記表5に示す。
[Examples 10 to 12, Comparative Example 10]
Using the polyamides of Production Examples 2, 4, 5 or Comparative Production Example 6 except that the proportions shown in Table 5 below were used, melt-kneading was conducted in the same manner as in Example 1 to produce polyamide composition pellets.
The obtained polyamide composition was dried in a nitrogen stream to reduce the water content to 500 ppm or less, and then molded and subjected to various evaluations. The physical property values are shown in Table 5 below together with the composition.

Figure 2012184293
Figure 2012184293

表5の結果から、ポリアミド組成物中の各成分の配合比が変わった場合も同様に、色調や耐変色性、耐熱性が高いことを確認した。   From the results in Table 5, it was confirmed that the color tone, discoloration resistance, and heat resistance were also high when the blending ratio of each component in the polyamide composition was changed.

〔実施例13〜15、比較例11〕
製造例2、4、5又は比較製造例6のポリアミドを用いて、下記表6記載の割合になるようにした以外は、実施例1と同様にして溶融混練しポリアミド組成物ペレットを作製した。
得られたポリアミド組成物を窒素気流中で乾燥し、水分を500ppm以下にした後、シリンダーの温度、Tダイス(幅:40cm)の温度を(A)ポリアミドのTm2+20℃に設定したスクリュー径40mmの単軸押出機を用いて、スクリュー回転数30rpm、吐出量6kg/hで押出成形を行った。このときシートが150μmの厚さになるようにTダイスのクリアランス、シートの引き取り速度を調整した。
得られたシートを用いて各種評価を実施した。物性値を組成と共に下記表6に示す。
[Examples 13 to 15, Comparative Example 11]
Polyamide composition pellets were produced by melt-kneading in the same manner as in Example 1 except that the ratios shown in Table 6 below were used using the polyamides of Production Examples 2, 4, 5 or Comparative Production Example 6.
The obtained polyamide composition was dried in a nitrogen stream, and the water content was reduced to 500 ppm or less. Extrusion molding was performed using a single screw extruder at a screw speed of 30 rpm and a discharge rate of 6 kg / h. At this time, the clearance of the T die and the take-up speed of the sheet were adjusted so that the sheet had a thickness of 150 μm.
Various evaluation was implemented using the obtained sheet | seat. The physical property values are shown in Table 6 below together with the composition.

Figure 2012184293
Figure 2012184293

表6の結果から、得られたシート成形品についても、耐折曲げ試験において良好であることから靭性に優れ、初期の白色度が高く、再溶融処理後の白色度が高いことから、色調や耐変色性に優れることを確認した。   From the results of Table 6, the obtained sheet molded article is also excellent in toughness because it is good in the bending resistance test, and has high initial whiteness and high whiteness after remelting treatment. It was confirmed that the color fastness was excellent.

本発明のポリアミド組成物は、自動車用、電気及び電子用、産業資材用、工業材料用、日用及び家庭品用等各種部品の成形材料として、産業上の利用性を有している。   The polyamide composition of the present invention has industrial applicability as a molding material for various parts such as automobiles, electric and electronic, industrial materials, industrial materials, daily products and household products.

Claims (16)

(a)少なくとも50モル%の脂環族ジカルボン酸を含むジカルボン酸と、(b)少なくとも50モル%のペンタメチレンジアミン骨格を有するジアミンを含むジアミンと、を重合させたポリアミドであって、環状アミノ末端量が30〜60μ当量/gである、(A)ポリアミドと、
(B)酸化チタンと、
を、含有するポリアミド組成物。
A polyamide obtained by polymerizing (a) a dicarboxylic acid containing at least 50 mol% alicyclic dicarboxylic acid and (b) a diamine containing a diamine having a pentamethylenediamine skeleton at least 50 mol%, (A) polyamide having a terminal amount of 30 to 60 μeq / g;
(B) titanium oxide;
A polyamide composition.
前記(A)ポリアミドの25℃の硫酸相対粘度ηrが2.3以上である、請求項1に記載のポリアミド組成物。   The polyamide composition according to claim 1, wherein the (A) polyamide has a sulfuric acid relative viscosity ηr at 25 ° C of 2.3 or more. 前記(A)ポリアミドが、(c)ラクタム及び/又はアミノカルボン酸を、さらに共重合させたポリアミドである請求項1又は2に記載のポリアミド組成物。   The polyamide composition according to claim 1 or 2, wherein the (A) polyamide is a polyamide obtained by further copolymerizing (c) a lactam and / or an aminocarboxylic acid. 前記(A)ポリアミドの環状アミノ末端が、ペンタメチレンジアミン骨格を有するジアミンの環化反応により形成されたものである、請求項1乃至3のいずれか一項に記載のポリアミド組成物。   The polyamide composition according to any one of claims 1 to 3, wherein the cyclic amino terminal of the (A) polyamide is formed by a cyclization reaction of a diamine having a pentamethylenediamine skeleton. 前記(A)ポリアミドが、重合工程の少なくとも一部において固相重合工程を経て得られるポリアミドである、請求項1乃至4のいずれか一項に記載のポリアミド組成物。   The polyamide composition according to any one of claims 1 to 4, wherein the (A) polyamide is a polyamide obtained through a solid phase polymerization step in at least a part of the polymerization step. 前記(A)ポリアミドの融点が270〜350℃である、請求項1乃至5のいずれか一項に記載のポリアミド組成物。   The polyamide composition according to any one of claims 1 to 5, wherein the polyamide (A) has a melting point of 270 to 350 ° C. 前記(B)酸化チタンが、数平均粒子径が0.1〜0.8μmの酸化チタンである、請求項1乃至6のいずれか一項に記載のポリアミド組成物。   The polyamide composition according to any one of claims 1 to 6, wherein the (B) titanium oxide is titanium oxide having a number average particle diameter of 0.1 to 0.8 µm. 前記(B)酸化チタンが、無機コーティング及び/又は有機コーティングされている、請求項1乃至7のいずれか一項に記載のポリアミド組成物。   The polyamide composition according to any one of claims 1 to 7, wherein the (B) titanium oxide is coated with an inorganic coating and / or an organic coating. 前記無機コーティングが金属酸化物コーティングである、請求項8に記載のポリアミド組成物。   The polyamide composition according to claim 8, wherein the inorganic coating is a metal oxide coating. (C)無機充填材をさらに含有する、請求項1乃至9のいずれか一項に記載のポリアミド組成物。   (C) The polyamide composition according to any one of claims 1 to 9, further comprising an inorganic filler. 前記(C)無機充填材が、ガラス繊維、チタン酸カリウム繊維、タルク、ウォラストナイト、カオリン、マイカ、炭酸カルシウム及びクレーからなる群から選ばれる1種以上である、請求項10に記載のポリアミド組成物。   The polyamide according to claim 10, wherein the inorganic filler (C) is at least one selected from the group consisting of glass fiber, potassium titanate fiber, talc, wollastonite, kaolin, mica, calcium carbonate, and clay. Composition. (D)フェノール系熱安定剤をさらに含有する、請求項1乃至11のいずれか一項に記載のポリアミド組成物。   (D) The polyamide composition according to any one of claims 1 to 11, further comprising a phenol-based heat stabilizer. (E)アミン系光安定剤をさらに含有する、請求項1乃至12のいずれか一項に記載のポリアミド組成物。   (E) The polyamide composition according to any one of claims 1 to 12, further comprising an amine light stabilizer. 前記(E)アミン系光安定剤の分子量が1,000未満である、請求項13に記載のポリアミド組成物。   The polyamide composition according to claim 13, wherein the molecular weight of the (E) amine light stabilizer is less than 1,000. (A)(a)少なくとも50モル%の脂環族ジカルボン酸を含むジカルボン酸と、(b)少なくとも50モル%のペンタメチレンジアミン骨格を有するジアミンを含むジアミンと、を重合させたポリアミドであって、環状アミノ末端量が30〜60μ当量/gである、ポリアミドを30〜95質量%、
(B)酸化チタンを5〜45質量%、
(C)無機充填材を0〜50質量%、
(D)フェノール系熱安定剤を0〜1質量%、
(E)アミン系光安定剤を0〜1質量%、
含有するポリアミド組成物。
(A) a polyamide obtained by polymerizing (a) a dicarboxylic acid containing at least 50 mol% of an alicyclic dicarboxylic acid and (b) a diamine containing a diamine having a pentamethylenediamine skeleton of at least 50 mol%. 30 to 95% by mass of polyamide having a cyclic amino terminal amount of 30 to 60 μeq / g,
(B) 5 to 45% by mass of titanium oxide,
(C) 0-50 mass% of inorganic filler,
(D) 0 to 1% by mass of a phenol-based heat stabilizer,
(E) 0 to 1% by mass of an amine light stabilizer,
Containing polyamide composition.
請求項1乃至15のいずれか一項に記載のポリアミド組成物からなる成形品。   A molded article comprising the polyamide composition according to any one of claims 1 to 15.
JP2011046978A 2011-03-03 2011-03-03 Polyamide composition and molded article Expired - Fee Related JP5718101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046978A JP5718101B2 (en) 2011-03-03 2011-03-03 Polyamide composition and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046978A JP5718101B2 (en) 2011-03-03 2011-03-03 Polyamide composition and molded article

Publications (2)

Publication Number Publication Date
JP2012184293A true JP2012184293A (en) 2012-09-27
JP5718101B2 JP5718101B2 (en) 2015-05-13

Family

ID=47014649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046978A Expired - Fee Related JP5718101B2 (en) 2011-03-03 2011-03-03 Polyamide composition and molded article

Country Status (1)

Country Link
JP (1) JP5718101B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076233A1 (en) * 2013-11-19 2015-05-28 東レ株式会社 Polyamide resin, polyamide resin pellets, and method for producing polyamide resin

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171549A (en) * 2001-09-26 2003-06-20 Ube Ind Ltd Polyamide resin composition excellent in weathering resistance
JP2003277605A (en) * 2002-03-27 2003-10-02 Asahi Kasei Corp Resin composition for molding making contact with water
JP2004107536A (en) * 2002-09-19 2004-04-08 Toray Ind Inc Polyamide resin composition excellent in weather resistance
JP2007154109A (en) * 2005-12-07 2007-06-21 Asahi Kasei Chemicals Corp Resin composition exhibiting excellent extrusion moldability
WO2009113590A1 (en) * 2008-03-12 2009-09-17 旭化成ケミカルズ株式会社 Polyamide, polyamide composition and method for producing polyamide
JP2010031266A (en) * 2008-06-30 2010-02-12 Toray Ind Inc Polyamide resin, polyamide resin composition and molded article of those
JP2010265380A (en) * 2009-05-14 2010-11-25 Asahi Kasei Chemicals Corp Thermoplastic resin composition and molding thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171549A (en) * 2001-09-26 2003-06-20 Ube Ind Ltd Polyamide resin composition excellent in weathering resistance
JP2003277605A (en) * 2002-03-27 2003-10-02 Asahi Kasei Corp Resin composition for molding making contact with water
JP2004107536A (en) * 2002-09-19 2004-04-08 Toray Ind Inc Polyamide resin composition excellent in weather resistance
JP2007154109A (en) * 2005-12-07 2007-06-21 Asahi Kasei Chemicals Corp Resin composition exhibiting excellent extrusion moldability
WO2009113590A1 (en) * 2008-03-12 2009-09-17 旭化成ケミカルズ株式会社 Polyamide, polyamide composition and method for producing polyamide
JP2010031266A (en) * 2008-06-30 2010-02-12 Toray Ind Inc Polyamide resin, polyamide resin composition and molded article of those
JP2010265380A (en) * 2009-05-14 2010-11-25 Asahi Kasei Chemicals Corp Thermoplastic resin composition and molding thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076233A1 (en) * 2013-11-19 2015-05-28 東レ株式会社 Polyamide resin, polyamide resin pellets, and method for producing polyamide resin
JPWO2015076233A1 (en) * 2013-11-19 2017-03-16 東レ株式会社 Polyamide resin, polyamide resin pellets and method for producing polyamide resin

Also Published As

Publication number Publication date
JP5718101B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5714834B2 (en) Polyamide composition and molded article comprising polyamide composition
JP6035066B2 (en) Polyamide composition and molded article
KR101593355B1 (en) Polyamide composition and molded article
JP5485839B2 (en) Polyamide composition and molded article
TWI472552B (en) Polyamide and polyamide composition
KR101821512B1 (en) Polyamide composition, molded article, reflective board for leds, and method for preventing heat-induced reflectivity reduction
JP5942229B2 (en) Polyamide and polyamide composition
JP2014231603A (en) Polyamide resin composition and molded product
JP5959325B2 (en) Polyamide composition and molded body obtained by molding polyamide composition
JP5964923B2 (en) Method for producing polyamide composition and method for producing molded article comprising polyamide composition
JP5718101B2 (en) Polyamide composition and molded article
JP2017155150A (en) Polyamide composition, polyamide composition molded article and manufacturing method of polyamide composition
JP2018012780A (en) Polyamide, polyamide composition, polyamide composition molding, and method for producing polyamide
JP5972088B2 (en) Polyamide resin composition and molded body
JP6639121B2 (en) Polyamide composition, molded product, and reflector for LED
JP2017078092A (en) Polyamide, polyamide composition, polyamide composition molded article, and method for producing polyamide
WO2016031257A1 (en) Polyamide, polyamide production method, polyamide composition, polyamide composition molded article and production method for same
JP5612349B2 (en) Polyamide composition and molded article comprising polyamide composition
JP2017078093A (en) Polyamide, polyamide composition, polyamide composition molded article, and method for producing polyamide
JPWO2016031257A1 (en) Polyamide, method for producing polyamide, polyamide composition, molded product of polyamide composition, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150318

R150 Certificate of patent or registration of utility model

Ref document number: 5718101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees