JP2012183462A - Method and apparatus for removal of organic solvent - Google Patents

Method and apparatus for removal of organic solvent Download PDF

Info

Publication number
JP2012183462A
JP2012183462A JP2011047260A JP2011047260A JP2012183462A JP 2012183462 A JP2012183462 A JP 2012183462A JP 2011047260 A JP2011047260 A JP 2011047260A JP 2011047260 A JP2011047260 A JP 2011047260A JP 2012183462 A JP2012183462 A JP 2012183462A
Authority
JP
Japan
Prior art keywords
adsorption tank
organic solvent
adsorption
gas
acf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011047260A
Other languages
Japanese (ja)
Other versions
JP5643680B2 (en
Inventor
Etsumichi Morikawa
悦道 森川
Taketo Hata
武登 秦
Masahide Omae
雅英 大前
Kazuya Shinohara
一也 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Chemical Engineering and Construction Co Ltd
Original Assignee
Toho Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Chemical Engineering and Construction Co Ltd filed Critical Toho Chemical Engineering and Construction Co Ltd
Priority to JP2011047260A priority Critical patent/JP5643680B2/en
Priority to KR1020137016707A priority patent/KR101715826B1/en
Priority to PCT/JP2012/052628 priority patent/WO2012120948A1/en
Publication of JP2012183462A publication Critical patent/JP2012183462A/en
Application granted granted Critical
Publication of JP5643680B2 publication Critical patent/JP5643680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/311Porosity, e.g. pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40056Gases other than recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for removal of low-boiling-point organic solvents which is packed with active carbon fiber (ACF), has improved efficiency of removing organic solvents from exhaust gas, allows ACF to exert its maximum adsorption capacity in order to reduce running costs and apparatus manufacturing costs.SOLUTION: The apparatus for removal of organic solvents includes the first adsorption vessel A packed with ACF6, the second adsorption vessel B packed with ACF 26 identical to or different from the ACF6 in a mass ratio M/Mof 0.05-0.25, where Mis the mass of ACF packed in the first adsorption vessel and Mis the mass of ACF packed in the second adsorption vessel, a connection pipe 24 connecting the first adsorption vessel A to the second adsorption vessel B, a condenser 25 connected through the connection pipe 24 and steam injection means 15 and 35 arranged, respectively, in the first adsorption vessel A and the second adsorption vessel B.

Description

本発明は、工場等から排出される高濃度の有機溶剤を含む少流量の被処理ガスから溶剤を効率的且つ低コストで分離除去する有機溶剤の除去方法及び除去装置に関する。   The present invention relates to a method and an apparatus for removing an organic solvent, which efficiently and inexpensively separates and removes a solvent from a low-flow target gas containing a high-concentration organic solvent discharged from a factory or the like.

電子機器製造工場、金属加工工場等における洗浄装置、フィルムコーター装置等の排ガス等の中に含まれる、塩化メチレン、トリクロロエチレン等の比較的沸点の低い有機溶剤を含有する排ガス等は、そのまま大気中に放出すると環境汚染を引き起こすことから、溶剤の除去処理が行われる。   Exhaust gas containing organic solvents with relatively low boiling points such as methylene chloride and trichlorethylene contained in exhaust gas from cleaning equipment and film coater equipment at electronic equipment manufacturing factories, metal processing factories, etc. Since the release causes environmental pollution, the solvent is removed.

従来、有機溶剤を含むガスから溶剤の分離除去を行う溶剤除去装置がある。この装置は、吸着工程で吸着材に有機溶剤を吸着させ、吸着材の吸着量が飽和に達する前に脱着工程に切替え、水蒸気によって吸着材から有機溶剤を脱着回収し、吸着材を再生し、再度吸着工程に用いる溶剤除去装置が主に使用されている。この有機溶剤に用いる吸着材として、従来の活性炭等の吸着材に比べ溶剤の吸脱着が早く行われる活性炭素繊維(ACF)を用いる溶剤除去装置が使用されている。ACFは、従来の活性炭に比べ乾燥が速く行われる性質があるため、従来必要とされている水蒸気による脱着工程後の乾燥工程が、被処理ガスにより吸着工程と同時にできる。そのため、吸着材としてACFを用いる溶剤除去装置は、実質的に乾燥工程を独立して設ける必要が無く、省略できるという利点がある。   Conventionally, there is a solvent removal apparatus that separates and removes a solvent from a gas containing an organic solvent. This device adsorbs the organic solvent to the adsorbent in the adsorption process, switches to the desorption process before the adsorption amount of the adsorbent reaches saturation, desorbs and recovers the organic solvent from the adsorbent with water vapor, regenerates the adsorbent, A solvent removal apparatus used again for the adsorption process is mainly used. As an adsorbent used for the organic solvent, a solvent removing apparatus using activated carbon fiber (ACF), in which the adsorption / desorption of the solvent is faster than the adsorbent such as conventional activated carbon, is used. Since ACF has a property that drying is performed faster than conventional activated carbon, the drying process after the desorption process using water vapor, which is conventionally required, can be performed simultaneously with the adsorption process using the gas to be processed. Therefore, the solvent removal apparatus using ACF as the adsorbent has an advantage that it is not necessary to provide a drying process substantially independently and can be omitted.

しかし、高濃度の有機溶剤を含む少流量の被処理ガスから有機溶剤を除去する場合、処理すべき有機溶剤の量に比例してACFの量が増す。更に、ACFの量に対する被処理ガスの流量が少ないため吸着工程で吸着と同時に行われる乾燥が充分に行われず、ACFとしてのACFが水分を含む状態で使用されることになる。そのため、ACFの吸着効率が低下し、溶剤除去装置から排出される排出ガスに含まれる有機溶剤の含有量が増加してしまうという問題がある。   However, when an organic solvent is removed from a small amount of gas to be processed containing a high concentration organic solvent, the amount of ACF increases in proportion to the amount of the organic solvent to be processed. Furthermore, since the flow rate of the gas to be treated relative to the amount of ACF is small, the drying performed simultaneously with the adsorption in the adsorption process is not sufficiently performed, and the ACF as the ACF is used in a state containing moisture. For this reason, there is a problem that the adsorption efficiency of ACF is lowered, and the content of the organic solvent contained in the exhaust gas discharged from the solvent removing device is increased.

この問題を改善するために、特許文献1に記載されるような、高濃度有機溶剤を含む被処理ガスを外気で希釈することによって被処理ガスの流量を増大させ、吸着工程での吸着材の乾燥を促進する方法が一般的に行われている。しかし、吸着材に対する有機溶剤の飽和吸着量は、被処理ガスに含まれる有機溶剤の濃度に比例する。そのため、高濃度の有機溶剤を含む被処理ガスを外気により希釈する方法には、処理効率が低下する問題がある。   In order to improve this problem, the flow rate of the gas to be treated is increased by diluting the gas to be treated containing a high-concentration organic solvent with outside air as described in Patent Document 1, and the adsorbent in the adsorption process is increased. A method of promoting drying is generally performed. However, the saturated adsorption amount of the organic solvent with respect to the adsorbent is proportional to the concentration of the organic solvent contained in the gas to be treated. Therefore, the method of diluting a gas to be processed containing a high concentration organic solvent with outside air has a problem that the processing efficiency is lowered.

また、特許文献2には、脱着工程と吸着工程の間に乾燥工程を設置する方法が開示されている。しかし、この方法は、同量の吸着材を充填させた吸着缶を並列に3つ使用して各工程を行うことになり、使用する吸着材の量が増加し、設備コストが増加してしまうという不都合がある。   Patent Document 2 discloses a method of installing a drying process between a desorption process and an adsorption process. However, this method uses three adsorption cans filled with the same amount of adsorbent in parallel to perform each step, increasing the amount of adsorbent to be used and increasing the equipment cost. There is an inconvenience.

特許第3183381号公報 (段落[0005])Japanese Patent No. 3183281 (paragraph [0005]) 特開昭61−35822号公報 (第1頁右下欄第4行〜第2頁左上欄第9行)JP-A-61-35822 (page 1, lower right column, line 4 to page 2, upper left column, line 9)

本発明は、吸着材としてACFを充填する有機溶剤吸着槽を備える低沸点有機溶剤除去装置において、高濃度の有機溶剤を含有する排ガス中の有機溶剤の除去効率を高めると共に、ACFの持つ吸着能力を最大化させて、ランニングコスト及び装置製作費用を縮減させる有機溶剤の除去方法及び除去装置を提供することを目的としている。即ち、処理済ガス中の有機溶剤濃度が従来技術と同等の場合は、吸着槽に充填されるACFの全体量を縮減できること、吸着槽に充填されるACFの全体量が従来技術と同等の場合は、処理済ガス中の有機溶剤濃度を低減できることを、本発明は目的としている。   The present invention is a low boiling point organic solvent removal apparatus equipped with an organic solvent adsorption tank filled with ACF as an adsorbent, and improves the removal efficiency of the organic solvent in the exhaust gas containing a high concentration organic solvent, and also has an adsorption capability of ACF. It is an object of the present invention to provide an organic solvent removal method and removal device that maximizes the cost and reduces running costs and device manufacturing costs. That is, when the concentration of the organic solvent in the treated gas is equivalent to that of the prior art, the total amount of ACF filled in the adsorption tank can be reduced, and the total amount of ACF filled in the adsorption tank is equivalent to that of the conventional technique. The object of the present invention is to reduce the concentration of the organic solvent in the treated gas.

本発明者は、上記課題を解決するため検討を重ねた。その結果、被処理ガスに含まれる有機溶剤を活性炭素繊維に吸着させ、有機溶剤を分離除去する有機溶剤除去装置を、第1吸着槽と第2吸着槽とで構成し、これら2槽を直列に配置すると共に、第1吸着槽と第2吸着槽とに充填される活性炭素繊維の質量比を所定の範囲にし、更に、前記第1吸着槽と第2吸着槽とを連結する連結管に凝縮器を介装することにより、吸着量が増加し且つ第2吸着槽出口の有機溶剤排出濃度を低下することのできる有機溶剤の除去装置を実現できることを見出し、本発明を完成するに到った。   The present inventor has repeatedly studied to solve the above problems. As a result, the organic solvent contained in the gas to be treated is adsorbed on the activated carbon fiber, and the organic solvent removing device for separating and removing the organic solvent is composed of the first adsorption tank and the second adsorption tank, and these two tanks are connected in series. And a connecting pipe connecting the first adsorption tank and the second adsorption tank to a predetermined range in the mass ratio of the activated carbon fibers filled in the first adsorption tank and the second adsorption tank. By providing a condenser, it has been found that an organic solvent removal device capable of increasing the adsorption amount and reducing the organic solvent discharge concentration at the outlet of the second adsorption tank can be realized, and the present invention has been completed. It was.

上記課題を解決する本発明は以下に記載するものである。   The present invention for solving the above problems is described below.

〔1〕 活性炭素繊維が充填される第1吸着槽と、
前記活性炭素繊維と同一又は異なる活性炭素繊維が充填される第2吸着槽であって、第2吸着槽に充填される活性炭素繊維の質量(M2)が第1吸着槽に充填される活性炭素繊維の質量(M1)を基準とする質量比(M2/M1)で0.05〜0.25の活性炭素繊維が充填される第2吸着槽と、
前記第1吸着槽と、第2吸着槽とを連結する連結管と、
前記連結管に介装される凝縮器と、
前記第1吸着槽及び第2吸着槽にそれぞれ設けられるスチーム注入手段と、
を有する有機溶剤の除去装置。
[1] a first adsorption tank filled with activated carbon fibers;
The second adsorption tank filled with activated carbon fibers that are the same as or different from the activated carbon fibers, wherein the mass (M 2 ) of activated carbon fibers filled in the second adsorption tank is filled in the first adsorption tank. A second adsorption tank filled with activated carbon fibers of 0.05 to 0.25 in a mass ratio (M 2 / M 1 ) based on the mass (M 1 ) of the carbon fibers;
A connecting pipe connecting the first adsorption tank and the second adsorption tank;
A condenser interposed in the connecting pipe;
Steam injection means provided in each of the first adsorption tank and the second adsorption tank;
An organic solvent removing apparatus having

〔2〕 〔1〕に記載の有機溶剤の除去装置を用いる被処理ガス中の有機溶剤の除去方法であって、
有機溶剤を3000ppm以上含む被処理ガスを第1吸着槽に供給してその内部に充填される活性炭素繊維に有機溶剤を吸着させると共に、活性炭素繊維に含まれる凝縮水の乾燥を行うことにより、500ppm以下の有機溶剤と水分を含む第1吸着槽処理ガスを得、次いでこの第1吸着槽処理ガスを凝縮器に供給して第1吸着槽処理ガス中の水分を凝縮分離して系外に排出すると共に、前記水分を分離した第1吸着槽処理ガスを第2吸着槽に供給して第2吸着槽の内部に充填される活性炭素繊維に第1吸着槽処理ガスが含む有機溶剤を吸着させると共に、この活性炭素繊維が含む水分を乾燥させることにより、有機溶剤濃度が100ppm以下の第2吸着槽処理ガスを系外に排出させる吸着工程と、
第1吸着槽に供給する被処理ガスの供給を停止した後、スチーム注入手段により第1吸着槽及び第2吸着槽内にスチームを供給して、第1吸着槽及び第2吸着槽内に充填されている各活性炭素繊維の吸着有機溶剤を脱着させることにより、前記有機溶剤を吸着している各活性炭素繊維を前記供給したスチームが凝縮して生ずる凝縮水を含む活性炭素繊維に再生させると共に、前記脱着させた有機溶剤を系外に取出す脱着工程と、
を交互に繰返す被処理ガス中の有機溶剤の除去方法。
[2] A method for removing an organic solvent in a gas to be treated using the organic solvent removing apparatus according to [1],
By supplying the gas to be treated containing 3000 ppm or more of the organic solvent to the first adsorption tank and adsorbing the organic solvent to the activated carbon fiber filled therein, and drying the condensed water contained in the activated carbon fiber, A first adsorption tank treatment gas containing 500 ppm or less of an organic solvent and moisture is obtained, and then this first adsorption tank treatment gas is supplied to a condenser to condense and separate the moisture in the first adsorption tank treatment gas to the outside of the system. While discharging, supplying the first adsorption tank processing gas from which the water has been separated to the second adsorption tank, the organic solvent contained in the first adsorption tank treatment gas is adsorbed to the activated carbon fibers filled in the second adsorption tank And an adsorption step of discharging the second adsorption tank treatment gas having an organic solvent concentration of 100 ppm or less to the outside by drying the moisture contained in the activated carbon fiber,
After the supply of the gas to be processed to be supplied to the first adsorption tank is stopped, steam is supplied into the first adsorption tank and the second adsorption tank by the steam injection means, and the first adsorption tank and the second adsorption tank are filled. By desorbing the adsorbed organic solvent of each activated carbon fiber, each activated carbon fiber adsorbing the organic solvent is regenerated to activated carbon fiber containing condensed water generated by condensation of the supplied steam. A desorption step of taking out the desorbed organic solvent out of the system;
The method of removing the organic solvent in the gas to be processed that repeats alternately.

〔3〕 第1吸着槽に充填された活性炭素繊維が、比表面積1200m2/g以上2000m2/g以下、平均細孔直径1〜4nm、全細孔容積0.2〜0.8cm3/gの活性炭素繊維である〔2〕に記載の有機溶剤の除去方法。 [3] The activated carbon fiber filled in the first adsorption tank has a specific surface area of 1200 m 2 / g to 2000 m 2 / g, an average pore diameter of 1 to 4 nm, and a total pore volume of 0.2 to 0.8 cm 3 / The method for removing an organic solvent according to [2], which is an activated carbon fiber of g.

〔4〕 第2吸着槽に充填された活性炭素繊維が、比表面積600m2/g以上1400m2/g未満、平均細孔直径0.5〜3nm、全細孔容積0.1〜0.6cm3/gの活性炭素繊維である〔2〕に記載の有機溶剤の除去方法。 [4] The activated carbon fiber filled in the second adsorption tank has a specific surface area of 600 m 2 / g or more and less than 1400 m 2 / g, an average pore diameter of 0.5 to 3 nm, and a total pore volume of 0.1 to 0.6 cm. The method for removing an organic solvent according to [2], wherein the organic solvent is 3 / g of activated carbon fiber.

〔5〕 第1吸着槽に供給する被処理ガスが、沸点が30〜70℃の有機溶剤を5000〜100000ppm含む被処理ガスである〔2〕に記載の有機溶剤の除去方法。   [5] The method for removing an organic solvent according to [2], wherein the gas to be treated supplied to the first adsorption tank is a gas to be treated containing 5000 to 100,000 ppm of an organic solvent having a boiling point of 30 to 70 ° C.

本発明に係る有機溶剤の除去装置は、被処理ガスに含まれる有機溶剤を分離除去する有機溶剤吸着槽を、第1吸着槽と第2吸着槽の2槽を直列に配置すると共に、第1吸着槽と第2吸着槽に充填される活性炭素繊維の質量比を所定の範囲にし、更には、前記第1吸着槽と第2吸着槽とを連結する連結管に介装される凝縮器を備えて、第1吸着槽が排出する水蒸気を外部に排出するように構成しているので、比較的少量の被処理ガスで第2吸着槽を充分乾燥でき、その結果、第2吸着槽処理ガス中の有機溶剤排出濃度を100ppm以下の低濃度に制御できる。   The organic solvent removal apparatus according to the present invention includes an organic solvent adsorption tank that separates and removes an organic solvent contained in a gas to be treated, and two tanks, a first adsorption tank and a second adsorption tank, are arranged in series. A mass ratio of the activated carbon fibers filled in the adsorption tank and the second adsorption tank is set within a predetermined range, and further, a condenser interposed in a connecting pipe connecting the first adsorption tank and the second adsorption tank is provided. In addition, since the water vapor discharged from the first adsorption tank is discharged to the outside, the second adsorption tank can be sufficiently dried with a relatively small amount of gas to be treated. As a result, the second adsorption tank treatment gas The organic solvent discharge concentration can be controlled to a low concentration of 100 ppm or less.

被処理ガスに含まれる有機溶剤濃度と、活性炭素繊維への有機溶剤の飽和吸着量との関係の等温吸着曲線を示すグラフである。It is a graph which shows the isothermal adsorption curve of the relationship between the organic-solvent density | concentration contained in to-be-processed gas, and the saturated adsorption amount of the organic solvent to activated carbon fiber. 本発明の有機溶剤の除去装置の一例を示すシステムフロー図である。It is a system flowchart which shows an example of the removal apparatus of the organic solvent of this invention. 本発明の有機溶剤の除去装置の他の例を示すシステムフロー図である。It is a system flow figure which shows the other example of the removal apparatus of the organic solvent of this invention.

以下、本発明を図面を参照しながら詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

上述のように、有機溶剤の除去装置を、
被処理ガスに含まれる有機溶剤を吸着材である活性炭素繊維(ACF)に吸着させ、有機溶剤を分離除去する2つの有機溶剤吸着槽を直列に第1吸着槽及び第2吸着槽として配置する装置であって、
前記第1吸着槽に充填されるACFの質量(M1)と、前記ACFと同一又は異なるACFの第2吸着槽に充填される質量(M2)との質量比(M2/M1)を0.05〜0.25、好ましくは0.1〜0.25とし、更に、
前記第1吸着槽と、第2吸着槽とを連結する連結管と、
前記連結管に介装される凝縮器と、
前記第1吸着槽及び第2吸着槽にそれぞれ設けられるスチーム注入手段と、
を有する装置
とすることにより、以下のように、ACFの吸着能力を最大限発揮させる事が出来る。
As mentioned above, the organic solvent removal device
Two organic solvent adsorption tanks for adsorbing an organic solvent contained in the gas to be treated on the activated carbon fiber (ACF) as an adsorbent and separating and removing the organic solvent are arranged in series as a first adsorption tank and a second adsorption tank. A device,
Mass ratio (M 2 / M 1 ) between the mass (M 1 ) of ACF filled in the first adsorption tank and the mass (M 2 ) filled in the second adsorption tank of the same or different ACF as the ACF Is 0.05 to 0.25, preferably 0.1 to 0.25,
A connecting pipe connecting the first adsorption tank and the second adsorption tank;
A condenser interposed in the connecting pipe;
Steam injection means provided in each of the first adsorption tank and the second adsorption tank;
By using the apparatus having the ACF, the ACF adsorption ability can be maximized as follows.

図1は、被処理ガスに含まれる有機溶剤濃度と、ACFへの有機溶剤の飽和吸着量との関係の等温吸着曲線を示すグラフである。   FIG. 1 is a graph showing an isothermal adsorption curve of the relationship between the concentration of the organic solvent contained in the gas to be treated and the saturated adsorption amount of the organic solvent on the ACF.

図1に示すように、ACFへの有機溶剤の飽和吸着量は被処理ガスに含まれる有機溶剤濃度に比例する。そのため、高濃度の有機溶剤を含有する被処理ガスに対する場合に、高い飽和吸着率を得ることができ、高い処理効率が期待できる。例えば、吸着材として比表面積1500m2/gのフェノール系ACFを使用する場合、被処理ガス中の有機溶剤(塩化メチレン)濃度が5000ppm以上、好ましくは10000〜100000ppm含まれる有機溶剤含有被処理ガスに対しては、ACFの飽和吸着量は35%以上が見込める。 As shown in FIG. 1, the saturated adsorption amount of the organic solvent on the ACF is proportional to the concentration of the organic solvent contained in the gas to be processed. Therefore, in the case of a gas to be processed containing a high concentration organic solvent, a high saturation adsorption rate can be obtained, and high processing efficiency can be expected. For example, when a phenolic ACF having a specific surface area of 1500 m 2 / g is used as an adsorbent, the organic solvent (methylene chloride) concentration in the gas to be treated is 5000 ppm or more, preferably 10000 to 100000 ppm. On the other hand, the saturated adsorption amount of ACF is expected to be 35% or more.

以下、ACFを充填する吸着槽にスチームを供給して、ACFに吸着されている有機溶剤を脱着除去する脱着工程と、前記スチームを供給して有機溶剤を脱着除去したACFに被処理ガスを供給することにより、スチームが凝縮して湿潤状態のACFを乾燥させながら、被処理ガス中の有機溶剤を、一部湿潤状態にあるACFに吸着させる吸着工程と、を有する有機溶剤の除去方法について考える。   Hereinafter, steam is supplied to an adsorption tank filled with ACF, and a desorption process for desorbing and removing the organic solvent adsorbed on the ACF, and a gas to be processed is supplied to the ACF from which the steam is supplied and the organic solvent is desorbed and removed. Thus, an organic solvent removal method having an adsorption step of adsorbing the organic solvent in the gas to be treated to the partially wet ACF while drying the wet ACF by condensing steam is considered. .

このような一部湿潤状態にあるACFを用いる有機溶剤の除去方法にあっては、吸着工程は、ACFの乾燥と、有機溶剤の吸着が同時に起きているので、吸着現象は複雑で、通常の乾燥したACFの吸着現象とは異なる。   In such a method of removing an organic solvent using ACF in a partially wet state, the adsorption process is complicated because the ACF drying and the organic solvent adsorption occur simultaneously. This is different from the adsorption phenomenon of dried ACF.

上記のような除去方法においては、有機溶剤を含む被処理ガスから有機溶剤をACFで吸着除去する場合、被処理ガス中の有機溶剤の濃度が高くなる程、吸着すべき有機溶剤の量に比してACFの使用量が増加する。この場合、ACFの使用量に対する被処理ガスの流量は相対的に少なくなる。その結果、吸着工程において湿潤状態のACFを乾燥させるのに必要な流量が与えられず、ACFが水分過多になる。その結果、特に吸着工程の初期における有機溶剤の吸着効率が低下してしまう。   In the above removal method, when the organic solvent is removed by adsorption with ACF from the gas to be treated containing the organic solvent, the higher the concentration of the organic solvent in the gas to be treated, the higher the concentration of the organic solvent to be adsorbed. As a result, the amount of ACF used increases. In this case, the flow rate of the gas to be processed relative to the amount of ACF used is relatively small. As a result, the flow rate necessary for drying the wet ACF in the adsorption process is not given, and the ACF becomes excessively watery. As a result, the adsorption efficiency of the organic solvent at the initial stage of the adsorption process is lowered.

即ち、上記除去方法においては、ACFに対する有機溶剤の飽和吸着量とACFの含水量との間には、ある平衡関係が存在している。従って、ACFの含水量に対して吸着槽の出口から排出される処理ガス中の有機溶剤濃度は、平衡な値に保たれる。   That is, in the above removal method, a certain equilibrium exists between the saturated adsorption amount of the organic solvent with respect to ACF and the water content of ACF. Therefore, the concentration of the organic solvent in the processing gas discharged from the outlet of the adsorption tank with respect to the water content of ACF is kept at an equilibrium value.

従来の有機溶剤処理方式では、ACFを乾燥させるのに必要な被処理ガスの流量を得ると共に、有機溶剤吸着槽の出口における有機溶剤(塩化メチレン)濃度を低く保つ為、希釈ガスを導入し、有機溶剤吸着槽に導入する被処理ガスに含まれる有機溶剤濃度を5000ppm未満、実際には1000ppm以下にしなくてはならない。この場合、飽和吸着量は図1を参照すれば18%程度しか見込めない。即ち、従来法では、有機溶剤が低濃度のガスを処理しているため、ACFの吸着能力をわざわざ半分程度に落としていることになる。   In the conventional organic solvent treatment system, a dilution gas is introduced in order to obtain the flow rate of the gas to be treated necessary for drying the ACF and to keep the concentration of the organic solvent (methylene chloride) at the outlet of the organic solvent adsorption tank low. The concentration of the organic solvent contained in the gas to be treated introduced into the organic solvent adsorption tank must be less than 5000 ppm, and actually 1000 ppm or less. In this case, the saturated adsorption amount can be expected to be only about 18% with reference to FIG. That is, in the conventional method, since the organic solvent treats a low-concentration gas, the ACF adsorption capacity is reduced to about half.

一方、本発明の有機溶剤の除去方法では、第1吸着槽から排出される低濃度の有機溶剤を含有する第1吸着槽処理ガスが、第2吸着槽で更に処理される。そのため、第1吸着槽に高濃度の有機溶剤を含む被処理ガスを導入できる。第1吸着槽の入口における被処理ガス中の有機溶剤濃度は5000ppm以上であることが好ましく、更に好ましくは10000〜100000ppmである。被処理ガス中の有機溶剤の濃度を5000ppm以上とすることで、図1のグラフに従ってACFへの有機溶剤の飽和吸着量が30%以上になり、高い吸着効率で処理を行うことができる。   On the other hand, in the organic solvent removal method of the present invention, the first adsorption tank processing gas containing the low concentration organic solvent discharged from the first adsorption tank is further processed in the second adsorption tank. Therefore, the to-be-processed gas containing the high concentration organic solvent can be introduced into the first adsorption tank. The concentration of the organic solvent in the gas to be treated at the inlet of the first adsorption tank is preferably 5000 ppm or more, more preferably 10,000 to 100,000 ppm. By setting the concentration of the organic solvent in the gas to be treated to 5000 ppm or more, the saturated adsorption amount of the organic solvent to the ACF becomes 30% or more according to the graph of FIG. 1, and the treatment can be performed with high adsorption efficiency.

この操作だけを考えれば、ACFを充填した第1吸着槽は、従来の有機溶剤処理方式と比較して2倍のACFの吸着能力を引き出す事が出来ることになる。   Considering only this operation, the first adsorption tank filled with ACF can draw out the adsorption capacity of ACF twice that of the conventional organic solvent treatment system.

このことを逆に言うと、ACFの充填量が半分に減ると言う事であり、設備費は当然ながら、ACFを再生するユーティリティーも半減すると言う事である。   In other words, the filling amount of ACF is reduced to half, and the facility cost is naturally reduced to half of the utility for regenerating ACF.

具体的には、第1吸着槽中のACF充填量と、第2吸着槽中のACF充填量との合計量は、1槽のみの従来の有機溶剤吸着槽中のACF充填量に対して52.5〜62.5質量%、少なくとも60〜62.5質量%に低減する。   Specifically, the total amount of the ACF filling amount in the first adsorption tank and the ACF filling amount in the second adsorption tank is 52 with respect to the ACF filling amount in the conventional organic solvent adsorption tank of only one tank. Reduced to 5-62.5 wt%, at least 60-62.5 wt%.

このACF充填量の低減に比例して、ACF再生用に関わるエネルギーも低減する。   In proportion to the reduction in the ACF filling amount, the energy related to ACF regeneration is also reduced.

なお、第1吸着槽から排出される有機溶剤を含有する第1吸着槽処理ガス中の有機溶剤濃度は10〜1000ppmにすることが好ましく、100〜200ppmにすることがより好ましい。   In addition, it is preferable to make the organic solvent density | concentration in the 1st adsorption tank process gas containing the organic solvent discharged | emitted from a 1st adsorption tank into 10-1000 ppm, and it is more preferable to set it as 100-200 ppm.

本発明の有機溶剤の除去方法で用いる被処理ガス中に含まれる有機溶剤としては、沸点が30〜70℃の塩化メチレン、クロロホルム、1,1-ジクロロエチレン等のハロゲン化炭化水素系有機溶剤、メチラール、メチル-t-ブチルエーテル等のエーテル又はアセタール系有機溶剤、酢酸メチル、酢酸エチル等のエステル系有機溶剤、アセトン、メチルエチルケトン等のケトン系有機溶剤などが適している。   Examples of the organic solvent contained in the gas to be used for the organic solvent removal method of the present invention include halogenated hydrocarbon organic solvents such as methylene chloride, chloroform, 1,1-dichloroethylene having a boiling point of 30 to 70 ° C., methylal Suitable are ethers such as methyl-t-butyl ether or acetal organic solvents, ester organic solvents such as methyl acetate and ethyl acetate, and ketone organic solvents such as acetone and methyl ethyl ketone.

本発明の有機溶剤の除去装置によれば、第1吸着槽と、第2吸着槽とを連結する連結管には凝縮器が介装され、これにより第1吸着槽処理ガスの中の水分量が低減されているので、第2吸着槽の脱着処理後のACFを乾燥させるのに、有利なものになっている。凝縮器における入口と出口の温度降下は、15〜35℃が好ましく、20〜35℃が更に好ましい。凝縮器により、第1吸着槽処理ガスの中の水分量の35〜65%が除去される。   According to the organic solvent removing apparatus of the present invention, a condenser is interposed in the connecting pipe connecting the first adsorption tank and the second adsorption tank, whereby the amount of water in the first adsorption tank treatment gas is increased. This is advantageous for drying the ACF after the desorption treatment of the second adsorption tank. The temperature drop at the inlet and outlet of the condenser is preferably 15 to 35 ° C, more preferably 20 to 35 ° C. The condenser removes 35 to 65% of the amount of water in the first adsorption tank processing gas.

また、第1吸着槽に充填されるACFと、第2吸着槽に充填されるACFとの質量比を上述の範囲にすることで、第2吸着槽に導入される第1吸着槽処理ガスの流量は、脱着処理後の第2吸着槽のACFを乾燥させるのに充分な流量となる。   In addition, by setting the mass ratio of the ACF filled in the first adsorption tank and the ACF filled in the second adsorption tank to the above range, the first adsorption tank treatment gas introduced into the second adsorption tank The flow rate is sufficient to dry the ACF in the second adsorption tank after the desorption process.

よって、第2吸着槽においては、脱着処理後、従来の方法のように乾燥工程を独立して設けなくとも、吸着工程において第1吸着槽処理ガスにより、第2吸着槽のACFが速やかに乾燥され、効率よく溶剤除去を行うことができる。   Therefore, in the second adsorption tank, after the desorption process, the ACF in the second adsorption tank is quickly dried by the first adsorption tank treatment gas in the adsorption process without providing a drying process independently as in the conventional method. Thus, the solvent can be removed efficiently.

第1吸着槽のACFの質量(M1)と第2吸着槽のACFの質量(M2)との質量比(M2/M1)が0.05未満の場合は、第2吸着槽での有機溶剤の吸着処理が不充分であり、第2吸着槽処理ガス中に含まれる有機溶剤の量が多くなるので好ましくない。第1吸着槽のACFの質量(M1)と第2吸着槽のACFの質量(M2)との質量比(M2/M1)が0.25を超える場合は、第2吸着槽のACFの乾燥に必要な第1吸着槽処理ガス流量が与えられず乾燥不足となる。その結果、第2吸着槽のACFが水分過多になるため吸着効率が低下し、第2吸着槽から排出される処理ガス(処理済ガス)に含まれる有機溶剤の含有量が増加してしまうため、好ましくない。 When the mass ratio (M 2 / M 1 ) between the mass (M 1 ) of the ACF in the first adsorption tank and the mass (M 2 ) of the ACF in the second adsorption tank is less than 0.05, This is not preferable because the organic solvent adsorption treatment is insufficient and the amount of the organic solvent contained in the second adsorption tank treatment gas increases. If the mass ratio (M 2 / M 1 ) of the ACF mass (M 1 ) of the first adsorption tank and the ACF mass (M 2 ) of the second adsorption tank exceeds 0.25, The first adsorption tank processing gas flow rate required for drying the ACF is not provided, resulting in insufficient drying. As a result, since the ACF in the second adsorption tank becomes excessive in moisture, the adsorption efficiency is lowered, and the content of the organic solvent contained in the processing gas (treated gas) discharged from the second adsorption tank is increased. It is not preferable.

以上のように、本発明の有機溶剤の除去方法及び装置は、吸着材であるACFの利用効率を高め、ACFの使用量を軽減し、惹いては装置を小型化するという目的を実現するものである。   As described above, the method and apparatus for removing an organic solvent of the present invention realizes the purpose of increasing the use efficiency of ACF as an adsorbent, reducing the amount of ACF used, and eventually reducing the size of the apparatus. It is.

次いで、本発明の形態を説明する。   Next, embodiments of the present invention will be described.

図2は本発明の有機溶剤の除去装置の一例を示すシステムフロー図である。本発明の有機溶剤の除去装置は、大きく別けて、(A) 有機溶剤のACFへの吸着及びACFからの脱着がバッチ処理で行うことができ、有機溶剤を分離除去できる第1吸着槽と、(B) 前記第1吸着槽で処理済のガス(第1吸着槽処理ガス)中に含まれる有機溶剤のACFへの吸着及びACFからの脱着をバッチ処理で行うための第2吸着槽とから構成される吸着除去手段系列を有する。   FIG. 2 is a system flow diagram showing an example of the organic solvent removing apparatus of the present invention. The organic solvent removal apparatus of the present invention can be broadly divided into (A) a first adsorption tank capable of performing adsorption and desorption from an ACF by batch processing, and separating and removing the organic solvent; (B) From the second adsorption tank for performing the adsorption and desorption from the ACF of the organic solvent contained in the gas treated in the first adsorption tank (first adsorption tank treatment gas) by ACF. It has an adsorption removal means series configured.

図2に示すように、本例の有機溶剤の除去装置においては、有機化合物の吸着除去操作が可能な吸着除去手段系列を二系列設ける。一方の吸着除去手段系列(第1吸着槽A、第2吸着槽B)で有機化合物を吸着させる操作を行う。その間、他方の吸着除去手段系列(第1吸着槽A’、第2吸着槽B’)で吸着された有機化合物を脱着させて除去する操作を行う。一方の系列の吸着除去能力が予め設定された限度以下になると、吸着された有機化合物を一方の吸着除去手段系列で脱着させて除去する操作を行い、その間、他方の吸着除去手段系列で有機化合物を吸着させる操作を行うことを、交互に行う。   As shown in FIG. 2, in the organic solvent removal apparatus of this example, two adsorption removal means series capable of performing adsorption removal of organic compounds are provided. An operation of adsorbing an organic compound is performed in one of the adsorption removal means series (first adsorption tank A, second adsorption tank B). Meanwhile, an operation of desorbing and removing the organic compounds adsorbed in the other adsorption removal means series (first adsorption tank A ′, second adsorption tank B ′) is performed. When the adsorption / removal capacity of one series is below a preset limit, an operation to desorb and remove the adsorbed organic compound by one adsorption / removal means series is performed, while the organic compound is removed by the other adsorption / removal means series. The operation of adsorbing is alternately performed.

一方の吸着除去手段系列(第1吸着槽A、第2吸着槽B)と、他方の吸着除去手段系列(第1吸着槽A’、第2吸着槽B’)とは、その機能は実質的に同一であるので、それぞれが有する機械要素も実質的に同一である。したがって、以下の説明においては、同一の機能を果たす機械要素に関しては、ダッシュ記号(’)を付すことで、両者を互いに区別するものとする。   The function of one adsorption removal means series (first adsorption tank A, second adsorption tank B) and the other adsorption removal means series (first adsorption tank A ′, second adsorption tank B ′) is substantially the same. Therefore, the mechanical elements of each are substantially the same. Accordingly, in the following description, mechanical elements performing the same function are distinguished from each other by adding a dash (').

図2に示されるように、工場、作業場からの排出ガス等の有機溶剤を5000ppm以上、好ましくは10000〜100000ppm含有する被処理ガスは、ブロワ2により第1吸着槽導入ライン4を搬送されて、第1吸着槽AにおけるACF6を充填した第1吸着槽主体8へ導入される。   As shown in FIG. 2, the gas to be treated containing 5000 ppm or more, preferably 10,000 to 100,000 ppm of an organic solvent such as exhaust gas from a factory or work place is conveyed through the first adsorption tank introduction line 4 by the blower 2, It is introduced into the first adsorption tank main body 8 filled with ACF 6 in the first adsorption tank A.

ACF6としては、吸着能力が、ACF1gに対する有機溶剤の吸着量で0.05〜0.5gであり、比表面積が、1200〜2000m2/gであるACFが好ましく、比表面積は、1400〜2000m2/gがより好ましく、1450〜1600m2/gが特に好ましい。 As ACF6, the adsorption capacity is 0.05 to 0.5 g in terms of the adsorption amount of the organic solvent with respect to 1 g of ACF, and the specific surface area is preferably 1200 to 2000 m 2 / g. The specific surface area is 1400 to 2000 m 2. / G is more preferable, and 1450 to 1600 m 2 / g is particularly preferable.

図1によれば、被処理ガスの有機溶剤濃度が1000ppm以上では、比表面積が大きいほど吸着率が高くなる。そのため、被処理ガスの有機溶剤濃度が1000ppm以上では、比表面積が1200m2/g以上の場合、溶剤の吸着率が高くなるので更に好ましい。比表面積がこの1200m2/g以上の値であれば、従来の溶剤除去装置では除去できなかった、高分子量の有機化合物も捕集することができるので好ましい。但し、比表面積が2000m2/gを超えると、平均細孔径が大きくなりすぎ、溶剤分子と細孔の相互作用が弱く、溶剤が漏れやすくなる傾向がある。 According to FIG. 1, when the organic solvent concentration of the gas to be treated is 1000 ppm or more, the adsorption rate increases as the specific surface area increases. Therefore, when the concentration of the organic solvent in the gas to be treated is 1000 ppm or more, it is more preferable that the specific surface area is 1200 m 2 / g or more, because the adsorption rate of the solvent becomes high. If the specific surface area is a value of 1200 m 2 / g or more, it is preferable because high molecular weight organic compounds that could not be removed by a conventional solvent removal apparatus can also be collected. However, when the specific surface area exceeds 2000 m 2 / g, the average pore diameter becomes too large, the interaction between the solvent molecules and the pores is weak, and the solvent tends to leak.

なお、第1吸着槽AにおけるACF6の吸着量は、平均細孔直径及び全細孔容積との相関が高い。そのため、ACF6は、その平均細孔直径が1〜4nmの範囲にあることが好ましく、3〜4nmのものが更に好ましい。また、ACF6は、その全細孔容積が0.3〜0.6cm3/gのものが好ましく、0.5〜0.6cm3/gのものがより好ましい。 The amount of ACF6 adsorbed in the first adsorption tank A is highly correlated with the average pore diameter and the total pore volume. Therefore, ACF6 preferably has an average pore diameter in the range of 1 to 4 nm, more preferably 3 to 4 nm. ACF6 preferably has a total pore volume of 0.3 to 0.6 cm 3 / g, more preferably 0.5 to 0.6 cm 3 / g.

本発明で使用するACFは、ACF6及び後述のACF26の何れについても、吸着したい有機化合物に適した平均細孔直径、全細孔容積、比表面積を持つものを、ポリアクリロニトリル(PAN)系、ピッチ系、セルロース系及びフェノール系などの種類を問わず使用できる。これら本発明で使用するACFでは、特にフェノール系ACFでは、比表面積が大きいほど平均細孔直径が大きくなるため、分子径の大きな高分子も吸着、脱着が可能となり、細孔を閉塞することが無く、ACFの吸着性能低下を抑えることができる。   The ACF used in the present invention has an average pore diameter, total pore volume, and specific surface area suitable for the organic compound to be adsorbed for both ACF6 and ACF26 described later, polyacrylonitrile (PAN), pitch It can be used regardless of the type of cellulose, cellulose and phenol. In these ACFs used in the present invention, especially in the case of phenol-based ACF, the larger the specific surface area, the larger the average pore diameter, so that a polymer having a large molecular diameter can be adsorbed and desorbed, and the pores can be blocked. And a decrease in ACF adsorption performance can be suppressed.

第1吸着槽主体8は、2槽以上の複数槽(本例では2槽)配置されており、例えば2槽の場合は、吸入バルブ10、10’及び排出バルブ12、12’の交互の切替え、及び蒸気バルブ14、14’の交互の切替えにより、絶えず、何れかの第1吸着槽主体8、8’において、吸着又は脱着が行われるように構成されている。   The first adsorption tank main body 8 is arranged in two or more tanks (two tanks in this example). For example, in the case of two tanks, the suction valves 10 and 10 'and the discharge valves 12 and 12' are switched alternately. By alternately switching the steam valves 14 and 14 ', the first adsorption tank main body 8 and 8' is continuously adsorbed or desorbed.

以下、主として、一方の第1吸着槽Aについて説明する。   Hereinafter, one first adsorption tank A will be mainly described.

吸着工程は、スチーム加熱による脱着工程の後に、特別な冷却・乾燥用ガスを用いた冷却・乾燥処理を施さずに行ってもよい。特に、ACF6は、ミクロポアが外部表面に存在するため、有機溶剤含有ガスを被処理ガスとして導入するだけで、冷却・乾燥が進行し、その吸着活性が徐々に高まる。   The adsorption process may be performed without performing a cooling / drying process using a special cooling / drying gas after the desorption process by steam heating. In particular, since ACF6 has micropores on the outer surface, simply introducing an organic solvent-containing gas as a gas to be treated advances cooling and drying, and its adsorption activity gradually increases.

後述する吸着工程において第1吸着槽主体8に吸着された有機溶剤は、脱着工程において、第1吸着槽側スチーム導入ライン16、蒸気バルブ14、スチーム注入手段15を通じて第1吸着槽主体8へスチームを導入することにより脱着され、それによってACF6が再生され且つ有機溶剤含有第1吸着槽脱着ガスが生成される。なお、再生されたACF6は、前記注入されたスチームが凝縮した水分を含む湿潤状態で再生されている。   In the desorption process, the organic solvent adsorbed on the first adsorption tank main body 8 in the adsorption process described later is steamed to the first adsorption tank main body 8 through the first adsorption tank side steam introduction line 16, the steam valve 14, and the steam injection means 15. Is introduced, whereby ACF 6 is regenerated and the organic solvent-containing first adsorption tank desorption gas is generated. The regenerated ACF 6 is regenerated in a wet state containing moisture condensed from the injected steam.

有機溶剤含有第1吸着槽脱着ガスは、第1吸着槽側脱着ガスバルブ18、第1吸着槽側回収ライン20を通じて後述の有機溶剤含有第2吸着槽脱着ガスと共に凝縮器22へ導入され、ここで冷却水による凝縮処理が行われて、凝縮分として回収有機溶剤が得られる。他方、未凝縮分は、被処理ガスに混入される(図2のX)。   The organic solvent-containing first adsorption tank desorption gas is introduced into the condenser 22 together with the organic solvent-containing second adsorption tank desorption gas described later through the first adsorption tank side desorption gas valve 18 and the first adsorption tank side recovery line 20. A condensation treatment with cooling water is performed, and a recovered organic solvent is obtained as a condensate. On the other hand, the uncondensed component is mixed into the gas to be processed (X in FIG. 2).

吸着工程においては、被処理ガスは第1吸着槽Aに送られ、ここで有機溶剤の吸着が行われると同時進行して第1吸着槽処理ガスが排出される。この第1吸着槽処理ガスは、第1吸着槽処理ガス輸送ライン(第1吸着槽と第2吸着槽とを連結する連結管)24を通じて、凝縮器25に送られる。   In the adsorption step, the gas to be treated is sent to the first adsorption tank A, and when the organic solvent is adsorbed here, the first adsorption tank treatment gas is discharged simultaneously. The first adsorption tank processing gas is sent to the condenser 25 through a first adsorption tank processing gas transport line (a connecting pipe connecting the first adsorption tank and the second adsorption tank) 24.

第1吸着槽処理ガスは、前記脱着工程で注入したスチームが凝縮して湿潤状態にあるACF6を乾燥させて第1吸着槽Aから排出されるガスである。従って、第1吸着槽処理ガスは水分を飽和状態近くまで含む。この水分を含む第1吸着槽処理ガスは、凝縮器25でスチームに由来する蒸気を凝縮分離された後、第2吸着槽Bに導入される。   The first adsorption tank processing gas is a gas discharged from the first adsorption tank A after the steam injected in the desorption process is condensed and the ACF 6 in a wet state is dried. Therefore, the first adsorption tank processing gas contains moisture to near saturation. The first adsorption tank processing gas containing moisture is introduced into the second adsorption tank B after the vapor derived from steam is condensed and separated by the condenser 25.

凝縮器25で凝縮分離される水分量は、第1吸着槽処理ガスに含まれる全水分量の少なくとも30%以上が好ましい。第2吸着槽Bにおいては、第1吸着槽処理ガス中に含まれる有機溶剤が吸着除去された第2吸着槽処理ガスが外部に排出される。   The amount of water condensed and separated by the condenser 25 is preferably at least 30% of the total amount of water contained in the first adsorption tank processing gas. In the second adsorption tank B, the second adsorption tank treatment gas from which the organic solvent contained in the first adsorption tank treatment gas is removed by adsorption is discharged to the outside.

第1吸着槽主体8と同様に、第2吸着槽主体28も、2槽以上の複数槽(本例では2槽)配置されており、例えば2槽の場合は、吸入バルブ30、30’及び排出バルブ32、32’の交互の切替え、及び蒸気バルブ34、34’の交互の切替えにより、何れかの第2吸着槽主体28、28’において、吸着又は脱着が行われるように構成されている。   Similar to the first adsorption tank main body 8, the second adsorption tank main body 28 is also arranged in two or more tanks (in this example, two tanks). For example, in the case of two tanks, the suction valves 30, 30 ′ and By alternately switching the discharge valves 32 and 32 ′ and alternately switching the steam valves 34 and 34 ′, any of the second adsorption tank main bodies 28 and 28 ′ is configured to perform adsorption or desorption. .

以下、主として、一方の第2吸着槽Bについて説明する。   Hereinafter, one second adsorption tank B will be mainly described.

ACF26としては、吸着能力が、ACF1gに対する有機溶剤の吸着量で0.05〜0.5gであり、比表面積が、600m2/g以上1400m2/g未満であるACFが好ましく、比表面積は、700m2/g以上1400m2/g未満がより好ましく、1100〜1350m2/gが更に好ましく、1200〜1350m2/gが特に好ましい。 As the ACF 26, an ACF having an adsorption capacity of 0.05 to 0.5 g in terms of the adsorption amount of the organic solvent with respect to 1 g of ACF and a specific surface area of 600 m 2 / g or more and less than 1400 m 2 / g is preferable. more preferably less than 700 meters 2 / g or more 1400 m 2 / g, still more preferably 1100~1350m 2 / g, 1200~1350m 2 / g is particularly preferred.

なお、第1吸着槽AにおけるACF6の吸着量は、平均細孔直径及び全細孔容積との相関が高い。そのため、ACF6は、その平均細孔直径が1〜4nmの範囲にあることが好ましく、3〜4nmのものが更に好ましい。また、ACF6は、その全細孔容積が0.3〜0.6cm3/gのものが好ましく、0.5〜0.6cm3/gのものがより好ましい。 The amount of ACF6 adsorbed in the first adsorption tank A is highly correlated with the average pore diameter and the total pore volume. Therefore, ACF6 preferably has an average pore diameter in the range of 1 to 4 nm, more preferably 3 to 4 nm. ACF6 preferably has a total pore volume of 0.3 to 0.6 cm 3 / g, more preferably 0.5 to 0.6 cm 3 / g.

また、ACF26は、その平均細孔直径が0.5〜3nm、全細孔容積が0.1〜0.6cm3/gのものが好ましく、平均細孔直径が1〜2.5nm、全細孔容積が0.2〜0.4cm3/gのものが更に好ましい。 ACF26 preferably has an average pore diameter of 0.5 to 3 nm and a total pore volume of 0.1 to 0.6 cm 3 / g, an average pore diameter of 1 to 2.5 nm, More preferably, the pore volume is 0.2 to 0.4 cm 3 / g.

以上のようなACF6とACF26との組合せにすることにより、前述したように、ACFの吸着能力を最大限発揮させる事が出来る。   By combining the ACF 6 and ACF 26 as described above, the ACF adsorption ability can be maximized as described above.

第2吸着槽主体28に吸着された有機溶剤は、第2吸着槽側スチーム導入ライン36、蒸気バルブ34、スチーム注入手段35を通じて第2吸着槽主体28へスチームを導入することにより脱着され、それによってACFが再生され且つ有機溶剤含有第2吸着槽脱着ガスが生成される。この有機溶剤含有第吸着槽槽脱着ガスは、第2吸着槽側脱着ガスバルブ38、第2吸着槽側回収ライン40を通じて前述の有機溶剤含有第1吸着槽脱着ガスと共に凝縮器22へ導入され、ここで冷却水による凝縮処理が行われて、凝縮分として回収有機溶剤が得られる。他方、未凝縮分は、被処理ガスに混入される(図2のX)。   The organic solvent adsorbed on the second adsorption tank main body 28 is desorbed by introducing steam into the second adsorption tank main body 28 through the second adsorption tank side steam introduction line 36, the steam valve 34, and the steam injection means 35. As a result, the ACF is regenerated and the organic solvent-containing second adsorption tank desorption gas is generated. The organic solvent-containing first adsorption tank desorption gas is introduced into the condenser 22 together with the organic solvent-containing first adsorption tank desorption gas through the second adsorption tank-side desorption gas valve 38 and the second adsorption tank-side recovery line 40. Then, a condensation treatment with cooling water is performed, and a recovered organic solvent is obtained as a condensed component. On the other hand, the uncondensed component is mixed into the gas to be processed (X in FIG. 2).

吸着工程において、有機溶剤が吸着除去されて排出される第2吸着槽処理ガスは、有機溶剤濃度が100ppm以下、好ましくは60ppm以下、更に好ましくは30ppm以下に制御された清浄化ガスとして系外に排出される。   In the adsorption step, the second adsorption tank processing gas discharged after the organic solvent is adsorbed and removed is out of the system as a cleaning gas whose organic solvent concentration is controlled to 100 ppm or less, preferably 60 ppm or less, more preferably 30 ppm or less. Discharged.

なお、第2吸着槽処理ガスは、必要に応じ、第2吸着槽処理ガス輸送ライン42を通じて、有機溶剤を吸着処理することのできるバックアップ処理槽(不図示)に導入しても良い。   In addition, you may introduce | transduce the 2nd adsorption tank process gas into the backup process tank (not shown) which can carry out the adsorption process of the organic solvent through the 2nd adsorption tank process gas transport line 42 as needed.

バックアップ処理槽としては、耐熱紙等に吸着材を担持したシートをハニカム状に加工してなる多数の通路を有する、回転できるドラム型有機溶剤処理機構となっているバックアップ処理槽主体を備えたものが挙げられる。バックアップ処理槽に担持される吸着材としては、ACF、ゼオライトなどが挙げられる。   The backup processing tank has a main body of a backup processing tank that is a drum-type organic solvent processing mechanism that has a large number of passages formed by processing a sheet carrying an adsorbent on heat-resistant paper into a honeycomb shape. Is mentioned. Examples of the adsorbent supported in the backup processing tank include ACF and zeolite.

また、図2の例では、凝縮器25、25’の2つの凝縮器を設けているが、図3の例のように、1つの凝縮器25を設けて、吸着工程と脱着工程の切換時に、この凝縮器25を切換えて使用するようにしても良い。図3の例は、設備コストが低減でき、更に好ましい。   In the example of FIG. 2, two condensers 25 and 25 ′ are provided. However, as in the example of FIG. 3, one condenser 25 is provided, and when switching between the adsorption process and the desorption process. The condenser 25 may be switched for use. The example of FIG. 3 is more preferable because the equipment cost can be reduced.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

なお、ACFの比表面積、平均細孔直径及び全細孔容積は、全自動ガス吸着量測定装置(Quantachrome Instruments社製AUTOSORB−1)を用いて、以下の条件で測定した。
吸着ガス:窒素
吸着温度:液体窒素温度(−196℃)
測定範囲:P/P0=0.00〜0.99
比表面積は、得られた吸着等温線からBET法を用いて算出した。全細孔容積は、相対圧1.0近傍の吸着量の液体換算により算出した。平均細孔直径は、全細孔容積と比表面積から、下式(1)に従って算出した。
平均細孔直径=4×全細孔容積÷比表面積・・・(1)
[実施例1]
図3、表1及び下記の条件に示すように、ACF6を充填した第1吸着槽A、ACF26を充填した第2吸着槽Bを用い、有機溶剤として20000ppmの塩化メチレン(沸点40℃)を含有する被処理ガスを3Nm3/minで8分吸着処理した。この吸着処理後のACF6及び26は、ACF再生用蒸気量13kg/hで6分脱着処理した。なお、2系列の吸着除去手段を用いて、吸着・脱着処理を交互に行うことで、被処理ガスを連続的に処理した。
In addition, the specific surface area of ACF, the average pore diameter, and the total pore volume were measured on condition of the following using the fully automatic gas adsorption amount measuring apparatus (ATOSORB-1 by Quantachrome Instruments).
Adsorption gas: Nitrogen adsorption temperature: Liquid nitrogen temperature (-196 ° C)
Measurement range: P / P 0 = 0.00 to 0.99
The specific surface area was calculated from the obtained adsorption isotherm using the BET method. The total pore volume was calculated by liquid conversion of the amount of adsorption near the relative pressure of 1.0. The average pore diameter was calculated from the total pore volume and specific surface area according to the following formula (1).
Average pore diameter = 4 × total pore volume / specific surface area (1)
[Example 1]
As shown in FIG. 3, Table 1 and the following conditions, the first adsorption tank A filled with ACF6 and the second adsorption tank B filled with ACF26 are used, and contain 20000 ppm of methylene chloride (boiling point 40 ° C.) as an organic solvent. The gas to be treated was subjected to adsorption treatment at 3 Nm 3 / min for 8 minutes. The ACFs 6 and 26 after the adsorption treatment were desorbed for 6 minutes at an ACF regeneration steam amount of 13 kg / h. Note that the gas to be treated was continuously treated by alternately performing adsorption / desorption treatment using two series of adsorption removal means.

第1吸着槽Aにおいて用いたACF6は、充填質量(M1)が5kg、比表面積が1500m2/g、平均細孔直径が1.5nm、全細孔容積が0.55cm3/gであった。第2吸着槽Bにおいて用いたACF26は、充填質量(M2)が0.5kg、比表面積が1300m2/g、平均細孔直径が0.5nm、全細孔容積が0.3cm3/gであった。第1吸着槽Aと第2吸着槽BとのACF充填質量比(M2/M1)は0.1であった。なお、ACF6及び26の何れもフェノール系ACF(東邦化工建設社製)を用いた。 The ACF 6 used in the first adsorption tank A had a packed mass (M 1 ) of 5 kg, a specific surface area of 1500 m 2 / g, an average pore diameter of 1.5 nm, and a total pore volume of 0.55 cm 3 / g. It was. The ACF 26 used in the second adsorption tank B has a filling mass (M 2 ) of 0.5 kg, a specific surface area of 1300 m 2 / g, an average pore diameter of 0.5 nm, and a total pore volume of 0.3 cm 3 / g. Met. The ACF filling mass ratio (M 2 / M 1 ) between the first adsorption tank A and the second adsorption tank B was 0.1. Note that phenolic ACF (manufactured by Toho Kako Construction Co., Ltd.) was used for both ACF 6 and 26.

第1吸着槽Aと、第2吸着槽Bとを連結する連結管24に介装された凝縮器25における入口と出口の温度降下は、20℃に設定した。   The temperature drop at the inlet and the outlet in the condenser 25 interposed in the connecting pipe 24 connecting the first adsorption tank A and the second adsorption tank B was set to 20 ° C.

この吸脱着試験における、吸着処理開始後1hrの第1吸着槽処理ガス中の塩化メチレン濃度(処理済ガス濃度)と、吸着処理1hrに亘っての有機溶剤排出量の総量(有機溶剤排出量)と、ACF再生用蒸気量の測定結果を表1に示す。その結果、第2吸着槽処理ガス(処理済ガス)中の有機溶剤の濃度は10ppmと低く、塩化メチレン排出量も7g/hと低いものであった。   In this adsorption / desorption test, the methylene chloride concentration (treated gas concentration) in the first adsorption tank treatment gas 1 hr after the start of the adsorption treatment, and the total amount of organic solvent discharged over the adsorption treatment 1 hr (organic solvent emissions) Table 1 shows the measurement results of the amount of steam for ACF regeneration. As a result, the concentration of the organic solvent in the second adsorption tank treatment gas (treated gas) was as low as 10 ppm, and the methylene chloride discharge was as low as 7 g / h.

また、ACF再生用蒸気量は25kg/hと少なく、脱着処理は効率の良いものであった。   Further, the amount of steam for ACF regeneration was as low as 25 kg / h, and the desorption treatment was efficient.

[実施例2]
表1及び下記の条件に示すように、ACF6及びACF26の何れも、比表面積を1500m2/gにし、平均細孔直径を1.5nm、全細孔容積を0.55cm3/gにした以外は、実施例1と同様に操作した。
[Example 2]
As shown in Table 1 and the following conditions, each of ACF6 and ACF26 has a specific surface area of 1500 m 2 / g, an average pore diameter of 1.5 nm, and a total pore volume of 0.55 cm 3 / g. Were operated as in Example 1.

この吸脱着試験の結果、処理済ガス中の塩化メチレン濃度は50ppmと低く、塩化メチレン排出量も35g/hと低いものであった。   As a result of this adsorption / desorption test, the methylene chloride concentration in the treated gas was as low as 50 ppm, and the methylene chloride discharge was as low as 35 g / h.

また、ACF再生用蒸気量は25kg/hと少なく、脱着処理は効率の良いものであった。   Further, the amount of steam for ACF regeneration was as low as 25 kg / h, and the desorption treatment was efficient.

[実施例3]
表1及び下記の条件に示すように、ACF6及び26の何れもピッチ系ACF(東邦化工建設社製)を用いた以外は、実施例1と同様に操作した。
[Example 3]
As shown in Table 1 and the following conditions, ACFs 6 and 26 were operated in the same manner as in Example 1 except that pitch-based ACF (manufactured by Toho Kako Construction Co., Ltd.) was used.

第1吸着槽Aにおいて用いたACF6は、充填質量(M1)が5kg、比表面積が1500m2/g、平均細孔直径が1.3nm、全細孔容積が0.5cm3/gのピッチ系ACFであった。第2吸着槽Bにおいて用いたACF26は、充填質量(M2)が0.5kg、比表面積が1500m2/g、平均細孔直径が1.3nm、全細孔容積が0.5cm3/gのピッチ系ACFであった。第1吸着槽Aと第2吸着槽BとのACF充填質量比(M2/M1)は0.1であった。 The ACF 6 used in the first adsorption tank A has a pitch with a packing mass (M 1 ) of 5 kg, a specific surface area of 1500 m 2 / g, an average pore diameter of 1.3 nm, and a total pore volume of 0.5 cm 3 / g. System ACF. The ACF 26 used in the second adsorption tank B has a filling mass (M 2 ) of 0.5 kg, a specific surface area of 1500 m 2 / g, an average pore diameter of 1.3 nm, and a total pore volume of 0.5 cm 3 / g. The pitch ACF. The ACF filling mass ratio (M 2 / M 1 ) between the first adsorption tank A and the second adsorption tank B was 0.1.

この吸脱着試験の結果、処理済ガス中の塩化メチレン濃度は50ppmと低く、塩化メチレン排出量も35g/hと低いものであった。   As a result of this adsorption / desorption test, the methylene chloride concentration in the treated gas was as low as 50 ppm, and the methylene chloride discharge was as low as 35 g / h.

また、ACF再生用蒸気量は27kg/hと少なく、脱着処理は効率の良いものであった。   Further, the amount of steam for ACF regeneration was as small as 27 kg / h, and the desorption treatment was efficient.

[実施例4]
表1及び下記の条件に示すように、ACF6及び26の何れもPAN系ACF(東邦化工建設社製)を用いた以外は、実施例1と同様に操作した。
[Example 4]
As shown in Table 1 and the following conditions, ACFs 6 and 26 were operated in the same manner as in Example 1 except that PAN-based ACF (manufactured by Toho Kako Construction Co., Ltd.) was used.

第1吸着槽Aにおいて用いたACF6は、充填質量(M1)が5kg、比表面積が1500m2/g、平均細孔直径が1.3nm、全細孔容積が0.5cm3/gのPAN系ACFであった。第2吸着槽Bにおいて用いたACF26は、充填質量(M2)が0.5kg、比表面積が1500m2/g、平均細孔直径が1.3nm、全細孔容積が0.5cm3/gのPAN系ACFであった。第1吸着槽Aと第2吸着槽BとのACF充填質量比(M2/M1)は0.1であった。 The ACF 6 used in the first adsorption tank A has a filling mass (M 1 ) of 5 kg, a specific surface area of 1500 m 2 / g, an average pore diameter of 1.3 nm, and a total pore volume of 0.5 cm 3 / g. System ACF. The ACF 26 used in the second adsorption tank B has a filling mass (M 2 ) of 0.5 kg, a specific surface area of 1500 m 2 / g, an average pore diameter of 1.3 nm, and a total pore volume of 0.5 cm 3 / g. PAN-based ACF. The ACF filling mass ratio (M 2 / M 1 ) between the first adsorption tank A and the second adsorption tank B was 0.1.

この吸脱着試験の結果、処理済ガス中の塩化メチレン濃度は80ppmと低く、塩化メチレン排出量も56g/hと低いものであった。   As a result of this adsorption / desorption test, the methylene chloride concentration in the treated gas was as low as 80 ppm, and the methylene chloride discharge was as low as 56 g / h.

また、ACF再生用蒸気量は29kg/hと少なく、脱着処理は効率の良いものであった。   Moreover, the amount of steam for ACF regeneration was as low as 29 kg / h, and the desorption treatment was efficient.

[実施例5]
表1及び下記の条件に示すように、ACF6にフェノール系ACF(東邦化工建設社製)を用い、ACF26にPAN系ACF(東邦化工建設社製)を用いた以外は、実施例1と同様に操作した。
[Example 5]
As shown in Table 1 and the following conditions, except that phenolic ACF (manufactured by Toho Kako Construction Co.) was used for ACF6 and PAN-based ACF (manufactured by Toho Kako Construction Co.) was used for ACF26, the same as in Example 1 Operated.

第1吸着槽Aにおいて用いたACF6は、充填質量(M1)が5kg、比表面積が1500m2/g、平均細孔直径が1.5nm、全細孔容積が0.55cm3/gのフェノール系ACFであった。第2吸着槽Bにおいて用いたACF26は、充填質量(M2)が0.5kg、比表面積が1500m2/g、平均細孔直径が1.3nm、全細孔容積が0.5cm3/gのPAN系ACFであった。第1槽Aと第2吸着槽BとのACF充填質量比(M2/M1)は0.1であった。 The ACF 6 used in the first adsorption tank A is a phenol having a filling mass (M 1 ) of 5 kg, a specific surface area of 1500 m 2 / g, an average pore diameter of 1.5 nm, and a total pore volume of 0.55 cm 3 / g. System ACF. The ACF 26 used in the second adsorption tank B has a filling mass (M 2 ) of 0.5 kg, a specific surface area of 1500 m 2 / g, an average pore diameter of 1.3 nm, and a total pore volume of 0.5 cm 3 / g. PAN-based ACF. The ACF filling mass ratio (M 2 / M 1 ) between the first tank A and the second adsorption tank B was 0.1.

この吸脱着試験の結果、処理済ガス中の塩化メチレン濃度は80ppmと低く、塩化メチレン排出量も56g/hと低いものであった。   As a result of this adsorption / desorption test, the methylene chloride concentration in the treated gas was as low as 80 ppm, and the methylene chloride discharge was as low as 56 g / h.

また、ACF再生用蒸気量は27kg/hと少なく、脱着処理は効率の良いものであった。   Further, the amount of steam for ACF regeneration was as small as 27 kg / h, and the desorption treatment was efficient.

Figure 2012183462
Figure 2012183462

[比較例1]
表2及び下記の条件に示すように、ACFを充填した吸着槽1槽のみで、吸脱着処理した以外は、実施例1と同様に操作した。
[Comparative Example 1]
As shown in Table 2 and the following conditions, the same operation as in Example 1 was performed except that only one adsorption tank filled with ACF was subjected to adsorption / desorption treatment.

有機溶剤吸着槽において用いたACFは、充填質量が5.5kg、比表面積が1500m2/g、平均細孔直径が1.5nm、全細孔容積が0.55cm3/gであった。 The ACF used in the organic solvent adsorption tank had a filling mass of 5.5 kg, a specific surface area of 1500 m 2 / g, an average pore diameter of 1.5 nm, and a total pore volume of 0.55 cm 3 / g.

この吸脱着試験の結果、処理済ガス中の塩化メチレン濃度は200ppmと高くなり、塩化メチレン排出量も140g/hと高いものとなった。   As a result of this adsorption / desorption test, the methylene chloride concentration in the treated gas was as high as 200 ppm, and the methylene chloride discharge was as high as 140 g / h.

また、ACF再生用蒸気量は33kg/hと多く、脱着処理は効率の悪いものであった。   Further, the amount of steam for ACF regeneration was as high as 33 kg / h, and the desorption treatment was inefficient.

[実施例6]
表2及び下記の条件に示すように、被処理ガス中の塩化メチレン濃度を50000ppmとした以外は、実施例1と同様に操作した。
[Example 6]
As shown in Table 2 and the following conditions, the same operation as in Example 1 was performed except that the methylene chloride concentration in the gas to be treated was changed to 50000 ppm.

この吸脱着試験の結果、処理済ガス中の塩化メチレン濃度は20ppmと低く、塩化メチレン排出量も7g/hと低いものであった。   As a result of the adsorption / desorption test, the methylene chloride concentration in the treated gas was as low as 20 ppm, and the methylene chloride discharge was as low as 7 g / h.

また、ACF再生用蒸気量は25kg/hと少なく、脱着処理は効率の良いものであった。   Further, the amount of steam for ACF regeneration was as low as 25 kg / h, and the desorption treatment was efficient.

[比較例2]
表2及び下記の条件に示すように、ACFを充填した吸着槽1槽のみで、吸脱着処理した以外は、実施例6と同様に操作した。
[Comparative Example 2]
As shown in Table 2 and the following conditions, the same operation as in Example 6 was carried out except that only one adsorption tank filled with ACF was subjected to adsorption / desorption treatment.

有機溶剤吸着槽において用いたACFは、充填質量が8kg、比表面積が1500m2/g、平均細孔直径が1.5nm、全細孔容積が0.55cm3/gであった。 The ACF used in the organic solvent adsorption tank had a packed mass of 8 kg, a specific surface area of 1500 m 2 / g, an average pore diameter of 1.5 nm, and a total pore volume of 0.55 cm 3 / g.

この吸脱着試験の結果、実施例6に比べ多量のACFを使用しているにも拘らず、処理済ガス中の塩化メチレン濃度は500ppmと高くなり、塩化メチレン排出量も175g/hと高いものとなった。   As a result of this adsorption / desorption test, the methylene chloride concentration in the treated gas was as high as 500 ppm and the methylene chloride discharge was as high as 175 g / h, although a large amount of ACF was used as compared with Example 6. It became.

また、ACF再生用蒸気量は33kg/hと多く、脱着処理は効率の悪いものであった。   Further, the amount of steam for ACF regeneration was as high as 33 kg / h, and the desorption treatment was inefficient.

[実施例7]
表2及び下記の条件に示すように、有機溶剤として20000ppmのクロロホルム(沸点61℃)を含有する被処理ガスを用いた以外は、実施例1と同様に操作した。
[Example 7]
As shown in Table 2 and the following conditions, the same operation as in Example 1 was performed except that a gas to be treated containing 20000 ppm of chloroform (boiling point 61 ° C.) was used as the organic solvent.

この吸脱着試験の結果、処理済ガス中のクロロホルム濃度は50ppmと低く、クロロホルム排出量も28g/hと低いものであった。   As a result of this adsorption / desorption test, the chloroform concentration in the treated gas was as low as 50 ppm, and the amount of chloroform discharged was as low as 28 g / h.

また、ACF再生用蒸気量は25kg/hと少なく、脱着処理は効率の良いものであった。   Further, the amount of steam for ACF regeneration was as low as 25 kg / h, and the desorption treatment was efficient.

[比較例3]
表2及び下記の条件に示すように、ACFを充填した吸着槽1槽のみで、吸脱着処理した以外は、実施例7と同様に操作した。
[Comparative Example 3]
As shown in Table 2 and the following conditions, the same operation as in Example 7 was carried out except that only one adsorption tank filled with ACF was subjected to adsorption / desorption treatment.

有機溶剤吸着槽において用いたACFは、充填質量が8kg、比表面積が1500m2/g、平均細孔直径が1.5nm、全細孔容積が0.55cm3/gであった。 The ACF used in the organic solvent adsorption tank had a packed mass of 8 kg, a specific surface area of 1500 m 2 / g, an average pore diameter of 1.5 nm, and a total pore volume of 0.55 cm 3 / g.

この吸脱着試験の結果、実施例7と比較して多量のACFを使用しているにも拘らず、処理済ガス中のクロロホルム濃度は300ppmと高くなり、クロロホルム排出量も170g/hと高いものとなった。   As a result of this adsorption / desorption test, the chloroform concentration in the treated gas is as high as 300 ppm and the chloroform discharge amount is as high as 170 g / h, although a large amount of ACF is used as compared with Example 7. It became.

また、ACF再生用蒸気量は33kg/hと多く、脱着処理は効率の悪いものであった。   Further, the amount of steam for ACF regeneration was as high as 33 kg / h, and the desorption treatment was inefficient.

Figure 2012183462
Figure 2012183462

[実施例8]
表3及び下記の条件に示すように、被処理ガス流量を220Nm3/hとし、被処理ガスの流量増加に伴い、ACF充填量を第1吸着槽A(M1)で6kg、第2吸着槽B(M2)で0.6kg[第1槽Aと、第2槽BとのACF充填質量比(M2/M1)…0.1]、全体(M1+M2)で6.6kgとした以外は、実施例1と同様に操作した。
[Example 8]
As shown in Table 3 and the following conditions, the flow rate of the gas to be treated is 220 Nm 3 / h, and with the increase in the flow rate of the gas to be treated, the ACF filling amount is 6 kg in the first adsorption tank A (M 1 ) and the second adsorption. 0.6 kg in the tank B (M 2 ) [ACF filling mass ratio between the first tank A and the second tank B (M 2 / M 1 )... 0.1], and the whole (M 1 + M 2 ) 6. The same operation as in Example 1 was performed except that 6 kg was used.

この吸脱着試験の結果、処理済ガス中の塩化メチレン濃度は10ppmと低く、塩化メチレン排出量も10g/hと低いものであった。   As a result of this adsorption / desorption test, the methylene chloride concentration in the treated gas was as low as 10 ppm, and the methylene chloride discharge was as low as 10 g / h.

また、ACF再生用蒸気量は29kg/hと、使用したACF量の増加に伴い実施例1と比較すると増加してはいるものの、脱着処理効率は十分に良いものであった。   Moreover, although the amount of steam for ACF regeneration was 29 kg / h, which was increased as compared with Example 1 with an increase in the amount of ACF used, the desorption treatment efficiency was sufficiently good.

[比較例4]
表3及び下記の条件に示すように、ACFを充填した吸着槽1槽のみで、吸脱着処理した以外は、実施例8と同様に操作した。
[Comparative Example 4]
As shown in Table 3 and the following conditions, the same operation as in Example 8 was performed except that only one adsorption tank filled with ACF was subjected to adsorption / desorption treatment.

有機溶剤吸着槽において用いたACFは、充填質量が12kg、比表面積が1500m2/g、平均細孔直径が1.5nm、全細孔容積が0.55cm3/gであった。 The ACF used in the organic solvent adsorption tank had a filling mass of 12 kg, a specific surface area of 1500 m 2 / g, an average pore diameter of 1.5 nm, and a total pore volume of 0.55 cm 3 / g.

この吸脱着試験の結果、12kgと大量のACFを使用してさえ、処理済ガス中の塩化メチレン濃度は300ppmと高くなり、塩化メチレン排出量も300g/hと高いものとなった。   As a result of this adsorption / desorption test, even when 12 kg and a large amount of ACF were used, the methylene chloride concentration in the treated gas was as high as 300 ppm, and the methylene chloride discharge was as high as 300 g / h.

また、ACF再生用蒸気量は52kg/hと多く、脱着処理は効率の悪いものであった。   Moreover, the amount of steam for ACF regeneration was as high as 52 kg / h, and the desorption treatment was inefficient.

Figure 2012183462
Figure 2012183462

[実施例9]
表4及び下記の条件に示すように、ACF充填量を第1吸着槽A(M1)で5kg、第2吸着槽B(M2)で0.3kg[第1吸着槽Aと、第2吸着槽BとのACF充填質量比(M2/M1)…0.06]、全体(M1+M2)で5.3kgとした以外は、実施例1と同様に操作した。
[Example 9]
As shown in Table 4 and the following conditions, the ACF filling amount is 5 kg in the first adsorption tank A (M 1 ) and 0.3 kg in the second adsorption tank B (M 2 ) [the first adsorption tank A and the second The same operation as in Example 1 was performed except that the ACF filling mass ratio with the adsorption tank B (M 2 / M 1 ) 0.06] and the total (M 1 + M 2 ) were 5.3 kg.

この吸脱着試験の結果、処理済ガス中の塩化メチレン濃度は10ppmと低く、塩化メチレン排出量も7g/hと低いものであった。   As a result of this adsorption / desorption test, the methylene chloride concentration in the treated gas was as low as 10 ppm, and the methylene chloride discharge was as low as 7 g / h.

また、ACF再生用蒸気量は23kg/hであり、脱着処理は効率の良いものであった。   Further, the amount of steam for ACF regeneration was 23 kg / h, and the desorption treatment was efficient.

[比較例5]
表4及び下記の条件に示すように、ACF充填量を第1吸着槽A(M1)で5kg、第2吸着槽B(M2)で0.2kg[第1吸着槽Aと、第2吸着槽BとのACF充填質量比(M2/M1)…0.04]、全体(M1+M2)で5.2kgとした以外は、実施例1と同様に操作した。
[Comparative Example 5]
As shown in Table 4 and the following conditions, the ACF filling amount is 5 kg in the first adsorption tank A (M 1 ) and 0.2 kg in the second adsorption tank B (M 2 ) [the first adsorption tank A and the second The same operation as in Example 1 was performed except that the ACF filling mass ratio with the adsorption tank B (M 2 / M 1 ) 0.04] and the total (M 1 + M 2 ) were 5.2 kg.

この吸脱着試験の結果、処理済ガス中の塩化メチレン濃度は150ppmと高くなり、塩化メチレン排出量も105g/hと高いものであった。   As a result of this adsorption / desorption test, the methylene chloride concentration in the treated gas was as high as 150 ppm, and the methylene chloride discharge was as high as 105 g / h.

[実施例10]
表4及び下記の条件に示すように、ACF充填量を第1吸着槽A(M1)で5kg、第2吸着槽B(M2)で1kg[第1吸着槽Aと、第2吸着槽BとのACF充填質量比(M2/M1)…0.2]、全体(M1+M2)で6kgとした以外は、実施例1と同様に操作した。
[Example 10]
As shown in Table 4 and the following conditions, the ACF filling amount is 5 kg in the first adsorption tank A (M 1 ) and 1 kg in the second adsorption tank B (M 2 ) [the first adsorption tank A and the second adsorption tank. ACF filling mass ratio with B (M 2 / M 1 )... 0.2], and the total (M 1 + M 2 ) was 6 kg.

この吸脱着試験の結果、処理済ガス中の塩化メチレン濃度は20ppmと低く、塩化メチレン排出量も14g/hと低いものであった。   As a result of this adsorption / desorption test, the methylene chloride concentration in the treated gas was as low as 20 ppm, and the methylene chloride discharge was as low as 14 g / h.

また、ACF再生用蒸気量は24kg/hと少なく、脱着処理は効率の良いものであった。   Moreover, the amount of steam for ACF regeneration was as small as 24 kg / h, and the desorption treatment was efficient.

[比較例6]
表4及び下記の条件に示すように、ACF充填量を第1吸着槽A(M1)で4.5kg、第2吸着槽B(M2)で1.5kg(第1吸着槽Aと、第2吸着槽BとのACF充填質量比(M2/M1)…0.333]、全体(M1+M2)で6kgとした以外は、実施例1と同様に操作した。
[Comparative Example 6]
As shown in Table 4 and the following conditions, the ACF filling amount is 4.5 kg in the first adsorption tank A (M 1 ), 1.5 kg in the second adsorption tank B (M 2 ) (the first adsorption tank A, The same operation as in Example 1 was carried out except that the ACF filling mass ratio with the second adsorption tank B (M 2 / M 1 ) 0.333] and the total (M 1 + M 2 ) was 6 kg.

この吸脱着試験の結果、ACF再生用蒸気量は23kg/hと少なく、脱着処理は効率の良いものではあったが、第2吸着槽Bの乾燥が不充分になり、その結果、処理済ガス中の塩化メチレン濃度は150ppmと高くなり、塩化メチレン排出量も105g/hと高いものとなった。   As a result of this adsorption / desorption test, the amount of steam for ACF regeneration was as small as 23 kg / h, and the desorption treatment was efficient, but the drying of the second adsorption tank B became insufficient, and as a result, the treated gas The methylene chloride concentration in the inside was as high as 150 ppm, and the methylene chloride discharge was as high as 105 g / h.

Figure 2012183462
Figure 2012183462

[実施例11]
表2及び下記の条件に示すように、有機溶剤として20000ppmのメチラール(沸点42.5℃)]を含有する被処理ガスを用いた以外は、実施例1と同様に操作した。
[Example 11]
As shown in Table 2 and the following conditions, the same operation as in Example 1 was performed except that a gas to be treated containing 20000 ppm of methylal (boiling point: 42.5 ° C.) as an organic solvent was used.

この吸脱着試験の結果、処理済ガス中のメチラール濃度は80ppmと低く、メチラール排出量も49g/hと低いものであった。   As a result of this adsorption / desorption test, the methylal concentration in the treated gas was as low as 80 ppm, and the methylal discharge was also as low as 49 g / h.

また、ACF再生用蒸気量は29kg/hであり、脱着処理は効率の良いものであった。   Moreover, the amount of steam for ACF regeneration was 29 kg / h, and the desorption treatment was efficient.

[実施例12]
表2及び下記の条件に示すように、有機溶剤として20000ppmの酢酸メチル(沸点54℃)を含有する被処理ガスを用いた以外は、実施例1と同様に操作した。
[Example 12]
As shown in Table 2 and the following conditions, the same operation as in Example 1 was performed except that a gas to be treated containing 20000 ppm of methyl acetate (boiling point 54 ° C.) was used as the organic solvent.

この吸脱着試験の結果、処理済ガス中の酢酸メチル濃度は80ppmと低く、酢酸メチル排出量も48g/hと低いものであった。   As a result of this adsorption / desorption test, the methyl acetate concentration in the treated gas was as low as 80 ppm, and the methyl acetate discharge was as low as 48 g / h.

また、ACF再生用蒸気量は28kg/hと少なく、脱着処理は効率の良いものであった。   Further, the amount of steam for ACF regeneration was as small as 28 kg / h, and the desorption treatment was efficient.

[実施例13]
表2及び下記の条件に示すように、有機溶剤として20000ppmのアセトン(沸点56.5℃)を含有する被処理ガスを用いた以外は、実施例1と同様に操作した。
[Example 13]
As shown in Table 2 and the following conditions, the same operation as in Example 1 was performed except that a gas to be treated containing 20000 ppm of acetone (boiling point 56.5 ° C.) was used as the organic solvent.

この吸脱着試験の結果、処理済ガス中のアセトン濃度は50ppmと低く、アセトン排出量も24g/hと低いものであった。   As a result of this adsorption / desorption test, the concentration of acetone in the treated gas was as low as 50 ppm, and the amount of acetone discharged was as low as 24 g / h.

また、ACF再生用蒸気量は28kg/hと少なく、脱着処理は効率の良いものであった。   Further, the amount of steam for ACF regeneration was as small as 28 kg / h, and the desorption treatment was efficient.

Figure 2012183462
Figure 2012183462

A、A’ 第1吸着槽
B、B’ 第2吸着槽
2 ブロワ
4 第1吸着槽導入ライン
6、6’、26、26’ ACF
8、8’ 第1吸着槽主体
10、10’、30、30’ 吸入バルブ
12、12’、32、32’ 排出バルブ
14、14’、34、34’ 蒸気バルブ
15、15’、35、35’ スチーム注入手段
16 第1吸着槽側スチーム導入ライン
18 第1吸着槽側脱着ガスバルブ
20 第1吸着槽側回収ライン
22、25、25’ 凝縮器
24 第1吸着槽処理ガス輸送ライン
28、28’ 第2吸着槽主体
36 第2吸着槽側スチーム導入ライン
38 第2吸着槽側脱着ガスバルブ
40 第2吸着槽側回収ライン
42 第2吸着槽処理ガス輸送ライン
A, A ′ first adsorption tank B, B ′ second adsorption tank 2 blower 4 first adsorption tank introduction line 6, 6 ′, 26, 26 ′ ACF
8, 8 'First adsorption tank main body 10, 10', 30, 30 'Suction valve 12, 12', 32, 32 'Discharge valve 14, 14', 34, 34 'Steam valve 15, 15', 35, 35 'Steam injection means 16 First adsorption tank side steam introduction line 18 First adsorption tank side desorption gas valve 20 First adsorption tank side recovery line 22, 25, 25' Condenser 24 First adsorption tank processing gas transport line 28, 28 ' Second adsorption tank main body 36 Second adsorption tank side steam introduction line 38 Second adsorption tank side desorption gas valve 40 Second adsorption tank side recovery line 42 Second adsorption tank processing gas transport line

Claims (5)

活性炭素繊維が充填される第1吸着槽と、
前記活性炭素繊維と同一又は異なる活性炭素繊維が充填される第2吸着槽であって、第2吸着槽に充填される活性炭素繊維の質量(M2)が第1吸着槽に充填される活性炭素繊維の質量(M1)を基準とする質量比(M2/M1)で0.05〜0.25の活性炭素繊維が充填される第2吸着槽と、
前記第1吸着槽と、第2吸着槽とを連結する連結管と、
前記連結管に介装される凝縮器と、
前記第1吸着槽及び第2吸着槽にそれぞれ設けられるスチーム注入手段と、
を有する有機溶剤の除去装置。
A first adsorption tank filled with activated carbon fibers;
The second adsorption tank filled with activated carbon fibers that are the same as or different from the activated carbon fibers, wherein the mass (M 2 ) of activated carbon fibers filled in the second adsorption tank is filled in the first adsorption tank. A second adsorption tank filled with activated carbon fibers of 0.05 to 0.25 in a mass ratio (M 2 / M 1 ) based on the mass (M 1 ) of the carbon fibers;
A connecting pipe connecting the first adsorption tank and the second adsorption tank;
A condenser interposed in the connecting pipe;
Steam injection means provided in each of the first adsorption tank and the second adsorption tank;
An organic solvent removing apparatus having
請求項1に記載の有機溶剤の除去装置を用いる被処理ガス中の有機溶剤の除去方法であって、
有機溶剤を3000ppm以上含む被処理ガスを第1吸着槽に供給してその内部に充填される活性炭素繊維に有機溶剤を吸着させると共に、活性炭素繊維に含まれる凝縮水の乾燥を行うことにより、500ppm以下の有機溶剤と水分を含む第1吸着槽処理ガスを得、次いでこの第1吸着槽処理ガスを凝縮器に供給して第1吸着槽処理ガス中の水分を凝縮分離して系外に排出すると共に、前記水分を分離した第1吸着槽処理ガスを第2吸着槽に供給して第2吸着槽の内部に充填される活性炭素繊維に第1吸着槽処理ガスが含む有機溶剤を吸着させると共に、この活性炭素繊維が含む水分を乾燥させることにより、有機溶剤濃度が100ppm以下の第2吸着槽処理ガスを系外に排出させる吸着工程と、
第1吸着槽に供給する被処理ガスの供給を停止した後、スチーム注入手段により第1吸着槽及び第2吸着槽内にスチームを供給して、第1吸着槽及び第2吸着槽内に充填されている各活性炭素繊維の吸着有機溶剤を脱着させることにより、前記有機溶剤を吸着している各活性炭素繊維を前記供給したスチームが凝縮して生ずる凝縮水を含む活性炭素繊維に再生させると共に、前記脱着させた有機溶剤を系外に取出す脱着工程と、
を交互に繰返す被処理ガス中の有機溶剤の除去方法。
A method for removing an organic solvent in a gas to be treated using the organic solvent removing apparatus according to claim 1,
By supplying the gas to be treated containing 3000 ppm or more of the organic solvent to the first adsorption tank and adsorbing the organic solvent to the activated carbon fiber filled therein, and drying the condensed water contained in the activated carbon fiber, A first adsorption tank treatment gas containing 500 ppm or less of an organic solvent and moisture is obtained, and then this first adsorption tank treatment gas is supplied to a condenser to condense and separate the moisture in the first adsorption tank treatment gas to the outside of the system. While discharging, supplying the first adsorption tank processing gas from which the water has been separated to the second adsorption tank, the organic solvent contained in the first adsorption tank treatment gas is adsorbed to the activated carbon fibers filled in the second adsorption tank And an adsorption step of discharging the second adsorption tank treatment gas having an organic solvent concentration of 100 ppm or less to the outside by drying the moisture contained in the activated carbon fiber,
After the supply of the gas to be processed to be supplied to the first adsorption tank is stopped, steam is supplied into the first adsorption tank and the second adsorption tank by the steam injection means, and the first adsorption tank and the second adsorption tank are filled. By desorbing the adsorbed organic solvent of each activated carbon fiber, each activated carbon fiber adsorbing the organic solvent is regenerated to activated carbon fiber containing condensed water generated by condensation of the supplied steam. A desorption step of taking out the desorbed organic solvent out of the system;
The method of removing the organic solvent in the gas to be processed that repeats alternately.
第1吸着槽に充填された活性炭素繊維が、比表面積1200m2/g以上2000m2/g以下、平均細孔直径1〜4nm、全細孔容積0.2〜0.8cm3/gの活性炭素繊維である請求項2に記載の有機溶剤の除去方法。 The activated carbon fiber filled in the first adsorption tank has an activity with a specific surface area of 1200 m 2 / g or more and 2000 m 2 / g or less, an average pore diameter of 1 to 4 nm, and a total pore volume of 0.2 to 0.8 cm 3 / g. The method for removing an organic solvent according to claim 2, wherein the organic solvent is carbon fiber. 第2吸着槽に充填された活性炭素繊維が、比表面積600m2/g以上1400m2/g未満、平均細孔直径0.5〜3nm、全細孔容積0.1〜0.6cm3/gの活性炭素繊維である請求項2に記載の有機溶剤の除去方法。 The activated carbon fiber filled in the second adsorption tank has a specific surface area of 600 m 2 / g or more and less than 1400 m 2 / g, an average pore diameter of 0.5 to 3 nm, and a total pore volume of 0.1 to 0.6 cm 3 / g. The method for removing an organic solvent according to claim 2, which is an activated carbon fiber. 第1吸着槽に供給する被処理ガスが、沸点が30〜70℃の有機溶剤を5000〜100000ppm含む被処理ガスである請求項2に記載の有機溶剤の除去方法。 The method for removing an organic solvent according to claim 2, wherein the gas to be treated supplied to the first adsorption tank is a gas to be treated containing 5000 to 100,000 ppm of an organic solvent having a boiling point of 30 to 70 ° C.
JP2011047260A 2011-03-04 2011-03-04 Method and apparatus for removing organic solvent Active JP5643680B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011047260A JP5643680B2 (en) 2011-03-04 2011-03-04 Method and apparatus for removing organic solvent
KR1020137016707A KR101715826B1 (en) 2011-03-04 2012-02-06 Method for removing organic solvent, and removal device
PCT/JP2012/052628 WO2012120948A1 (en) 2011-03-04 2012-02-06 Method for removing organic solvent, and removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011047260A JP5643680B2 (en) 2011-03-04 2011-03-04 Method and apparatus for removing organic solvent

Publications (2)

Publication Number Publication Date
JP2012183462A true JP2012183462A (en) 2012-09-27
JP5643680B2 JP5643680B2 (en) 2014-12-17

Family

ID=46797919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011047260A Active JP5643680B2 (en) 2011-03-04 2011-03-04 Method and apparatus for removing organic solvent

Country Status (3)

Country Link
JP (1) JP5643680B2 (en)
KR (1) KR101715826B1 (en)
WO (1) WO2012120948A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147864A (en) * 2013-01-31 2014-08-21 Toyobo Co Ltd Gas treatment system and gas treatment method
WO2018101255A1 (en) * 2016-12-01 2018-06-07 東洋紡株式会社 Organic solvent recovery system and organic solvent recovery method
CN113365718A (en) * 2019-01-31 2021-09-07 东洋纺株式会社 Organic solvent recovery system
WO2022054733A1 (en) * 2020-09-11 2022-03-17 東洋紡株式会社 Organic solvent recovery system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6568328B1 (en) * 2018-06-19 2019-08-28 日本製紙株式会社 Activated carbon fiber sheet for automobile canister
CN109731433B (en) * 2018-12-18 2021-12-10 杭州捷瑞空气处理设备有限公司 Ethyl acetate recovery method combining activated carbon adsorption and rotary wheel adsorption
CN111530214A (en) * 2020-05-19 2020-08-14 徐州康卓化工设备有限公司 Chemical waste gas purifying and dedusting device and method
CN113274863B (en) * 2021-06-02 2022-03-11 广州紫科环保科技股份有限公司 High-concentration waste gas treatment equipment for sewage treatment tank of petrochemical plant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146779A (en) * 1976-05-31 1977-12-06 Toyobo Co Ltd Desorption of solvent
JPH04137729U (en) * 1991-06-18 1992-12-22 大阪瓦斯株式会社 Solvent recovery equipment
JP2007105657A (en) * 2005-10-14 2007-04-26 Matsushita Electric Ind Co Ltd Gas treatment apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135822A (en) 1984-07-26 1986-02-20 Toyobo Co Ltd Operation of adsorbing apparatus
JPS6166134A (en) * 1984-09-10 1986-04-04 Agency Of Ind Science & Technol Optical fiber sensor
JP3183381B2 (en) 1995-09-06 2001-07-09 東邦化工建設株式会社 Method for recovering organic solvent from small air volume gas containing high concentration organic solvent
KR100926797B1 (en) * 2007-12-04 2009-11-12 금호석유화학 주식회사 The recovery method of Alcohols or Ethers from waste water by Activated carbon fiber Adsorption Towers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146779A (en) * 1976-05-31 1977-12-06 Toyobo Co Ltd Desorption of solvent
JPH04137729U (en) * 1991-06-18 1992-12-22 大阪瓦斯株式会社 Solvent recovery equipment
JP2007105657A (en) * 2005-10-14 2007-04-26 Matsushita Electric Ind Co Ltd Gas treatment apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147864A (en) * 2013-01-31 2014-08-21 Toyobo Co Ltd Gas treatment system and gas treatment method
WO2018101255A1 (en) * 2016-12-01 2018-06-07 東洋紡株式会社 Organic solvent recovery system and organic solvent recovery method
JPWO2018101255A1 (en) * 2016-12-01 2019-10-24 東洋紡株式会社 Organic solvent recovery system and organic solvent recovery method
JP7103226B2 (en) 2016-12-01 2022-07-20 東洋紡株式会社 Organic solvent recovery system and organic solvent recovery method
CN113365718A (en) * 2019-01-31 2021-09-07 东洋纺株式会社 Organic solvent recovery system
CN113365718B (en) * 2019-01-31 2023-07-25 东洋纺株式会社 Organic solvent recovery system
WO2022054733A1 (en) * 2020-09-11 2022-03-17 東洋紡株式会社 Organic solvent recovery system

Also Published As

Publication number Publication date
KR20140009270A (en) 2014-01-22
KR101715826B1 (en) 2017-03-27
JP5643680B2 (en) 2014-12-17
WO2012120948A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5643680B2 (en) Method and apparatus for removing organic solvent
CN104107621A (en) Nitrogen purging-assisted organic exhaust gas recycling method through pressure swing adsorption of adsorbent resin
CN103463928B (en) Organic exhaust gas method and device are reclaimed in absorption
JPWO2014080984A1 (en) Volatile organic compound recovery equipment
CN103111084A (en) Condensation-adsorption combined process capable of improving the service life of oil vapor recovery system equipment
WO2017119441A1 (en) Water treatment apparatus, adsorption element, and water treatment method
JP7055556B2 (en) Activated carbon performance recovery possibility judgment method, activated carbon regeneration method, and activated carbon reuse system
CN205164434U (en) Activated carbon fiber sorption recovery device
JP6318580B2 (en) Organic solvent recovery system
CN101318717B (en) Method and apparatus for removing and recycling organic phase in wastewater with distillation-free complete-molecular sieve
JP2013188701A (en) Organic solvent dehydration device
JP2008100186A (en) Gas adsorption apparatus
CN110935281B (en) Adsorption and regeneration device and method for solid adsorbent for adsorbing volatile organic compounds
CN110801710B (en) Gas trapping agent and preparation method and application thereof
KR101167207B1 (en) The apparatus for volatile organic compoundsand and method for recovery of volatile organic compounds
JP2012081411A (en) Solvent dehydrator
JP2010142790A (en) System for treating exhaust
KR20090093077A (en) Apparatus and method for recovery of volatile organic compounds
JP6332586B2 (en) Water treatment device and water treatment system
JP2016131950A (en) Water treatment apparatus
CN203342421U (en) Condensation adsorption system for improving service life of oil gas recovery system
JP5978808B2 (en) Wastewater treatment system
JP6024131B2 (en) Organic solvent dehydrator
JP2012081412A (en) Solvent dehydrator
CN205700032U (en) Exhaust-gas treatment activated carbon adsorption and regenerating unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5643680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250