JP2012180545A - Method for manufacturing grain-oriented magnetic steel sheet - Google Patents

Method for manufacturing grain-oriented magnetic steel sheet Download PDF

Info

Publication number
JP2012180545A
JP2012180545A JP2011043145A JP2011043145A JP2012180545A JP 2012180545 A JP2012180545 A JP 2012180545A JP 2011043145 A JP2011043145 A JP 2011043145A JP 2011043145 A JP2011043145 A JP 2011043145A JP 2012180545 A JP2012180545 A JP 2012180545A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
annealing
oriented electrical
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011043145A
Other languages
Japanese (ja)
Other versions
JP5760511B2 (en
Inventor
Hiroshi Yamaguchi
山口  広
Seiji Okabe
誠司 岡部
Takeshi Omura
大村  健
重宏 ▲高▼城
Shigehiro Takagi
Hirotaka Inoue
博貴 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011043145A priority Critical patent/JP5760511B2/en
Publication of JP2012180545A publication Critical patent/JP2012180545A/en
Application granted granted Critical
Publication of JP5760511B2 publication Critical patent/JP5760511B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a grain-oriented magnetic steel sheet with which in the case of manufacturing a stacked transformer, especially, when the transformer is manufactured by using the grain-oriented magnetic steel sheet having magnetic flux density Bof ≥1.93T, even there is a part where the magnetic flux is shifted from a rolling direction and curved, such as a corner part, an iron loss deterioration can effectively be suppressed.SOLUTION: The surface of the steel sheet is irradiated with an electron beam prior to primary recrystallization annealing, and the surface of the steel sheet is made a flat surface having arithmetic average roughness RA of ≤0.15 μm.

Description

本発明は、変圧器などの鉄心材料に用いる鉄損特性に優れた方向性電磁鋼板の製造方法に関するもので、特に、積み変圧器における鉄損を低く抑えることができる方向性電磁鋼板を得ようとするものである。   The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet excellent in iron loss characteristics used for a core material such as a transformer, and in particular, to obtain a grain-oriented electrical steel sheet capable of suppressing iron loss in a stacking transformer low. It is what.

電磁鋼板は無方向性電磁鋼板と方向性電磁鋼板の2つに大別され、無方向性電磁鋼板は主として回転機等の鉄心材料に、方向性電磁鋼板は主として変圧器その他の電気機器の鉄心材料として使用され、いずれもエネルギーロスを少なくするため、低鉄損の材料が求められている。
Siを含有し、かつ結晶方位が(110)[001]方位や(100)[001]方位に配向した方向性電磁鋼板は優れた軟磁気特性を有することから、商用周波数域での各種鉄芯材料として広く用いられている。その際、電磁鋼板に要求される特性としては、一般に50Hzの周波数で1.7Tに磁化させた場合の損失であるW17/50(W/kg)で表わされるところの鉄損が低いことが重要である。
Electrical steel sheets are roughly classified into two types: non-oriented electrical steel sheets and directional electrical steel sheets. Non-oriented electrical steel sheets are mainly used for iron core materials such as rotating machines, and directional electrical steel sheets are used mainly for iron cores for transformers and other electrical equipment. In order to reduce energy loss in any of these materials, low iron loss materials are required.
A grain-oriented electrical steel sheet containing Si and having a crystal orientation in the (110) [001] orientation or the (100) [001] orientation has excellent soft magnetic properties. Widely used as a material. At that time, as a characteristic required for electrical steel sheets, it is important that the iron loss expressed by W 17/50 (W / kg), which is a loss when magnetized to 1.7T at a frequency of 50 Hz, is generally low. It is.

結晶方位を揃える技術も長年の技術の蓄積により、磁束密度Bにして1.93T以上の製品が安定して製造できるようになってきており、1.96Tや1.97Tの超高磁束密度方向性電磁鋼板の製造も可能になりつつある。 By the accumulation of techniques to align the crystal orientation even years technology has in the magnetic flux density B 8 or more products 1.93T is becoming to be stably manufactured, the 1.96T and 1.97T ultra-high magnetic flux density oriented electrical It is also possible to manufacture steel sheets.

ここに、上記のような高磁束密度の方向性電磁鋼板を用いて変圧器を作製した場合には、素材鉄損の低減代に見合う変圧器鉄損の低減が得られずに、素材の磁気特性の向上代が実際の変圧器の鉄損特性向上に対して反映されてない。すなわち、この現象を評価する場合には、製品の鉄損値に対する変圧器の鉄損値の比、すなわちビルディングファクタ(変圧器鉄損を製品鉄損で除した値)という指標が用いられているが、このビルディングファクタが大きくなってしまうことが問題となっている。   Here, when a transformer is manufactured using a directional electrical steel sheet having a high magnetic flux density as described above, a reduction in transformer iron loss corresponding to the reduction in material iron loss cannot be obtained, and the magnetic properties of the material are reduced. The improvement cost of the characteristic is not reflected in the improvement of the iron loss characteristic of the actual transformer. In other words, when evaluating this phenomenon, an index of the ratio of the iron loss value of the transformer to the iron loss value of the product, that is, the building factor (the value obtained by dividing the transformer iron loss by the product iron loss) is used. However, it is a problem that this building factor becomes large.

特開平6−65754号公報JP-A-6-65754 特開平6−65755号公報JP-A-6-65555 特開平6−299366号公報JP-A-6-299366

方向性電磁鋼板とは、圧延方向の磁気特性に特化して開発されてきた材料であり、圧延方向以外の方向の特性は、材料の先鋭化と共にむしろ悪くなる傾向にある。すなわち、変圧器の主構成要素である脚部など、直線的に磁化されて真直ぐ磁束が流れる箇所では、方向性電磁鋼板の圧延方向の優れた磁気特性が存分に発揮されるが、コーナー部分など磁束が圧延方向からずれて曲がる部位では、優れた方向性がむしろ逆効果となり局所的に鉄損が上昇してしまう。   A grain-oriented electrical steel sheet is a material that has been developed specifically for the magnetic properties in the rolling direction, and the properties in directions other than the rolling direction tend to become worse as the material sharpens. In other words, excellent magnetic properties in the rolling direction of the grain-oriented electrical steel sheet are fully exhibited in places where the magnetic flux flows straightly and linearly, such as the legs that are the main components of the transformer. For example, in a portion where the magnetic flux is bent out of the rolling direction, the excellent directivity is rather counterproductive and the iron loss increases locally.

上記のような局所的な鉄損上昇は、特に磁束密度Bが1.93T以上の方向性電磁鋼板を用いて変圧器を作製したときに顕著に現れる。 Local iron loss increases as described above, remarkable particularly when the magnetic flux density B 8 were prepared transformer with more grain-oriented electrical steel sheet 1.93 T.

本発明は、上記した現状に鑑み開発されたもので、積み変圧器を作製した場合にあって、特に、磁束密度Bが1.93T以上の方向性電磁鋼板を用いて変圧器を作製したときに、そのコーナー部分など、磁束が圧延方向からずれて曲がる部位があっても、より効果的に鉄損劣化を抑えることができる方向性電磁鋼板を得ることを目的とする。 The present invention has been developed in view of the situation described above, in the case of manufacturing the stacked transformer, in particular, when the magnetic flux density B 8 were prepared transformer using the above-oriented electrical steel sheet 1.93T Furthermore, it is an object of the present invention to obtain a grain-oriented electrical steel sheet that can more effectively suppress the deterioration of iron loss even if there is a portion where the magnetic flux is bent from the rolling direction such as the corner portion.

発明者らは、圧延方向に特化した磁気特性の先鋭化を維持しつつ、実変圧器で要求される圧延方向以外の磁気特性の両立、という本質的な開発課題すなわちゴス方位への集積度が高いBが1.93T以上の高磁束密度方向性電磁鋼板に対し、いかに磁化の回転を容易にするかを鋭意検討した結果、地鉄表面、すなわち、一次再結晶焼鈍前の地鉄表面の幾何学的な形状を改善することで解決できることを見いだした。
本発明は上記知見に立脚するものである。
The inventors have an essential development issue of maintaining the sharpness of the magnetic characteristics specialized in the rolling direction while at the same time satisfying the magnetic characteristics other than the rolling direction required by the actual transformer, that is, the degree of integration in the Goss direction. to a high B 8 high magnetic flux density oriented electrical steel sheet above 1.93 T, the result of intensive studies how to facilitate rotation of the magnetization, the base steel surface, i.e., the primary recrystallization annealing prior to the base iron surface We found that it can be solved by improving the geometric shape.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.含珪素鋼熱延板に、必要に応じて熱延板焼鈍を施したのち、一回または中間焼鈍を含む二回以上の冷間もしくは温間圧延を施して最終板厚とし、ついで一次再結晶焼鈍を行った後、焼鈍分離剤を塗布してから二次再結晶焼鈍を行うことよりなる、Bで1.93T以上の高磁束密度を有する方向性電磁鋼板の製造方法において、
上記一次再結晶焼鈍に先立ち、鋼板の表面に電子線を照射することにより、該鋼板の表面を算術平均粗さRaで0.15μm以下の平滑面とすることを特徴とする変圧器鉄損に優れた方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. Silicon-containing steel hot-rolled sheet is subjected to hot-rolled sheet annealing as necessary, then subjected to cold or warm rolling once or two times including intermediate annealing to the final sheet thickness, and then primary recrystallization after annealing, it consists in performing the secondary recrystallization annealing are coated with the annealing separator, in the manufacturing method of a grain-oriented electrical steel sheet having a high magnetic flux density of more than 1.93T at B 8,
Prior to the primary recrystallization annealing, the surface of the steel sheet is irradiated with an electron beam to make the surface of the steel sheet a smooth surface with an arithmetic average roughness Ra of 0.15 μm or less. A method for producing a grain-oriented electrical steel sheet.

2.前記鋼板の表面に対する電子線の照射距離を、該鋼板の表面で該電子線が最大照射エネルギー密度となる照射距離に対して、0〜15%短くまたは長くすることを特徴とする前記1に記載の変圧器鉄損に優れた方向性電磁鋼板の製造方法。 2. 2. The irradiation distance of the electron beam to the surface of the steel sheet is 0 to 15% shorter or longer than the irradiation distance at which the electron beam has a maximum irradiation energy density on the surface of the steel sheet. Method of grain-oriented electrical steel sheet with excellent transformer iron loss.

本発明によれば、集積度が高いBが1.93T以上の高磁束密度方向性電磁鋼板であっても、磁化の回転が容易であるため、変圧器、特に積み変圧器に用いた場合にあって優れた低鉄損特性を発現する方向性電磁鋼板を得ることができる。 According to the present invention, when the degree of integration is high B 8 even with high magnetic flux density oriented electrical steel sheet described above 1.93 T, since it is easy to rotate the magnetization, the transformer, used especially loading transformer Thus, a grain-oriented electrical steel sheet that exhibits excellent low iron loss characteristics can be obtained.

以下、本発明を具体的に説明する。
通常、方向性電磁鋼板の地鉄表面は、フォルステライト被膜と接しており、両者はアンカー効果で密着性を保っている。しかしながら、そのアンカーのサイズは極めて小さく、磁化回転を律する磁壁運動には直接関与しないと考えられている。従って、アンカーを除いて平均化した地鉄表面の平滑性が磁区の回転に対して重要であると考えられる。
Hereinafter, the present invention will be specifically described.
Usually, the ground iron surface of the grain-oriented electrical steel sheet is in contact with the forsterite film, and both maintain adhesion by an anchor effect. However, the size of the anchor is extremely small, and it is considered that the anchor is not directly involved in the domain wall motion that regulates the magnetization rotation. Therefore, it is considered that the smoothness of the surface of the iron core averaged excluding the anchor is important for the rotation of the magnetic domain.

この地鉄表面の平滑性に関しても、従来は、圧延方向の表面粗さ(Ra)などが着目されてきたが、本発明では、圧延直角方向の表面粗さが特に問題となる。というのは、圧延方向への結晶方位の先鋭化とそれに伴う鉄損値の低下には、圧延直角方向の表面粗さは関与しないが、上述したような磁化回転を考慮した場合には、圧延直角方向の表面粗さが磁化回転のし易さを左右すると考えられるからである。   Conventionally, surface roughness (Ra) in the rolling direction has been paid attention to the smoothness of the surface of the iron core. In the present invention, however, the surface roughness in the direction perpendicular to the rolling is a particular problem. This is because the surface roughness in the direction perpendicular to the rolling is not involved in the sharpening of the crystal orientation in the rolling direction and the accompanying decrease in the iron loss value, but when considering the magnetization rotation as described above, rolling This is because it is considered that the surface roughness in the perpendicular direction affects the ease of magnetization rotation.

そこで、発明者らは、圧延直角方向の鋼板表面の平滑化について検討した。その結果、上記平滑化を一次再結晶焼鈍前の鋼板表面に施すことで、従来にも増して、変圧器の優れた鉄損特性が得られることを見出した。
さらに、バフ研磨や電解研磨による平滑化処理と比較して、電子ビームで焦点距離と鋼板位置との関係を種々に変更して鋼板表面に照射し、表面の清浄化と平滑化を鋼板全面にわたって行ったところ、変圧器鉄損のさらなる低減効果が得られることが明らかとなった。
Therefore, the inventors examined the smoothing of the steel sheet surface in the direction perpendicular to the rolling. As a result, it has been found that by applying the above smoothing to the surface of the steel sheet before the primary recrystallization annealing, it is possible to obtain an excellent iron loss characteristic of the transformer as compared with the conventional case.
Furthermore, compared with smoothing treatment by buffing or electrolytic polishing, the relationship between the focal length and the steel plate position is variously changed with an electron beam, and the steel plate surface is irradiated to clean and smooth the surface over the entire steel plate. As a result, it was found that a further reduction effect of transformer iron loss can be obtained.

ここに、変圧器鉄損の低減効果が得られる主因は、明確に解明されているわけではないが、発明者らは、以下のように考えている。
電子線照射は、真空中でその処理を行うが、真空であるがゆえに、照射処理に際して表面酸化が起こらない。すなわち、真空中での電子線よる表面清浄化処理では鋼板表面の平滑化処理が行われるだけでなく、ほとんど酸化物を含まない表面を得ることができ、それが、その後の一次再結晶焼鈍時に形成されるSiO2を主体とする酸化物の形態等にも良い影響を与えていると推定される。これに対して、バフ研磨や電解研磨による平滑化処理では、同等の平滑表面が得られていても、わずかに酸化物等を巻き込んでしまっている可能性があり、この酸化物が悪影響を及ぼしていると考えられる。また、レーザー照射等で表面処理を行なうと、その照射熱で表面が酸化してしまうという問題がある。
Here, the main reason for the effect of reducing transformer iron loss is not clearly clarified, but the inventors consider as follows.
Electron beam irradiation is performed in a vacuum, but because of the vacuum, surface oxidation does not occur during the irradiation process. That is, in the surface cleaning treatment by the electron beam in vacuum, not only the smoothing treatment of the steel sheet surface is performed, but a surface containing almost no oxide can be obtained. It is presumed that it has a good influence on the form of oxide mainly composed of SiO 2 . On the other hand, in the smoothing process by buffing or electrolytic polishing, even if an equivalent smooth surface is obtained, oxides or the like may be slightly involved, and this oxide has an adverse effect. It is thought that. Further, when surface treatment is performed by laser irradiation or the like, there is a problem that the surface is oxidized by the irradiation heat.

本発明では、上記の電子線照射により、鋼板の表面の平均粗さが、算術平均粗さRaでは0.15μm以下とすれば良いことが分かった。
また、上記表面粗さを達成するための具体的な電子線の照射条件としては、基本的に、鋼板のごく表面のみが加熱、溶融される状態が得られれば良く、連続照射でもパルス状照射でも構わない。また、酸化物が除去される理由は明らかではないが、適正条件で電子ビーム照射を行なうと酸化物のない平滑な鋼板表面を得ることができる。
なお、電子線照射は二次元的に電子ビームを照射させて平面状に処理を行うので、圧延方向および圧延直角方向の平均粗さは基本的に同じとなる。
In the present invention, it was found that the average roughness of the surface of the steel sheet should be 0.15 μm or less in terms of arithmetic average roughness Ra by the electron beam irradiation.
In addition, as a specific electron beam irradiation condition for achieving the above-mentioned surface roughness, basically, it is sufficient that only the very surface of the steel sheet is heated and melted. It doesn't matter. Further, although the reason why the oxide is removed is not clear, a smooth steel plate surface without oxide can be obtained when electron beam irradiation is performed under appropriate conditions.
In addition, since the electron beam irradiation is performed two-dimensionally by irradiating an electron beam in a planar manner, the average roughness in the rolling direction and in the direction perpendicular to the rolling is basically the same.

また、上記した電子線照射は、その照射距離を、鋼板の表面で電子線が最大照射エネルギー密度となる照射距離に対して、0〜15%短くまたは長くすることが、効果的に、鋼板表面を平滑化することができるため好ましい。より好ましくは、0〜5%短くまたは長くすることである。
上記、適正条件を実現する照射条件としては、電子線が最大照射エネルギー密度となる照射距離、いわゆるジャストフォーカスで行っても良いが、照射距離をジャストフォーカスよりも±15%短くまたは長くすることで効率的に表面を平滑化することができる。すなわち、ビームプロファイルを台形状として、広い範囲を一度に均一に処理することができる。
ただし、ジャストフォーカスから外す場合、ビーム電流等の入射エネルギーを増加させることとなるが、これにより単位時間当たりの入射エネルギー量が増加するため、鋼板温度が上昇し、鋼板の変形等の問題が生じる。そのため、ジャストフォーカスからのずれは±15%以内が好ましく、より好ましくは±5%以内がよい。
In addition, the above-mentioned electron beam irradiation can effectively reduce the irradiation distance by 0-15% shorter or longer than the irradiation distance at which the electron beam has the maximum irradiation energy density on the surface of the steel sheet. Is preferable because it can be smoothed. More preferably, it is 0 to 5% shorter or longer.
As the irradiation condition for realizing the above-mentioned appropriate condition, the irradiation distance at which the electron beam becomes the maximum irradiation energy density may be performed at a so-called just focus, but by making the irradiation distance ± 15% shorter or longer than the just focus. The surface can be smoothed efficiently. In other words, a wide range can be uniformly processed at a time by using the beam profile as a trapezoidal shape.
However, when the lens is removed from the just focus, the incident energy such as the beam current is increased. However, this increases the amount of incident energy per unit time, so that the steel plate temperature rises and problems such as deformation of the steel plate occur. . For this reason, the deviation from the just focus is preferably within ± 15%, and more preferably within ± 5%.

次に、この発明の電磁鋼板について、望ましい成分組成について説明する。なお、鋼板成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
Si:1.5〜7.0%
この発明で使用される鋼板の成分としては、Siを、1.5〜7.0%の範囲で含有させることが望ましい。
Siは、製品の電気抵抗を高め、鉄損を低減するのに有効な成分であるが、7.0%を超えると、鋼板の硬度が高くなり、製造や加工が困難になる。一方、1.5%に満たないと、最終仕上げ焼鈍中に組織変態を生じ、安定した2次再結晶組織が得られない。従って、Siは1.5〜7.0%の範囲が望ましい。
Next, the desirable component composition of the electrical steel sheet according to the present invention will be described. In addition, unless otherwise indicated, "%" display regarding a steel plate component shall mean the mass%.
Si: 1.5-7.0%
As a component of the steel sheet used in the present invention, it is desirable to contain Si in a range of 1.5 to 7.0%.
Si is an effective component for increasing the electrical resistance of the product and reducing iron loss. However, if it exceeds 7.0%, the hardness of the steel sheet becomes high, making it difficult to manufacture and process. On the other hand, if it is less than 1.5%, a structural transformation occurs during final finish annealing, and a stable secondary recrystallized structure cannot be obtained. Therefore, Si is desirably in the range of 1.5 to 7.0%.

また、インヒビタを用いる電磁鋼板の場合は、インヒビタ元素としてAlを初期鋼中に0.006%以上含有することにより、鋼板の結晶配向性をより一層向上することができる。一方、上限は0.06%で、これを越えると再び結晶配向の劣化が生じてしまう。   In the case of an electromagnetic steel sheet using an inhibitor, the crystal orientation of the steel sheet can be further improved by containing 0.006% or more of Al as an inhibitor element in the initial steel. On the other hand, the upper limit is 0.06%, and if it exceeds this, the crystal orientation deteriorates again.

Nは、ふくれ欠陥の発生の観点から100ppm程度以下とし、一方、下限は特に規定しないが、工業的に20ppm以下とするのは経済的に困難であることから、20ppm程度とすることが望ましい。   N is set to about 100 ppm or less from the viewpoint of occurrence of blistering defects. On the other hand, the lower limit is not particularly specified, but it is economically difficult to industrially set it to 20 ppm or less, so it is desirable to set it to about 20 ppm.

また、本発明では、1次再結晶焼鈍後に増窒素処理を行う工程も採用することができる。増窒化処理を行わない場合には、初期鋼中に、[%Se]+[%S]([%X]は元素Xの含有量を意味する)の値で、0.01〜0.06%程度のSeおよびSを含有することが有効であり、加えて、Mn化合物として、SeおよびSを析出させるためには、0.02〜0.2%程度のMnを含有させることが有効である。   Moreover, in this invention, the process of performing a nitrogen increase process after primary recrystallization annealing can also be employ | adopted. When the nitriding treatment is not performed, the initial steel has a value of [% Se] + [% S] ([% X] means the content of element X), and about 0.01 to 0.06% of Se. In addition, in order to precipitate Se and S as the Mn compound, it is effective to contain about 0.02 to 0.2% of Mn.

さらに、本発明は、鋼中に、上記の元素の他、公知の方向性電磁鋼板の製造に適するインヒビタ成分として、B、Bi、Sb、Mo、Te、Sn、P、Ge、As、Nb、Cr、Ti、Cu、Pb、ZnおよびInなどが知られていて、これらの元素を単独、または複合して添加することができる。   Furthermore, the present invention includes B, Bi, Sb, Mo, Te, Sn, P, Ge, As, Nb, as an inhibitor component suitable for the production of a known grain-oriented electrical steel sheet in addition to the above elements in steel. Cr, Ti, Cu, Pb, Zn, and In are known, and these elements can be added alone or in combination.

インヒビタを用いない電磁鋼板の場合、sol.Alは100ppm以下、Nは50ppm以下であって好ましくは30ppm以下まで低減しておくことが、良好に二次再結晶を発現させるために有効である。従来のインヒビタ元素であるS、Seについても50ppm以下、好ましくは30ppm以下に低減することが有利である。   In the case of a magnetic steel sheet that does not use an inhibitor, it is effective to reduce sol.Al to 100 ppm or less, N to 50 ppm or less, and preferably 30 ppm or less, in order to develop secondary recrystallization well. It is advantageous to reduce S and Se, which are conventional inhibitor elements, to 50 ppm or less, preferably 30 ppm or less.

本発明に供して好適な方向性電磁鋼板用スラブの、Siを除いた基本成分について具体的に述べると次のとおりである。
C:0.08%以下
Cは、最終的には、磁気時効劣化を防ぐために、脱炭処理後の到達値で30ppm以下にする必要がある。また、良好な二次再結晶方位を得るため、圧延前後あるいは一次再結晶焼鈍前後の組織制御などの観点から、それぞれのプロセスに適した添加量は存在するが、製造工程全体を通しての脱炭負荷を考慮すると、溶製時には、0.08%程度までに抑えるのが望ましい。
The basic components excluding Si of the slab for grain-oriented electrical steel sheets suitable for the present invention will be specifically described as follows.
C: 0.08% or less C is finally required to be 30 ppm or less in the reached value after decarburization treatment in order to prevent magnetic aging deterioration. In addition, in order to obtain a good secondary recrystallization orientation, there are suitable addition amounts for each process from the viewpoint of microstructure control before and after rolling or before and after primary recrystallization annealing, but the decarburization load throughout the entire manufacturing process. In consideration of the above, it is desirable to suppress to about 0.08% at the time of melting.

Mn:0.005〜1.0%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005%未満ではその添加効果に乏しく、一方1.0%を超えると製品板の磁束密度が低下する。従って、Mn量は0.005〜1.0%の範囲とすることが好ましい。
Mn: 0.005 to 1.0%
Mn is an element necessary for improving the hot workability, but if the content is less than 0.005%, the effect of addition is poor, while if it exceeds 1.0%, the magnetic flux density of the product plate decreases. Therefore, the Mn content is preferably in the range of 0.005 to 1.0%.

本発明は、上記の基本成分以外に、磁気特性改善成分など、従来公知の方向性電磁鋼板に対して添加される元素を適宜含有させることができる。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
In addition to the above basic components, the present invention can appropriately contain elements added to conventionally known grain-oriented electrical steel sheets, such as magnetic property improving components.
The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.

次に、本発明の電磁鋼板の製造方法について、その条件を説明する。
所定の成分に調整された鋼片は、通常のスラブ加熱に供された後、熱間圧延により熱延コイルとされるが、このスラブの加熱温度については1300℃以上の高温度とする場合と1250℃以下の低温度とする場合のいずれでも良い。また近年、スラブ加熱を行わず連続鋳造後、直接熱間圧延を行う方法が開発されているが、この方法で熱間圧延しても良い。
Next, conditions for the method for manufacturing the electrical steel sheet of the present invention will be described.
The steel slab adjusted to a predetermined component is subjected to normal slab heating and then hot rolled into a hot rolled coil. The heating temperature of this slab is set to a high temperature of 1300 ° C or higher. Any of the cases where the temperature is 1250 ° C. or lower is acceptable. In recent years, a method of performing direct hot rolling after continuous casting without performing slab heating has been developed, but hot rolling may be performed by this method.

熱間圧延後の鋼板は、必要に応じて熱延板焼鈍を施し、1回の冷延もしくは中間焼鈍を挟む複数回の圧延によって最終冷間圧延板とする。これらの圧延については動的時効を狙ったいわゆる温間圧延や、静的時効を狙ったパス間時効を施したものであっても良い。   The hot-rolled steel sheet is subjected to hot-rolled sheet annealing as necessary, and is made into a final cold-rolled sheet by a plurality of rollings sandwiching one cold rolling or intermediate annealing. About these rolling, what was called warm rolling aiming at dynamic aging, and what performed aging between passes aiming at static aging may be used.

最終冷延板はその後、脱炭処理を兼ねた一次再結晶焼鈍とフォルステライト被膜形成を兼ねた二次再結晶焼鈍を施されるが、一次再結晶焼鈍に先立ち、真空槽中において電子線照射による表面清浄化処理を行うことに、本発明の特徴がある。すなわち、前記した条件で、電子線照射を行うことにより、鋼板表面を算術平均粗さRaで、0.15μm以下の平滑面とする。   The final cold-rolled sheet is then subjected to primary recrystallization annealing that also serves as decarburization treatment and secondary recrystallization annealing that also serves as forsterite film formation, but prior to primary recrystallization annealing, irradiation with electron beams in a vacuum chamber There is a feature of the present invention in that the surface cleaning process is performed. That is, by irradiating with an electron beam under the above-described conditions, the steel sheet surface is made a smooth surface with an arithmetic average roughness Ra of 0.15 μm or less.

表面に微細な酸化物を形成させることなく表面を平滑化し、さらに平滑化後の鋼板表面の算術平均粗さRaは0.15μm以下である必要がある。というのは、0.15μmより大きい場合、変圧器を組んだ時の素材鉄損に対する変圧器鉄損の増加量が大きくなり、前述したいわゆるビルディングファクタが増大するからである。
なお、本発明における算術平均粗さRaは、JIS B 0601(1994)に準拠している。
The surface must be smoothed without forming fine oxides on the surface, and the arithmetic average roughness Ra of the smoothed steel plate surface must be 0.15 μm or less. This is because when the size is larger than 0.15 μm, the increase amount of the transformer iron loss with respect to the material iron loss when the transformer is assembled increases, and the so-called building factor increases.
The arithmetic average roughness Ra in the present invention is based on JIS B 0601 (1994).

電子線照射後の表面に残留する微細酸化物を定量化できているわけではないが、鋼板の表面の平均粗さRaを0.15μm以下とすれば、酸化物の影響がほぼなくなるものと発明者らは推定している。
ここに、大気中で行うレーザ照射等でも、鋼板の表面の平滑化処理は可能であるが、表面酸化が避けられず、表面酸化が起きると、その後に行う一次再結晶焼鈍時のSiO2主体の酸化物形成に大きな影響を及ぼすため、本発明ほどの鉄損低減効果がないものと推定される。
Although it is not possible to quantify the fine oxide remaining on the surface after electron beam irradiation, the inventors believe that if the average roughness Ra of the steel sheet surface is 0.15 μm or less, the effect of the oxide will be almost eliminated. Have estimated.
Here, the surface of the steel sheet can be smoothed even by laser irradiation, etc. performed in the atmosphere. However, if surface oxidation is unavoidable and surface oxidation occurs, it is mainly composed of SiO 2 during the subsequent primary recrystallization annealing. Therefore, it is presumed that the iron loss reduction effect is not as high as that of the present invention.

最終冷延後の鋼板は、前述したように、脱炭処理を兼ねた一次再結晶焼鈍を施し、その後最終仕上げ焼鈍により二次再結晶処理を施して、(110)[001]方位に集積させる。最終仕上げ焼鈍を行う場合には、通常1次再結晶焼鈍後に焼鈍分離剤を塗布し、これにより酸化物被膜を形成させるが、この焼鈍分離剤の組成を調整して、鋼板表面上の酸化物被膜の生成を抑制することもできる。   As described above, the steel sheet after the final cold rolling is subjected to primary recrystallization annealing also serving as decarburization treatment, and then subjected to secondary recrystallization treatment by final finish annealing, and is accumulated in the (110) [001] orientation. . When the final finish annealing is performed, an annealing separator is usually applied after the primary recrystallization annealing, thereby forming an oxide film. By adjusting the composition of the annealing separator, an oxide on the steel sheet surface is formed. The formation of a film can also be suppressed.

特に、表面にフォルステライト被膜を意図的に形成させず、鏡面状態に仕上げて超低鉄損の方向性電磁鋼板を製造する過程において、二次再結晶焼鈍後に追加で表面平滑化処理を行わない場合、表面の平滑化の程度は最終冷延板の表面の程度を反映するため、本発明を適用すれば、極めて簡単に鏡面状態を達成することができる。   In particular, in the process of producing a grain-oriented electrical steel sheet with ultra-low iron loss by intentionally forming a forsterite film on the surface and finishing it in a mirror state, no additional surface smoothing treatment is performed after secondary recrystallization annealing. In this case, since the degree of smoothing of the surface reflects the degree of the surface of the final cold-rolled sheet, the mirror surface state can be achieved very easily by applying the present invention.

方向性電磁鋼板は、変圧器を作製する場合、積層して使用されるので、層間絶縁のための絶縁層が必要となる。その際、追加で施される絶縁コートとしては、方向性電磁鋼板に使用される無機質コートが好ましい。
特に、張力付与効果を有するコーティングは、低鉄損化のために表面を平滑化した方向性電磁鋼板との組合せで、鉄損低減に極めて有効に作用する。張力付与効果を有するコーティングの種類としては、熱膨張係数を低下させるシリカを含むコーティングが有効で、従来からフォルステライト被膜を有する方向性電磁鋼板に用いられているリン酸塩-コロイダルシリカ-クロム酸系のコーティング等が、その効果およびコスト、均一処理性などの点から好適である。
なお、上記のコーティングの厚みとしては、張力付与効果や占積率、被膜密着性等の点から0.3μm以上10μm以下程度の範囲が好ましい。
Since the grain-oriented electrical steel sheet is used by being laminated when producing a transformer, an insulating layer for interlayer insulation is required. In that case, as the additionally applied insulating coating, an inorganic coating used for the grain-oriented electrical steel sheet is preferable.
In particular, a coating having a tension-imparting effect is extremely effective in reducing iron loss in combination with a grain-oriented electrical steel sheet whose surface has been smoothed to reduce iron loss. As a type of coating having a tension-imparting effect, a coating containing silica that lowers the coefficient of thermal expansion is effective, and phosphate-colloidal silica-chromic acid conventionally used for grain-oriented electrical steel sheets having a forsterite film A coating of a system or the like is preferable from the viewpoint of its effect and cost, uniform processability and the like.
The thickness of the coating is preferably in the range of about 0.3 μm or more and 10 μm or less from the viewpoint of tension application effect, space factor, film adhesion, and the like.

また、張力コーティングとしてこれ以外にも特許文献1、特許文献2および特許文献3などで提案されているホウ酸-アルミナ等の酸化物系被膜を適用することも可能である。   In addition to this, an oxide-based film such as boric acid-alumina proposed in Patent Document 1, Patent Document 2, and Patent Document 3 can also be applied as a tension coating.

なお、本発明において、上述した工程や製造条件以外については、従来公知の方向性電磁鋼板の製造方法を適用することができる。   In addition, in this invention, conventionally well-known manufacturing methods of a grain-oriented electrical steel sheet can be applied except the process and manufacturing conditions mentioned above.

Si:3.2%、Mn:0.06%、Se:0.001%、C:0.05%、Al:0.02%、N:80ppm、Sn:0.10%、およびCu:0.10%を含み、残部はFeおよび不可避的不純物からなるスラブを1400℃に加熱したのち熱間圧延を施して板厚:2.0mmの熱延板とし、温間圧延を含む冷間圧延により板厚:0.23mmに仕上げた。かくして得られた最終圧延材を、長さ:600mm、幅:100mmの鋼板に剪断、鋼板表面の性状を変化させるために真空槽にて電子線照射処理を行った。処理槽の真空度は2.0Pa、電子の加速電圧は60kV、ビーム電流は1〜5mAの範囲で、電子ビームを二次元的にスキャンさせながら100mm×100mm四方ずつ両面について表面清浄化処理を行った。
電子線照射の最大照射エネルギー密度となる照射距離が540mmであるのに対し、試験No.6は照射距離を550mm、試験No.7は照射距離を540mmとする条件で照射した。
比較として、電子線照射処理を行わない素材や塩酸酸洗処理で表面酸化物を除去した素材を作製した。それぞれの素材について、圧延方向および圧延直角方向の算術平均粗さRaを測定した。
Contains Si: 3.2%, Mn: 0.06%, Se: 0.001%, C: 0.05%, Al: 0.02%, N: 80ppm, Sn: 0.10%, and Cu: 0.10%, the balance from Fe and inevitable impurities The resulting slab was heated to 1400 ° C. and then hot rolled to obtain a hot rolled sheet having a thickness of 2.0 mm, and finished to a thickness of 0.23 mm by cold rolling including warm rolling. The final rolled material thus obtained was sheared into a steel plate having a length of 600 mm and a width: 100 mm and subjected to electron beam irradiation treatment in a vacuum chamber in order to change the properties of the steel plate surface. Surface treatment was performed on both sides of 100mm x 100mm square while scanning the electron beam two-dimensionally in a processing tank vacuum degree of 2.0Pa, electron acceleration voltage of 60kV and beam current in the range of 1-5mA. .
While the irradiation distance that is the maximum irradiation energy density of electron beam irradiation is 540 mm, No. 6 has an irradiation distance of 550 mm and test no. No. 7 was irradiated under the condition that the irradiation distance was 540 mm.
For comparison, a material not subjected to electron beam irradiation treatment or a material from which surface oxides were removed by hydrochloric acid pickling treatment was prepared. For each material, the arithmetic average roughness Ra in the rolling direction and the direction perpendicular to the rolling direction was measured.

その後、脱炭を兼ねた1次再結晶焼鈍を施し、MgO:100重量部に対してTiO2:4重量部添加した焼鈍分離剤を水スラリーで10g/m2塗布して乾燥した後、800℃までをN2雰囲気中、平均50℃/hで昇温し、800℃から900℃を窒素25vol%;水素75vol%の混合雰囲気中で平均5℃/hで昇温し、900℃から1150℃を水素雰囲気で平均20℃/hで昇温した。ついで、水素中で1150℃、10時間の純化焼鈍を兼ねた二次再結晶焼鈍を行ったのち、放冷してフォルステライト被膜を有する方向性電磁鋼板を得た。さらに、リン酸Mgとコロイダルシリカからなる絶縁コーティングを施した。加えてシングルモードファイバレーザにて圧延方向と直角方向に5mm間隔で線状照射を行い磁区細分化処理を施した。
かようにして得られた製品の圧延方向の磁束密度(B)および鉄損(W17/50)を測定した。
また、素材を斜角剪断し、70枚積層500mm角の三相モデルトランスをVノッチ、ステップラップ積み(5層)で作成し、変圧器の鉄損(W17/50)を評価し、その結果を表1にそれぞれ記載する。
Thereafter, primary recrystallization annealing also used for decarburization was performed, and an annealing separator added with 4 parts by weight of TiO 2 with respect to 100 parts by weight of MgO was applied with 10 g / m 2 of water slurry and dried. The temperature is increased to 50 ° C in an N 2 atmosphere at an average of 50 ° C / h, the temperature is increased from 800 ° C to 900 ° C at an average of 5 ° C / h in a mixed atmosphere of nitrogen at 25 vol%; The temperature was raised at an average temperature of 20 ° C./h in a hydrogen atmosphere. Next, secondary recrystallization annealing was performed in hydrogen at 1150 ° C. for 10 hours, and then allowed to cool to obtain a grain-oriented electrical steel sheet having a forsterite film. Furthermore, an insulating coating made of Mg phosphate and colloidal silica was applied. In addition, linear domain irradiation was performed at intervals of 5 mm in the direction perpendicular to the rolling direction with a single mode fiber laser to perform magnetic domain refinement treatment.
The magnetic flux density (B 8 ) and iron loss (W 17/50 ) in the rolling direction of the product thus obtained were measured.
In addition, shearing the material, creating a three-phase model transformer with 70mm laminated 500mm square with V notch and step lap stack (5 layers), and evaluating the iron loss (W 17/50 ) of the transformer, The results are listed in Table 1, respectively.

Figure 2012180545
Figure 2012180545

同表に示したとおり、試験No.6、7は、電子線照射により、鋼板の表面の算術平均粗さRaが0.15μm以下の素材となっている。これらの鋼板では、変圧器鉄損W17/50が0.8W/kg以下であり、かつビルディングファクタが1.2未満、と良好な変圧器特性を示した。これに対して、鋼板の表面の算術粗さが0.15μmを超える表面性状の場合、変圧器鉄損値は増大し、ビルディングファクタは大きくなっていることが分かる。 As shown in the table, test no. 6 and 7 are materials whose arithmetic average roughness Ra of the steel sheet surface is 0.15 μm or less by electron beam irradiation. These steel sheets exhibited good transformer characteristics with a transformer iron loss W 17/50 of 0.8 W / kg or less and a building factor of less than 1.2. On the other hand, when the surface roughness of the steel sheet exceeds 0.15 μm, the transformer iron loss value increases and the building factor increases.

Claims (2)

含珪素鋼熱延板に、必要に応じて熱延板焼鈍を施したのち、一回または中間焼鈍を含む二回以上の冷間もしくは温間圧延を施して最終板厚とし、ついで一次再結晶焼鈍を行った後、焼鈍分離剤を塗布してから二次再結晶焼鈍を行うことよりなる、Bで1.93T以上の高磁束密度を有する方向性電磁鋼板の製造方法において、
上記一次再結晶焼鈍に先立ち、鋼板の表面に電子線を照射することにより、該鋼板の表面を算術平均粗さRaで0.15μm以下の平滑面とすることを特徴とする変圧器鉄損に優れた方向性電磁鋼板の製造方法。
Silicon-containing steel hot-rolled sheet is subjected to hot-rolled sheet annealing as necessary, then subjected to cold or warm rolling once or two times including intermediate annealing to the final sheet thickness, and then primary recrystallization after annealing, it consists in performing the secondary recrystallization annealing are coated with the annealing separator, in the manufacturing method of a grain-oriented electrical steel sheet having a high magnetic flux density of more than 1.93T at B 8,
Prior to the primary recrystallization annealing, the surface of the steel sheet is irradiated with an electron beam to make the surface of the steel sheet a smooth surface with an arithmetic average roughness Ra of 0.15 μm or less. A method for producing a grain-oriented electrical steel sheet.
前記鋼板の表面に対する電子線の照射距離を、該鋼板の表面で該電子線が最大照射エネルギー密度となる照射距離に対して、0〜15%短くまたは長くすることを特徴とする請求項1に記載の変圧器鉄損に優れた方向性電磁鋼板の製造方法。   The irradiation distance of the electron beam to the surface of the steel sheet is 0 to 15% shorter or longer than the irradiation distance at which the electron beam reaches the maximum irradiation energy density on the surface of the steel sheet. The manufacturing method of the grain-oriented electrical steel sheet excellent in the transformer iron loss of description.
JP2011043145A 2011-02-28 2011-02-28 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP5760511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011043145A JP5760511B2 (en) 2011-02-28 2011-02-28 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011043145A JP5760511B2 (en) 2011-02-28 2011-02-28 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2012180545A true JP2012180545A (en) 2012-09-20
JP5760511B2 JP5760511B2 (en) 2015-08-12

Family

ID=47011982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011043145A Expired - Fee Related JP5760511B2 (en) 2011-02-28 2011-02-28 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5760511B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003049A (en) * 2016-06-28 2018-01-11 新日鐵住金株式会社 Electrical steel sheet excellent in space factor and manufacturing method therefor
WO2023204299A1 (en) * 2022-04-22 2023-10-26 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing grain-oriented electromagnetic steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003049A (en) * 2016-06-28 2018-01-11 新日鐵住金株式会社 Electrical steel sheet excellent in space factor and manufacturing method therefor
WO2023204299A1 (en) * 2022-04-22 2023-10-26 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP5760511B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5115641B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR102239708B1 (en) Grain-oriented electrical steel sheet and its manufacturing method
WO2012017689A1 (en) Grain-oriented magnetic steel sheet and process for producing same
US6562473B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
US10020103B2 (en) Grain oriented electrical steel sheet
JP6658338B2 (en) Electrical steel sheet excellent in space factor and method of manufacturing the same
KR20130037216A (en) Oriented electromagnetic steel plate and production method for same
JP2012177149A (en) Grain-oriented silicon steel sheet, and method for manufacturing the same
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
JP2013091837A (en) Method for producing non-oriented electromagnetic steel sheet having good magnetic property in rolling direction
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP2008150697A (en) Production method of magnetic steel sheet
JP5760511B2 (en) Method for producing grain-oriented electrical steel sheet
JP2018090871A (en) Grain oriented silicon steel sheet and method for manufacturing the same
JP5862582B2 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and surface glass coating for grain-oriented electrical steel sheet
JP6690244B2 (en) Bidirectional electrical steel sheet and method for manufacturing bidirectional electrical steel sheet
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101675318B1 (en) Oriented electrical steel sheet and method for manufacturing the same
JP3782273B2 (en) Electrical steel sheet
JP2018123377A (en) Directional electromagnetic steel sheet and process for producing the same
JPH1161261A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JP2022022494A (en) Grain oriented electrical steel sheet
WO2022255259A1 (en) Method for manufacturing oriented electrical steel sheet
JP2018125425A (en) Blank, iron core constituting member, and stacked core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R150 Certificate of patent or registration of utility model

Ref document number: 5760511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees