JP2012184286A - Fiber-reinforced plastic and method for producing the same - Google Patents

Fiber-reinforced plastic and method for producing the same Download PDF

Info

Publication number
JP2012184286A
JP2012184286A JP2011046534A JP2011046534A JP2012184286A JP 2012184286 A JP2012184286 A JP 2012184286A JP 2011046534 A JP2011046534 A JP 2011046534A JP 2011046534 A JP2011046534 A JP 2011046534A JP 2012184286 A JP2012184286 A JP 2012184286A
Authority
JP
Japan
Prior art keywords
fiber
heat
resistant organic
reinforced plastic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011046534A
Other languages
Japanese (ja)
Inventor
Yoshie Inagaki
由江 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2011046534A priority Critical patent/JP2012184286A/en
Publication of JP2012184286A publication Critical patent/JP2012184286A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced plastic excellent in rigidity and impact resistance without increasing the weight; and a method for producing the same.SOLUTION: This fiber-reinforced plastic includes carbon fibers and heat-resistant organic fibers as reinforcing materials in a thermoplastic resin, which satisfies the following (1) and (2) simultaneously, and where in the thermoplastic resin, the carbon fiber and the heat-resistant organic fiber are interlacing at least partly. (1): The weight of carbon fibers:the weight of heat-resistant organic fibers=90:10 to 40:60. (2): The total weight of the carbon fibers and the heat-resistant organic fibers:the weight of the thermoplastic resin=5:95 to 70:30. The method for producing the fiber-reinforced plastic comprises forming a nonwoven cloth satisfying the following (1) and (2) simultaneously from carbon fibers, heat-resistant organic fibers and a thermoplastic resin; and heating and pressurizing the nonwoven cloth at melting point or softening point of the thermoplastic resin or higher temperature. (1): The weight of carbon fibers:the weight of heat-resistant organic fibers=90:10 to 40:60. (2): The total weight of the carbon fibers and the heat-resistant organic fibers:the weight of the thermoplastic resin=5:95 to 70:30.

Description

本発明は、優れた剛性、耐衝撃性を有する軽量な繊維強化プラスチックおよびその製造方法を提供するものである。   The present invention provides a lightweight fiber-reinforced plastic having excellent rigidity and impact resistance and a method for producing the same.

炭素繊維を強化材として使用した複合材料は、引張強度・引張弾性率が高く、線膨張係数が小さいので寸法安定性に優れることおよび、耐熱性、耐薬品性、耐疲労特性、耐摩耗性、電磁波シールド性、X線透過性にも優れることから、炭素繊維を強化材として使用した繊維強化プラスチックは、自動車、スポーツ・レジャー、航空・宇宙、一般産業用途に幅広く適用されている。   Composite materials using carbon fiber as a reinforcing material have high tensile strength / tensile modulus, low coefficient of linear expansion, so excellent dimensional stability, heat resistance, chemical resistance, fatigue resistance, wear resistance, The fiber reinforced plastic using carbon fiber as a reinforcing material has been widely applied to automobiles, sports / leisure, aviation / space, and general industrial applications because of its excellent electromagnetic shielding properties and X-ray transparency.

しかしながら、かかる耐衝撃性繊維強化プラスチックは、剛性に優れるが耐衝撃性に劣る問題があった。耐衝撃性向上のために、繊維強化プラスチックをセラミックスあるいは金属と積層する複合体構造などが提案されているが、一般的にこれらの複合構造体は重量増加を伴うものであった。   However, such an impact-resistant fiber reinforced plastic has a problem that it is excellent in rigidity but inferior in impact resistance. In order to improve impact resistance, composite structures in which fiber reinforced plastics are laminated with ceramics or metal have been proposed, but generally these composite structures are accompanied by an increase in weight.

また、炭素繊維に耐衝撃性に優れる他の有機繊維を併用することにより、耐衝撃性が向上することも提案されている。他の有機繊維の併用方法としては、炭素繊維フィラメントと他の有機繊維を混編、混織する方法や、炭素繊維および他の繊維をフィラメント状態のまま開繊し、シート状にしたものを積層した後、マトリックス樹脂のシート材とともにプレス等の技術手段により成型する方法、あるいは、炭素繊維および他の繊維を6mm以下の長さにカッティングしたカットファイバーを熱可塑性樹脂にコンパウンドの後、射出成型する方法などが挙げられる(特許文献1及び2等)。   It has also been proposed that impact resistance is improved by using carbon fiber in combination with another organic fiber having excellent impact resistance. As other organic fiber combination methods, carbon fiber filaments and other organic fibers are mixed knitted and woven, or carbon fibers and other fibers are opened in a filament state and laminated into a sheet. After that, it is molded by a technical means such as a press together with a matrix resin sheet material, or a cut fiber obtained by cutting carbon fibers and other fibers to a length of 6 mm or less is compounded into a thermoplastic resin and then injection molded. And the like (Patent Documents 1 and 2, etc.).

フィラメント繊維による成型方法の場合、強度、剛性の高いハイグレードな繊維強化プラスチックの製造が可能であるものの、成型にかかるコストが非常に高く、一部の用途にのみ展開されているのが実状である。一方、射出成型を用いる方法では、加工特性に優れ、安価な繊維強化プラスチックが製造できるものの、添加する繊維が短くなり、剛性、耐衝撃性の面で十分な性能を得ることが困難であった。   In the case of the molding method using filament fibers, it is possible to produce high-grade fiber reinforced plastics with high strength and rigidity, but the cost of molding is very high, and it is actually deployed only in some applications. is there. On the other hand, the method using injection molding has excellent processing characteristics and can produce inexpensive fiber-reinforced plastics, but the added fibers are shortened, and it is difficult to obtain sufficient performance in terms of rigidity and impact resistance. .

特開昭62−275133号公報JP 62-275133 A 特開平2−64133号公報JP-A-2-64133

本発明の目的は、重量を増加することなく、剛性、耐衝撃性に優れた繊維強化プラスチック及びその製造方法を提供することにある。   An object of the present invention is to provide a fiber-reinforced plastic excellent in rigidity and impact resistance without increasing the weight and a method for producing the same.

本発明者が、検討した結果、炭素繊維と、耐熱有機繊維とを特定の形態で、強化繊維としてプラスチック中に配した繊維強化プラスチックは、剛性や耐衝撃性が著しく向上することを見出した。また、炭素繊維、耐熱有機繊維、熱可塑性繊維を巧みに組み合わせた不織布を用いて成形を行うことで、上記繊維強化プラスチックを容易に成形できることを見出した。   As a result of investigation by the present inventor, it has been found that a fiber reinforced plastic in which carbon fibers and heat-resistant organic fibers are arranged in a specific form in a plastic as a reinforcing fiber is remarkably improved in rigidity and impact resistance. Moreover, it discovered that the said fiber reinforced plastic can be easily shape | molded by shape | molding using the nonwoven fabric which combined the carbon fiber, the heat resistant organic fiber, and the thermoplastic fiber skillfully.

かくして本発明によれば、熱可塑性樹脂中に炭素繊維および耐熱有機繊維を強化材として含んでなる繊維強化プラスチックであって、以下(1)および(2)を同時に満たし、かつ、熱可塑性樹脂中において、炭素繊維と耐熱有機繊維とが少なくとも一部で交絡していることを特徴とする繊維強化プラスチックが提供される。
(1)炭素繊維の重量:耐熱有機繊維の重量=90:10〜40:60
(2)炭素繊維と耐熱有機繊維の総重量:熱可塑性樹脂の重量=5:95〜70:30
Thus, according to the present invention, a fiber reinforced plastic comprising carbon fiber and heat-resistant organic fiber as a reinforcing material in a thermoplastic resin, which simultaneously satisfies the following (1) and (2) and in the thermoplastic resin: The fiber reinforced plastic is characterized in that the carbon fiber and the heat-resistant organic fiber are entangled at least partially.
(1) Weight of carbon fiber: Weight of heat-resistant organic fiber = 90: 10 to 40:60
(2) Total weight of carbon fiber and heat-resistant organic fiber: weight of thermoplastic resin = 5: 95 to 70:30

また、炭素繊維、耐熱有機繊維、および、熱可塑性繊維を以下(1)および(2)を同時に満たす不織布を成形し、これを熱可塑性繊維の融点または軟化点以上で加熱しかつ加圧することを特徴とする繊維強化プラスチックの製造方法が提供される。
(1)炭素繊維の重量:耐熱有機繊維の重量=90:10〜40:60
(2)炭素繊維と耐熱有機繊維の総重量:熱可塑性繊維の重量=5:95〜70:30
In addition, a non-woven fabric that simultaneously fills the following (1) and (2) with carbon fiber, heat-resistant organic fiber, and thermoplastic fiber is formed, and this is heated and pressurized above the melting point or softening point of the thermoplastic fiber. A featured fiber reinforced plastic manufacturing method is provided.
(1) Weight of carbon fiber: Weight of heat-resistant organic fiber = 90: 10 to 40:60
(2) Total weight of carbon fiber and heat-resistant organic fiber: weight of thermoplastic fiber = 5: 95 to 70:30

本発明の繊維強化プラスチックは、無機繊維が高い剛性を、耐熱有機繊維が耐衝撃吸収性を示すだけでなく、かつ両方の繊維がプラスチック中で交絡していることによるクッション的な相乗効果により、衝撃吸収が格段に向上している。   The fiber-reinforced plastic according to the present invention has high rigidity of inorganic fibers, heat-resistant organic fibers exhibit shock absorption resistance, and a cushioning synergistic effect due to the entanglement of both fibers in the plastic, Shock absorption has been greatly improved.

また、本発明の製造方法によれば、射出成形のように炭素繊維が切断されて短くなり、前記の無機繊維と耐熱有機繊維との交絡を成形できず、かつ、十分な強度や弾性率が発揮できないといった問題が発生しない。また、加熱加圧前の不織布の状態では、熱可塑性樹脂が繊維の形状で他の繊維間に存在するため、これが溶融して十分に無機繊維や耐熱有機繊維の隙間に浸透し、強度、弾性率、耐衝撃性を有する繊維強化プラスチックを容易に得ることができる。   In addition, according to the production method of the present invention, the carbon fiber is cut and shortened as in injection molding, the entanglement between the inorganic fiber and the heat-resistant organic fiber cannot be formed, and sufficient strength and elastic modulus are obtained. The problem of not being able to demonstrate does not occur. In addition, in the state of the nonwoven fabric before heating and pressing, since the thermoplastic resin exists in the form of fibers between other fibers, it melts and sufficiently penetrates into the gaps between the inorganic fibers and the heat-resistant organic fibers, resulting in strength and elasticity. It is possible to easily obtain a fiber reinforced plastic having high rate and impact resistance.

上記目的を達成する本発明は、次に記載のものである。すなわち、熱可塑性樹脂中に炭素繊維および耐熱有機繊維を強化材として含んでなる繊維強化プラスチックである。
本発明で用いる炭素繊維としては、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維等が例示でき、取扱性能、製造工程通過性能に適したPAN系炭素繊維が特に好ましい。また、上記炭素繊維は、引張強度3000MPa以上、弾性率200GPa以上であることが好ましい。
The present invention for achieving the above object is as follows. That is, it is a fiber reinforced plastic comprising carbon fiber and heat resistant organic fiber as a reinforcing material in a thermoplastic resin.
Examples of the carbon fiber used in the present invention include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, and the like, and PAN-based carbon fiber suitable for handling performance and manufacturing process passing performance is particularly preferable. The carbon fiber preferably has a tensile strength of 3000 MPa or more and an elastic modulus of 200 GPa or more.

一方、本発明で用いる耐熱有機繊維としては、融点または軟化点が250℃以上、好ましくは300℃以上の樹脂からなる繊維であることが望ましく、例えば、芳香族ポリアミド(アラミド)、芳香族ポリエーテルアミド、ポリパラフェニレンベンゾビスオキサゾール、ポリベンズイミダゾール、ポリイミド、ポリエーテルエーテルケトン、ポリエーテルイミドなどを好ましく採用することができる。なかでも耐衝撃性、生産性、価格などからアラミド繊維が好ましい。   On the other hand, the heat-resistant organic fiber used in the present invention is desirably a fiber made of a resin having a melting point or softening point of 250 ° C. or higher, preferably 300 ° C. or higher. For example, aromatic polyamide (aramid), aromatic polyether Amides, polyparaphenylene benzobisoxazoles, polybenzimidazoles, polyimides, polyether ether ketones, polyether imides and the like can be preferably used. Of these, aramid fibers are preferred from the standpoint of impact resistance, productivity and price.

また、上記アラミド繊維は、芳香族ジカルボン酸成分と芳香族ジアミン成分、もしくは芳香族アミノカルボン酸成分から構成される芳香族ポリアミド、又はこれらの芳香族共重合ポリアミドからなるポリマーであり、例えばポリパラフェニレンテレフタルアミド、コポリパラフェニレン・3,4‘−オキシジフェニレンテレフタルアミド、ポリメタフェニレンイソフタルアミドなどが例示できる。   The aramid fiber is an aromatic polyamide composed of an aromatic dicarboxylic acid component and an aromatic diamine component, or an aromatic aminocarboxylic acid component, or a polymer composed of these aromatic copolyamides. Examples include phenylene terephthalamide, copolyparaphenylene 3,4'-oxydiphenylene terephthalamide, and polymetaphenylene isophthalamide.

上記の炭素繊維および耐熱有機繊維の繊維直径は、5〜40μmが好ましく、10〜35μmがより好ましい。繊維直径が5μm未満では得られる繊維強化プラスチックの強度や弾性率が低下する傾向にあり、一方、40μmを超えると繊維を交絡させ難くなる傾向にある。なお、炭素繊維と耐熱有機繊維の繊維直径は同じであっても異なっていてもよい。   5-40 micrometers is preferable and, as for the fiber diameter of said carbon fiber and heat resistant organic fiber, 10-35 micrometers is more preferable. If the fiber diameter is less than 5 μm, the strength and elastic modulus of the resulting fiber reinforced plastic tend to decrease, while if it exceeds 40 μm, the fibers tend to be difficult to be entangled. In addition, the fiber diameter of carbon fiber and heat resistant organic fiber may be the same or different.

また、炭素繊維および耐熱有機繊維は、長繊維であっても短繊維であっても良いが、短繊維の場合は、高い耐衝撃性を実現するため、繊維長は20mm以上であることが好ましく、20〜400mmがより好ましく、20〜150mmがさらに好ましい。繊維長が20mm未満では、繊維が交絡した構造となり難い傾向がある。   The carbon fiber and the heat-resistant organic fiber may be either a long fiber or a short fiber. However, in the case of a short fiber, the fiber length is preferably 20 mm or more in order to achieve high impact resistance. 20-400 mm is more preferable, and 20-150 mm is further more preferable. If the fiber length is less than 20 mm, it tends to be difficult to obtain a structure in which fibers are entangled.

本発明においては、炭素繊維と耐熱有機繊維は、一方が短繊維、他方が長繊維であってもかまわず、その場合、耐熱有機繊維が長繊維であることが好ましい。また、上記繊維強化プラスチックを後述する方法で製造する場合は、両者を交絡させる上での加工性からいずれも短繊維であることが好ましい。
また、本発明における熱可塑性樹脂としては、ポリプロプピレン樹脂、ポリエチレン樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート樹脂が好ましく使用される。
In the present invention, the carbon fiber and the heat-resistant organic fiber may be short fibers and the other may be long fibers. In that case, the heat-resistant organic fibers are preferably long fibers. Moreover, when manufacturing the said fiber reinforced plastic by the method mentioned later, it is preferable that all are short fibers from the workability at the time of entangling both.
In addition, as the thermoplastic resin in the present invention, polypropylene resin, polyethylene resin, polyester resin, polyamide resin, and polycarbonate resin are preferably used.

本発明においては、上記繊維強化プラスチックが、以下(1)および(2)を同時に満たし、かつ、熱可塑性樹脂中において、炭素繊維と耐熱有機繊維とが少なくとも一部で交絡していることが肝要である。
(1)炭素繊維の重量:耐熱有機繊維の重量=90:10〜40:60
(2)炭素繊維と耐熱有機繊維の総重量:熱可塑性樹脂の重量=5:95〜70:30
In the present invention, it is important that the fiber reinforced plastic satisfies the following (1) and (2) at the same time, and that the carbon fiber and the heat-resistant organic fiber are at least partially entangled in the thermoplastic resin. It is.
(1) Weight of carbon fiber: Weight of heat-resistant organic fiber = 90: 10 to 40:60
(2) Total weight of carbon fiber and heat-resistant organic fiber: weight of thermoplastic resin = 5: 95 to 70:30

本発明において、炭素繊維と耐熱有機繊維とが少なくとも一部で交絡している必要がある。ここで、交絡とは、繊維強化プラスチックの断面において、該厚さの半分以上の長さにわたって該厚さ方向(厚さ方向に対して±45°以内を含む)に配列して、炭素繊維と耐熱有機繊維とが合計で5本以上接して集束している繊維束が1本/cm以上存在することをいう。これによって、熱可塑性樹脂中に炭素繊維と耐熱有機繊維とが交絡せずに含有される繊維強化プラスチックと対比し、高い剛性や耐衝撃性を発揮することができる。かかる観点から、上記交絡の状態としては、炭素繊維および耐熱有機繊維とが不織布形状として互いの繊維が交絡していることが好ましい。 In the present invention, the carbon fiber and the heat-resistant organic fiber need to be entangled at least partially. Here, the entanglement means that in the cross section of the fiber reinforced plastic, the carbon fibers are arranged in the thickness direction (including within ± 45 ° with respect to the thickness direction) over a length of half or more of the thickness. It means that there are 1 / cm 2 or more of fiber bundles that are in contact with 5 or more heat-resistant organic fibers. As a result, it is possible to exhibit high rigidity and impact resistance as compared with the fiber reinforced plastic in which the carbon fiber and the heat-resistant organic fiber are not entangled in the thermoplastic resin. From this point of view, the entangled state is preferably that the carbon fiber and the heat-resistant organic fiber are in a nonwoven fabric shape and the fibers are entangled with each other.

また、上記(1)炭素繊維の重量:耐熱有機繊維の重量の比90:10〜40:60において、炭素繊維の重量が少ない場合は、十分な剛性、すなわち曲げ強度や曲げ弾性率が得られず、一方、耐熱有機繊維の重量が少ない場合は、十分な耐衝撃性が得られない。上記比は、好ましくは、炭素繊維の重量:耐熱有機繊維の重量=70:30〜40:60である。   In addition, in the above ratio (1) carbon fiber weight: heat resistant organic fiber weight ratio 90:10 to 40:60, when the weight of the carbon fiber is small, sufficient rigidity, that is, bending strength and bending elastic modulus can be obtained. On the other hand, when the weight of the heat-resistant organic fiber is small, sufficient impact resistance cannot be obtained. The ratio is preferably carbon fiber weight: heat-resistant organic fiber weight = 70: 30 to 40:60.

さらに、上記(2)炭素繊維と耐熱有機繊維の総重量:熱可塑性樹脂の重量の比5:95〜70:30において、炭素繊維と耐熱有機繊維の総重量が少ない場合、十分な剛性、すなわち曲げ強度や曲げ弾性率が得られず、一方、熱可塑性樹脂の重量が少ない場合は、繊維強化プラスチックの成形が困難となり安定した品質のプラスチックとなり難い。上記比は、好ましくは、炭素繊維と耐熱有機繊維の総重量:熱可塑性樹脂の重量=20:80〜60:40である。   Furthermore, when the total weight of the carbon fiber and the heat-resistant organic fiber is small in the ratio (2) of the total weight of the carbon fiber and the heat-resistant organic fiber to the weight of the thermoplastic resin of 5:95 to 70:30, sufficient rigidity, If the bending strength or the flexural modulus cannot be obtained, and the weight of the thermoplastic resin is small, it is difficult to form a fiber reinforced plastic and it is difficult to obtain a stable quality plastic. The ratio is preferably the total weight of carbon fiber and heat-resistant organic fiber: weight of thermoplastic resin = 20: 80 to 60:40.

以上に説明した本発明の繊維強化プラスチックは次の方法により製造することができる。すなわち、炭素繊維、耐熱有機繊維、および、熱可塑性繊維を以下(1)および(2)を同時に満たす不織布を成形し、これを熱可塑性繊維の融点または軟化点以上で加熱しかつ加圧する製造方法である。
(1)炭素繊維の重量:耐熱有機繊維の重量=90:10〜40:60
(2)炭素繊維と耐熱有機繊維の総重量:熱可塑性繊維の重量=5:95〜70:30
The fiber-reinforced plastic of the present invention described above can be manufactured by the following method. That is, a production method of forming a non-woven fabric that simultaneously satisfies the following (1) and (2) with carbon fiber, heat-resistant organic fiber, and thermoplastic fiber, and heating and pressing it above the melting point or softening point of the thermoplastic fiber It is.
(1) Weight of carbon fiber: Weight of heat-resistant organic fiber = 90: 10 to 40:60
(2) Total weight of carbon fiber and heat-resistant organic fiber: weight of thermoplastic fiber = 5: 95 to 70:30

上記不織布の成形は、一般的な乾式不織布法、湿式不織布法のいずれも採用可能である。剛性、耐衝撃性がより向上した繊維強化プラスチックとする観点からは、炭素繊維や耐熱有機繊維の繊維長が長いことが有益であり、この場合、乾式不織布法にて作成することがより好ましい。また、上記乾式不織布の成形においては、繊維を開繊機、カードなどの工程により両繊維を一方向に引き揃えることにより、特定方向における剛性、耐衝撃性をより向上させる。さらに、これを積層して自由に強度設計等が可能となる。   For forming the nonwoven fabric, either a general dry nonwoven fabric method or a wet nonwoven fabric method can be employed. From the viewpoint of obtaining a fiber-reinforced plastic with improved rigidity and impact resistance, it is beneficial that the fiber length of carbon fiber or heat-resistant organic fiber is long, and in this case, it is more preferable to prepare by a dry nonwoven fabric method. In forming the dry nonwoven fabric, the fibers are aligned in one direction by a process such as a fiber opening machine or a card to further improve the rigidity and impact resistance in a specific direction. Furthermore, the strength can be designed freely by stacking these layers.

一方、湿式不織布法も用いた場合、得られる繊維強化プラスチックの剛性面では劣る傾向にあるものの、黒鉛、セラミックなどに代表されるフィーラーを同時に添加することにより、耐熱性、導電性、蓄熱性、伝熱性、電磁波遮蔽性などの新たな機能を追加した繊維強化プラスチックの作成が可能であり、非常に有用である。   On the other hand, when the wet nonwoven fabric method is also used, although it tends to be inferior in the rigidity of the fiber reinforced plastic obtained, by simultaneously adding a feeler represented by graphite, ceramic, etc., heat resistance, conductivity, heat storage, Fabrication of fiber reinforced plastic with new functions such as heat transfer and electromagnetic wave shielding is possible, which is very useful.

成形した不織布は、これを熱可塑性繊維の融点または軟化点以上で加熱しかつ加圧することにより、熱可塑性繊維を溶融して、これをマトリックスである熱可塑性樹脂とし、炭素繊維と耐熱有機繊維で強化された繊維強化プラスチックとすることができる。   The molded nonwoven fabric is heated and pressed above the melting point or softening point of the thermoplastic fiber to melt the thermoplastic fiber to form a thermoplastic resin as a matrix, which is composed of carbon fiber and heat-resistant organic fiber. It can be a reinforced fiber reinforced plastic.

したがって、上記(1)炭素繊維の重量:耐熱有機繊維の重量比を90:10〜40:60とし、同じ重量比で炭素繊維および耐熱有機繊維を含む前記繊維強化プラスチックを得ることができる。また、同様に、(2)炭素繊維と耐熱有機繊維の総重量:熱可塑性繊維の重量=5:95〜70:30とし、熱可塑性繊維を溶解して、炭素繊維と耐熱有機繊維の総重量:熱可塑性樹脂の重量比が5:95〜70:30である前記繊維強化プラスチックを得ることができる。なお、好ましくは、(1)炭素繊維の重量:耐熱有機繊維の重量=70:30〜40:60であり、(2)炭素繊維と耐熱有機繊維の総重量:熱可塑性繊維の重量=20:80〜60:40である。   Therefore, the above-mentioned fiber reinforced plastic containing carbon fiber and heat-resistant organic fiber at the same weight ratio can be obtained at a weight ratio of (1) carbon fiber: heat-resistant organic fiber of 90:10 to 40:60. Similarly, (2) total weight of carbon fiber and heat-resistant organic fiber: weight of thermoplastic fiber = 5: 95 to 70:30, the thermoplastic fiber is dissolved, and the total weight of carbon fiber and heat-resistant organic fiber : The above-mentioned fiber reinforced plastic having a thermoplastic resin weight ratio of 5:95 to 70:30 can be obtained. Preferably, (1) weight of carbon fiber: weight of heat-resistant organic fiber = 70: 30 to 40:60, and (2) total weight of carbon fiber and heat-resistant organic fiber: weight of thermoplastic fiber = 20: 80-60: 40.

上記の加熱しかつ加圧する成型方法としては、プレス成型、スタンパブル成型などが好適例として示されるが、一般的な熱圧成型法は全て適用可能である。
熱可塑性繊維の融点または軟化点は、300℃以下が好ましく、280℃以下がより好ましく、250℃以下がさらに好ましい。短時間の加熱、加圧加工であれば、耐熱有機繊維の融点又は軟化点を越える成形温度でも、物性を損なうことなく繊維強化プラスチックの成形が可能である場合があるが、耐熱有機繊維の融点又は軟化点より、融点又は軟化点の低い熱可塑繊維を用いることが望ましい。
As the molding method for heating and pressurizing, press molding, stampable molding, and the like are shown as preferred examples, but all general hot-pressure molding methods are applicable.
The melting point or softening point of the thermoplastic fiber is preferably 300 ° C. or less, more preferably 280 ° C. or less, and further preferably 250 ° C. or less. If it is heating and pressing for a short time, it may be possible to mold fiber-reinforced plastics without damaging the physical properties even at molding temperatures exceeding the melting point or softening point of the heat-resistant organic fibers. Alternatively, it is desirable to use a thermoplastic fiber having a melting point or a softening point lower than the softening point.

上記製造方法では、強化材である炭素繊維および耐熱有機繊維を予めマトリックスである熱可塑性繊維と混合して不織布とすることにより、均一な基材を作成可能であり、例えばポリカーボネート樹脂のように溶融時の粘度が高い樹脂であっても、強化繊維近傍にマトリックスが存在するため、強化繊維である炭素繊維および耐熱有機繊維と該樹脂が容易に密着させることが可能となり、十分に溶融した樹脂を強化繊維に含浸させることができる。   In the above manufacturing method, it is possible to create a uniform base material by mixing carbon fibers and heat-resistant organic fibers, which are reinforcing materials, with thermoplastic fibers, which are matrixes, to create a non-woven fabric. Even when the viscosity of the resin is high, the matrix exists in the vicinity of the reinforcing fibers, so that the carbon fibers and heat-resistant organic fibers that are reinforcing fibers can be easily adhered to each other, and a sufficiently molten resin can be obtained. The reinforcing fiber can be impregnated.

熱可塑性繊維を構成する熱可塑性樹脂のISO 1133に準拠して300℃、荷重1.2kgにて測定したメルトボリュームフローレイトが16〜60cm/10分であることが好ましく、かかる溶融時の粘度を有するものでも強化繊維への樹脂含浸を可能となり、さらに得られる繊維強化プラスチックの剛性、耐衝撃性を向上させることができる。 Compliance with 300 ° C. to ISO 1133 of the thermoplastic resin constituting the thermoplastic fibers, preferably melt volume flow rate measured under a load 1.2kg is 16~60cm 3/10 min, viscosity when such melt Even if it has, the resin can be impregnated into the reinforcing fiber, and the rigidity and impact resistance of the resulting fiber-reinforced plastic can be improved.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
(1)繊維長、繊度
JIS L 1015に準拠して測定した。
(2)繊径
キーエンス社製光学顕微鏡DEGITAL MICROSCOPE VHX−1000を用い1000倍で繊維断面の直径を10本測定し、その平均値とした。
(3)繊維の引張強度、弾性率
ASTM D885に準拠して測定した。
(4)ポリカーボネート樹脂のメルトボリュームフローレイト
ISO 1133に準拠して300℃、荷重1.2kgにて測定した。
(5)各繊維の融点、軟化点、熱分解開始温度
株式会社リガク社製示差熱分析装置TAS200にて窒素雰囲気下、昇温速度10℃/分にて測定し算出した。
(6)繊維強化プラスチックの曲げ強度、弾性率
JIS K 7171に準拠し、厚さ5mm、長さ100mm、幅10mmの試験片を用いて、支点間距離80mmでの3点曲げにて測定した。
(7)繊維強化プラスチックのシャッピー衝撃吸収値
JIS K 7111に準拠し、厚さ2mm、長さ100mm、幅10mmの試験片を用いて測定した。
(8)繊維交絡数
厚さ方向に切断した繊維強化プラスチックの切断面を、走査型電子顕微鏡(倍率:12倍)にて観察し、繊維強化プラスチックの厚さの半分以上の長さにわたって、厚さ方向(厚さ方向に対し、±45°以内の方向を含む)に配列している、炭素繊維と耐熱有機繊維のとが合計で5本以上互いに接して集束した繊維束の本数を数えて1cmあたりの本数で表わした。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these examples.
(1) Fiber length and fineness Measured according to JIS L 1015.
(2) Fine Diameter Ten diameters of fiber cross-sections were measured at 1000 times using a Keyence optical microscope, DEGITAL MICROSCOPE VHX-1000, and the average value was obtained.
(3) Tensile strength and elastic modulus of fiber Measured according to ASTM D885.
(4) Melt volume flow rate of polycarbonate resin Measured at 300 ° C. and a load of 1.2 kg in accordance with ISO 1133.
(5) Melting point, softening point, and thermal decomposition start temperature of each fiber Measurement and calculation were carried out with a differential thermal analyzer TAS200 manufactured by Rigaku Corporation under a nitrogen atmosphere at a heating rate of 10 ° C / min.
(6) Flexural strength and elastic modulus of fiber reinforced plastics Measured by three-point bending at a fulcrum distance of 80 mm using a test piece having a thickness of 5 mm, a length of 100 mm, and a width of 10 mm in accordance with JIS K 7171.
(7) Shappy impact absorption value of fiber reinforced plastics Measured using a test piece having a thickness of 2 mm, a length of 100 mm, and a width of 10 mm in accordance with JIS K 7111.
(8) Number of fiber entanglement The cut surface of the fiber reinforced plastic cut in the thickness direction is observed with a scanning electron microscope (magnification: 12 times), and the thickness is more than half the thickness of the fiber reinforced plastic. Count the number of fiber bundles that are aligned in the vertical direction (including the direction within ± 45 ° with respect to the thickness direction) and bundled with a total of five or more carbon fibers and heat-resistant organic fibers. The number was expressed per 1 cm 2 .

[実施例1]
繊維径12μmの炭素繊維(東邦テナックス製、引張強度4200MPa)を35mmにカットした繊維と繊維直径12μmのアラミド繊維(コポリパラフェニレン・3,4’−オキシジフェニレンテレフタルアミド繊維)(帝人テクノプロダクツ製 テクノーラ(商標)、引張強度3400MPa)を51mmにカットした繊維を重量比で、90:10の割合で開繊機にて混合し、強化繊維混合物を得た。
熱可塑性繊維は、ポリカーボネート樹脂(帝人化成製 パンライトL−1225L メルトボリュームフローレイト 18cm/10分間)を290℃にて溶融押し出しし、直径30μmのフィラメントとし、これを51mmにカットしポリカーボネート繊維(B)を得た。
上記の強化繊維混合物(A)とポリカーボネート繊維(B)を重量比で40:60になるように開繊機にて混合した後、カード機にて目付200g/mの不織布を作成した。
カード工程を通過させることにより、繊維の引き揃え性を向上させた。上記で得られた不織布を8枚積層し1600g/mの繊維積層物を得た。上記積層物を、ニードルパンチ機により38番針にて針深度10mm、500本/mの密度で打ち込みをしてニーパン不織布を得た。次いで、予め離型処理を施したステンレス板で挟み、ホットプレス熱盤上にセットした後、同じく予め離型処理を施した鋼製スペーサーを使用して、約2または5mm厚の繊維強化プラスチックを作成した。なお、このときの成型条件は、成型圧力が5MPa、成型温度が300℃であった。
[Example 1]
Carbon fiber with a fiber diameter of 12 μm (manufactured by Toho Tenax, tensile strength 4200 MPa) cut to 35 mm, and aramid fiber (copolyparaphenylene, 3,4′-oxydiphenylene terephthalamide fiber) with a fiber diameter of 12 μm (manufactured by Teijin Techno Products) Fibers obtained by cutting Technora (trademark, tensile strength: 3400 MPa) to 51 mm were mixed at a weight ratio of 90:10 with a fiber spreader to obtain a reinforcing fiber mixture.
Thermoplastic fibers, polycarbonate resin (Teijin Chemicals Ltd., Panlite L-1225L melt volume flow rate 18cm 3/10 minutes) was melt-extruded at 290 ° C., a filament having a diameter of 30 [mu] m, which cut into 51mm and polycarbonate fibers ( B) was obtained.
The above-mentioned reinforcing fiber mixture (A) and polycarbonate fiber (B) were mixed by a spreader so that the weight ratio was 40:60, and then a nonwoven fabric having a basis weight of 200 g / m 2 was created by a card machine.
By passing the card process, the fiber alignment was improved. Eight nonwoven fabrics obtained above were laminated to obtain a fiber laminate of 1600 g / m 2 . The laminate was driven by a needle punch machine with a 38th needle at a needle depth of 10 mm and a density of 500 needles / m 2 to obtain a knee bread nonwoven fabric. Next, it is sandwiched between stainless plates that have been subjected to a release treatment in advance, set on a hot press hot platen, and then a fiber reinforced plastic having a thickness of about 2 or 5 mm is obtained using a steel spacer that has also been subjected to a release treatment. Created. The molding conditions at this time were a molding pressure of 5 MPa and a molding temperature of 300 ° C.

[実施例2]
炭素繊維:アラミド繊維との重量比を40:60にした以外は実施例1と同様の処理を実施し、繊維強化プラスチックを作成した。
[Example 2]
A fiber reinforced plastic was prepared by carrying out the same treatment as in Example 1 except that the weight ratio of carbon fiber: aramid fiber was 40:60.

[実施例3]
強化繊維混合物(A):ポリカーボネート繊維(B)の重量比を30:70にした以外は実施例2と同様の処理を実施し、繊維強化プラスチックを作成した。
[Example 3]
A fiber reinforced plastic was prepared by carrying out the same treatment as in Example 2 except that the weight ratio of the reinforcing fiber mixture (A): polycarbonate fiber (B) was 30:70.

[実施例4]
強化繊維混合物(A)とポリカーボネート繊維(B)の重量比を60:40にした以外は実施例2と同様の処理を実施し、繊維強化プラスチックを作成した。
[Example 4]
A fiber reinforced plastic was prepared by carrying out the same treatment as in Example 2 except that the weight ratio of the reinforcing fiber mixture (A) and the polycarbonate fiber (B) was 60:40.

[実施例5]
強化繊維混合物(A)とポリカーボネート繊維(B)の重量比を70:30にした以外は実施例2と同様の処理を実施し、繊維強化プラスチックを作成した。
[Example 5]
A fiber reinforced plastic was prepared by carrying out the same treatment as in Example 2 except that the weight ratio of the reinforcing fiber mixture (A) and the polycarbonate fiber (B) was 70:30.

[実施例6]
熱可塑性繊維(B)を直径12μmのポリエチレンテレフタレート繊維(PET繊維))とした以外は実施例4と同様の処理を実施し、繊維強化プラスチックを作成した。
[Example 6]
Except that the thermoplastic fiber (B) was a polyethylene terephthalate fiber (PET fiber) having a diameter of 12 μm, the same treatment as in Example 4 was performed to prepare a fiber reinforced plastic.

[実施例7]
熱可塑性繊維(B)を直径18μmのポリプロピレン繊維(PP繊維)とし、プレス成型の温度を220℃とした以外は実施例4と同様の処理を実施し、繊維強化プラスチックを作成した。
[Example 7]
A fiber reinforced plastic was prepared by carrying out the same treatment as in Example 4 except that the thermoplastic fiber (B) was a polypropylene fiber (PP fiber) having a diameter of 18 μm and the temperature of press molding was 220 ° C.

[実施例8]
熱可塑性繊維(B)を直径14μmのナイロン66繊維(Ny66繊維)とし、プレス成型の温度を280℃とした以外は実施例4と同様の処理を実施し、繊維強化プラスチックを作成した。
[Example 8]
A fiber reinforced plastic was prepared by carrying out the same treatment as in Example 4 except that the thermoplastic fiber (B) was nylon 66 fiber (Ny66 fiber) having a diameter of 14 μm and the temperature of press molding was 280 ° C.

[実施例9]
アラミド繊維を直径14μmのポリパラフェニレンベンゾビスオキサゾール繊維(PBO繊維 引張強度5800MPa)とした以外は実施例4と同様の処理を実施し、繊維強化プラスチックを作成した。
[Example 9]
A fiber reinforced plastic was prepared by carrying out the same treatment as in Example 4 except that the aramid fiber was a polyparaphenylenebenzobisoxazole fiber (PBO fiber, tensile strength: 5800 MPa) having a diameter of 14 μm.

[比較例1]
強化繊維として繊維長6mmの炭素繊維および繊維長6mmのアラミド繊維(帝人テクノプロダクツ製テクノーラ)(炭素繊維の重量:アラミド繊維の重量=40:60)を、ポリカーボネート樹脂ペレットに、炭素繊維とアラミド繊維との合計重量(強化繊維の重量):ポリカーボネート樹脂の重量=30:70として混合し、成型温度300℃、射出圧力100MPa、金型温度100℃にて射出成型し、厚み2mmまたは5mmの繊維強化プラスチックを作成した。
[Comparative Example 1]
Carbon fiber having a fiber length of 6 mm and aramid fiber (Technola manufactured by Teijin Techno Products) (carbon fiber weight: aramid fiber weight = 40: 60) as a reinforcing fiber are used as polycarbonate fiber pellets, and carbon fiber and aramid fiber. Total weight (weight of reinforcing fiber): polycarbonate resin weight = 30:70, mixed, injection molded at a molding temperature of 300 ° C., injection pressure of 100 MPa, mold temperature of 100 ° C., and fiber reinforced with a thickness of 2 mm or 5 mm Made plastic.

[比較例2]
炭素繊維とアラミド繊維の混合比率を10:90にした以外は実施例1と同様の処理を実施し、繊維強化プラスチックを作成した。
[Comparative Example 2]
A fiber reinforced plastic was prepared by carrying out the same treatment as in Example 1 except that the mixing ratio of carbon fiber and aramid fiber was 10:90.

[比較例3]
炭素繊維とアラミド繊維の混合比率を30:70にした以外は実施例1と同様の処理を実施し、繊維強化プラスチックを作成した。
[Comparative Example 3]
A fiber-reinforced plastic was prepared by carrying out the same treatment as in Example 1 except that the mixing ratio of carbon fiber and aramid fiber was 30:70.

[比較例4]
強化繊維混合物(A)とポリカーボネート繊維(B)の重量比を3:97にした以外は実施例2と同様の処理を実施し、繊維強化プラスチックを作成した。
[Comparative Example 4]
A fiber reinforced plastic was prepared by carrying out the same treatment as in Example 2 except that the weight ratio of the reinforcing fiber mixture (A) and the polycarbonate fiber (B) was 3:97.

[比較例5]
強化繊維混合物(A)とポリカーボネート繊維(B)の重量比を75:25にした以外は実施例2と同様の処理を実施し、繊維強化プラスチックを作成した。
[Comparative Example 5]
A fiber reinforced plastic was prepared by carrying out the same treatment as in Example 2 except that the weight ratio of the reinforcing fiber mixture (A) and the polycarbonate fiber (B) was 75:25.

[比較例6]
樹脂をポリエチレンテレフタレート樹脂(PET樹脂:帝人製試作品)とし、成型温度を270℃、射出圧力を100MPa、金型温度を30℃に変更した以外は、比較例1と同様にして繊維強化プラスチックを作成した。
[Comparative Example 6]
A fiber reinforced plastic was prepared in the same manner as in Comparative Example 1 except that the resin was polyethylene terephthalate resin (PET resin: Teijin prototype), the molding temperature was changed to 270 ° C., the injection pressure was changed to 100 MPa, and the mold temperature was changed to 30 ° C. Created.

[比較例7]
樹脂をポリプロピレン樹脂(PP樹脂:日本ポリプロ社製ノバテックPP)とし、成型温度を230℃、射出圧力を6MPa、金型温度を40℃に変更した以外は、比較例1を同様にして繊維強化プラスチックを作成した。
[Comparative Example 7]
Fiber reinforced plastic in the same manner as in Comparative Example 1 except that the resin was polypropylene resin (PP resin: Novatec PP manufactured by Nippon Polypro Co., Ltd.), the molding temperature was changed to 230 ° C., the injection pressure was changed to 6 MPa, and the mold temperature was changed to 40 ° C. It was created.

[比較例8]
樹脂をナイロン66樹脂(Ny66樹脂:宇部興産製UBEナイロン2020B)とし、成型温度を280℃、射出圧力10MPa、金型温度60℃に変更した以外は、比較例1を同様にして繊維強化プラスチックを作成した。
上記実施例及び比較例の結果を表1に示す。
[Comparative Example 8]
A fiber reinforced plastic was prepared in the same manner as in Comparative Example 1 except that the resin was nylon 66 resin (Ny66 resin: UBE nylon 2020B manufactured by Ube Industries) and the molding temperature was changed to 280 ° C., the injection pressure was 10 MPa, and the mold temperature was 60 ° C. Created.
The results of the above examples and comparative examples are shown in Table 1.

Figure 2012184286
Figure 2012184286

本発明の繊維強化プラスチックは剛性、耐衝撃性に優れており、補強用、摩擦・摺動用、自動車、船舶などの産業用部品、電気・電子機器、AV機器、OA機器、建築用の部品・部材、建材、建具、パッキン類又はシール類などに好適に用いることができる。また、本発明の繊維強化プラスチックの製造方法によれば、上記繊維強化プラスチックを容易に成形することができる。   The fiber reinforced plastic of the present invention is excellent in rigidity and impact resistance, and is used for reinforcement, friction and sliding, industrial parts such as automobiles and ships, electrical / electronic equipment, AV equipment, OA equipment, architectural parts / It can be suitably used for members, building materials, joinery, packings or seals. Moreover, according to the manufacturing method of the fiber reinforced plastic of this invention, the said fiber reinforced plastic can be shape | molded easily.

Claims (8)

熱可塑性樹脂中に炭素繊維、および、耐熱有機繊維を強化材として含んでなる繊維強化プラスチックであって、以下(1)および(2)を同時に満たし、かつ、熱可塑性樹脂中において、炭素繊維と耐熱有機繊維とが少なくとも一部で交絡していることを特徴とする繊維強化プラスチック。
(1)炭素繊維の重量:耐熱有機繊維の重量=90:10〜40:60
(2)炭素繊維と耐熱有機繊維の総重量:熱可塑性樹脂の重量=5:95〜70:30
A fiber-reinforced plastic comprising carbon fiber and heat-resistant organic fiber as a reinforcing material in a thermoplastic resin, which simultaneously satisfies the following (1) and (2), and in the thermoplastic resin, A fiber-reinforced plastic characterized in that it is entangled with a heat-resistant organic fiber at least partially.
(1) Weight of carbon fiber: Weight of heat-resistant organic fiber = 90: 10 to 40:60
(2) Total weight of carbon fiber and heat-resistant organic fiber: weight of thermoplastic resin = 5: 95 to 70:30
炭素繊維および耐熱有機繊維の繊維直径が5〜40μmである請求項1に記載の繊維強化プラスチック。   The fiber reinforced plastic according to claim 1, wherein the fiber diameter of the carbon fiber and the heat resistant organic fiber is 5 to 40 µm. 炭素繊維および耐熱有機繊維の繊維長が20〜400mmである請求項1に記載の繊維強化プラスチック。   The fiber reinforced plastic according to claim 1, wherein the fiber length of the carbon fiber and the heat-resistant organic fiber is 20 to 400 mm. 耐熱有機繊維がアラミド繊維である請求項1に記載の繊維強化プラスチック。   The fiber-reinforced plastic according to claim 1, wherein the heat-resistant organic fiber is an aramid fiber. 熱可塑性樹脂が、ポリプロプピレン樹脂、ポリエチレン樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート樹脂から選ばれる少なくとも一種である請求項1記載の繊維強化プラスチック。   The fiber reinforced plastic according to claim 1, wherein the thermoplastic resin is at least one selected from a polypropylene resin, a polyethylene resin, a polyester resin, a polyamide resin, and a polycarbonate resin. 炭素繊維および耐熱有機繊維とが不織布形状として互いの繊維が交絡して熱可塑性樹脂中に存在している請求項1記載の繊維強化プラスチック。   The fiber reinforced plastic according to claim 1, wherein the carbon fiber and the heat-resistant organic fiber are in a nonwoven fabric shape and the fibers are entangled with each other and are present in the thermoplastic resin. 炭素繊維、耐熱有機繊維、および、熱可塑性繊維を以下(1)および(2)を同時に満たす不織布を成形し、これを熱可塑性繊維の融点または軟化点以上で加熱しかつ加圧することを特徴とする繊維強化プラスチックの製造方法。
(1)炭素繊維の重量:耐熱有機繊維の重量=90:10〜40:60
(2)炭素繊維と耐熱有機繊維の総重量:熱可塑性繊維の重量=5:95〜70:30
A non-woven fabric that simultaneously fills the following (1) and (2) with carbon fiber, heat-resistant organic fiber, and thermoplastic fiber is formed, and this is heated and pressurized above the melting point or softening point of the thermoplastic fiber. To produce fiber reinforced plastic.
(1) Weight of carbon fiber: Weight of heat-resistant organic fiber = 90: 10 to 40:60
(2) Total weight of carbon fiber and heat-resistant organic fiber: weight of thermoplastic fiber = 5: 95 to 70:30
熱可塑性繊維を構成する熱可塑性樹脂のメルトボリュームフローレイトが16〜60cm/10分である請求項7に記載の繊維強化プラスチックの製造方法。 Method for producing a fiber reinforced plastic as claimed in claim 7 heat thermoplastic resin melt volume flow rate is 16~60cm 3/10 min which constitutes the thermoplastic fibers.
JP2011046534A 2011-03-03 2011-03-03 Fiber-reinforced plastic and method for producing the same Pending JP2012184286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046534A JP2012184286A (en) 2011-03-03 2011-03-03 Fiber-reinforced plastic and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046534A JP2012184286A (en) 2011-03-03 2011-03-03 Fiber-reinforced plastic and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012184286A true JP2012184286A (en) 2012-09-27

Family

ID=47014644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046534A Pending JP2012184286A (en) 2011-03-03 2011-03-03 Fiber-reinforced plastic and method for producing the same

Country Status (1)

Country Link
JP (1) JP2012184286A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054764A (en) * 2012-09-12 2014-03-27 Teijin Ltd Base material for fiber-reinforced plastic molding and impact resistance fiber-reinforced plastic
WO2014098103A1 (en) * 2012-12-21 2014-06-26 東レ株式会社 Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
JP2015044319A (en) * 2013-08-27 2015-03-12 王子ホールディングス株式会社 Sheet for fiber-reinforced plastic molded body, and fiber-reinforced plastic molded body
JP2016020421A (en) * 2014-07-14 2016-02-04 王子ホールディングス株式会社 Substrate for fiber reinforced plastic molded body and fiber reinforced plastic molded body
WO2017073483A1 (en) * 2015-10-30 2017-05-04 東レ株式会社 Fibre-reinforced thermoplastic resin moulded article, and fibre-reinforced thermoplastic resin moulding material
WO2017073482A1 (en) * 2015-10-30 2017-05-04 東レ株式会社 Fibre-reinforced thermoplastic resin moulded article, and fibre-reinforced thermoplastic resin moulding material
JP2018009191A (en) * 2017-10-06 2018-01-18 王子ホールディングス株式会社 Sheet for fiber-reinforced plastic molding and fiber-reinforced plastic molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373267A (en) * 1976-12-10 1978-06-29 Toho Beslon Co Molding of blended fiber mat and composite material
WO2008056755A1 (en) * 2006-11-09 2008-05-15 Teijin Chemicals Ltd. Composite material and process for producing the same
JP2009024057A (en) * 2007-07-18 2009-02-05 Calp Corp Composite fiber-reinforced thermoplastic resin pellet, and molded product
JP2010274514A (en) * 2009-05-28 2010-12-09 Teijin Techno Products Ltd Fiber-reinforced composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373267A (en) * 1976-12-10 1978-06-29 Toho Beslon Co Molding of blended fiber mat and composite material
WO2008056755A1 (en) * 2006-11-09 2008-05-15 Teijin Chemicals Ltd. Composite material and process for producing the same
JP2009024057A (en) * 2007-07-18 2009-02-05 Calp Corp Composite fiber-reinforced thermoplastic resin pellet, and molded product
JP2010274514A (en) * 2009-05-28 2010-12-09 Teijin Techno Products Ltd Fiber-reinforced composite material

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054764A (en) * 2012-09-12 2014-03-27 Teijin Ltd Base material for fiber-reinforced plastic molding and impact resistance fiber-reinforced plastic
CN104870531A (en) * 2012-12-21 2015-08-26 东丽株式会社 Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
US9605149B2 (en) 2012-12-21 2017-03-28 Toray Industries, Inc. Fiber-reinforced thermoplastic-resin molding material and method of manufacturing fiber-reinforced thermoplastic-resin molding material
CN104870531B (en) * 2012-12-21 2017-05-31 东丽株式会社 The manufacture method of fiber-reinforced thermoplastic resin products formed, fiber-reinforced thermoplastic resin moulding material and fiber-reinforced thermoplastic resin moulding material
CN106867002A (en) * 2012-12-21 2017-06-20 东丽株式会社 Fiber-reinforced thermoplastic resin products formed, fiber-reinforced thermoplastic resin moulding material and its manufacture method
KR20150099710A (en) * 2012-12-21 2015-09-01 도레이 카부시키가이샤 Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
EP3473665A1 (en) * 2012-12-21 2019-04-24 Toray Industries, Inc. Fiber-reinforced thermoplastic-resin molding material and method for manufacturing fiber-reinforced thermoplastic-resin molding material
JP5633660B1 (en) * 2012-12-21 2014-12-03 東レ株式会社 Fiber-reinforced thermoplastic resin molded article, fiber-reinforced thermoplastic resin molding material, and method for producing fiber-reinforced thermoplastic resin molding material
US9505928B2 (en) 2012-12-21 2016-11-29 Toray Industries, Inc. Fiber-reinforced thermoplactic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method of manufacturing fiber-reinforced thermoplastic-resin molding material
EP2937377A4 (en) * 2012-12-21 2016-11-09 Toray Industries Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
US9605148B2 (en) 2012-12-21 2017-03-28 Toray Industries, Inc. Fiber-reinforced thermoplastic-resin molding material
CN106867002B (en) * 2012-12-21 2020-11-10 东丽株式会社 Fiber-reinforced thermoplastic resin molded article, fiber-reinforced thermoplastic resin molding material, and method for producing same
WO2014098103A1 (en) * 2012-12-21 2014-06-26 東レ株式会社 Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
KR101981837B1 (en) * 2012-12-21 2019-05-23 도레이 카부시키가이샤 Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
JP2015044319A (en) * 2013-08-27 2015-03-12 王子ホールディングス株式会社 Sheet for fiber-reinforced plastic molded body, and fiber-reinforced plastic molded body
JP2016020421A (en) * 2014-07-14 2016-02-04 王子ホールディングス株式会社 Substrate for fiber reinforced plastic molded body and fiber reinforced plastic molded body
WO2017073482A1 (en) * 2015-10-30 2017-05-04 東レ株式会社 Fibre-reinforced thermoplastic resin moulded article, and fibre-reinforced thermoplastic resin moulding material
CN108137829A (en) * 2015-10-30 2018-06-08 东丽株式会社 Fiber-reinforced thermoplastic resin molded product and fiber-reinforced thermoplastic resin moulding material
JP6123956B1 (en) * 2015-10-30 2017-05-10 東レ株式会社 Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP6123955B1 (en) * 2015-10-30 2017-05-10 東レ株式会社 Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
EP3369765A4 (en) * 2015-10-30 2019-09-04 Toray Industries, Inc. Fibre-reinforced thermoplastic resin moulded article, and fibre-reinforced thermoplastic resin moulding material
EP3369764A4 (en) * 2015-10-30 2019-09-04 Toray Industries, Inc. Fibre-reinforced thermoplastic resin moulded article, and fibre-reinforced thermoplastic resin moulding material
US10584218B2 (en) 2015-10-30 2020-03-10 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, and fiber-reinforced thermoplastic resin molding material
US10619017B2 (en) 2015-10-30 2020-04-14 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, and fiber-reinforced thermoplastic resin molding material
WO2017073483A1 (en) * 2015-10-30 2017-05-04 東レ株式会社 Fibre-reinforced thermoplastic resin moulded article, and fibre-reinforced thermoplastic resin moulding material
CN108137829B (en) * 2015-10-30 2021-06-29 东丽株式会社 Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP2018009191A (en) * 2017-10-06 2018-01-18 王子ホールディングス株式会社 Sheet for fiber-reinforced plastic molding and fiber-reinforced plastic molding

Similar Documents

Publication Publication Date Title
JP6087545B2 (en) Fiber reinforced plastic molding substrate
JP2012184286A (en) Fiber-reinforced plastic and method for producing the same
JP5932576B2 (en) Fiber reinforced plastic molding substrate
JP6965957B2 (en) Laminated base material, its manufacturing method, and carbon fiber reinforced resin base material
JP5780968B2 (en) Spun yarn and intermediate for fiber reinforced resin, and fiber reinforced resin molded product using the same
JP2013204187A (en) Base material for molding fiber reinforced plastic
JP2013189634A (en) Fiber-reinforced composite material and manufacturing method therefor
JP2014091825A (en) Prepreg, and composite material
JP5911755B2 (en) Manufacturing method of fiber reinforced resin pellet and manufacturing method of fiber reinforced resin molded body
JP6801321B2 (en) Laminated base material for rib molding
JP2014062336A (en) Method for producing semifinished product for fiber-reinforced plastic
JP2012041644A (en) Flame-retardant nonwoven fabric and molded article formed by heating the same
JP2014050981A (en) Substrate for molding fiber reinforced plastic and fiber reinforced plastic
JP2014069403A (en) Method for producing press-molded article by using stampable sheet-like product
JP2014062143A (en) Fiber-reinforced plastic
JP6046425B2 (en) Fiber reinforced plastic molding substrate and impact resistant fiber reinforced plastic
Gowayed Types of fiber and fiber arrangement in fiber-reinforced polymer (FRP) composites
JP2014065831A (en) Fiber-reinforced plastic and production method thereof
JP2016108348A (en) Laminated base material and method for manufacturing the same
JP2014051554A (en) Fiber reinforced plastic molding substrate
JP2014234427A (en) Fiber assembly for fiber-reinforced resin, fiber-reinforced resin sheet, and fiber-reinforced resin molded body
JP2013010255A (en) Thermoplastic resin composite material
JP6089447B2 (en) Fiber reinforced composite material
JP2014062144A (en) Fiber-reinforced plastic
KR102366434B1 (en) Reinforced Fiber Composite Materials

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331