JP2012183569A - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP2012183569A
JP2012183569A JP2011049244A JP2011049244A JP2012183569A JP 2012183569 A JP2012183569 A JP 2012183569A JP 2011049244 A JP2011049244 A JP 2011049244A JP 2011049244 A JP2011049244 A JP 2011049244A JP 2012183569 A JP2012183569 A JP 2012183569A
Authority
JP
Japan
Prior art keywords
mold
less
slab
mass
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011049244A
Other languages
Japanese (ja)
Other versions
JP5712685B2 (en
Inventor
Tatsuhiko Ikeda
達彦 池田
Yuji Murakata
勇次 村方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2011049244A priority Critical patent/JP5712685B2/en
Publication of JP2012183569A publication Critical patent/JP2012183569A/en
Application granted granted Critical
Publication of JP5712685B2 publication Critical patent/JP5712685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent longitudinal cracks associated with uneven solidification of a continuously cast slab and lateral cracks generated on an oscillation mark bottom part.SOLUTION: In molding of the round cross sectional continuously cast slab as the stock for a seamless steel tube having the carbon concentration in steel of 0.08 mass% or more and 0.18 mass% or less, mold powder having viscosity at 1,573 K of 0.2 Pa s to 0.8 Pa s is used, and continuous casting is performed at a speed of 2.0 m/min or more and 4.0 m/min or less, and friction force between a mold and the cast slab is 60 kN/mor less. It is possible to improve both of the cast slab quality and operation efficiency.

Description

本発明は、マンネスマン法に使用する丸断面鋳片を連続鋳造する方法に関するものである。   The present invention relates to a method for continuously casting a round cross-section slab used in the Mannesmann method.

継目無鋼管の製造方法として、丸断面鋳片を回転させながら中心部の穿孔を行うマンネスマン法がある。このマンネスマン法に表面欠陥が存在する鋳片を使用した場合、製管時に前記表面欠陥を起点として破断或いは被れ状の疵が発生し、製管後の手入れやスクラップ化が必要となって、コスト悪化の原因となる。   As a method for manufacturing a seamless steel pipe, there is a Mannesmann method in which a central portion is perforated while rotating a round cross-section slab. When a slab having surface defects is used in this Mannesmann method, fractures or cover-like wrinkles occur starting from the surface defects at the time of pipe production, and maintenance and scrapping after pipe production are necessary. It causes cost deterioration.

従って、継目無鋼管の素材となる丸断面鋳片を連続鋳造する場合に、製造する鋳片の表面品質は重要である。   Therefore, the surface quality of the slab to be manufactured is important when continuously casting a round cross-section slab that is a raw material for a seamless steel pipe.

ところで、連続鋳造鋳片の表面欠陥は初期凝固異常により発生し、凝固シェルの不均一冷却による縦割れや、鋳型のオシレーションマークの主に谷部を起点として発生する横割れがある。また、炭素濃度が0.08質量%以上、0.18質量%以下の亜包晶鋼領域では、初期凝固時の体積収縮が大きく、鋳片表面欠陥が発生しやすいことが知られている。   By the way, the surface defect of the continuous cast slab occurs due to the initial solidification abnormality, and there are vertical cracks due to non-uniform cooling of the solidified shell and lateral cracks generated mainly from the valleys of the oscillation mark of the mold. Further, it is known that in the subperitectic steel region having a carbon concentration of 0.08% by mass or more and 0.18% by mass or less, volume shrinkage during initial solidification is large and slab surface defects are likely to occur.

前記表面欠陥対策として、一般には、鋳型のオシレーションのハイサイクル化によるパウダーの均一流入、ショートストローク化によるオシレーションマーク深さの低減、緩冷却モールドパウダーの使用による鋳型内抜熱量の低下などの方法が採られてきた。   As countermeasures for the surface defects, in general, a uniform flow of powder due to a high cycle of mold oscillation, a reduction in oscillation mark depth due to a short stroke, a decrease in heat extraction from the mold due to the use of a slow cooling mold powder, etc. A method has been adopted.

しかしながら、能率向上を目的として鋳造速度を高速化した場合、前記のハイサイクル化やショートストローク化では、鋳型と鋳片間へのモールドパウダーの流入量が減少するので、鋳片の抜熱量が増加して鋳片の表面品質を確保することができない。   However, when the casting speed is increased for the purpose of improving efficiency, the amount of mold powder flowing between the mold and the slab decreases as the above-mentioned high cycle and short stroke increase, so the amount of heat extracted from the slab increases. Thus, the surface quality of the slab cannot be ensured.

そこで、特許文献1では、横割れの起点となるオシレーションマークの深さ(鋳片表面からオシレーションマーク底部までの深さ。)の低減とモールドパウダーの流入量確保を目的に、オシレーション振動時に当該振動と同期して磁界強度を変化する交番磁界を印加する方法が開示されている。   Therefore, in Patent Document 1, oscillation vibration is used for the purpose of reducing the depth of the oscillation mark (depth from the slab surface to the bottom of the oscillation mark) and securing the inflow amount of mold powder, which is the starting point of the transverse crack. A method of applying an alternating magnetic field that sometimes changes the magnetic field strength in synchronization with the vibration is disclosed.

しかしながら、特許文献1で開示された方法では、メニスカス付近に電磁コイルを設置し、強度の変化する磁界を印加する必要があり、湯面変動(メニスカスの上下動)が大きくなる高速鋳造には適していない上、磁界強度を変化する交番磁界を発生させるための新たな電磁コイルが必要となり、設備設置費用が問題となる。   However, in the method disclosed in Patent Document 1, it is necessary to install an electromagnetic coil in the vicinity of the meniscus and apply a magnetic field whose strength changes, which is suitable for high-speed casting in which the molten metal surface fluctuation (meniscus vertical movement) increases. In addition, a new electromagnetic coil for generating an alternating magnetic field that changes the magnetic field strength is required, and the installation cost of the equipment becomes a problem.

また、特許文献2では、鋳型の振動を、通常のオシレーション方向である鉛直方向(鋳込方向)に加えて水平方向にも振動させることで、凝固シェルの変形を防止し、オシレーションマークの抑制を行う方法が開示されている。   Moreover, in patent document 2, the vibration of a casting_mold | template is made to vibrate also in a horizontal direction in addition to the normal direction (casting direction) which is a normal oscillation direction, the deformation | transformation of a solidification shell is prevented, and an oscillation mark of A method of performing suppression is disclosed.

しかしながら、特許文献2で開示された方法は、組み立て鋳型と異なり、丸断面鋳型等に使用されるチューブラー鋳型に適用することができない。   However, unlike the assembly mold, the method disclosed in Patent Literature 2 cannot be applied to a tubular mold used for a round cross-section mold or the like.

一方、特許文献3では、2〜10m/分で高速連続鋳造する場合に、ブレイクアウトの発生および鋳片表面の縦割れ発生を防止し、安定して良好な表面品質の鋳片を得ることができる薄鋳片の連続鋳造方法が提案されている。この方法は、鋳型内壁と凝固殻との間の摩擦力を6.37×10-2N/mm2以下に、かつ鋳型による凝固殻からの抜熱量Q(MW/m2)を、鋳造速度Vc(m/分)で規定されるBの値(=0.30×(1+Vc))の0.7倍から1.1倍の間の値に調整するものである。 On the other hand, in Patent Document 3, when high-speed continuous casting is performed at 2 to 10 m / min, occurrence of breakout and occurrence of vertical cracks on the surface of the slab can be prevented, and a slab having good surface quality can be stably obtained. There has been proposed a continuous casting method for thin cast pieces. In this method, the frictional force between the inner wall of the mold and the solidified shell is 6.37 × 10 −2 N / mm 2 or less, and the heat removal amount Q (MW / m 2 ) from the solidified shell by the mold is determined as the casting speed. The value is adjusted to a value between 0.7 times and 1.1 times the value of B defined by Vc (m / min) (= 0.30 × (1 + Vc)).

しかしながら、特許文献3で開示された方法は薄スラブを対象としたものであり、鋳型内壁と凝固殻との間の摩擦力の該値に低減するためのモールドパウダー物性に対する記載はない。また、丸断面連続鋳造鋳片での鋳型内壁と凝固殻との間の摩擦力に対する記載もない。   However, the method disclosed in Patent Document 3 is intended for thin slabs, and there is no description on the physical properties of the mold powder for reducing the frictional force between the inner wall of the mold and the solidified shell. Further, there is no description of the frictional force between the inner wall of the mold and the solidified shell in the round section continuous cast slab.

特開平5−115952号公報Japanese Patent Laid-Open No. 5-115595 特開平6−198409号公報Japanese Patent Laid-Open No. 6-198409 特開2001−129648号公報JP 2001-129648 A

表面品質の良好な連続鋳造鋳片を製造することを目的とした、特許文献1、2で開示された方法を実施するには、新たな電磁コイルが必要になったり、オシレーション装置が複雑化するという問題点がある。   In order to carry out the method disclosed in Patent Documents 1 and 2 for the purpose of producing continuous cast slabs with good surface quality, a new electromagnetic coil is required or the oscillation device is complicated. There is a problem of doing.

本発明の連続鋳造方法は、
継目無鋼管の素材となる、鋼中の炭素濃度が0.08質量%以上、0.18質量%以下の初期凝固時の体積収縮が大きい丸断面連続鋳造鋳片の鋳造において、
凝固シェルの不均一冷却による縦割れとオシレーションマークを起点として発生する横割れを、上記従来方法にあった問題点を解決しつつ防止するために、
1573Kにおける粘度が0.2Pa・s以上、0.8Pa・s以下のモールドパウダーを使用し、2.0m/min以上、4.0m/min以下の速度で連続鋳造して、鋳型と鋳片間の摩擦力を60kN/m2以下にすること最も主要な特徴としている。
The continuous casting method of the present invention comprises:
In the casting of a round cross-section continuous casting slab that has a large volumetric shrinkage during initial solidification, in which the carbon concentration in the steel is 0.08 mass% or more and 0.18 mass% or less, which is the material of the seamless steel pipe,
In order to prevent vertical cracks due to non-uniform cooling of the solidified shell and lateral cracks starting from the oscillation mark while solving the problems of the conventional method,
Using a mold powder with a viscosity at 1573K of 0.2 Pa · s or more and 0.8 Pa · s or less, continuously casting at a speed of 2.0 m / min or more and 4.0 m / min or less, and between mold and slab The most important feature is that the frictional force of the steel sheet is 60 kN / m 2 or less.

上記本発明では、新たな電磁コイルが必要になったり、オシレーション装置を複雑化することなく、表面品質の良好な連続鋳造鋳片を製造することができる。   In the present invention, a continuous cast slab having good surface quality can be produced without requiring a new electromagnetic coil or complicating the oscillation device.

本発明においては、凝固点が1273K以上、CaO/SiO2で表されるモールドパウダー中の質量比(塩基度)が0.8〜1.0、Na2O量が3.0質量%以下、F濃度が5.0質量%以下、MgO量が8.0質量%以下、AL2O3量が5.0質量%以下のモールドパウダーを使用することが望ましい。 In the present invention, the freezing point is 1273 K or more, the mass ratio (basicity) in the mold powder represented by CaO / SiO 2 is 0.8 to 1.0, the amount of Na 2 O is 3.0 mass% or less, F It is desirable to use a mold powder having a concentration of 5.0% by mass or less, an MgO content of 8.0% by mass or less, and an AL 2 O 3 content of 5.0% by mass or less.

本発明では、粘度が0.2Pa・s以上、0.8Pa・s以下の低粘性のモールドパウダーを2.0m/min以上、4.0m/min以下の速度で高速鋳造して、鋳型と鋳片間の摩擦力を60kN/m2以下とすることで、鋳片品質と操業能率の向上を両立することができる。そして本発明の実施に際し、新たな電磁コイルを必要としたり、オシレーション装置を複雑化することもない。 In the present invention, a low-viscosity mold powder having a viscosity of 0.2 Pa · s or more and 0.8 Pa · s or less is cast at a high speed at a speed of 2.0 m / min or more and 4.0 m / min or less. By setting the frictional force between the pieces to be 60 kN / m 2 or less, it is possible to achieve both improvement in slab quality and operational efficiency. And when implementing this invention, a new electromagnetic coil is not required or an oscillation apparatus is not complicated.

鋳造速度と溶鋼過熱度の関係を示した図である。It is the figure which showed the relationship between casting speed and molten steel superheat degree. 鋳造速度と初期凝固シェルの関係を示した図である。It is the figure which showed the relationship between a casting speed and an initial stage solidification shell. 鋳造速度と熱電対変動標準偏差の関係を示した図である。It is the figure which showed the relationship between casting speed and a thermocouple variation standard deviation. ネガティブストリップ時間率とオシレーションマーク深さの関係を示した図である。It is the figure which showed the relationship between a negative strip time rate and an oscillation mark depth. モールドパウダーの粘度と鋳型と鋳片間の摩擦力の関係を示した図である。It is the figure which showed the relationship between the viscosity of mold powder, and the frictional force between a casting_mold | template and a slab.

本発明では、新たな電磁コイルを必要としたり、オシレーション装置を複雑化することなく、縦割れと横割れを防止するという目的を、低粘性のモールドパウダーを高速鋳造して、鋳型と鋳片間の摩擦力を60kN/m2以下とすることで実現した。 In the present invention, a mold and a slab are formed by casting a low-viscosity mold powder at a high speed for the purpose of preventing vertical cracks and transverse cracks without requiring a new electromagnetic coil or complicating the oscillation device. This was realized by setting the frictional force between them to 60 kN / m 2 or less.

以下、従来の問題点を解決するために発明者らが行った実験と、この実験結果に基づいて成立した本発明の形態例を、図1〜図5を用いて説明する。   Hereinafter, an experiment conducted by the inventors to solve the conventional problems and an embodiment of the present invention established based on the experiment result will be described with reference to FIGS.

初期凝固の異常により発生する連続鋳造鋳片の欠陥として、凝固シェルの不均一冷却による縦割れと、オシレーションマークが深くなることにより発生する横割れが存在する。   Defects in the continuous cast slab that occur due to abnormalities in initial solidification include vertical cracks due to non-uniform cooling of the solidified shell and transverse cracks that occur due to deepening of the oscillation mark.

初期凝固時の不均一冷却によって発生する不均一凝固は、鋳型と鋳片間へのモールドパウダーの局部的な流入量差、鋳型形状の違いにより、冷却条件が凝固シェルの位置ごとに異なるために発生する。   The non-uniform solidification that occurs due to non-uniform cooling during the initial solidification is because the cooling conditions differ depending on the position of the solidified shell due to the difference in the amount of mold powder locally flowing between the mold and the slab and the difference in the mold shape. appear.

これらの課題に対し、従来は、緩冷却モールドパウダーを使用して不均一凝固を抑制することによって縦割れを防止し、オシレーションの振幅を小さくするショートストローク化により凝固シェルのオシレーションマーク谷部の深さを抑制して横割れを防止するという方法が採られてきた。   Conventionally, in response to these problems, oscillation crack valleys in the solidified shell have been shortened by using a short stroke to prevent vertical cracking by using non-cooled mold powder to suppress non-uniform solidification and reduce oscillation amplitude. The method of suppressing the depth of the crack and preventing the transverse crack has been taken.

しかしながら、この方法は、先に説明したように、鋳造速度を高速化した場合、前記のハイサイクル化やショートストローク化では、鋳型と鋳片間へのモールドパウダーの流入量が減少するので、鋳片の抜熱量が増加して鋳片の表面品質を確保することができない。   However, as described above, in this method, when the casting speed is increased, the amount of mold powder flowing between the mold and the slab decreases when the high cycle or short stroke is performed. The amount of heat removed from the piece increases and the surface quality of the slab cannot be ensured.

そこで、上記の課題に対し、高速鋳造時におけるモールドパウダーの、鋳型と鋳片間への均一流入、初期凝固シェルの薄肉化による均一成長、低粘性のモールドパウダー適用による鋳型と鋳片間の摩擦抵抗の減少を図り、高速鋳造における縦割れ、横割れの防止を両立させることを考えた。   Therefore, to solve the above problems, mold powder flows uniformly between mold and slab during high-speed casting, uniform growth due to thinning of the initial solidified shell, and friction between mold and slab by applying low-viscosity mold powder. We tried to reduce resistance and to prevent both vertical cracks and transverse cracks in high-speed casting.

連続鋳造の初期凝固における不均一冷却の原因として、モールドパウダーの鋳型と鋳片間への不均一流入と初期凝固シェルの体積収縮が挙げられる。   Causes of non-uniform cooling in the initial solidification of continuous casting include non-uniform flow of mold powder between the mold and the slab and volume shrinkage of the initial solidified shell.

連続鋳造に用いられるモールドパウダーは鋳型内に粉末状で供給され、溶鋼からの熱供給によって溶融し、鋳型と鋳片の間に流入していく。このため、鋳造速度が低速の場合や鋳型内の溶鋼過熱度(溶鋼温度の液相線温度からの差分)が不足している場合、モールドパウダーへの熱供給不足によりモールドパウダーの滓化が不完全なものとなり、鋳型と鋳片間へのモールドパウダーの流入が不均一になる。   Mold powder used for continuous casting is supplied in the form of powder into the mold, melted by heat supply from molten steel, and flows between the mold and the slab. For this reason, when the casting speed is low or when the molten steel superheat degree in the mold (difference from the liquidus temperature of the molten steel temperature) is insufficient, the mold powder will not hatch due to insufficient heat supply to the mold powder. It becomes complete, and the inflow of mold powder between the mold and the slab becomes uneven.

これに対して、鋳造速度を高速化すれば、図1に示すように、鋳型内の溶鋼表面への熱供給が増加するため、モールドパウダーの滓化が促進され、モールドパウダーの流入が安定する。なお、図1は内直径が191mmの鋳型内に0.8Pa・sの粘度のモールドパウダーを供給した場合の結果である。   On the other hand, if the casting speed is increased, as shown in FIG. 1, the heat supply to the molten steel surface in the mold increases, so that the hatching of the mold powder is promoted and the inflow of the mold powder is stabilized. . FIG. 1 shows the result when a mold powder having a viscosity of 0.8 Pa · s is supplied into a mold having an inner diameter of 191 mm.

連続鋳造時に形成される初期凝固シェルは、鋳型からの冷却によりδ相からγ相に変態し、結晶構造の体積の違いから体積収縮を起こす。この際、鋳型に設けたテーパ量が適正でないと、体積収縮により凝固シェルが鋳型より離れ、不均一凝固の原因となる。   The initial solidified shell formed during continuous casting transforms from the δ phase to the γ phase by cooling from the mold, and causes volume shrinkage due to the difference in volume of the crystal structure. At this time, if the taper amount provided in the mold is not appropriate, the solidified shell is separated from the mold due to volume shrinkage, which causes uneven solidification.

しかしながら、鋳型のテーパ量は、鋼種を変更する毎に変更することができない。
そこで、発明者らは、連続鋳造機固有の凝固係数と鋳造速度を用いて、下記数式1より計算することができる初期凝固シェル厚が、図2に示すように、鋳造速度の高速化に伴い薄肉化することに着目した。なお、本願明細書における初期凝固シェル厚は、メニスカスから鋳造方向へ50mmの位置での計算値を示す。
However, the taper amount of the mold cannot be changed every time the steel type is changed.
Therefore, the inventors have found that the initial solidified shell thickness that can be calculated from the following formula 1 using the solidification coefficient and casting speed unique to the continuous casting machine is as the casting speed increases as shown in FIG. Focused on thinning. In addition, the initial solidified shell thickness in the present specification indicates a calculated value at a position of 50 mm from the meniscus in the casting direction.

Figure 2012183569
Figure 2012183569

発明者らは、鋳造速度を高速化して初期凝固シェル厚を薄肉化することで、体積収縮量の減少による不均一凝固を抑制することを試み、2.0m/min以上の高速鋳造領域での鋳造試験を行った。その際、高速鋳造に伴う初期凝固シェルの薄肉化により、ブレイクアウトの危険性があるため、鋳造速度の上限を4.0m/minとした。   The inventors tried to suppress non-uniform solidification due to a decrease in volume shrinkage by increasing the casting speed and reducing the initial solidified shell thickness, and in a high-speed casting region of 2.0 m / min or more. A casting test was conducted. At that time, since there is a risk of breakout due to the thinning of the initial solidified shell accompanying high-speed casting, the upper limit of the casting speed was set to 4.0 m / min.

その結果、発明者らは、2.0m/min以上、4.0m/min以下の高速での後述する連続鋳造試験により、図3に示すように、鋳片表面の不均一凝固を示す鋳型内熱電対の温度変動標準偏差を抑制することが可能であることを見出した。なお、図3中の温度変動標準偏差は、鋳型上端より鋳造方向下流側に200mm隔てた位置に埋め込んだ熱電対により温度測定を行い、鋳込定常部の測定値より計算を行って求めた。   As a result, the inventors found that the inside of the mold exhibiting uneven solidification of the slab surface as shown in FIG. 3 by a continuous casting test described later at a high speed of 2.0 m / min to 4.0 m / min. It was found that the temperature fluctuation standard deviation of the thermocouple can be suppressed. The temperature variation standard deviation in FIG. 3 was obtained by measuring the temperature with a thermocouple embedded at a position 200 mm away from the upper end of the mold and downstream of the casting direction, and calculating from the measured value of the steady casting portion.

連続鋳造では、鋳型と鋳片間の摩擦低減と、モールドパウダーの流入量の適正化を目的として、鋳造速度に応じて鋳型を鋳片に沿う形で振動(オシレーション)させている。   In continuous casting, the mold is vibrated (oscillated) along the slab according to the casting speed for the purpose of reducing the friction between the mold and the slab and optimizing the inflow of mold powder.

このオシレーションのストローク延長により、ネガティブストリップ時間率が増え、モールドパウダー供給量も増加するが、同時に凝固シェルの溶鋼側への倒れ込み変形時間が増加する。そのため、オシレーションマークの深さが深くなる(図4参照)。なお、ネガティブストリップ時間率とは、下記数式2に示すように、鋳造速度と鋳型平均下降速度との差の鋳造速度に対する割合をいう。   By extending the oscillation stroke, the negative strip time rate increases and the amount of mold powder supplied also increases, but at the same time, the deformation time of the collapse of the solidified shell toward the molten steel increases. Therefore, the depth of the oscillation mark is increased (see FIG. 4). The negative strip time rate refers to the ratio of the difference between the casting speed and the average mold lowering speed to the casting speed, as shown in Equation 2 below.

Figure 2012183569
Figure 2012183569

凝固シェルは、鋳型との摩擦により凝固シェルの引き抜き方向(鋳造方向)と逆方向の抵抗を受けるため、凝固シェルの表面に深いオシレーションマークが存在した場合、その谷部のノッチ効果により凝固シェルが破断し横割れが発生する。   Since the solidified shell receives resistance in the direction opposite to the drawing direction (casting direction) of the solidified shell due to friction with the mold, if there is a deep oscillation mark on the surface of the solidified shell, the solidified shell is notched due to the notch effect in the valley. Breaks and lateral cracks occur.

この横割れ対策としては、ショートストローク化によるオシレーションマーク深さの低減が有効であるが、ショートストローク化はモールドパウダー供給量の減少を招き、高速での鋳造時にはモールドパウダーの供給量が不足して表面品質悪化の原因となる。   As a countermeasure against lateral cracking, it is effective to reduce the depth of the oscillation mark by shortening the stroke. However, shortening the stroke results in a decrease in the amount of mold powder supplied, and the amount of mold powder supplied is insufficient when casting at high speed. Cause deterioration of surface quality.

このモールドパウダーの供給量不足に対しては、低粘性のモールドパウダーを使用して鋳型と鋳片間の摩擦力を減少することで、対応することができる。しかしながら、モールドパウダーの粘度を大幅に低下した場合、モールドパウダーの過剰流入によりパウダー噛み込み等の表面品質悪化を招く。   This insufficient supply of mold powder can be dealt with by reducing the frictional force between the mold and the slab by using low-viscosity mold powder. However, when the viscosity of the mold powder is significantly reduced, surface quality such as powder biting is deteriorated due to excessive inflow of the mold powder.

発明者らは、このモールドパウダーの最適な粘性範囲を得るため、継目無鋼管の素材となる、鋼中の炭素濃度が0.08質量%以上、0.18質量%以下の溶鋼を丸断面の鋳型に鋳込み、2.0m/min以上、4.0m/min以下の高速で連続鋳造した。   In order to obtain the optimum viscosity range of this mold powder, the inventors have used a round steel of a molten steel having a carbon concentration of 0.08% by mass or more and 0.18% by mass or less as a material for a seamless steel pipe. It was cast into a mold and continuously cast at a high speed of 2.0 m / min to 4.0 m / min.

その結果、1573Kにおける粘度が0.2Pa・s以上、0.8Pa・s以下の低粘性のモールドパウダーを使用することで、鋳型と鋳片間の摩擦力の60kN/m2以下への制御とモールドパウダーの適正流入を両立し、縦割れと横割れの発生を防止することができた。これが請求項1の発明である。 As a result, by using a low-viscosity mold powder having a viscosity at 1573 K of 0.2 Pa · s or more and 0.8 Pa · s or less, the friction force between the mold and the slab can be controlled to 60 kN / m 2 or less. It was possible to prevent the occurrence of longitudinal cracks and transverse cracks while ensuring proper inflow of mold powder. This is the invention of claim 1.

上記のように、本発明の連続鋳造方法に使用するモールドパウダーは、上記範囲の粘度と鋳型内での安定した結晶化による鋳型内抜熱の適正化の両立が求められる。このため、上記粘度に加えて、凝固点が1273K以上、CaO/SiO2で表されるモールドパウダー中の質量比(塩基度)が0.8〜1.0、Na2O量が3.0質量%以下、F濃度が5.0質量%以下、MgO量が8.0質量%以下、AL2O3量が5.0質量%以下であることが望ましい。これが請求項2の発明である。なお、粘度は1573Kに保持した溶融モールドパウダー中に振動片を浸漬し、振動時の粘性抵抗より測定した。 As described above, the mold powder used in the continuous casting method of the present invention is required to satisfy both the viscosity in the above range and the optimization of heat removal from the mold by stable crystallization in the mold. For this reason, in addition to the above viscosity, the freezing point is 1273 K or more, the mass ratio (basicity) in the mold powder represented by CaO / SiO 2 is 0.8 to 1.0, and the amount of Na 2 O is 3.0 mass. %, F concentration is 5.0 mass% or less, MgO content is 8.0 mass% or less, and AL 2 O 3 content is 5.0 mass% or less. This is the invention of claim 2. The viscosity was measured from the viscous resistance during vibration by immersing the vibrating piece in molten mold powder held at 1573K.

発明者らは、丸断面鋳型での鋳型と鋳片間の摩擦力とモールドパウダーの粘度を把握するため鋭意調査を行った。
2.8m/minの鋳造速度の場合における、モールドパウダーの粘度ごとの、鋳型(内直径:191mm)と鋳片間の摩擦力を図5に示す。この図5に示した鋳型と鋳片間の摩擦力は、オシレーション振動を発生させる油圧シリンダーの油圧を測定し、鋳型の表面積より鋳型に作用する面積当りの平均荷重を求め、鋳造していない状態との荷重の差より求めたものである。
The inventors conducted an intensive investigation to grasp the frictional force between the mold and the slab and the viscosity of the mold powder in the round section mold.
FIG. 5 shows the frictional force between the mold (inner diameter: 191 mm) and the slab for each viscosity of the mold powder when the casting speed is 2.8 m / min. The frictional force between the mold and the slab shown in FIG. 5 is obtained by measuring the hydraulic pressure of a hydraulic cylinder that generates oscillation vibration, and obtaining the average load per area acting on the mold from the surface area of the mold. It is obtained from the difference in load from the state.

目標の成分及び温度に調整した溶鋼を、取鍋、タンディッシュ、浸漬ノズルを介して内直径が191mm〜225mmのサイズの鋳型にて鋳込んだ。鋳造速度を2.0m/min以上、4.0m/min以下の範囲にして、粘度が0.2Pa・s以上、0.8Pa・s以下の、請求項2の発明の成分範囲であるモールドパウダーを使用して鋳込みを行い、二次冷却帯を出た鋳片を製管長さまで切断し、鋳片を無手入れでマンネスマン法により製管した。   Molten steel adjusted to the target component and temperature was cast in a mold having an inner diameter of 191 mm to 225 mm through a ladle, tundish, and immersion nozzle. 3. Mold powder which is the component range of the invention of claim 2, wherein the casting speed is in the range of 2.0 m / min to 4.0 m / min and the viscosity is 0.2 Pa · s to 0.8 Pa · s. Was cast, and the slab out of the secondary cooling zone was cut to the pipe making length, and the slab was piped by the Mannesmann method without maintenance.

その結果を下記表1及び図3に示す。なお、下記表1における縦割れ及び横割れの評価は、割れ無しの場合を○、手入れ除去が可能な割れがある場合を△、手入れ除去が不可能な割れがある場合を×とした。   The results are shown in Table 1 below and FIG. In addition, the evaluation of the vertical crack and the horizontal crack in the following Table 1 was evaluated as ◯ when there was no crack, Δ when there was a crack that could be removed by maintenance, and × when there was a crack that could not be removed by maintenance.

Figure 2012183569
Figure 2012183569

図3に示すように、鋳造速度の高速化に伴い、鋳片の不均一凝固の発生を示す、鋳型壁面に設置された熱電対の温度変動標準偏差は低下した。   As shown in FIG. 3, with the increase in casting speed, the standard deviation of temperature variation of the thermocouple installed on the mold wall surface, which indicates the occurrence of non-uniform solidification of the cast slab, decreased.

また、表1に示すように、発明例1〜5は、何れの場合も鋳片に縦割れ及び横割れの発生はなかった。   Moreover, as shown in Table 1, invention examples 1-5 did not generate | occur | produce the vertical crack and the horizontal crack in the slab in any case.

一方、粘度が本発明で規定する範囲より高い比較例1,4,7,8は、鋳造速度が本発明の範囲内の高速鋳造でも、鋳型と鋳片間の摩擦力が60kN/m2以上となって、オシレーションマークを起点とする横割れが発生した。加えて、比較例4,8は不均一凝固による縦割れも発生した。 On the other hand, in Comparative Examples 1, 4, 7, and 8 where the viscosity is higher than the range specified in the present invention, the friction force between the mold and the slab is 60 kN / m 2 or more even in the high-speed casting in which the casting speed is within the range of the present invention. As a result, transverse cracks originated from the oscillation mark. In addition, in Comparative Examples 4 and 8, vertical cracks due to non-uniform solidification also occurred.

反対に、粘度が本発明で規定する範囲より低い比較例3は、鋳造速度が本発明の範囲内の高速鋳造で、鋳型と鋳片間の摩擦力が60kN/m2以下であっても、モールドパウダーの過剰流入による縦割れが発生し、表面品質が悪化した。 On the contrary, in Comparative Example 3 in which the viscosity is lower than the range specified in the present invention, the casting speed is high speed casting within the range of the present invention, and the frictional force between the mold and the slab is 60 kN / m 2 or less. Vertical cracks occurred due to excessive inflow of mold powder, and surface quality deteriorated.

また、鋳造速度が本発明の範囲内の高速鋳造でない比較例1,2,5,6については、粘度が本発明で規定する範囲の低粘性の場合の比較例2,5,6はもとより、本発明で規定する範囲より高い場合の比較例1であっても、初期凝固時の不均一凝固による縦割れが発生した。   Moreover, for Comparative Examples 1, 2, 5, and 6 that are not high-speed casting within the range of the present invention, the Comparative Examples 2, 5, and 6 in the case of low viscosity in the range specified by the present invention, Even in Comparative Example 1 having a height higher than the range specified in the present invention, vertical cracks due to non-uniform solidification during initial solidification occurred.

本発明は上記の例に限らず、各請求項に記載された技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above example, and it goes without saying that the embodiments may be changed as appropriate within the scope of the technical idea described in each claim.

Claims (2)

継目無鋼管の素材となる、鋼中の炭素濃度が0.08質量%以上、0.18質量%以下の丸断面連続鋳造鋳片の鋳造において、
1573Kにおける粘度が0.2Pa・s以上、0.8Pa・s以下のモールドパウダーを使用し、2.0m/min以上、4.0m/min以下の速度で連続鋳造して、鋳型と鋳片間の摩擦力を60kN/m2以下にすることを特徴とする連続鋳造方法。
In the casting of a round cross-section continuous cast slab having a carbon concentration in the steel of 0.08% by mass or more and 0.18% by mass or less, which is a material of the seamless steel pipe,
Using a mold powder with a viscosity at 1573K of 0.2 Pa · s or more and 0.8 Pa · s or less, continuously casting at a speed of 2.0 m / min or more and 4.0 m / min or less, and between mold and slab The continuous casting method is characterized in that the frictional force is 60 kN / m 2 or less.
前記モールドパウダーは、凝固点が1273K以上、CaO/SiO2で表されるモールドパウダー中の質量比(塩基度)が0.8〜1.0、Na2O量が3.0質量%以下、F濃度が5.0質量%以下、MgO量が8.0質量%以下、AL2O3量が5.0質量%以下であることを特徴とする請求項1に記載の連続鋳造方法。 The mold powder has a freezing point of 1273 K or more, a mass ratio (basicity) in the mold powder represented by CaO / SiO 2 of 0.8 to 1.0, an amount of Na 2 O of 3.0% by mass or less, F 2. The continuous casting method according to claim 1, wherein the concentration is 5.0 mass% or less, the MgO content is 8.0 mass% or less, and the AL 2 O 3 content is 5.0 mass% or less.
JP2011049244A 2011-03-07 2011-03-07 Continuous casting method Active JP5712685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049244A JP5712685B2 (en) 2011-03-07 2011-03-07 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049244A JP5712685B2 (en) 2011-03-07 2011-03-07 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2012183569A true JP2012183569A (en) 2012-09-27
JP5712685B2 JP5712685B2 (en) 2015-05-07

Family

ID=47014137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049244A Active JP5712685B2 (en) 2011-03-07 2011-03-07 Continuous casting method

Country Status (1)

Country Link
JP (1) JP5712685B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193475A (en) * 2013-03-29 2014-10-09 Jfe Steel Corp Continuous casting method of round billet
JP2016168608A (en) * 2015-03-12 2016-09-23 Jfeスチール株式会社 Friction force estimation method for casting mold and casting piece when continuously casting steel and steel continuous casting method using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290217A (en) * 1994-04-22 1995-11-07 Nippon Steel Corp Mold powder for continuous casting
JPH0825008A (en) * 1994-07-11 1996-01-30 Sumitomo Metal Ind Ltd Molding powder for continuous casting of steel
JPH08132184A (en) * 1994-11-08 1996-05-28 Sumitomo Metal Ind Ltd Mold for continuous casting round cast billet and continuous casting method using same
JPH09295113A (en) * 1996-04-30 1997-11-18 Nkk Corp Production of round cast billet by continuous casting
JP2003064449A (en) * 2001-06-15 2003-03-05 Sumitomo Metal Ind Ltd Heat-resisting low-alloy steel tube and manufacturing method therefor
JP2003266158A (en) * 2002-03-14 2003-09-24 Sumitomo Metal Ind Ltd Powder for continuous casting and continuous casting method using this powder
JP2004330252A (en) * 2003-05-08 2004-11-25 Sumitomo Metal Ind Ltd Continuous casting method for round billet, and round billet
JP2010115714A (en) * 2010-03-05 2010-05-27 Jfe Engineering Corp Mold powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290217A (en) * 1994-04-22 1995-11-07 Nippon Steel Corp Mold powder for continuous casting
JPH0825008A (en) * 1994-07-11 1996-01-30 Sumitomo Metal Ind Ltd Molding powder for continuous casting of steel
JPH08132184A (en) * 1994-11-08 1996-05-28 Sumitomo Metal Ind Ltd Mold for continuous casting round cast billet and continuous casting method using same
JPH09295113A (en) * 1996-04-30 1997-11-18 Nkk Corp Production of round cast billet by continuous casting
JP2003064449A (en) * 2001-06-15 2003-03-05 Sumitomo Metal Ind Ltd Heat-resisting low-alloy steel tube and manufacturing method therefor
JP2003266158A (en) * 2002-03-14 2003-09-24 Sumitomo Metal Ind Ltd Powder for continuous casting and continuous casting method using this powder
JP2004330252A (en) * 2003-05-08 2004-11-25 Sumitomo Metal Ind Ltd Continuous casting method for round billet, and round billet
JP2010115714A (en) * 2010-03-05 2010-05-27 Jfe Engineering Corp Mold powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193475A (en) * 2013-03-29 2014-10-09 Jfe Steel Corp Continuous casting method of round billet
JP2016168608A (en) * 2015-03-12 2016-09-23 Jfeスチール株式会社 Friction force estimation method for casting mold and casting piece when continuously casting steel and steel continuous casting method using the same

Also Published As

Publication number Publication date
JP5712685B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP4462255B2 (en) Continuous casting method for medium carbon steel
JP6947737B2 (en) Continuous steel casting method
JP5712685B2 (en) Continuous casting method
JP5962733B2 (en) Steel continuous casting method
JP6365604B2 (en) Steel continuous casting method
JP4337565B2 (en) Steel slab continuous casting method
JP6787359B2 (en) Continuous steel casting method
CN109689247B (en) Method for continuously casting steel
JP4998734B2 (en) Manufacturing method of continuous cast slab
JP4747954B2 (en) Continuous casting method of high alloy steel
RU2403121C1 (en) Method of continuous steel casting
JP5130485B2 (en) Vibration method of continuous casting mold of steel and continuous casting method of steel
JP2009136908A (en) Method for drawing out slab after completion of casting in continuous casting
JP5935737B2 (en) Continuous casting method for round billets
JP2018149602A (en) Method for continuously casting steel
JP2009142876A (en) Method for continuously casting steel
JP3805708B2 (en) Horizontal continuous casting method
JP5652362B2 (en) Steel continuous casting method
JP5828295B2 (en) Continuous casting mold and steel continuous casting method using the same
JP2016168610A (en) Steel continuous casting method
JP5769645B2 (en) Continuous casting method
JP2018027559A (en) Vertical type continuous casting method
JP2024047887A (en) Continuous casting mold, manufacturing method for continuous casting mold, and continuous casting method for steel
JP6146346B2 (en) Mold for continuous casting of steel and continuous casting method
JP2005211916A (en) High speed continuous casting method for carbon steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R151 Written notification of patent or utility model registration

Ref document number: 5712685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350