JP2012181297A - Quake generator - Google Patents

Quake generator Download PDF

Info

Publication number
JP2012181297A
JP2012181297A JP2011043454A JP2011043454A JP2012181297A JP 2012181297 A JP2012181297 A JP 2012181297A JP 2011043454 A JP2011043454 A JP 2011043454A JP 2011043454 A JP2011043454 A JP 2011043454A JP 2012181297 A JP2012181297 A JP 2012181297A
Authority
JP
Japan
Prior art keywords
linear actuator
holding member
movable
spring element
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011043454A
Other languages
Japanese (ja)
Other versions
JP5763936B2 (en
Inventor
Fumihide Kamitsuma
文英 上妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kayaba System Machinery Co Ltd
Original Assignee
Kayaba System Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba System Machinery Co Ltd filed Critical Kayaba System Machinery Co Ltd
Priority to JP2011043454A priority Critical patent/JP5763936B2/en
Publication of JP2012181297A publication Critical patent/JP2012181297A/en
Application granted granted Critical
Publication of JP5763936B2 publication Critical patent/JP5763936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quake generator which is capable of reproducing long-period earthquake motion without being increased in scale.SOLUTION: A quake generator K1 includes: a linear actuator 3 having a movable part M capable of reciprocating in a linear direction; a spring element 5 which expands and contracts in accordance with reciprocation of the movable part M; a holding member 2 holding one of the linear actuator 3 and the spring element 5; and a movable floor 4 which can be moved at least in the same direction as a reciprocating direction of the movable part M relatively to the holding member 2. The linear actuator 3 and the spring element 5 are connected in series between the holding member 2 and the movable floor 4.

Description

本発明は、起震装置に関する。   The present invention relates to a seismic device.

従来、起震装置としては、たとえば、車両に搭載されるものを例にとると、車体に固定されるクロスメンバと、このクロスメンバに対してX軸方向へ移動可能なX軸方向移動フレームと、クロスメンバとX軸方向移動フレームとの間に介装される油圧シリンダとを備えて構成され、油圧シリンダを駆動することによって、上記X軸方向移動フレームを車体に対してX軸方向へ駆動し振動させることで、地震動を再現するようにしている。   Conventionally, as a seismic device, for example, when mounted on a vehicle, a cross member fixed to a vehicle body, an X-axis direction moving frame movable in the X-axis direction with respect to the cross member, And a hydraulic cylinder interposed between the cross member and the X-axis direction moving frame, and driving the hydraulic cylinder drives the X-axis direction moving frame with respect to the vehicle body in the X-axis direction. And by making it vibrate, the earthquake motion is reproduced.

なお、この起震装置では、Y軸方向へもZ軸方向へも地震動を再現するために、X軸方向移動フレームに対してY軸方向へ移動可能なY軸方向移動フレームと、Y軸方向移動フレームに対してZ軸方向へ移動可能なZ軸方向移動フレームとを設け、X軸方向移動フレームとY軸方向移動フレームとの間にY軸方向移動フレームをX軸方向移動フレームに対してY軸方向へ駆動させる油圧シリンダを介装するとともに、Y軸方向移動フレームとZ軸方向移動フレームとの間にZ軸方向移動フレームをY軸方向移動フレームに対してZ軸方向へ駆動させる油圧シリンダを介装するようにしている(たとえば、特許文献1参照)。   In this seismic device, a Y-axis direction moving frame that can move in the Y-axis direction with respect to the X-axis direction moving frame, and the Y-axis direction in order to reproduce the earthquake motion in both the Y-axis direction and the Z-axis direction. A Z-axis direction moving frame that is movable in the Z-axis direction with respect to the moving frame is provided, and the Y-axis direction moving frame is disposed between the X-axis direction moving frame and the Y-axis direction moving frame with respect to the X-axis direction moving frame. A hydraulic cylinder that intervenes a hydraulic cylinder that drives in the Y-axis direction and that drives the Z-axis moving frame in the Z-axis direction with respect to the Y-axis moving frame between the Y-axis moving frame and the Z-axis moving frame. A cylinder is interposed (for example, see Patent Document 1).

特開2000−259073号公報JP 2000-259073 A

従来の起震装置では、油圧シリンダを伸縮させることで一般的に大地震時に発生する程度の加速度で各フレームを振動させることができる点では問題はないが、長周期地震動を再現しようとすると問題が生じる。   In conventional seismic devices, there is no problem in that each frame can be vibrated with the acceleration that is generally generated by a large earthquake by expanding and contracting the hydraulic cylinder, but there is a problem when trying to reproduce long-period ground motion Occurs.

ここで、長周期地震動は、地震対策が施された高層建築物の固有振動数に近い振動数で当該高層建築物を加振するため、高層建築物の振動が増幅され、高層階では振幅が非常に大きくなることが知られている。   Here, long-period ground motion vibrates the high-rise building at a frequency close to the natural frequency of the high-rise building where earthquake countermeasures have been taken. It is known to grow very large.

このような長周期地震動を従来の起震装置で体験しようとすると、起震装置における各フレームを大きな振幅で振動させなくてはならない。具体的には、大きな振幅を油圧シリンダ等のリニアアクチュエータの伸縮で再現することから、リニアアクチュエータが長尺となって、起震装置が大型化してしまう問題がある。   In order to experience such a long-period ground motion with a conventional shaking device, each frame in the shaking device must be vibrated with a large amplitude. Specifically, since a large amplitude is reproduced by expansion and contraction of a linear actuator such as a hydraulic cylinder, there is a problem that the linear actuator becomes long and the seismic device becomes large.

そこで、本発明は、上記不具合を解決するためになされたものであり、その目的とするところは、装置の大型化を回避しつつ長周期地震動の再現を可能とする起震装置を提供することである。   Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a seismic device capable of reproducing long-period ground motion while avoiding an increase in size of the device. It is.

上記した目的を達成するため、本発明の課題解決手段における起震装置は、直線方向に往復動可能な可動部を有するリニアアクチュエータと、上記可動部の往復動により伸縮するばね要素と、上記リニアアクチュエータとばね要素のいずれか一方を保持する保持部材と、上記保持部材に対して少なくとも上記可動部の往復動方向と同一方向へ相対移動が可能な可動床とを備え、上記保持部材と上記可動床との間に上記リニアアクチュエータと上記ばね要素とが直列に接続されて介装されたことを特徴とする。   In order to achieve the above object, a seismic device in the problem solving means of the present invention includes a linear actuator having a movable part that can reciprocate in a linear direction, a spring element that expands and contracts by reciprocating movement of the movable part, and the linear A holding member that holds one of an actuator and a spring element; and a movable floor that can move relative to the holding member in the same direction as at least the reciprocating direction of the movable portion. The linear actuator and the spring element are connected in series and interposed between the floor and the floor.

この起震装置では、可動床とばね要素とでなる系の固有振動数に一致する周波数でリニアアクチュエータの可動部を往復動させると、ばね要素が固有振動数で伸縮する。これにより、可動床が共振して往復運動を呈する。この結果、リニアアクチュエータの可動部の振幅を増幅して可動床に伝達することができ、可動床の振幅をリニアアクチュエータのストローク長よりも大きくすることができる。   In this seismic device, when the movable portion of the linear actuator is reciprocated at a frequency that matches the natural frequency of the system composed of the movable floor and the spring element, the spring element expands and contracts at the natural frequency. Thereby, a movable floor resonates and exhibits a reciprocating motion. As a result, the amplitude of the movable part of the linear actuator can be amplified and transmitted to the movable floor, and the amplitude of the movable floor can be made larger than the stroke length of the linear actuator.

本発明の起震装置によれば、リニアアクチュエータの可動部の振幅を増幅して可動床を大きな振幅で振動させることができるので、可動床の振幅よりも短いストローク長のリニアアクチュエータを利用することができる。この結果、装置の大型化を回避しつつ長周期地震動の再現が可能となる。   According to the seismic device of the present invention, it is possible to amplify the amplitude of the movable portion of the linear actuator and vibrate the movable floor with a large amplitude. Therefore, use a linear actuator having a stroke length shorter than the amplitude of the movable floor. Can do. As a result, it is possible to reproduce long-period ground motion while avoiding an increase in the size of the apparatus.

一実施の形態における起震装置の側面図である。It is a side view of the seismic device in one embodiment. リニアアクチュエータの可動部の振幅に対する可動床の振幅のゲイン特性図である。It is a gain characteristic figure of the amplitude of a movable floor to the amplitude of a movable part of a linear actuator. 他の実施の形態における起震装置の鳥瞰図である。It is a bird's-eye view of the seismic device in other embodiments. 別の実施の形態における起震装置の鳥瞰図である。It is a bird's-eye view of the seismic device in another embodiment.

以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態における起震装置K1は、図1に示すように、保持部材2と、リニアアクチュエータ3と、上記保持部材2に対して少なくとも上記リニアアクチュエータ3の伸縮方向と同一方向へ相対移動が可能な可動床4と、ばね要素5とを備えて構成されており、上記可動床4と上記保持部材2との間に上記リニアアクチュエータ3と上記ばね要素5を直列に接続して介装してある。   The present invention will be described below based on the embodiments shown in the drawings. As shown in FIG. 1, the seismic device K <b> 1 in one embodiment has a holding member 2, a linear actuator 3, and a relative movement relative to the holding member 2 in at least the same direction as the expansion / contraction direction of the linear actuator 3. A movable floor 4 and a spring element 5 are provided, and the linear actuator 3 and the spring element 5 are connected in series between the movable floor 4 and the holding member 2. It is.

そして、この起震装置K1では、リニアアクチュエータ3で可動床4を振動させることで地震を再現することができ、たとえば、可動床4へ被験者を乗せて振動を与えることで、被験者に地震を体験させることができ、また、構造物、建築物その他を可動床4へ乗せて可動床4を振動させることで、構造物や建築物等の地震被災実験を行うことも可能である。   In this seismic device K1, the earthquake can be reproduced by vibrating the movable floor 4 with the linear actuator 3. For example, the subject can experience an earthquake by placing the subject on the movable floor 4 and applying the vibration. It is also possible to conduct earthquake damage experiments on structures, buildings, etc. by placing structures, buildings, etc. on the movable floor 4 and vibrating the movable floor 4.

以下、一実施の形態の起震装置K1の各部について詳細に説明する。保持部材2は、この実施の形態では、可動床4が走行する走行床2aと、走行床2aから起立してリニアアクチュエータ3を保持する保持部2bとを備えて構成されている。   Hereinafter, each part of seismic device K1 of one embodiment is explained in detail. In this embodiment, the holding member 2 includes a traveling floor 2a on which the movable floor 4 travels and a holding portion 2b that stands up from the traveling floor 2a and holds the linear actuator 3.

リニアアクチュエータ3は、この実施の形態では、油圧シリンダとされており、保持部材2の保持部2bに保持されるシリンダ3aと、シリンダ3a内に摺動自在に挿入されたピストン3bと、シリンダ3a内に移動自在に挿入されるとともに一端がピストン3bに連結されたピストンロッド3cと、シリンダ3a内にピストン3bで区画したロッド側室R1とピストン側室R2とに作動油を給排させてシリンダ3aに対してピストン3bを軸方向に相対移動させる油圧ポンプ3dとを備えている。そして、このリニアアクチュエータ3にあっては、上記の油圧ポンプ3dによってロッド側室R1へ作動油を供給し、ピストン側室R2から作動油を排出させることで、ピストン3bとこれに連結されたピストンロッド3cを図1中右方向へ移動させることができるとともに、ロッド側室R1から作動油を排出させ、ピストン側室R2へ作動油を供給することでピストン3bとこれに連結されたピストンロッド3cを図1中左方向へ移動させることができる。すなわち、この実施の形態にあっては、リニアアクチュエータ3における可動部Mは、ピストン3bとこれに連結されたピストンロッド3cで構成され、当該可動部Mを直線方向へ往復移動させることができる。   In this embodiment, the linear actuator 3 is a hydraulic cylinder, a cylinder 3a held by the holding portion 2b of the holding member 2, a piston 3b slidably inserted into the cylinder 3a, and a cylinder 3a. The hydraulic oil is supplied to and discharged from the piston rod 3c, which is movably inserted into the piston 3b and connected to the piston 3b, and the rod side chamber R1 and the piston side chamber R2 partitioned by the piston 3b in the cylinder 3a. On the other hand, a hydraulic pump 3d that relatively moves the piston 3b in the axial direction is provided. In the linear actuator 3, the hydraulic oil is supplied to the rod side chamber R1 by the hydraulic pump 3d and is discharged from the piston side chamber R2, so that the piston 3b and the piston rod 3c connected thereto are discharged. 1 can be moved in the right direction in FIG. 1, and the hydraulic oil is discharged from the rod side chamber R1, and the hydraulic oil is supplied to the piston side chamber R2, so that the piston 3b and the piston rod 3c connected thereto are shown in FIG. It can be moved to the left. That is, in this embodiment, the movable part M in the linear actuator 3 is constituted by the piston 3b and the piston rod 3c connected thereto, and the movable part M can be reciprocated in the linear direction.

なお、リニアアクチュエータ3は、作動流体を作動油以外の流体、たとえば、気体を使用する空圧シリンダであってもよいし、このようなシリンダ型のアクチュエータ以外にも、リニアモータや、回転型のモータと送りねじ機構とでなるリニアアクチュエータとされてもよい。そして、リニアモータであれば、磁石と電磁石とで構成され、いずれか一方を可動部とすればよく、回転型のモータと送りねじ機構とでなるリニアアクチュエータにあっても、モータ或いは送りねじ機構にて直線運動を呈する部材を可動部とすればよい。   The linear actuator 3 may be a pneumatic cylinder that uses a fluid other than the working oil, for example, a gas, as a working fluid. In addition to such a cylinder type actuator, a linear motor or a rotary type may be used. It may be a linear actuator composed of a motor and a feed screw mechanism. And if it is a linear motor, it is comprised with a magnet and an electromagnet, and what is necessary is just to make any one into a movable part. Even if it exists in the linear actuator which consists of a rotary motor and a feed screw mechanism, a motor or a feed screw mechanism A member that exhibits a linear motion in the above may be used as a movable portion.

他方、可動床4は、床本体4aと、床本体4aの下部に設けた複数の走行輪4bとを備え、上記した保持部材2の走行床2aを図1中左右方向となるリニアアクチュエータ3の伸縮方向に一致する方向へ走行することができるようになっている。つまり、可動床4は、保持部材2に対してリニアアクチュエータ3の伸縮方向に一致する方向へ移動することができるようになっている。   On the other hand, the movable floor 4 includes a floor main body 4a and a plurality of traveling wheels 4b provided in the lower portion of the floor main body 4a, and the traveling floor 2a of the holding member 2 described above is arranged in the left-right direction in FIG. The vehicle can travel in a direction that matches the expansion / contraction direction. That is, the movable floor 4 can move in a direction that matches the expansion / contraction direction of the linear actuator 3 with respect to the holding member 2.

なお、この実施の形態では、保持部材2の走行床2aを可動床4が走行するようになっているが、保持部材2が走行床の代わりにリニアアクチュエータ3の伸縮方向に沿うレールを備えていて、可動床4がレール上を走行するようにしてもよいし、また、保持部材2と可動床4との間にガイドレールとスライダでなるリニアガイドを設けて可動床4がリニアアクチュエータ3の伸縮方向に一致する方向以外へ移動することを制限してもよい。また、特に、可動床4の保持部材2に対する相対移動方向を制限しない場合には、走行輪4bが床本体4aに対して図中上下方向を軸として軸周りに回転するようにしておいてもよいし、走行輪4bに球状の車輪を持つボール車輪を使用したり、可動床4の床本体4aの下面或いは保持部材2の走行床2aの上面に多数のボールを配して、可動床4の相対移動を円滑にならしめるようにしてもよい。さらには、走行輪4bを廃して、走行床2aにローラを多数配置しておき、当該ローラ上を可動床4に走行させるようにしてもよく、走行輪4bを廃して走行床2aと可動床4を低摩擦材量で形成してこれらの接触面を平滑にして、走行床2a上を可動床4に滑らせるようにしてもよい。なお、保持部材2は、リニアアクチュエータ3を保持できればよいので、走行床2aは必須ではないが、上述したように、走行床2aを設ける方が、可動床4の走行に適する環境を提供することができるので、可動床4の円滑な移動を実現できる。   In this embodiment, the movable floor 4 travels on the traveling floor 2a of the holding member 2. However, the holding member 2 includes a rail along the expansion / contraction direction of the linear actuator 3 instead of the traveling floor. The movable floor 4 may run on the rail, or a linear guide composed of a guide rail and a slider is provided between the holding member 2 and the movable floor 4 so that the movable floor 4 is connected to the linear actuator 3. You may restrict | limit moving to directions other than the direction corresponding to an expansion-contraction direction. In particular, when the relative movement direction of the movable floor 4 with respect to the holding member 2 is not limited, the traveling wheel 4b may rotate around the axis with respect to the floor body 4a about the vertical direction in the figure. Alternatively, a ball wheel having a spherical wheel may be used as the traveling wheel 4b, or a large number of balls may be arranged on the lower surface of the floor body 4a of the movable floor 4 or the upper surface of the traveling floor 2a of the holding member 2 to move the movable floor 4b. The relative movement may be smoothed. Further, the traveling wheel 4b may be eliminated, and a number of rollers may be disposed on the traveling floor 2a, and the movable floor 4 may be caused to travel on the roller. The traveling wheel 4b may be eliminated and the traveling floor 2a and the movable floor may be disposed. 4 may be formed with a low friction material amount so that these contact surfaces are smoothed, and the movable floor 4 may be slid on the traveling floor 2a. Since the holding member 2 only needs to hold the linear actuator 3, the traveling floor 2a is not essential. However, as described above, the provision of the traveling floor 2a provides an environment suitable for traveling on the movable floor 4. Therefore, smooth movement of the movable floor 4 can be realized.

ばね要素5は、この場合、コイルばねとされており、一端が可動床4に連結され、他端がリニアアクチュエータ3のピストンロッド3cに連結されている。つまり、ばね要素5とリニアアクチュエータ3とは、直列に接続されて、保持部材2と可動床4との間に介装されている。なお、ばね要素5は、コイルばねに限定されるものではなく、外力を受けることで伸縮し、当該伸縮に伴って外力に対抗する反力を発生するものであればよい。   In this case, the spring element 5 is a coil spring, and one end is connected to the movable floor 4 and the other end is connected to the piston rod 3 c of the linear actuator 3. That is, the spring element 5 and the linear actuator 3 are connected in series and are interposed between the holding member 2 and the movable floor 4. The spring element 5 is not limited to a coil spring, and may be any element that expands and contracts by receiving an external force and generates a reaction force that opposes the external force along with the expansion and contraction.

このように構成された起震装置K1にあっては、リニアアクチュエータ3の可動部Mであるピストン3bとピストンロッド3cを往復動させると、ばね要素5が伸縮する。そして、上記可動部Mの振動は、当該ばね要素5を介して可動床4へ伝達されるので、この起震装置K1は、可動床4を保持部材2に対して相対移動させることができる。   In the seismic device K1 configured in this way, when the piston 3b and the piston rod 3c, which are the movable part M of the linear actuator 3, are reciprocated, the spring element 5 expands and contracts. Since the vibration of the movable part M is transmitted to the movable floor 4 via the spring element 5, the seismic device K <b> 1 can move the movable floor 4 relative to the holding member 2.

そして、ばね要素5の質量を無視すれば、可動床4の質量とばね要素5のばね定数で決まる固有振動数、すなわち、可動床4とばね要素5の系における固有振動数に一致する周波数でリニアアクチュエータ3の可動部Mを往復動させると、ばね要素5が固有振動数で伸縮して可動床4が共振するので、リニアアクチュエータ3の可動部Mの振幅が増幅されて可動床4に伝達されることになる。可動床4の質量を1000kgとし、固有振動数を0.2Hzとし、振動の減衰比が5%である場合、リニアアクチュエータ3の可動部Mの振幅に対する可動床4の振幅のゲイン特性は、図2に示す通りであり、上記固有振動数にてリニアアクチュエータ3の可動部Mを伸縮させる場合、可動部Mの振幅に対する可動床4の振幅の倍率は、10倍程度となる(図2中実線)。また、同条件で、減衰比が2%の場合には、同倍率は、25倍程度となる(図2中破線)。実際には、リニアアクチュエータ3で可動床4を加振させる場合、可動床4上に積載される被験者や物の質量も含めて固有振動数を求め、リニアアクチュエータ3を駆動するようにすればよい。   If the mass of the spring element 5 is ignored, the natural frequency determined by the mass of the movable floor 4 and the spring constant of the spring element 5, that is, at a frequency that matches the natural frequency in the system of the movable floor 4 and the spring element 5. When the movable part M of the linear actuator 3 is reciprocated, the spring element 5 expands and contracts at the natural frequency and the movable floor 4 resonates, so that the amplitude of the movable part M of the linear actuator 3 is amplified and transmitted to the movable floor 4. Will be. When the mass of the movable floor 4 is 1000 kg, the natural frequency is 0.2 Hz, and the vibration damping ratio is 5%, the gain characteristic of the amplitude of the movable floor 4 with respect to the amplitude of the movable portion M of the linear actuator 3 is shown in FIG. 2, when the movable portion M of the linear actuator 3 is expanded and contracted at the natural frequency, the amplitude of the movable floor 4 with respect to the amplitude of the movable portion M is about 10 times (solid line in FIG. 2). ). Further, when the attenuation ratio is 2% under the same conditions, the same magnification is about 25 times (dashed line in FIG. 2). Actually, when the movable floor 4 is vibrated by the linear actuator 3, the natural frequency including the subject and the mass of the object loaded on the movable floor 4 is obtained, and the linear actuator 3 is driven. .

このように、本発明の起震装置K1では、リニアアクチュエータ3の可動部Mの振幅を増幅することで、可動床4を大きな振幅で振動させることができ。これにより、起震装置K1では、可動床4の振幅よりも短いストローク長を持つリニアアクチュエータ3を利用することができる。したがって、本発明の起震装置1によれば、装置の大型化を回避しつつ長周期地震動の再現が可能となる。   As described above, in the seismic device K1 of the present invention, the movable floor 4 can be vibrated with a large amplitude by amplifying the amplitude of the movable portion M of the linear actuator 3. Thereby, in the seismic device K1, the linear actuator 3 which has a stroke length shorter than the amplitude of the movable floor 4 can be utilized. Therefore, according to the seismic device 1 of the present invention, long-period ground motion can be reproduced while avoiding an increase in the size of the device.

また、この起震装置K1で、長周期地震動を体験する場合、ばね要素5のばね定数を変更することで、様々な建物の特性を簡単に再現することができる。   Moreover, when experiencing long-period ground motion with this seismic device K1, the characteristics of various buildings can be easily reproduced by changing the spring constant of the spring element 5.

なお、リニアアクチュエータ3は、保持部材2に連結されていたが、ばね要素5を保持部材2に連結して可動床4とばね要素5との間にリニアアクチュエータ3を介装するようにしてもよい。具体的には、保持部材2の保持部2bにばね要素5の一端を連結し、ばね要素5の他端をリニアアクチュエータ3のシリンダ3aと可動部Mの一方に連結し、リニアアクチュエータ3のシリンダ3aと可動部Mの他方を可動床4に連結するようにしてもよい。この場合もリニアアクチュエータ3の可動部Mを往復動させると、可動床4が保持部材2に対して相対移動し、慣性力でばね要素5も伸縮することになるので、上記したところと同様の作用効果を得ることができる。   Although the linear actuator 3 is connected to the holding member 2, the spring element 5 is connected to the holding member 2 so that the linear actuator 3 is interposed between the movable floor 4 and the spring element 5. Good. Specifically, one end of the spring element 5 is connected to the holding portion 2b of the holding member 2, the other end of the spring element 5 is connected to one of the cylinder 3a and the movable portion M of the linear actuator 3, and the cylinder of the linear actuator 3 is connected. You may make it connect the other of 3a and the movable part M to the movable floor 4. Also in this case, when the movable portion M of the linear actuator 3 is reciprocated, the movable floor 4 moves relative to the holding member 2 and the spring element 5 expands and contracts due to inertial force. An effect can be obtained.

上記したところでは、可動床4の移動方向が制限されておらず、ばね要素5の図1中紙面を貫く方向への撓みも許容されているので、ある程度は、図1中紙面を貫く方向への移動も許容される。しかしながら、このままでは、自由度が低い。そこで、自由度を高めるためには、図3に示した他の実施の形態の起震装置K2のように、上記保持部材2が第二保持部材6上をリニアアクチュエータ3の可動部の往復動方向とは異なる方向へ相対移動することができるようにし、保持部材2と第二保持部材6との間に、リニアアクチュエータ3の可動部の往復動方向と異なる方向へ往復動する可動部を有する第二リニアアクチュエータ7と第二ばね要素8とを直列接続して介装するようにすればよい。   As described above, the moving direction of the movable floor 4 is not limited, and the spring element 5 is allowed to bend in the direction penetrating the paper surface in FIG. 1. Is also allowed. However, in this state, the degree of freedom is low. Therefore, in order to increase the degree of freedom, the holding member 2 reciprocates the movable portion of the linear actuator 3 on the second holding member 6 as in the seismic device K2 of another embodiment shown in FIG. A movable portion that reciprocally moves in a direction different from the reciprocating direction of the movable portion of the linear actuator 3 between the holding member 2 and the second holding member 6. The second linear actuator 7 and the second spring element 8 may be interposed in series.

第二保持部材6は、保持部材2が走行する走行床6aと、走行床6aから起立して第二リニアアクチュエータ7を保持する保持部6bとを備えて構成されている。保持部材2は、この場合、走行床2aの床下に複数の走行輪2cを設けてあって、第二保持部材6の走行床6a上を円滑に走行することができるようになっている。   The second holding member 6 includes a traveling floor 6a on which the holding member 2 travels and a holding portion 6b that stands up from the traveling floor 6a and holds the second linear actuator 7. In this case, the holding member 2 is provided with a plurality of traveling wheels 2c below the traveling floor 2a, and can smoothly travel on the traveling floor 6a of the second holding member 6.

第二リニアアクチュエータ7については、詳細には図示しないが、リニアアクチュエータ3と同様に、直線方向へ往復動する可動部を備えており、各種のリニアアクチュエータの使用が可能であり、第二ばね要素8についてもばね要素5と同様である。   Although not shown in detail, the second linear actuator 7 includes a movable portion that reciprocates in the linear direction, like the linear actuator 3, and can use various linear actuators. 8 is the same as the spring element 5.

この他の実施の形態における第二保持部材6と保持部材2との関係は、図1に示した一実施の形態における保持部材2と可動床4との関係に相当している。したがって、リニアアクチュエータ3の可動部の往復動方向とは異なる方向へ往復動する可動部を有する第二リニアアクチュエータ7と、第二ばね要素8とで、第二保持部材6に対して保持部材2をリニアアクチュエータ3の可動部の往復動方向とは異なる方向へ保持部材2を振動させることで、保持部材2の振幅も第二リニアアクチュエータ7の振幅が増幅されるので、第二リニアアクチュエータ7のストローク長を超える振幅となる。なお、図3では、図が複雑となるため、可動床4の床本体4aの下部に設けられた走行輪4bの図示を省略している。また、図3中の実線矢印は、アクチュエータ3の可動部の往復動する方向、つまり、往復動方向を示しており、破線矢印は、第二アクチュエータ7の可動部(符示せず)の往復動方向を示している。   The relationship between the second holding member 6 and the holding member 2 in this other embodiment corresponds to the relationship between the holding member 2 and the movable floor 4 in the embodiment shown in FIG. Accordingly, the second linear actuator 7 having a movable portion that reciprocates in a direction different from the reciprocating direction of the movable portion of the linear actuator 3 and the second spring element 8 are used to hold the holding member 2 with respect to the second holding member 6. Since the holding member 2 is vibrated in a direction different from the reciprocating direction of the movable portion of the linear actuator 3, the amplitude of the holding member 2 is also amplified by the second linear actuator 7. The amplitude exceeds the stroke length. In FIG. 3, since the drawing is complicated, illustration of the traveling wheels 4 b provided in the lower part of the floor body 4 a of the movable floor 4 is omitted. 3 indicates the reciprocating direction of the movable portion of the actuator 3, that is, the reciprocating direction, and the broken arrow indicates the reciprocating motion of the movable portion (not shown) of the second actuator 7. Shows direction.

他の実施の形態における起震装置K2にあっては、一実施の形態と同様の構成を備えている、すなわち、保持部材2、リニアアクチュエータ3、可動床4およびばね要素5を備えているので、保持部材2上では、可動床4は、上述の一実施の形態の起震装置K1と同様の動作を呈する。なお、この例の場合、第二リニアアクチュエータ7については、保持部材2、可動床4、リニアアクチュエータ3およびばね要素5を加振するので、これらと第二ばね要素8の系における固有振動数を求め、当該固有振動数で第二リニアアクチュエータ7を駆動することになる。具体的には、起震装置K1と同様の部材に走行輪2cを加算した質量と第二ばね要素8のばね定数から固有振動数を求めればよい。   The seismic device K2 in the other embodiment has the same configuration as that of the embodiment, that is, the holding member 2, the linear actuator 3, the movable floor 4, and the spring element 5 are provided. On the holding member 2, the movable floor 4 exhibits the same operation as that of the seismic device K1 of the above-described embodiment. In this example, for the second linear actuator 7, the holding member 2, the movable floor 4, the linear actuator 3 and the spring element 5 are vibrated, so the natural frequency in the system of these and the second spring element 8 is Thus, the second linear actuator 7 is driven at the natural frequency. Specifically, the natural frequency may be obtained from the mass obtained by adding the traveling wheel 2c to the same member as the seismic device K1 and the spring constant of the second spring element 8.

このように起震装置K2を構成することで、可動床4が異なる方向へ伸縮するリニアアクチュエータ3と第二リニアアクチュエータ7によって振動せしめられるので、可動床4は、2自由度で振動せしめられ、より実際に近い地震動を再現することができるようになる。   By configuring the seismic device K2 in this way, the movable floor 4 is vibrated by the linear actuator 3 and the second linear actuator 7 that expand and contract in different directions, so that the movable floor 4 is vibrated with two degrees of freedom. It will be possible to reproduce seismic motion that is closer to reality.

また、第二リニアアクチュエータ7のストローク長以上の振幅で保持部材2を振動させることができるので、装置の大型化を回避しつつ長周期地震動の再現が可能となるのは当然である。   Further, since the holding member 2 can be vibrated with an amplitude greater than or equal to the stroke length of the second linear actuator 7, it is natural that long-period ground motion can be reproduced while avoiding an increase in the size of the apparatus.

なお、上述した通り、第二保持部材6と保持部材2との関係は、図1に示した一実施の形態における保持部材2と可動床4との関係に相当しており、これらの構造については、保持部材2と可動床4の詳細説明で説明したように、各種の構造を採用することが可能であることは当然である。   As described above, the relationship between the second holding member 6 and the holding member 2 corresponds to the relationship between the holding member 2 and the movable floor 4 in the embodiment shown in FIG. Of course, as described in the detailed description of the holding member 2 and the movable floor 4, various structures can be adopted.

また、図示したところでは、第二リニアアクチュエータ7とリニアアクチュエータ3とが、可動床4を水平方向に移動させるようになっているが、いずれか一方または両方の可動部の往復動方向に上下方向成分を含ませるようにしてもよい。この場合には、可動床4を傾かせずに振動させることができるように、保持部材2と第二保持部材6との間、可動床4と保持部材2との間にリニアガイドを設けるとよい。   Further, in the illustrated case, the second linear actuator 7 and the linear actuator 3 move the movable floor 4 in the horizontal direction, but in the vertical direction in the reciprocating direction of one or both of the movable parts. You may make it include a component. In this case, when a linear guide is provided between the holding member 2 and the second holding member 6 and between the movable floor 4 and the holding member 2 so that the movable floor 4 can be vibrated without being tilted. Good.

さらに、第二リニアアクチュエータ7の可動部の往復動方向と、リニアアクチュエータ3の可動部Mの往復動方向と、可動床4の移動方向と、保持部材2の移動方向とを一致させるようにすることも可能である。この場合には、第二リニアアクチュエータ7の伸縮によって保持部材2が共振し、さらに、リニアアクチュエータ3の伸縮によって可動床4も保持部材2と同一方向へ共振するので、可動床4の振動の振幅を起震装置K1よりもさらに大きくすることができる。   Furthermore, the reciprocating direction of the movable part of the second linear actuator 7, the reciprocating direction of the movable part M of the linear actuator 3, the moving direction of the movable floor 4, and the moving direction of the holding member 2 are made to coincide. It is also possible. In this case, the holding member 2 resonates due to the expansion and contraction of the second linear actuator 7, and the movable floor 4 also resonates in the same direction as the holding member 2 due to the expansion and contraction of the linear actuator 3. Can be made larger than the seismic device K1.

最後に、図4に示した別の実施の形態の起震装置K3を説明する。この起震装置K3は、可動床4を3軸の方向へ振動させるようにしたものである。   Finally, the seismic device K3 of another embodiment shown in FIG. 4 will be described. The seismic device K3 is configured to vibrate the movable floor 4 in the directions of three axes.

この起震装置K3は、図4に示すように、他の実施の形態の起震装置K2に第三保持部材9、第三リニアアクチュエータ10および第三ばね要素11を追加して設けている。   As shown in FIG. 4, the seismic device K <b> 3 is provided with a third holding member 9, a third linear actuator 10, and a third spring element 11 in addition to the seismic device K <b> 2 of another embodiment.

具体的には、第二保持部材6と第三保持部材9との間にリニアアクチュエータ3の伸縮方向と第二リニアアクチュエータ7の伸縮方向と異なり、これらアクチュエータ3,7の伸縮方向を含む平面内にない方向へ伸縮する第三リニアアクチュエータ10と第三ばね要素11とを直列接続して介装してある。第三リニアアクチュエータ9については、詳細には図示しないが、リニアアクチュエータ3と同様に、直線方向へ往復動する可動部を備えており、各種のリニアアクチュエータの使用が可能であり、第三ばね要素11についてもばね要素5と同様である。なお、図4では、図が複雑となるため、可動床4の走行輪4bと保持部材2の走行輪2cの図示を省略している。また、図4中の実線矢印は、アクチュエータ3の可動部の往復動方向を示しており、破線矢印は、第二アクチュエータ7の可動部の往復動方向を示しており、さらに、図4中一点鎖線矢印は、第三アクチュエータ10の可動部の往復動方向を示している。   Specifically, unlike the expansion / contraction direction of the linear actuator 3 and the expansion / contraction direction of the second linear actuator 7 between the second holding member 6 and the third holding member 9, an in-plane including the expansion / contraction direction of the actuators 3, 7 is included. A third linear actuator 10 that expands and contracts in a direction that is not present and a third spring element 11 are connected in series. Although not shown in detail, the third linear actuator 9 includes a movable portion that reciprocates in the linear direction, like the linear actuator 3, and can use various linear actuators. 11 is the same as the spring element 5. 4, the illustration of the traveling wheel 4b of the movable floor 4 and the traveling wheel 2c of the holding member 2 is omitted because the drawing is complicated. 4 indicates the reciprocating direction of the movable part of the actuator 3, and the broken line arrow indicates the reciprocating direction of the movable part of the second actuator 7. Further, in FIG. A chain line arrow indicates a reciprocating direction of the movable portion of the third actuator 10.

可動床4の3軸の各方向への振動は、リニアアクチュエータ3、第二リニアアクチュエータ7および第三リニアアクチュエータ10によって与えられるが、必ずしも、三軸の方向はそれぞれが直行する方向でなくともよく、各リニアアクチュエータ3,7,10の伸縮方向が全て異なっており、これらの三つのリニアアクチュエータ3,7,10のうち一つの伸縮方向が、残り二つの伸縮方向を含む平面内になければ、可動床4を3次元的に振動させることができる。   The vibration in the three directions of the movable floor 4 is given by the linear actuator 3, the second linear actuator 7, and the third linear actuator 10, but the directions of the three axes do not necessarily have to be orthogonal to each other. The expansion / contraction directions of the linear actuators 3, 7, and 10 are all different, and one of the three linear actuators 3, 7, and 10 is not in the plane including the remaining two expansion / contraction directions, The movable floor 4 can be vibrated three-dimensionally.

この実施の形態では、第二保持部材6を第三保持部材9に対して上下方向へ振動させるようにしており、そのために、第三保持部材9は、第三リニアアクチュエータ10の一端を保持する基部9aと、基部9aから立ち上がるガイドレール9bとを備えており、第二保持部材6は、ガイドレール9bをスライド自在に把持するスライダ6cを備えている。   In this embodiment, the second holding member 6 is caused to vibrate in the vertical direction with respect to the third holding member 9. For this purpose, the third holding member 9 holds one end of the third linear actuator 10. The base 9a includes a guide rail 9b that rises from the base 9a. The second holding member 6 includes a slider 6c that slidably holds the guide rail 9b.

また、第二保持部材6の走行床6aと第三リニアアクチュエータ10の他端との間には第三ばね要素11が介装されており、第三リニアアクチュエータ10を伸縮させることで、第二保持部材6を図3中に示すように一点鎖線方向へ振動させることができる。そして、この別の実施の形態における第三保持部材9と第二保持部材6との関係は、図1に示した一実施の形態における保持部材2と可動床4との関係、図3に示した他の実施の形態における第二保持部材6と保持部材2との関係に相当している。したがって、この第三保持部材9と第二保持部材6との間に介装される第三リニアアクチュエータ10と第三ばね要素11とで、第三保持部材9に対して第二保持部材6を振動させるとともに、その振幅も第三リニアアクチュエータ10の振幅が増幅されるため、第三リニアアクチュエータ10のストローク長を超える振幅となる。   A third spring element 11 is interposed between the traveling floor 6 a of the second holding member 6 and the other end of the third linear actuator 10, and the second linear actuator 10 can be expanded and contracted to extend the second As shown in FIG. 3, the holding member 6 can be vibrated in the direction of the one-dot chain line. The relationship between the third holding member 9 and the second holding member 6 in this other embodiment is shown in FIG. 3 as the relationship between the holding member 2 and the movable floor 4 in the embodiment shown in FIG. This corresponds to the relationship between the second holding member 6 and the holding member 2 in another embodiment. Therefore, the second holding member 6 is attached to the third holding member 9 by the third linear actuator 10 and the third spring element 11 interposed between the third holding member 9 and the second holding member 6. In addition to the vibration, the amplitude of the third linear actuator 10 is amplified, so that the amplitude exceeds the stroke length of the third linear actuator 10.

なお、別の実施の形態における起震装置K3にあっては、他実施の形態と同様の構成を備えているので、第二保持部材6上では、保持部材2および可動床4は、上述の他の実施の形態の起震装置K2と同様の動作を呈する。なお、この例の場合、第三リニアアクチュエータ10については、起震装置K2に相当する部材にスライダ6cを加算した質量と第三ばね要素11のばね定数から固有振動数を求め、当該固有振動数で第三リニアアクチュエータ10を駆動することになる。   In addition, in the seismic device K3 in another embodiment, since it has the same configuration as in the other embodiments, on the second holding member 6, the holding member 2 and the movable floor 4 have the above-described configuration. The same operation as that of the seismic device K2 of other embodiments is exhibited. In the case of this example, for the third linear actuator 10, the natural frequency is obtained from the mass obtained by adding the slider 6 c to the member corresponding to the seismic device K 2 and the spring constant of the third spring element 11. Thus, the third linear actuator 10 is driven.

このように起震装置K3を構成することで、可動床4が3軸方向へ振動させることができ、可動床4は、3次元的に振動せしめられるので、より精密に地震動を再現することができるようになる。   By constructing the seismic device K3 in this manner, the movable floor 4 can be vibrated in three axial directions, and the movable floor 4 can be vibrated three-dimensionally, so that the earthquake motion can be reproduced more precisely. become able to.

また、第三リニアアクチュエータ10のストローク長以上の振幅で第二保持部材6を振動させることができるので、装置の大型化を回避しつつ長周期地震動の再現が可能となるのは当然である。   Further, since the second holding member 6 can be vibrated with an amplitude equal to or greater than the stroke length of the third linear actuator 10, it is natural that long-period ground motion can be reproduced while avoiding an increase in the size of the apparatus.

なお、上述した通り、第三保持部材9と第二保持部材6との関係は、上記したように保持部材2と可動床4との関係に相当しており、これらの構造については、保持部材2と可動床4の詳細説明で説明したように、各種の構造を採用することが可能であることは当然である。   As described above, the relationship between the third holding member 9 and the second holding member 6 corresponds to the relationship between the holding member 2 and the movable floor 4 as described above. As described in the detailed description of the movable floor 4 and the movable floor 4, various structures can naturally be employed.

さらに、本実施の形態では、第三保持部材9に対して第二保持部材6を上下方向へ振動させるようにしているが、第二保持部材6に対して保持部材2を上下方向へ振動させる態様としてよいし、保持部材2に対して可動床4を上下方向へ振動させる態様としてもよいことは当然である。   Further, in the present embodiment, the second holding member 6 is caused to vibrate in the vertical direction with respect to the third holding member 9, but the holding member 2 is caused to vibrate in the vertical direction with respect to the second holding member 6. Naturally, it is possible to adopt a mode in which the movable floor 4 is vibrated in the vertical direction relative to the holding member 2.

またさらに、第三リニアアクチュエータ10の可動部の往復動方向と、第二リニアアクチュエータ7の可動部の往復動方向と、リニアアクチュエータ3の可動部Mの往復動方向と、可動床4の移動方向と、保持部材2の移動方向と、第二保持部材5の移動方向を一致させるようにすることも可能である。この場合には、第三リニアアクチュエータ10の伸縮によって第二保持部材6が共振し、第二リニアアクチュエータ7の伸縮によって保持部材2が共振し、さらに、リニアアクチュエータ3の伸縮によって可動床4も保持部材2と同一方向へ共振するので、可動床4の振動の振幅を起震装置K1よりもさらに大きくすることができる。   Furthermore, the reciprocating direction of the movable part of the third linear actuator 10, the reciprocating direction of the movable part of the second linear actuator 7, the reciprocating direction of the movable part M of the linear actuator 3, and the moving direction of the movable floor 4. It is also possible to make the movement direction of the holding member 2 coincide with the movement direction of the second holding member 5. In this case, the second holding member 6 resonates due to the expansion / contraction of the third linear actuator 10, the holding member 2 resonates due to the expansion / contraction of the second linear actuator 7, and the movable floor 4 is also held by the expansion / contraction of the linear actuator 3. Since the resonance occurs in the same direction as the member 2, the amplitude of the vibration of the movable floor 4 can be made larger than that of the seismic device K1.

以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されないことは勿論である。   This is the end of the description of the embodiment of the present invention, but the scope of the present invention is of course not limited to the details shown or described.

本発明の起震装置は、地震動を体験したり地震動を与えて実験するための地震シミュレータ等に利用することが可能である。   The seismic device of the present invention can be used in an earthquake simulator or the like for experiencing an earthquake motion or giving an experiment and performing an experiment.

2 保持部材
3 リニアアクチュエータ
5 ばね要素
6 第二保持部材
7 第二リニアアクチュエータ
8 第二ばね要素
9 第三保持部材
10 第三リニアアクチュエータ
11 第三ばね要素
M 可動部
K1,K2,K3 起震装置
2 holding member 3 linear actuator 5 spring element 6 second holding member 7 second linear actuator 8 second spring element 9 third holding member 10 third linear actuator 11 third spring element M movable parts K1, K2, K3

Claims (5)

直線方向に往復動可能な可動部を有するリニアアクチュエータと、上記可動部の往復動により伸縮するばね要素と、上記リニアアクチュエータとばね要素のいずれか一方を保持する保持部材と、上記保持部材に対して少なくとも上記可動部の往復動方向と同一方向へ相対移動が可能な可動床とを備え、上記保持部材と上記可動床との間に上記リニアアクチュエータと上記ばね要素とが直列に接続されて介装されたことを特徴とする起震装置。 A linear actuator having a movable part that can reciprocate in a linear direction, a spring element that expands and contracts by reciprocating movement of the movable part, a holding member that holds one of the linear actuator and the spring element, and the holding member A movable floor capable of relative movement in the same direction as the reciprocating direction of the movable portion, and the linear actuator and the spring element are connected in series between the holding member and the movable floor. Seismic device characterized by wearing. 直線方向に往復動可能な可動部を有する第二リニアアクチュエータと、上記第二リニアアクチュエータの可動部の往復動により伸縮する第二ばね要素と、上記第二リニアアクチュエータと第二ばね部材のいずれか一方を保持する第二保持部材とを備え、上記保持部材が上記第二保持部材に対して少なくとも上記第二リニアアクチュエータの可動部の移動方向と同一方向へ相対移動が可能であって、上記保持部材と上記第二保持部材との間に上記第二リニアアクチュエータと上記第二ばね要素とが直列に接続されて介装されたことを特徴とする請求項1に記載の起震装置。 One of a second linear actuator having a movable part that can reciprocate in a linear direction, a second spring element that expands and contracts by a reciprocating movement of the movable part of the second linear actuator, and the second linear actuator and the second spring member A second holding member for holding one of the holding members, and the holding member can be moved relative to the second holding member at least in the same direction as the moving direction of the movable portion of the second linear actuator, The seismic device according to claim 1, wherein the second linear actuator and the second spring element are connected in series and interposed between a member and the second holding member. 上記リニアアクチュエータの可動部の往復動方向と上記第二リニアアクチュエータの可動部の往復動方向とが異なることを特徴とする請求項2に記載の起震装置。 The seismic device according to claim 2, wherein the reciprocating direction of the movable part of the linear actuator is different from the reciprocating direction of the movable part of the second linear actuator. 直線方向に往復動可能な可動部を有する第三リニアアクチュエータと、上記第三リニアアクチュエータの可動部の往復動により伸縮する第三ばね要素と、上記第三リニアアクチュエータと第三ばね要素のいずれか一方を保持する第三保持部材とを備え、上記第二保持部材が上記第三保持部材に対して少なくとも上記第三リニアアクチュエータの可動部の往復動方向と同一方向へ相対移動が可能であって、上記第二保持部材と上記第三保持部材との間に上記第三リニアアクチュエータと上記第三ばね要素とが直列に接続されて介装されたことを特徴とする請求項2または3に記載の起震装置。 One of a third linear actuator having a movable part that can reciprocate in a linear direction, a third spring element that expands and contracts by a reciprocating movement of the movable part of the third linear actuator, and the third linear actuator and the third spring element A third holding member for holding one, and the second holding member is capable of relative movement with respect to the third holding member at least in the same direction as the reciprocating direction of the movable portion of the third linear actuator. The third linear actuator and the third spring element are connected in series between the second holding member and the third holding member, and are interposed between the second holding member and the third holding member. Seismic device. 上記第三リニアアクチュエータの可動部の往復動方向は、上記リニアアクチュエータの可動部の往復動方向と上記第二リニアアクチュエータの可動部の往復動方向の双方を含む平面に含まれないことを特徴とする請求項4に記載の起震装置。 The reciprocating direction of the movable part of the third linear actuator is not included in a plane including both the reciprocating direction of the movable part of the linear actuator and the reciprocating direction of the movable part of the second linear actuator. The seismic device according to claim 4.
JP2011043454A 2011-03-01 2011-03-01 Seismic device Active JP5763936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011043454A JP5763936B2 (en) 2011-03-01 2011-03-01 Seismic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011043454A JP5763936B2 (en) 2011-03-01 2011-03-01 Seismic device

Publications (2)

Publication Number Publication Date
JP2012181297A true JP2012181297A (en) 2012-09-20
JP5763936B2 JP5763936B2 (en) 2015-08-12

Family

ID=47012556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011043454A Active JP5763936B2 (en) 2011-03-01 2011-03-01 Seismic device

Country Status (1)

Country Link
JP (1) JP5763936B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111538409A (en) * 2020-04-15 2020-08-14 广东小天才科技有限公司 Earthquake self-rescue training method and device and wearable equipment
CN113674576A (en) * 2021-07-30 2021-11-19 中国地震局工程力学研究所 Building teaching earthquake simulator for earthquake prevention

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4409860A (en) * 1979-04-06 1983-10-18 Hitachi, Ltd. Apparatus for precisely moving a table
JPH0523441A (en) * 1991-07-18 1993-02-02 Mitsubishi Heavy Ind Ltd Biaxial vibration table device
JPH0724475U (en) * 1993-10-15 1995-05-09 三菱プレシジョン株式会社 Seismic device
JPH07185458A (en) * 1993-12-28 1995-07-25 Yotaro Hatamura Device for generating low frequency pulsating current
JPH08178792A (en) * 1994-12-20 1996-07-12 Ohbayashi Corp Rocking vibration tester
CN1614444A (en) * 2004-11-29 2005-05-11 成都理工大学 Two-way and three-freedom spring seismic analog vibrating stand
JP2005169292A (en) * 2003-12-12 2005-06-30 Koganei Corp Vibration device
CN101050994A (en) * 2007-04-24 2007-10-10 江苏大学 Three translation parallel mechanism multiple dimension vibration exciting table
JP2009098563A (en) * 2007-10-19 2009-05-07 Kayaba System Machinery Kk Earthquake generating car
CN102280062A (en) * 2010-06-10 2011-12-14 张永清 Building earthquake simulation experiment inspection equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4409860A (en) * 1979-04-06 1983-10-18 Hitachi, Ltd. Apparatus for precisely moving a table
JPH0523441A (en) * 1991-07-18 1993-02-02 Mitsubishi Heavy Ind Ltd Biaxial vibration table device
JPH0724475U (en) * 1993-10-15 1995-05-09 三菱プレシジョン株式会社 Seismic device
JPH07185458A (en) * 1993-12-28 1995-07-25 Yotaro Hatamura Device for generating low frequency pulsating current
JPH08178792A (en) * 1994-12-20 1996-07-12 Ohbayashi Corp Rocking vibration tester
JP2005169292A (en) * 2003-12-12 2005-06-30 Koganei Corp Vibration device
CN1614444A (en) * 2004-11-29 2005-05-11 成都理工大学 Two-way and three-freedom spring seismic analog vibrating stand
CN101050994A (en) * 2007-04-24 2007-10-10 江苏大学 Three translation parallel mechanism multiple dimension vibration exciting table
JP2009098563A (en) * 2007-10-19 2009-05-07 Kayaba System Machinery Kk Earthquake generating car
CN102280062A (en) * 2010-06-10 2011-12-14 张永清 Building earthquake simulation experiment inspection equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111538409A (en) * 2020-04-15 2020-08-14 广东小天才科技有限公司 Earthquake self-rescue training method and device and wearable equipment
CN111538409B (en) * 2020-04-15 2023-12-22 广东小天才科技有限公司 Earthquake self-rescue training method and device and wearable equipment
CN113674576A (en) * 2021-07-30 2021-11-19 中国地震局工程力学研究所 Building teaching earthquake simulator for earthquake prevention
CN113674576B (en) * 2021-07-30 2023-03-28 中国地震局工程力学研究所 Building teaching earthquake simulator for earthquake prevention

Also Published As

Publication number Publication date
JP5763936B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP6559852B2 (en) Excitation device, actuator, and actuator fixing part support mechanism
WO2012147607A1 (en) Electrodynamic actuator and electrodynamic excitation device
US20160082870A1 (en) Seat suspension
JP7272955B2 (en) linear electric machine
JP2012237736A5 (en) Linear motion actuator and vibration device
JP2005524064A (en) High frequency multi-degree-of-freedom vibration test machine
JP2019113440A (en) Vibration tester
CN104308838A (en) High/low-frequency composite driving six-degree-of-freedom parallel movement platform
Chen et al. Modeling and experimental validation of new two degree-of-freedom piezoelectric actuators
JP4410725B2 (en) Vertical seismic isolation unit and seismic isolation device using the same
JP5763936B2 (en) Seismic device
JP2009214243A (en) Working machine provided with shuttle
JP5836057B2 (en) Vibration device
JP6276174B2 (en) Vibration test equipment
KR101401033B1 (en) Vibration exciter in the horizontal and vertical direction
JP2015059917A (en) Triaxial test machine for laminated rubber
JP6322090B2 (en) Shaker
JP6191538B2 (en) Vibration test equipment
JP3073369B2 (en) Tuned active damping device
JP2001271869A (en) Vibration control device
KR20070101508A (en) Micro piezoelectric motor
RU2656326C2 (en) Vibration machine
JP2006255844A (en) Machine tool
JP2001271880A (en) Base isolating apparatus
JPH10216633A (en) Vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150612

R150 Certificate of patent or registration of utility model

Ref document number: 5763936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350