JP2012181003A - Boiler device and high temperature air combustion system - Google Patents

Boiler device and high temperature air combustion system Download PDF

Info

Publication number
JP2012181003A
JP2012181003A JP2011046104A JP2011046104A JP2012181003A JP 2012181003 A JP2012181003 A JP 2012181003A JP 2011046104 A JP2011046104 A JP 2011046104A JP 2011046104 A JP2011046104 A JP 2011046104A JP 2012181003 A JP2012181003 A JP 2012181003A
Authority
JP
Japan
Prior art keywords
temperature
air
combustion
secondary air
pulverized coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011046104A
Other languages
Japanese (ja)
Other versions
JP5961914B2 (en
Inventor
Masahito Tamura
雅人 田村
Takahiro Ozaki
貴弘 小崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011046104A priority Critical patent/JP5961914B2/en
Publication of JP2012181003A publication Critical patent/JP2012181003A/en
Application granted granted Critical
Publication of JP5961914B2 publication Critical patent/JP5961914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To provide a boiler device and a high temperature air combustion system for high temperature air combustion capable of shortening a time the high temperature air combustion becomes possible in the boiler and the operation from starting the boiler to reaching the high temperature air combustion can be smoothly carried out.SOLUTION: The boiler device has a boiler 1, a pulverized coal nozzle 4 arranged in the furnace wall of the boiler and discharging pulverized coal, air nozzles 5 arranged adjacent to the pulverized coal nozzle discharging the secondary air, a heat exchanger 2 raising the temperature of the secondary air fed to the air nozzles 5 by the heat exchanging with the exhausted gas of the boiler, and a duct burner 21 raising the temperature of the secondary air by carrying out combustion in the supplying channel 18 of the secondary air, the high temperature air combustion is carried out with the secondary air discharged from the air nozzles 5 and the pulverized coal discharged from the pulverized coal nozzle 4.

Description

本発明は、高温空気燃焼させるボイラ装置及び高温空気燃焼システムに関するものである。   The present invention relates to a boiler apparatus and a high-temperature air combustion system that perform high-temperature air combustion.

高温の燃焼用空気を燃料とは分離した空気ノズルで供給し、高温状態とした炉内に燃料を噴射して燃焼させる高温空気燃焼方式のボイラ装置(以下、高温空気燃焼ボイラ装置)がある。高温空気燃焼ボイラ装置では、炉内を高温にできることから、火炉の小型化が可能であり、又酸素濃度の低い還元雰囲気で燃焼を行わせることができるので、窒素酸化物の発生を抑制することができるという利点がある。   There is a high-temperature air combustion type boiler apparatus (hereinafter referred to as a high-temperature air combustion boiler apparatus) in which high-temperature combustion air is supplied by an air nozzle separated from fuel and the fuel is injected into a furnace in a high-temperature state and burned. In the high-temperature air-fired boiler device, the furnace can be heated to a high temperature, so that the furnace can be downsized, and combustion can be performed in a reducing atmosphere with a low oxygen concentration, thereby suppressing the generation of nitrogen oxides. There is an advantage that can be.

一方、高温空気燃焼ボイラ装置は、ボイラ始動から高温空気燃焼に至る運転を円滑に行うことが望まれる。   On the other hand, it is desired that the high-temperature air combustion boiler apparatus smoothly performs the operation from the boiler start to the high-temperature air combustion.

尚、高温空気燃焼させるボイラ装置としては、特許文献1に示されるものがあり、特許文献1には、火炉から燃焼排気ガスの一部を抽気し、抽気した燃焼排気ガスにより燃焼用空気を微粉炭の着火温度以上の温度に加熱して高温燃焼用空気を生成するボイラ装置が開示されている。   In addition, as a boiler apparatus which carries out high temperature air combustion, there exists what is shown by patent document 1, and patent document 1 extracts a part of combustion exhaust gas from a furnace, and finely pulverizes combustion air with the extracted combustion exhaust gas. A boiler device that generates high-temperature combustion air by heating to a temperature equal to or higher than the ignition temperature of charcoal is disclosed.

特開2005−265300号公報JP 2005-265300 A

本発明は斯かる実情に鑑み、ボイラが高温空気燃焼を実現可能となる迄の時間を短縮し、ボイラ始動から高温空気燃焼に至る運転をより円滑に行い得る高温空気燃焼用のボイラ装置及び高温空気燃焼システムを提供するものである。   In view of such circumstances, the present invention shortens the time until the boiler can realize high-temperature air combustion, and can perform a high-temperature air combustion boiler apparatus and a high-temperature combustion apparatus that can smoothly perform operations from boiler startup to high-temperature air combustion. An air combustion system is provided.

本発明は、ボイラと、該ボイラの炉壁に設けられ微粉炭を噴出する微粉炭ノズルと、該微粉炭ノズルに隣接して設けられ、2次空気を噴出する空気ノズルと、前記ボイラの排ガスとの熱交換により前記空気ノズルに送給される2次空気の温度を上昇させる熱交換器と、2次空気の供給路内で燃焼を行い2次空気の温度を上昇させるダクトバーナとを具備し、前記空気ノズルから噴出する2次空気と前記微粉炭ノズルから噴出する微粉炭により高温空気燃焼させるボイラ装置に係るものである。   The present invention includes a boiler, a pulverized coal nozzle that is provided on a furnace wall of the boiler and ejects pulverized coal, an air nozzle that is provided adjacent to the pulverized coal nozzle and ejects secondary air, and exhaust gas of the boiler A heat exchanger that raises the temperature of the secondary air supplied to the air nozzle by heat exchange with the duct, and a duct burner that burns in the supply path of the secondary air and raises the temperature of the secondary air. The present invention relates to a boiler device that performs high-temperature air combustion using secondary air ejected from the air nozzle and pulverized coal ejected from the pulverized coal nozzle.

又本発明は、前記空気ノズルに供給される2次空気の温度を検出する温度検出器と、該温度検出器の検出結果を基に前記ダクトバーナの燃焼量を制御する制御装置とを更に具備するボイラ装置に係るものである。   The present invention further includes a temperature detector for detecting the temperature of the secondary air supplied to the air nozzle, and a control device for controlling the combustion amount of the duct burner based on the detection result of the temperature detector. It concerns a boiler device.

又本発明は、ボイラと、該ボイラの炉壁に設けられ、微粉炭と高温の2次空気により高温空気燃焼を行うバーナと、前記ボイラの排ガスとの熱交換により燃焼用の2次空気の温度を上昇させる熱交換器と、2次空気の供給路内で燃焼を行い2次空気の温度を上昇させるダクトバーナと、排ガスの一部を抽出し2次空気と混合させる排気循環系と、前記バーナに供給される2次空気の温度を検出する第1の温度検出器と、前記ダクトバーナの燃焼を制御すると共に混合する排ガスの量を制御する制御装置とを具備し、該制御装置は前記第1の温度検出器によって検出される2次空気の温度が所定の値となる様に、前記ダクトバーナの燃焼量及び2次空気への排ガスの混合量を制御する高温空気燃焼システムに係るものである。   Further, the present invention provides a boiler, a burner provided on the furnace wall of the boiler, which performs high-temperature air combustion with pulverized coal and high-temperature secondary air, and the secondary air for combustion by heat exchange with the exhaust gas of the boiler. A heat exchanger that raises the temperature, a duct burner that burns in the supply path of the secondary air and raises the temperature of the secondary air, an exhaust circulation system that extracts a part of the exhaust gas and mixes it with the secondary air, A first temperature detector for detecting the temperature of the secondary air supplied to the burner; and a controller for controlling the combustion of the duct burner and for controlling the amount of exhaust gas to be mixed. The high-temperature air combustion system controls the amount of combustion of the duct burner and the amount of exhaust gas mixed into the secondary air so that the temperature of the secondary air detected by the temperature detector 1 becomes a predetermined value. .

更に又本発明は、排ガスの温度を検出する第2の温度検出器と、前記熱交換器により加熱された2次空気の温度を検出する第3の温度検出器を更に具備し、前記制御装置は前記第2の温度検出器及び前記第3の温度検出器による検出結果に基づき、前記ダクトバーナの燃焼量及び2次空気への排ガスの混合量を制御する高温空気燃焼システムに係るものである。   Furthermore, the present invention further comprises a second temperature detector for detecting the temperature of the exhaust gas and a third temperature detector for detecting the temperature of the secondary air heated by the heat exchanger, Is related to a high-temperature air combustion system for controlling the amount of combustion of the duct burner and the amount of exhaust gas mixed into the secondary air based on the detection results of the second temperature detector and the third temperature detector.

本発明によれば、ボイラと、該ボイラの炉壁に設けられ微粉炭を噴出する微粉炭ノズルと、該微粉炭ノズルに隣接して設けられ、2次空気を噴出する空気ノズルと、前記ボイラの排ガスとの熱交換により前記空気ノズルに送給される2次空気の温度を上昇させる熱交換器と、2次空気の供給路内で燃焼を行い2次空気の温度を上昇させるダクトバーナとを具備し、前記空気ノズルから噴出する2次空気と前記微粉炭ノズルから噴出する微粉炭により高温空気燃焼させるので、排ガスの温度が低く、前記熱交換器により充分に2次空気の温度を上昇させることができない場合であっても高温空気燃焼の実現が可能となり、高温空気燃焼が実現可能となる迄の時間を短縮でき、前記ボイラの始動から高温空気燃焼に至る運転を円滑に行うことができる。   According to the present invention, a boiler, a pulverized coal nozzle that is provided on a furnace wall of the boiler and ejects pulverized coal, an air nozzle that is provided adjacent to the pulverized coal nozzle and ejects secondary air, and the boiler A heat exchanger that raises the temperature of the secondary air that is fed to the air nozzle by heat exchange with the exhaust gas, and a duct burner that burns in the supply path of the secondary air and raises the temperature of the secondary air Since the high-temperature air combustion is performed by the secondary air ejected from the air nozzle and the pulverized coal ejected from the pulverized coal nozzle, the temperature of the exhaust gas is low, and the temperature of the secondary air is sufficiently increased by the heat exchanger. Even if this is not possible, high-temperature air combustion can be realized, the time until high-temperature air combustion can be realized can be shortened, and the operation from the start of the boiler to high-temperature air combustion can be performed smoothly. That.

又本発明によれば、ボイラと、該ボイラの炉壁に設けられ、微粉炭と高温の2次空気により高温空気燃焼を行うバーナと、前記ボイラの排ガスとの熱交換により燃焼用の2次空気の温度を上昇させる熱交換器と、2次空気の供給路内で燃焼を行い2次空気の温度を上昇させるダクトバーナと、排ガスの一部を抽出し2次空気と混合させる排気循環系と、前記バーナに供給される2次空気の温度を検出する第1の温度検出器と、前記ダクトバーナの燃焼を制御すると共に混合する排ガスの量を制御する制御装置とを具備し、該制御装置は前記第1の温度検出器によって検出される2次空気の温度が所定の値となる様に、前記ダクトバーナの燃焼量及び2次空気への排ガスの混合量を制御するので、排ガスの温度が低く、前記熱交換器及び排ガスとの混合により充分に2次空気の温度を上昇させることができない場合であっても高温空気燃焼の実現が可能となり、高温空気燃焼が実現可能となる迄の時間を短縮でき、前記ボイラの始動から高温空気燃焼に至る運転を円滑に行うことができるという優れた効果を発揮する。   According to the present invention, a boiler, a burner provided on the furnace wall of the boiler, which performs high-temperature air combustion with pulverized coal and high-temperature secondary air, and a secondary for combustion by heat exchange with the exhaust gas of the boiler A heat exchanger that raises the temperature of the air, a duct burner that burns in the supply path of the secondary air and raises the temperature of the secondary air, and an exhaust circulation system that extracts a part of the exhaust gas and mixes it with the secondary air A first temperature detector for detecting the temperature of the secondary air supplied to the burner, and a controller for controlling the combustion of the duct burner and controlling the amount of exhaust gas to be mixed. Since the combustion amount of the duct burner and the amount of exhaust gas mixed into the secondary air are controlled so that the temperature of the secondary air detected by the first temperature detector becomes a predetermined value, the temperature of the exhaust gas is low. , The heat exchanger and exhaust gas Even if the temperature of the secondary air cannot be sufficiently increased by mixing, it is possible to realize high-temperature air combustion, and to shorten the time until high-temperature air combustion can be realized. It exhibits an excellent effect that the operation leading to high-temperature air combustion can be performed smoothly.

本発明の実施例に係るボイラ装置を示す概略構成図である。It is a schematic block diagram which shows the boiler apparatus which concerns on the Example of this invention. 該ボイラ装置に用いられる微粉炭バーナ及び燃焼空気ノズルの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the pulverized coal burner and combustion air nozzle which are used for this boiler apparatus. 該ボイラ装置に於ける高温空気燃焼の段階的制御を説明するフローチャートである。It is a flowchart explaining the stepwise control of the high temperature air combustion in this boiler apparatus.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、図1に於いて、本実施例に係るボイラ装置について概略を説明する。   First, referring to FIG. 1, an outline of the boiler apparatus according to this embodiment will be described.

図1中、1は火炉、2は排ガスの余熱を熱源とした熱交換器、3は微粉炭ミル、4は炉壁に設けられた所要数の微粉炭バーナ、5は炉壁に設けられた燃焼空気ノズル、6は1次空気を送出する1次空気送風機、7は2次空気を送出する2次空気送風機、8は排ガスを排出する排ガス送風機、9は制御装置を示している。前記微粉炭バーナ4と前記燃焼空気ノズル5は上下に複数段(図示では3段を例示している)配設されている。尚、前記火炉1の炉壁には炉内からの輻射熱を吸収する伝熱管(図示せず)が設けられ、又前記火炉1の上方には発生した蒸気を過熱する為の図示しないスーパヒータ(過熱蒸気発生器)が設けられている。   In FIG. 1, 1 is a furnace, 2 is a heat exchanger using the residual heat of the exhaust gas as a heat source, 3 is a pulverized coal mill, 4 is a required number of pulverized coal burners provided on the furnace wall, and 5 is provided on the furnace wall A combustion air nozzle, 6 is a primary air blower that sends out primary air, 7 is a secondary air blower that sends out secondary air, 8 is an exhaust gas blower that discharges exhaust gas, and 9 is a control device. The pulverized coal burner 4 and the combustion air nozzle 5 are arranged in a plurality of stages (three stages are illustrated in the figure) vertically. The furnace wall of the furnace 1 is provided with a heat transfer tube (not shown) for absorbing radiant heat from the inside of the furnace, and a super heater (not shown) for heating the generated steam above the furnace 1. Steam generator) is provided.

前記微粉炭バーナ4と前記燃焼空気ノズル5は上下で隣接する配置となっており、又前記微粉炭バーナ4と前記燃焼空気ノズル5とは水平方向に所定ピッチで交互に配設されている。即ち、前記微粉炭バーナ4と前記燃焼空気ノズル5とは、水平方向、上下方向でそれぞれ隣接する様に配置されている。   The pulverized coal burner 4 and the combustion air nozzle 5 are arranged adjacent to each other vertically, and the pulverized coal burner 4 and the combustion air nozzle 5 are alternately arranged at a predetermined pitch in the horizontal direction. That is, the pulverized coal burner 4 and the combustion air nozzle 5 are disposed so as to be adjacent to each other in the horizontal direction and the vertical direction.

尚、水平方向に交互に配設された微粉炭バーナ4と前記燃焼空気ノズル5の列は、上下2列であってもよく、1列或は上下に3列以上であってもよい。   Note that the rows of the pulverized coal burners 4 and the combustion air nozzles 5 that are alternately arranged in the horizontal direction may be two rows in the top and bottom, or one row or three or more rows in the top and bottom.

1次空気送風ダクト11は前記熱交換器2を介して前記微粉炭ミル3に接続され、前記1次空気送風ダクト11の上流端には前記1次空気送風機6が設けられている。前記1次空気送風ダクト11は前記熱交換器2で所定温度、例えば200℃に加熱された1次空気を前記微粉炭ミル3に導くものである。該微粉炭ミル3は、塊状の石炭を微粉炭に粉砕し、1次空気を搬送媒体とし、微粉炭供給管12を介し微粉炭混合流を前記微粉炭バーナ4に個別に送給する。又、各微粉炭供給管12にはカットダンパ13が設けられ、該カットダンパ13により前記微粉炭供給管12を個別に遮断、開放が可能となっており、前記微粉炭バーナ4に対して独立して微粉炭の送給停止が行える様になっている。   A primary air blower duct 11 is connected to the pulverized coal mill 3 via the heat exchanger 2, and the primary air blower 6 is provided at the upstream end of the primary air blower duct 11. The primary air blowing duct 11 guides the primary air heated to a predetermined temperature, for example, 200 ° C. by the heat exchanger 2 to the pulverized coal mill 3. The pulverized coal mill 3 pulverizes massive coal into pulverized coal, uses primary air as a carrier medium, and individually feeds the pulverized coal mixed flow to the pulverized coal burner 4 through the pulverized coal supply pipe 12. Each pulverized coal supply pipe 12 is provided with a cut damper 13, and the pulverized coal supply pipe 12 can be individually cut off and opened by the cut damper 13, and is independent of the pulverized coal burner 4. Thus, the supply of pulverized coal can be stopped.

又、前記1次空気送風ダクト11の前記熱交換器2の上流側には、1次空気バイパスダクト14の上流端と補助燃焼用空気ダクト15の上流端が接続されている。前記1次空気バイパスダクト14の下流端は前記1次空気送風ダクト11の前記熱交換器2の下流側と接続されており、加熱前の低温の1次空気を加熱後の1次空気に混合できる様になっている。前記1次空気バイパスダクト14には流量調整弁16が設けられ、該流量調整弁16により低温の1次空気の混合量が調整され、前記微粉炭ミル3に供給する1次空気の温度が調整される。   The upstream end of the primary air bypass duct 14 and the upstream end of the auxiliary combustion air duct 15 are connected to the upstream side of the heat exchanger 2 of the primary air blowing duct 11. The downstream end of the primary air bypass duct 14 is connected to the downstream side of the heat exchanger 2 of the primary air blowing duct 11 and mixes the low temperature primary air before heating with the heated primary air. It can be done. The primary air bypass duct 14 is provided with a flow rate adjusting valve 16, which adjusts the amount of low temperature primary air mixed by the flow rate adjusting valve 16 and adjusts the temperature of the primary air supplied to the pulverized coal mill 3. Is done.

前記補助燃焼用空気ダクト15の下流端は前記微粉炭バーナ4の補助燃焼バーナ(後述)に接続され、加熱前の低温の空気が補助燃焼用空気として前記補助燃焼バーナに送給される。又、前記補助燃焼用空気ダクト15には補助燃焼空気流量調整ダンパ17が設けられ、該補助燃焼空気流量調整ダンパ17により前記補助燃焼バーナに送給する低温の空気の流量を調整し、或は低温の空気の供給を遮断する様になっている。   The downstream end of the auxiliary combustion air duct 15 is connected to an auxiliary combustion burner (described later) of the pulverized coal burner 4, and low-temperature air before heating is supplied to the auxiliary combustion burner as auxiliary combustion air. The auxiliary combustion air duct 15 is provided with an auxiliary combustion air flow rate adjustment damper 17 for adjusting the flow rate of low-temperature air supplied to the auxiliary combustion burner by the auxiliary combustion air flow rate adjustment damper 17, or The supply of cold air is cut off.

2次空気の供給路である2次空気送風ダクト18は、上流端が前記熱交換器2を介して前記2次空気送風機7に接続され、下流端が各燃焼空気ノズル5に接続されている。前記2次空気送風機7から送出された2次空気は、燃焼用空気として前記2次空気送風ダクト18を経て前記熱交換器2で加熱され、更に前記2次空気送風ダクト18を経て前記燃焼空気ノズル5に送給される。   The secondary air blowing duct 18 which is a supply path for secondary air has an upstream end connected to the secondary air blower 7 via the heat exchanger 2 and a downstream end connected to each combustion air nozzle 5. . The secondary air sent from the secondary air blower 7 is heated by the heat exchanger 2 through the secondary air blower duct 18 as combustion air, and further through the secondary air blower duct 18 to the combustion air. It is fed to the nozzle 5.

前記2次空気送風ダクト18の前記熱交換器2の下流側には、上流側から第3温度検出器19、ダクトバーナ21、第1温度検出器22、燃焼空気流量調整ダンパ23が設けられている。   A third temperature detector 19, a duct burner 21, a first temperature detector 22, and a combustion air flow rate adjustment damper 23 are provided on the downstream side of the heat exchanger 2 of the secondary air blowing duct 18 from the upstream side. .

前記第3温度検出器19は、前記熱交換器2により加熱された2次空気の温度を検出し、検出結果を前記制御装置9に送出する機能を有している。前記ダクトバーナ21は、前記2次空気送風ダクト18内で油等の燃料を噴霧し着火し、燃焼を行うものであり、燃焼により発生した高温の燃焼ガスと2次空気とを混合させることで、前記熱交換器2により加熱される以上の高温の2次空気の温度を得ることができる。   The third temperature detector 19 has a function of detecting the temperature of the secondary air heated by the heat exchanger 2 and sending the detection result to the control device 9. The duct burner 21 sprays and ignites fuel such as oil in the secondary air blower duct 18 to perform combustion, and mixes high-temperature combustion gas generated by combustion with secondary air. The temperature of the secondary air that is higher than that heated by the heat exchanger 2 can be obtained.

又、前記第1温度検出器22は、後述する排ガス導管25と前記2次空気送風ダクト18との合流点より下流側に設けられ、前記燃焼空気ノズル5に送給される2次空気の温度を検出し、検出結果を前記制御装置9に送出する機能を有している。前記燃焼空気流量調整ダンパ23は、複数の前記燃焼空気ノズル5に対して高温燃焼用2次空気の供給停止、更に流量調整を一括して行う。   The first temperature detector 22 is provided on the downstream side from a junction of an exhaust gas conduit 25 and a secondary air blowing duct 18 to be described later, and the temperature of the secondary air supplied to the combustion air nozzle 5 And a detection result is sent to the control device 9. The combustion air flow rate adjustment damper 23 collectively stops the supply of high-temperature combustion secondary air to the plurality of combustion air nozzles 5 and further adjusts the flow rate.

又、前記火炉1の煙道24には前記排ガス導管25の上流端が接続され、該排ガス導管25の下流端は前記2次空気送風ダクト18の前記ダクトバーナ21と前記第1温度検出器22との間に接続されている。前記排ガス導管25には上流側から第2温度検出器26、排ガス流量調整器27が設けられており、前記排ガス導管25と前記排ガス流量調整器27とで排ガス循環系が構成される。前記排ガス導管25は前記熱交換器2により熱交換される前の高温の排ガスを前記煙道24から抽出し、前記熱交換器2及び前記ダクトバーナ21により加熱された高温の2次空気に排ガスを混合できる様になっている。高温の排ガスが2次空気に混合されることで、前記熱交換器2により加熱される以上の高温の2次空気を得ることができる。   An upstream end of the exhaust gas conduit 25 is connected to the flue 24 of the furnace 1, and the downstream end of the exhaust gas conduit 25 is connected to the duct burner 21 of the secondary air blowing duct 18 and the first temperature detector 22. Connected between. The exhaust gas conduit 25 is provided with a second temperature detector 26 and an exhaust gas flow rate regulator 27 from the upstream side, and the exhaust gas conduit 25 and the exhaust gas flow rate regulator 27 constitute an exhaust gas circulation system. The exhaust gas conduit 25 extracts the high temperature exhaust gas before being heat exchanged by the heat exchanger 2 from the flue 24, and the exhaust gas is supplied to the high temperature secondary air heated by the heat exchanger 2 and the duct burner 21. It can be mixed. By mixing the high-temperature exhaust gas with the secondary air, it is possible to obtain secondary air having a temperature higher than that heated by the heat exchanger 2.

前記第2温度検出器26は前記排ガス導管25の排ガス導入口の直近に設けられ、該排ガス導管25を流通する排ガスの温度を検出し、検出結果を前記制御装置9に送出する機能を有している。前記排ガス流量調整器27は流量調整機能と開閉機能とを有し、後述する高温空気燃焼が行われる場合に開とされ、高温の排ガスが2次空気に混合され、高温となった2次空気は高温空気燃焼用の燃焼用空気として前記燃焼空気ノズル5に送給される。   The second temperature detector 26 is provided in the immediate vicinity of the exhaust gas inlet of the exhaust gas conduit 25 and has a function of detecting the temperature of the exhaust gas flowing through the exhaust gas conduit 25 and sending the detection result to the control device 9. ing. The exhaust gas flow regulator 27 has a flow rate adjusting function and an opening / closing function, and is opened when high-temperature air combustion described later is performed, and the high-temperature exhaust gas is mixed with the secondary air, and the secondary air becomes a high temperature. Is supplied to the combustion air nozzle 5 as combustion air for high-temperature air combustion.

ここで、排ガスが混合される前の2次空気温度、即ち前記熱交換器2により加熱された2次空気温度は250℃〜300℃であり、炉内から抽出される排ガスの温度は800℃〜1400℃であり、混合後の高温空気燃焼用としての2次空気温度は550℃〜1350℃である。尚、高温空気燃焼の安定性、熱効率等を考慮すると、600℃〜850℃、例えば800℃程度の温度とするのが好ましい。   Here, the secondary air temperature before the exhaust gas is mixed, that is, the secondary air temperature heated by the heat exchanger 2 is 250 ° C. to 300 ° C., and the temperature of the exhaust gas extracted from the furnace is 800 ° C. The secondary air temperature for high temperature air combustion after mixing is 550 ° C to 1350 ° C. In view of the stability of high-temperature air combustion, thermal efficiency, etc., it is preferable to set the temperature to 600 ° C. to 850 ° C., for example, about 800 ° C.

前記微粉炭バーナ4は、補助燃焼バーナ(後述)を有しており、該補助燃焼バーナは油、又はガスを燃料とし、低温(例えば室温)で自立燃焼可能となっている。該補助燃焼バーナには前記補助燃焼用空気ダクト15及び燃料供給管28が接続され、前記補助燃焼バーナは前記燃料供給管28を介して図示しない燃料供給源に接続されている。前記燃料供給管28には、流量調整弁29が設けられ、該流量調整弁29により燃料の供給量が調整され、又燃料の供給停止が行われる。   The pulverized coal burner 4 has an auxiliary combustion burner (described later). The auxiliary combustion burner uses oil or gas as fuel, and is capable of self-combustion at a low temperature (for example, room temperature). The auxiliary combustion burner is connected to the auxiliary combustion air duct 15 and a fuel supply pipe 28, and the auxiliary combustion burner is connected to a fuel supply source (not shown) via the fuel supply pipe 28. The fuel supply pipe 28 is provided with a flow rate adjusting valve 29, the fuel supply amount is adjusted by the flow rate adjusting valve 29, and the fuel supply is stopped.

前記制御装置9には、前記第3温度検出器19、前記第1温度検出器22、前記第2温度検出器26により検出された温度信号、及びボイラ装置本体の総合的な制御を行う主制御装置からボイラ負荷状態に応じた燃焼状態を要求する燃焼制御指令が入力され、前記温度信号及び燃焼制御指令に基づき、前記微粉炭ミル3、前記カットダンパ13、前記流量調整弁16、前記補助燃焼空気流量調整ダンパ17、前記燃焼空気流量調整ダンパ23、前記排ガス流量調整器27、前記流量調整弁29を所要のタイミングで駆動、開閉を制御し、又前記ダクトバーナ21の燃焼量を制御し、前記微粉炭バーナ4の燃焼状態、前記燃焼空気ノズル5からの高温空気の噴出を制御する。   The control device 9 includes a main control for comprehensively controlling the temperature signals detected by the third temperature detector 19, the first temperature detector 22, the second temperature detector 26, and the boiler device body. A combustion control command for requesting a combustion state corresponding to the boiler load state is input from the apparatus, and based on the temperature signal and the combustion control command, the pulverized coal mill 3, the cut damper 13, the flow rate adjustment valve 16, and the auxiliary combustion. The air flow rate adjusting damper 17, the combustion air flow rate adjusting damper 23, the exhaust gas flow rate adjusting device 27, the flow rate adjusting valve 29 are driven and opened / closed at required timings, and the combustion amount of the duct burner 21 is controlled. The combustion state of the pulverized coal burner 4 and the ejection of high-temperature air from the combustion air nozzle 5 are controlled.

尚、前記2次空気送風ダクト18の前記第1温度検出器22の下流側には、図示しない酸素濃度検知器が設けられ、該酸素濃度検知器は前記燃焼空気ノズル5に送給される2次空気の酸素濃度を検出し、検出結果を前記制御装置9に送出する。該制御装置9は前記酸素濃度検知器からの信号に基づき、所定の酸素濃度、例えば酸素濃度が14%を下回らない様、前記ダクトバーナ21の燃焼量、及び2次空気に合流する排ガスの合流量、即ち前記排ガス流量調整器27の開度を制御する。   An oxygen concentration detector (not shown) is provided on the downstream side of the first temperature detector 22 of the secondary air blower duct 18, and the oxygen concentration detector is supplied to the combustion air nozzle 5 2. The oxygen concentration of the secondary air is detected, and the detection result is sent to the control device 9. Based on the signal from the oxygen concentration detector, the control device 9 determines a predetermined oxygen concentration, for example, the combustion amount of the duct burner 21 and the combined flow rate of the exhaust gas combined with the secondary air so that the oxygen concentration does not fall below 14%. That is, the opening degree of the exhaust gas flow regulator 27 is controlled.

図2は、本実施例に用いられる前記微粉炭バーナ4及び前記燃焼空気ノズル5の一例を示している。以下、図2を参照して前記微粉炭バーナ4及び前記燃焼空気ノズル5の概略を説明する。   FIG. 2 shows an example of the pulverized coal burner 4 and the combustion air nozzle 5 used in this embodiment. The outline of the pulverized coal burner 4 and the combustion air nozzle 5 will be described below with reference to FIG.

火炉1の炉壁31の反火炉側にウインドボックス34が取付けられ、更に該ウインドボックス34の内部に円筒又は略円筒形状のバーナ支持部33が取付けられている。又、前記ウインドボックス34の内部を貫通する様に微粉炭バーナ4が前記バーナ支持部33と同心に設けられ、前記微粉炭バーナ4の基端部は前記ウインドボックス34に支持され、前記微粉炭バーナ4の中途部が前記バーナ支持部33に支持されており、先端は前記火炉1内に開口している。   A wind box 34 is attached to the anti-furnace side of the furnace wall 31 of the furnace 1, and a cylindrical or substantially cylindrical burner support 33 is attached to the inside of the wind box 34. A pulverized coal burner 4 is provided concentrically with the burner support portion 33 so as to penetrate the inside of the wind box 34, and a base end portion of the pulverized coal burner 4 is supported by the wind box 34, and the pulverized coal A midway part of the burner 4 is supported by the burner support part 33, and a tip is opened in the furnace 1.

前記微粉炭バーナ4はノズル本体36を有し、該ノズル本体36は該ノズル本体36と同心に設けられた内筒ノズル37、該内筒ノズル37の中心線上に配設された補助燃焼バーナであるオイルバーナ38を具備している。前記内筒ノズル37の先端は前記火炉1内に開口しており、前記ノズル本体36と前記内筒ノズル37間には中空筒状の空間で、前記火炉1側端が開放された燃料導通空間39が形成される。   The pulverized coal burner 4 has a nozzle body 36, and the nozzle body 36 is an inner cylinder nozzle 37 provided concentrically with the nozzle body 36, and an auxiliary combustion burner disposed on the center line of the inner cylinder nozzle 37. An oil burner 38 is provided. A front end of the inner cylinder nozzle 37 is opened in the furnace 1, and a fuel conduction space in which a side end of the furnace 1 is opened in a hollow cylindrical space between the nozzle body 36 and the inner cylinder nozzle 37. 39 is formed.

前記ノズル本体36の基部(反火炉側の端部)には前記微粉炭供給管12が連通し、該微粉炭供給管12を介して微粉炭混合流41が前記燃料導通空間39に流入し、該燃料導通空間39内部を先端に向って流れ、先端から噴出される。   The pulverized coal supply pipe 12 communicates with the base of the nozzle body 36 (the end on the counter-fired furnace side), and the pulverized coal mixed flow 41 flows into the fuel conduction space 39 via the pulverized coal supply pipe 12. The fuel flows in the fuel conduction space 39 toward the tip, and is ejected from the tip.

又、前記内筒ノズル37の基部(反火炉側の端部)には前記補助燃焼用空気ダクト15が連通し、該補助燃焼用空気ダクト15を介して低温の1次空気が補助燃焼用空気42として前記内筒ノズル37内に流入し、前記オイルバーナ38に沿って流れ、先端から噴出される。   Further, the auxiliary combustion air duct 15 communicates with the base portion (end portion on the side of the counter-fired furnace) of the inner cylinder nozzle 37, and the low temperature primary air is supplied to the auxiliary combustion air via the auxiliary combustion air duct 15. 42 flows into the inner cylinder nozzle 37, flows along the oil burner 38, and is ejected from the tip.

前記ウインドボックス34には前記2次空気送風ダクト18が連通しており、該2次空気送風ダクト18を介して2次空気が燃焼用空気43として流入する。   The secondary air blowing duct 18 communicates with the wind box 34, and the secondary air flows as combustion air 43 through the secondary air blowing duct 18.

前記燃焼空気ノズル5は前記微粉炭バーナ4と平行に設けられ、先端は前記火炉1内に開口し、基端は前記ウインドボックス34の内部に開口している。前記燃焼空気ノズル5は燃焼空気ノズル支持部35を介して前記ウインドボックス34に支持されている。前記各燃焼空気ノズル5の基端部には流量調整ダンパ44が設けられ、該流量調整ダンパ44は駆動軸45を介して回転自在に支持されている。該駆動軸45は前記ウインドボックス34より突出し該ウインドボックス34外に設けられたエアシリンダ等のアクチュエータ46に連結され、前記流量調整ダンパ44は前記アクチュエータ46によって回転される。該アクチュエータ46は前記制御装置9によって制御され、前記燃焼空気ノズル5内に流入する前記燃焼用空気43(以下、高温空気43′)に対し、各燃焼空気ノズル5毎に遮断及び流量の調整を行う様になっている。   The combustion air nozzle 5 is provided in parallel with the pulverized coal burner 4, and the distal end opens into the furnace 1 and the proximal end opens into the wind box 34. The combustion air nozzle 5 is supported by the wind box 34 via a combustion air nozzle support portion 35. A flow rate adjustment damper 44 is provided at the base end of each combustion air nozzle 5, and the flow rate adjustment damper 44 is rotatably supported via a drive shaft 45. The drive shaft 45 projects from the window box 34 and is connected to an actuator 46 such as an air cylinder provided outside the window box 34, and the flow rate adjusting damper 44 is rotated by the actuator 46. The actuator 46 is controlled by the control device 9 and cuts off and adjusts the flow rate of each combustion air nozzle 5 with respect to the combustion air 43 (hereinafter referred to as high-temperature air 43 ′) flowing into the combustion air nozzle 5. It is supposed to be done.

尚、図示はしないが、紙面に対して下側の前記流量調整ダンパ44についても同様に前記アクチュエータ46が設けられ、前記駆動軸45を介して前記アクチュエータ46によって駆動される様になっている。又、前記流量調整ダンパ44は、前記制御装置9により前記アクチュエータ46を制御する様にしてもよいし、レバー等を介して各流量調整ダンパ44毎に手動にて開閉する様にしてもよい。   Although not shown, the actuator 46 is similarly provided for the flow rate adjusting damper 44 below the paper surface, and is driven by the actuator 46 via the drive shaft 45. Further, the flow rate adjusting damper 44 may control the actuator 46 by the control device 9, or may be manually opened and closed for each flow rate adjusting damper 44 via a lever or the like.

上記した前記微粉炭バーナ4及び前記燃焼空気ノズル5での燃焼について略述する。前記オイルバーナ38に燃料として油が供給されると共に、前記補助燃焼用ダクト15より前記内筒ノズル37内に前記補助燃焼用空気42が供給される。又、油が前記内筒ノズル37の先端に向って噴霧されると共に着火されることで補助燃焼が行われる。補助燃焼は、炉内が高温空気燃焼可能な所定温度(予め設定した第1設定温度)に上昇する迄継続される。又、前記第1温度検出器22及び前記第3温度検出器19の検出結果に基づき、前記制御装置9によって前記ダクトバーナ21の燃焼が制御される。前記燃焼用空気43が微粉炭を高温空気燃焼させるのに充分な温度、例えば800℃となった状態で、前記2次空気送風ダクト18より前記高温空気43′が前記ウインドボックス34に供給され、更に前記流量調整ダンパ44により流量調整された前記高温空気43′が前記燃焼空気ノズル5より炉内に噴出される。   The combustion in the above-mentioned pulverized coal burner 4 and the combustion air nozzle 5 will be briefly described. Oil is supplied to the oil burner 38 as fuel, and the auxiliary combustion air 42 is supplied from the auxiliary combustion duct 15 into the inner cylinder nozzle 37. In addition, the oil is sprayed toward the tip of the inner cylinder nozzle 37 and ignited, whereby auxiliary combustion is performed. The auxiliary combustion is continued until the temperature in the furnace rises to a predetermined temperature at which high-temperature air combustion is possible (a first preset temperature set in advance). Further, based on the detection results of the first temperature detector 22 and the third temperature detector 19, the control device 9 controls the combustion of the duct burner 21. With the combustion air 43 at a temperature sufficient to cause pulverized coal to burn with high temperature air, for example, 800 ° C., the high temperature air 43 ′ is supplied from the secondary air blowing duct 18 to the wind box 34, Further, the high-temperature air 43 ′ whose flow rate is adjusted by the flow rate adjusting damper 44 is ejected from the combustion air nozzle 5 into the furnace.

炉内が高温空気燃焼可能な所定温度に達すると共に前記燃焼空気ノズル5より前記高温空気43′が噴出され、前記微粉炭供給管12から微粉炭混合流41が供給される。該微粉炭混合流41は、前記燃料導通空間39を流動し、又該燃料導通空間39を通過する過程で縮流され、前記ノズル本体36の先端より噴出される。   While the inside of the furnace reaches a predetermined temperature at which high temperature air combustion is possible, the high temperature air 43 ′ is ejected from the combustion air nozzle 5, and a pulverized coal mixed stream 41 is supplied from the pulverized coal supply pipe 12. The pulverized coal mixed stream 41 flows in the fuel conduction space 39 and is contracted in the process of passing through the fuel conduction space 39, and is ejected from the tip of the nozzle body 36.

前記微粉炭バーナ4から噴出される微粉炭が自立燃焼(高温空気燃焼)可能な状態となると、前記オイルバーナ38による補助燃焼が停止される。微粉炭混合流41と前記高温空気43′とは平行に噴出され、炉内で徐々に混合されることで、低酸素雰囲気で徐々に燃焼する高温空気燃焼に移行する。   When the pulverized coal ejected from the pulverized coal burner 4 is in a state where self-sustained combustion (high-temperature air combustion) is possible, auxiliary combustion by the oil burner 38 is stopped. The pulverized coal mixed stream 41 and the high-temperature air 43 ′ are jetted in parallel and gradually mixed in the furnace to shift to high-temperature air combustion that gradually burns in a low oxygen atmosphere.

該微粉炭混合流41が前記高温空気43′と徐々に混合することで、低酸素下、高温下で緩慢燃焼となり、微粉炭の燃焼状態は、燃焼温度のピークのない、なだらかな燃焼となる。又、酸素濃度の低い環境での燃焼となり、窒素酸化物(NOx )の発生を抑制することができる。   The pulverized coal mixed stream 41 is gradually mixed with the high-temperature air 43 ′, so that slow combustion is performed under low oxygen and high temperatures, and the combustion state of the pulverized coal is gentle combustion with no peak of the combustion temperature. . Further, combustion occurs in an environment having a low oxygen concentration, and generation of nitrogen oxides (NOx) can be suppressed.

次に、図3のフローチャートを用い、本実施例に係るボイラ装置に於ける高温空気燃焼について説明する。   Next, high temperature air combustion in the boiler apparatus according to the present embodiment will be described with reference to the flowchart of FIG.

ボイラが始動され、炉内温度が低い場合には、前記制御装置9により前記流量調整弁29が開かれ、油の供給が開始されると共に供給量の調整が行われる。又、前記補助燃焼空気流量調整ダンパ17が開放され、前記微粉炭バーナ4に低温の1次空気が送給され、前記微粉炭バーナ4に設けられた前記オイルバーナ38による補助燃焼が行われる(STEP:01)。   When the boiler is started and the furnace temperature is low, the control device 9 opens the flow rate adjusting valve 29 to start the supply of oil and adjust the supply amount. Further, the auxiliary combustion air flow rate adjustment damper 17 is opened, low temperature primary air is supplied to the pulverized coal burner 4, and auxiliary combustion is performed by the oil burner 38 provided in the pulverized coal burner 4 ( (STEP: 01).

尚、前記オイルバーナ38による補助燃焼が行われる状態では、前記排ガス流量調整器27は閉塞され、前記カットダンパ13も閉塞された状態となっている。   In the state where auxiliary combustion is performed by the oil burner 38, the exhaust gas flow rate regulator 27 is closed and the cut damper 13 is also closed.

前記オイルバーナ38による燃焼により炉内の温度が上昇し、前記第2温度検出器26が検出する温度が予め設定された第1設定温度、例えば500℃となったところで(STEP:02)、前記制御装置9により前記燃焼空気流量調整ダンパ23が開放されると共に前記ダクトバーナ21に油が供給され、該ダクトバーナ21の燃焼が開始される(STEP:03)。   When the temperature in the furnace rises due to combustion by the oil burner 38 and the temperature detected by the second temperature detector 26 reaches a preset first set temperature, for example, 500 ° C. (STEP: 02), The combustion air flow rate adjusting damper 23 is opened by the control device 9 and oil is supplied to the duct burner 21, and combustion of the duct burner 21 is started (STEP 03).

該ダクトバーナ21の燃焼により、前記2次空気送風ダクト18内の2次空気が予め設定された所定の温度、例えば高温空気燃焼に好適な温度である800℃となる様、前記第1温度検出器22の検出結果に基づき前記ダクトバーナ21の燃焼が制御され、昇温された高温空気43′が前記ウインドボックス34に送給される。更に、前記微粉炭ミル3が起動され、又前記カットダンパ13が開放され、前記微粉炭バーナ4に微粉炭が供給され、該微粉炭バーナ4の先端より微粉炭混合流41が噴出される。   The first temperature detector is set such that the combustion of the duct burner 21 causes the secondary air in the secondary air blowing duct 18 to have a predetermined temperature set in advance, for example, 800 ° C. suitable for high-temperature air combustion. The combustion of the duct burner 21 is controlled based on the detection result 22, and the heated high-temperature air 43 ′ is supplied to the wind box 34. Further, the pulverized coal mill 3 is started, the cut damper 13 is opened, pulverized coal is supplied to the pulverized coal burner 4, and a pulverized coal mixed stream 41 is ejected from the tip of the pulverized coal burner 4.

前記微粉炭バーナ4への微粉炭の供給に伴い前記流量調整弁29が閉となり、前記オイルバーナ38による燃焼が停止される(STEP:04)。又、前記流量調整ダンパ44が開となり、前記燃焼空気ノズル5より前記高温空気43′の噴出が開始される。   As the pulverized coal is supplied to the pulverized coal burner 4, the flow rate adjusting valve 29 is closed, and combustion by the oil burner 38 is stopped (STEP: 04). Further, the flow rate adjusting damper 44 is opened, and the ejection of the high temperature air 43 ′ from the combustion air nozzle 5 is started.

前記微粉炭バーナ4から噴出された前記微粉炭混合流41は、隣接する前記燃焼空気ノズル5から噴出される前記高温空気43′と炉内部で混合接触し、前記微粉炭混合流41と前記ダクトバーナ21のみにより加熱された前記高温空気43′とによる1次高温空気燃焼が開始される(STEP:05)。   The pulverized coal mixed stream 41 ejected from the pulverized coal burner 4 is mixed and contacted with the high-temperature air 43 ′ ejected from the adjacent combustion air nozzle 5 in the furnace, and the pulverized coal mixed stream 41 and the duct burner are mixed. The primary high-temperature air combustion is started by the high-temperature air 43 ′ heated only by 21 (STEP: 05).

尚、前記第2温度検出器26により検出される排ガスの温度は、スーパヒータにより熱交換した後の温度であるので、実際の炉内温度よりも低くなっている。従って、予め炉内温度と熱交換により低下した排ガス温度との関係を関連付けしておくことで、前記第2温度検出器26により検出された排ガスの温度に基づき、前記火炉1内の温度を判断することができる。又、第1設定温度は、ボイラの容量、運転状態等により適宜設定されるものであり、500℃に限定されるものではない。   The temperature of the exhaust gas detected by the second temperature detector 26 is the temperature after heat exchange by the super heater, and is therefore lower than the actual furnace temperature. Therefore, the temperature in the furnace 1 is determined based on the temperature of the exhaust gas detected by the second temperature detector 26 by associating the relationship between the furnace temperature and the exhaust gas temperature lowered by heat exchange in advance. can do. The first set temperature is appropriately set according to the capacity of the boiler, the operating state, etc., and is not limited to 500 ° C.

更に、炉内の温度が上昇し、前記第2温度検出器26が検出する温度が予め設定された第2設定温度、例えば800℃を超えたところで(STEP:06)、前記排ガス流量調整器27が所定の開度で開口し、前記煙道24から排ガスを抽出し、前記排ガス導管25を経て前記2次空気送風ダクト18を流れる前記燃焼用空気43に排ガスを混合させる(STEP:07)。尚、前記第2設定温度も、ボイラの容量、運転状態等によって適宜設定されるものであり、800℃に限定されるものではない。   Further, when the temperature in the furnace rises and the temperature detected by the second temperature detector 26 exceeds a preset second preset temperature, for example, 800 ° C. (STEP: 06), the exhaust gas flow regulator 27 Is opened at a predetermined opening, exhaust gas is extracted from the flue 24, and the exhaust gas is mixed with the combustion air 43 flowing through the secondary air blowing duct 18 through the exhaust gas conduit 25 (STEP: 07). The second set temperature is also set as appropriate depending on the boiler capacity, operating conditions, etc., and is not limited to 800 ° C.

前記第2温度検出器26により検出される温度が前記第2設定温度に達した後も、前記煙道24からの排ガスのみでは前記燃焼用空気43を予め設定した高温空気燃焼に好適な温度、例えば800℃迄上昇させることができないので、前記ダクトバーナ21の燃焼は継続されており、前記ダクトバーナ21による燃焼及び排ガスとの混合により加熱された前記高温空気43′が供給され、2次高温空気燃焼に移行する(STEP:08)。   Even after the temperature detected by the second temperature detector 26 reaches the second set temperature, only the exhaust gas from the flue 24 is a temperature suitable for high-temperature air combustion in which the combustion air 43 is preset, For example, since it cannot be raised to 800 ° C., the combustion of the duct burner 21 is continued, and the high-temperature air 43 ′ heated by the combustion by the duct burner 21 and mixing with the exhaust gas is supplied, and the secondary high-temperature air combustion (STEP: 08).

前記制御装置9は、前記第2温度検出器26の検出結果に基づき、前記第1温度検出器22により検出される前記燃焼用空気43の温度が800℃となる様、前記排ガス流量調整器27の開度を調整し、抽出する排ガスの量を制御すると共に前記ダクトバーナ21の燃焼を制御する。排ガスの温度が上昇し、更に前記燃焼用空気43への排ガスの混合量の増加に伴い、前記ダクトバーナ21の燃焼量は漸次減少する。   Based on the detection result of the second temperature detector 26, the control device 9 controls the exhaust gas flow regulator 27 so that the temperature of the combustion air 43 detected by the first temperature detector 22 becomes 800 ° C. The amount of exhaust gas to be extracted is controlled, and the combustion of the duct burner 21 is controlled. As the temperature of the exhaust gas rises and the amount of exhaust gas mixed into the combustion air 43 increases, the amount of combustion in the duct burner 21 gradually decreases.

又、前記第2温度検出器26が検出する温度が予め設定された第3設定温度、即ち前記燃焼用空気43が排ガスとの混合のみで2次空気を800℃迄上昇可能な温度、例えば抽出する排ガス温度が1000℃となったところで(STEP:09)、前記ダクトバーナ21の燃焼が停止される(STEP:10)。   Further, the temperature detected by the second temperature detector 26 is a preset third set temperature, that is, a temperature at which the combustion air 43 can be raised to 800 ° C. only by mixing with the exhaust gas, for example, extraction. When the exhaust gas temperature to be reached reaches 1000 ° C. (STEP: 09), the combustion of the duct burner 21 is stopped (STEP: 10).

該ダクトバーナ21の燃焼が停止した後は、前記排ガス流量調整器27の開度が制御されることで排ガスの混合量が調整され、前記燃焼用空気43が800℃に保たれ、前記排ガスとの混合のみにより加熱された前記高温空気43′と前記微粉炭混合流41とによる3次高温空気燃焼に移行する(STEP:11)。   After the combustion of the duct burner 21 is stopped, the opening amount of the exhaust gas flow regulator 27 is controlled to adjust the amount of exhaust gas mixed, and the combustion air 43 is maintained at 800 ° C. The process proceeds to tertiary high-temperature air combustion using the high-temperature air 43 'heated only by mixing and the pulverized coal mixed stream 41 (STEP: 11).

上述の様に、本実施例では、2次空気の供給路である前記2次空気送風ダクト18内に前記ダクトバーナ21を設け、該ダクトバーナ21の燃焼により排ガスの温度が低くても燃焼用空気43を高温空気燃焼に好適な温度迄昇温可能としたので、排ガスが第3設定温度迄昇温するのを待つことなく第1設定温度に到達した段階で高温空気燃焼が可能であり、更に排ガスの温度が第2設定温度に到達した段階で、排ガスの2次空気への混合を開始し、排ガスの温度が第3設定温度に到達した段階で、前記ダクトバーナ21の燃焼がなくても高温空気燃焼が実現可能となる。従って、高温空気燃焼を実現可能となる時間を短縮することができ、ボイラ始動から高温空気燃焼に至る運転を円滑に行うことができる。   As described above, in this embodiment, the duct burner 21 is provided in the secondary air blowing duct 18 that is a supply path of secondary air, and combustion air 43 is produced even if the temperature of the exhaust gas is low due to combustion of the duct burner 21. Can be heated to a temperature suitable for high-temperature air combustion, so that high-temperature air combustion is possible when the exhaust gas reaches the first set temperature without waiting for the temperature to rise to the third set temperature. When the temperature of the exhaust gas reaches the second set temperature, mixing of the exhaust gas into the secondary air is started. When the temperature of the exhaust gas reaches the third set temperature, the high-temperature air is generated even if the duct burner 21 is not burned. Combustion can be realized. Accordingly, it is possible to shorten the time during which high-temperature air combustion can be realized, and it is possible to smoothly perform the operation from boiler startup to high-temperature air combustion.

又、本実施例では、予め第1〜第3設定温度を設定し、該第1〜第3設定温度と前記第2温度検出器26の検出値との比較により段階的に制御を行っているが、第3設定温度を設定せず、前記第2温度検出器26及び前記第3温度検出器19の検出結果に基づき、前記制御装置9に前記熱交換器2による加熱と排ガスとの混合のみにより前記燃焼用空気43を800℃迄昇温可能であるかどうかを判断させ、前記ダクトバーナ21の停止及び前記排ガス流量調整器27の開度制御を行わせてもよい。   In this embodiment, the first to third set temperatures are set in advance, and the control is performed step by step by comparing the first to third set temperatures with the detection value of the second temperature detector 26. However, based on the detection results of the second temperature detector 26 and the third temperature detector 19 without setting the third set temperature, the control device 9 is only heated by the heat exchanger 2 and mixed with the exhaust gas. Thus, it may be determined whether the temperature of the combustion air 43 can be raised to 800 ° C., and the stop of the duct burner 21 and the opening degree control of the exhaust gas flow rate regulator 27 may be performed.

又、本実施例では第1設定温度到達後に補助燃焼を停止しているが、第3設定温度に到達する迄補助燃焼を継続し、3次高温空気燃焼に至る迄の時間を短縮する様にしてもよい。   In this embodiment, the auxiliary combustion is stopped after the first set temperature is reached, but the auxiliary combustion is continued until the third set temperature is reached, and the time until the third high-temperature air combustion is shortened. May be.

又、本実施例では、前記第1温度検出器22、前記第2温度検出器26、前記第3温度検出器19の3つの温度検出器を設けているが、前記第1温度検出器22のみとしてもよい。この場合、排ガスの温度が上昇し、前記燃焼用空気43に排ガスを混合させている状態で、前記第1温度検出器22により検出された前記燃焼用空気43の温度が800℃を超えたと判断されると、先ず前記ダクトバーナ21の燃焼量を減少させることで前記燃焼用空気43の温度を低下させる。前記ダクトバーナ21消火後も800℃を超えていると判断されると、前記排ガス流量調整器27の開度を調整し、前記燃焼用空気43の温度を低下させることで、該燃焼用空気43の温度を800℃に保つことができる。又、前記排ガス流量調整器27の開度を最大としても前記燃焼用空気43の温度が設定温度に到達しない場合には、前記排ガス流量調整器27の開度を絞り、再度前記ダクトバーナ21を着火することで前記燃焼用空気43の温度を800℃迄上昇させる。   In this embodiment, three temperature detectors, the first temperature detector 22, the second temperature detector 26, and the third temperature detector 19, are provided, but only the first temperature detector 22 is provided. It is good. In this case, it is determined that the temperature of the combustion air 43 detected by the first temperature detector 22 exceeds 800 ° C. in a state where the temperature of the exhaust gas is increased and the exhaust gas is mixed with the combustion air 43. Then, the temperature of the combustion air 43 is lowered by decreasing the amount of combustion of the duct burner 21 first. If it is determined that the temperature exceeds 800 ° C. even after extinguishing the duct burner 21, the opening of the exhaust gas flow rate regulator 27 is adjusted, and the temperature of the combustion air 43 is lowered, thereby reducing the combustion air 43. The temperature can be kept at 800 ° C. If the temperature of the combustion air 43 does not reach the set temperature even when the exhaust gas flow rate regulator 27 is maximized, the exhaust gas flow rate regulator 27 is throttled to ignite the duct burner 21 again. As a result, the temperature of the combustion air 43 is raised to 800 ° C.

尚、揮発分の少ない微粉炭、自立燃焼のできない微粉炭を使用する場合は、前記オイルバーナ38による補助燃焼を併用してもよい。   In addition, when using pulverized coal with little volatile matter or pulverized coal that cannot be self-sustained combustion, auxiliary combustion by the oil burner 38 may be used in combination.

1 火炉
2 熱交換器
4 微粉炭バーナ
9 制御装置
18 2次空気送風ダクト
19 第3温度検出器
21 ダクトバーナ
22 第1温度検出器
25 排ガス導管
26 第2温度検出器
27 排ガス流量調整器
41 微粉炭混合流
43 燃焼用空気
DESCRIPTION OF SYMBOLS 1 Furnace 2 Heat exchanger 4 Pulverized coal burner 9 Control apparatus 18 Secondary air ventilation duct 19 3rd temperature detector 21 Duct burner 22 1st temperature detector 25 Exhaust gas conduit 26 2nd temperature detector 27 Exhaust gas flow rate regulator 41 Pulverized coal Mixed flow 43 Combustion air

Claims (4)

ボイラと、該ボイラの炉壁に設けられ微粉炭を噴出する微粉炭ノズルと、該微粉炭ノズルに隣接して設けられ、2次空気を噴出する空気ノズルと、前記ボイラの排ガスとの熱交換により前記空気ノズルに送給される2次空気の温度を上昇させる熱交換器と、2次空気の供給路内で燃焼を行い2次空気の温度を上昇させるダクトバーナとを具備し、前記空気ノズルから噴出する2次空気と前記微粉炭ノズルから噴出する微粉炭により高温空気燃焼させることを特徴とするボイラ装置。   Heat exchange between the boiler, the pulverized coal nozzle provided on the furnace wall of the boiler and ejecting pulverized coal, the air nozzle provided adjacent to the pulverized coal nozzle and ejecting secondary air, and the exhaust gas of the boiler A heat exchanger that raises the temperature of the secondary air supplied to the air nozzle and a duct burner that burns in the supply path of the secondary air and raises the temperature of the secondary air. A boiler apparatus characterized by causing high-temperature air combustion using secondary air ejected from a pulverized coal and pulverized coal ejected from the pulverized coal nozzle. 前記空気ノズルに供給される2次空気の温度を検出する温度検出器と、該温度検出器の検出結果を基に前記ダクトバーナの燃焼量を制御する制御装置とを更に具備する請求項1のボイラ装置。   The boiler according to claim 1, further comprising: a temperature detector that detects a temperature of secondary air supplied to the air nozzle; and a control device that controls a combustion amount of the duct burner based on a detection result of the temperature detector. apparatus. ボイラと、該ボイラの炉壁に設けられ、微粉炭と高温の2次空気により高温空気燃焼を行うバーナと、前記ボイラの排ガスとの熱交換により燃焼用の2次空気の温度を上昇させる熱交換器と、2次空気の供給路内で燃焼を行い2次空気の温度を上昇させるダクトバーナと、排ガスの一部を抽出し2次空気と混合させる排気循環系と、前記バーナに供給される2次空気の温度を検出する第1の温度検出器と、前記ダクトバーナの燃焼を制御すると共に混合する排ガスの量を制御する制御装置とを具備し、該制御装置は前記第1の温度検出器によって検出される2次空気の温度が所定の値となる様に、前記ダクトバーナの燃焼量及び2次空気への排ガスの混合量を制御することを特徴とする高温空気燃焼システム。   Heat that increases the temperature of secondary air for combustion by heat exchange between a boiler, a burner that is provided on the furnace wall of the boiler and performs high-temperature air combustion with pulverized coal and high-temperature secondary air, and the exhaust gas of the boiler An exchanger, a duct burner that burns in the supply path of the secondary air and raises the temperature of the secondary air, an exhaust circulation system that extracts a part of the exhaust gas and mixes it with the secondary air, and is supplied to the burner A first temperature detector that detects the temperature of the secondary air; and a control device that controls the combustion of the duct burner and the amount of exhaust gas to be mixed. The control device includes the first temperature detector. The high-temperature air combustion system is characterized in that the amount of combustion of the duct burner and the amount of exhaust gas mixed into the secondary air are controlled so that the temperature of the secondary air detected by the above becomes a predetermined value. 排ガスの温度を検出する第2の温度検出器と、前記熱交換器により加熱された2次空気の温度を検出する第3の温度検出器を更に具備し、前記制御装置は前記第2の温度検出器及び前記第3の温度検出器による検出結果に基づき、前記ダクトバーナの燃焼量及び2次空気への排ガスの混合量を制御する請求項3の高温空気燃焼システム。   A second temperature detector for detecting the temperature of the exhaust gas; and a third temperature detector for detecting the temperature of the secondary air heated by the heat exchanger. The high-temperature air combustion system according to claim 3, wherein the combustion amount of the duct burner and the amount of exhaust gas mixed into the secondary air are controlled based on the detection results of the detector and the third temperature detector.
JP2011046104A 2011-03-03 2011-03-03 Hot air combustion system Active JP5961914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046104A JP5961914B2 (en) 2011-03-03 2011-03-03 Hot air combustion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046104A JP5961914B2 (en) 2011-03-03 2011-03-03 Hot air combustion system

Publications (2)

Publication Number Publication Date
JP2012181003A true JP2012181003A (en) 2012-09-20
JP5961914B2 JP5961914B2 (en) 2016-08-03

Family

ID=47012344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046104A Active JP5961914B2 (en) 2011-03-03 2011-03-03 Hot air combustion system

Country Status (1)

Country Link
JP (1) JP5961914B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106196011A (en) * 2016-06-29 2016-12-07 无锡锡能锅炉有限公司 A kind of desulfurizing combustion of coal-burning boiler
CN109539247A (en) * 2018-10-23 2019-03-29 山西大学 A kind of coal gasification low NO system for apparatus of thermo-electric power boiler
CN113847621A (en) * 2021-10-22 2021-12-28 西安热工研究院有限公司 Cold-state starting system and method for boiler

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231316A (en) * 1985-04-04 1986-10-15 Babcock Hitachi Kk Pulverized coal burner
JPH02154913A (en) * 1988-12-06 1990-06-14 Mitsubishi Heavy Ind Ltd Apparatus for producing pulverized coal
JPH0260934B2 (en) * 1984-04-13 1990-12-18 Hitachi Ltd
JPH0364770B2 (en) * 1983-09-14 1991-10-08 Hitachi Ltd
JPH0642710A (en) * 1992-03-13 1994-02-18 Babcock & Wilcox Co:The Low nox burner system
JPH0741205U (en) * 1993-12-08 1995-07-21 石川島播磨重工業株式会社 Furnace combustion equipment
JPH08320103A (en) * 1995-05-25 1996-12-03 Ishikawajima Harima Heavy Ind Co Ltd Primary air temperature control method for coal fired boiler and device used therefor
JP2008170040A (en) * 2007-01-10 2008-07-24 Babcock Hitachi Kk Pulverized coal burning boiler and pulverized coal combustion method of pulverized coal burning boiler
JP5707897B2 (en) * 2010-11-25 2015-04-30 株式会社Ihi Fine fuel fired boiler equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364770B2 (en) * 1983-09-14 1991-10-08 Hitachi Ltd
JPH0260934B2 (en) * 1984-04-13 1990-12-18 Hitachi Ltd
JPS61231316A (en) * 1985-04-04 1986-10-15 Babcock Hitachi Kk Pulverized coal burner
JPH02154913A (en) * 1988-12-06 1990-06-14 Mitsubishi Heavy Ind Ltd Apparatus for producing pulverized coal
JPH0642710A (en) * 1992-03-13 1994-02-18 Babcock & Wilcox Co:The Low nox burner system
JPH0741205U (en) * 1993-12-08 1995-07-21 石川島播磨重工業株式会社 Furnace combustion equipment
JPH08320103A (en) * 1995-05-25 1996-12-03 Ishikawajima Harima Heavy Ind Co Ltd Primary air temperature control method for coal fired boiler and device used therefor
JP2008170040A (en) * 2007-01-10 2008-07-24 Babcock Hitachi Kk Pulverized coal burning boiler and pulverized coal combustion method of pulverized coal burning boiler
JP5707897B2 (en) * 2010-11-25 2015-04-30 株式会社Ihi Fine fuel fired boiler equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106196011A (en) * 2016-06-29 2016-12-07 无锡锡能锅炉有限公司 A kind of desulfurizing combustion of coal-burning boiler
CN109539247A (en) * 2018-10-23 2019-03-29 山西大学 A kind of coal gasification low NO system for apparatus of thermo-electric power boiler
CN109539247B (en) * 2018-10-23 2020-02-14 山西大学 Coal gasification low-nitrogen combustor system for thermal power boiler
CN113847621A (en) * 2021-10-22 2021-12-28 西安热工研究院有限公司 Cold-state starting system and method for boiler
CN113847621B (en) * 2021-10-22 2024-02-27 西安热工研究院有限公司 Cold start system and method for boiler

Also Published As

Publication number Publication date
JP5961914B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
CN101715529B (en) Supported fLOX operation and burner thereof
JP4466667B2 (en) High-humidity air-utilizing gas turbine, control device for high-humidity air-utilizing gas turbine, and control method for high-humidity air-utilizing gas turbine
JP5095628B2 (en) Pulverized coal fired boiler
KR101530807B1 (en) Exhaust heat recovery boiler and electricity generation plant
JP5471481B2 (en) Oxyfuel boiler system and oxyfuel burner
CN103168201A (en) Crude gas torch comprising an adjustable opening cross-section for flaring combustible gases and method for burning crude gases
JP2011520088A (en) Low NOx burner
CN103322573A (en) Burner apparatus and heating furnace
JP5961914B2 (en) Hot air combustion system
JP5786516B2 (en) Burner
JP5707897B2 (en) Fine fuel fired boiler equipment
JP5524502B2 (en) Coke dry fire extinguishing equipment and operation method thereof
CN101701707B (en) Device for preventing coal dust in gas-solid separator of boiler for circulating fluidized bed from coking
JP6256859B2 (en) Waste incineration method
JP4757596B2 (en) Thermal storage burner device and its operation method
JP5678606B2 (en) Boiler equipment
JP4554153B2 (en) Boiler combustion control system
JP6395364B2 (en) Combustion method and combustion apparatus
JP4343037B2 (en) Hot air generator
JP5903828B2 (en) Heating medium boiler
CN107013911B (en) Method of catalytic combustion
KR102367727B1 (en) Regenerative burner
JP2006250374A (en) Combustion device
JP2013108717A (en) Biomass burner and boiler device
JP3848809B2 (en) Combustion device with additional air nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R151 Written notification of patent or utility model registration

Ref document number: 5961914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250