JP2012180437A - Polychloroprene latex composition - Google Patents
Polychloroprene latex composition Download PDFInfo
- Publication number
- JP2012180437A JP2012180437A JP2011043711A JP2011043711A JP2012180437A JP 2012180437 A JP2012180437 A JP 2012180437A JP 2011043711 A JP2011043711 A JP 2011043711A JP 2011043711 A JP2011043711 A JP 2011043711A JP 2012180437 A JP2012180437 A JP 2012180437A
- Authority
- JP
- Japan
- Prior art keywords
- polychloroprene latex
- mass
- adhesive
- zinc oxide
- latex composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本発明は、接着剤、不織布バインダー、ラテックス含浸紙、ゴム引布、歯付ベルトのゴムと繊維布の接着や心線の繊維処理用のレゾルシン−ホルマリン−ラテックス液(RFL液)、手袋や長靴などの浸漬成形製品に利用可能である、ポリクロロプレンラテックス組成物に関する。 The present invention relates to an adhesive, non-woven fabric binder, latex-impregnated paper, rubberized cloth, resorcin-formalin-latex liquid (RFL liquid), gloves and boots for adhesion of rubber and fiber cloth of toothed belt and fiber processing of core wire. The present invention relates to a polychloroprene latex composition that can be used for immersion molding products such as
ポリクロロプレンラテックス組成物は、日光や高温に曝される環境で長期間貯蔵すると、クロロプレン重合体の脱塩酸反応により、pHが徐々に変化して、配合剤が層分離を起こしたり、析出したりすることがある。このような問題に対して、従来から、ポリクロロプレンラテックス組成物に、塩酸の受酸剤として酸化亜鉛を配合することが有効であることが知られている。また、ポリクロロプレンラテックス組成物中のクロロプレン重合体が、クロロプレンと不飽和カルボン酸の共重合体である場合には、酸化亜鉛を配合することによって、亜鉛イオンとカルボキシル基の架橋を形成させることができ、接着剤用途では耐熱接着力などを向上させることもできる。
このような酸化亜鉛の配合効果を向上させたり、あるいは耐光変色性などの新たな機能を付与させたりするために、カルボキシル基変性ポリクロロプレンラテックスに、活性亜鉛華と呼ばれる表面積が大きな酸化亜鉛を配合して、耐水接着力を向上させた接着剤が知られている(例えば、特許文献1参照。)。また、ポリクロロプレンラテックスに、粒径200nm未満の微粒子酸化亜鉛を配合して、接着力や耐光変色性を向上させたラテックス組成物及び接着剤や(例えば、特許文献2や特許文献3参照。)、ポリクロロプレンラテックスに、酸化亜鉛微粒子を担持させた鱗片状シリカを配合して、耐光変色性を向上させたラテックス組成物及び接着剤(例えば、特許文献4参照。)が知られている。
さらに、ポリクロロプレンラテックスに、酸化亜鉛と同時に、水酸化マグネシウムや酸化マグネシウムを配合して、耐光変色性を向上させたラテックス組成物及び接着剤が知られている(例えば、特許文献5参照。)。
When the polychloroprene latex composition is stored for a long period of time in an environment exposed to sunlight or high temperatures, the pH gradually changes due to the dehydrochlorination reaction of the chloroprene polymer, and the compounding agent causes layer separation or precipitation. There are things to do. Conventionally, it has been known that it is effective to blend zinc oxide as an acid acceptor for hydrochloric acid in a polychloroprene latex composition for such problems. Further, when the chloroprene polymer in the polychloroprene latex composition is a copolymer of chloroprene and unsaturated carboxylic acid, it is possible to form a bridge between zinc ions and carboxyl groups by adding zinc oxide. It can also improve heat-resistant adhesive strength and the like in adhesive applications.
In order to improve the blending effect of such zinc oxide or to add new functions such as light discoloration resistance, blending carboxyl group-modified polychloroprene latex with zinc oxide with a large surface area called active zinc white And the adhesive agent which improved the water-resistant adhesive force is known (for example, refer patent document 1). Further, a latex composition and an adhesive in which fine zinc oxide having a particle size of less than 200 nm is blended with polychloroprene latex to improve adhesive strength and light discoloration resistance (see, for example, Patent Document 2 and Patent Document 3). A latex composition and an adhesive (for example, see Patent Document 4) in which light discoloration resistance is improved by blending scaly silica carrying zinc oxide fine particles with polychloroprene latex are known.
Furthermore, latex compositions and adhesives are known in which magnesium hydroxide or magnesium oxide is blended with polychloroprene latex at the same time as zinc oxide to improve light discoloration resistance (see, for example, Patent Document 5). .
これらの手段により、ポリクロロプレンラテックス組成物の性能は進歩しているが、それぞれの技術には次のような欠点もある。
例えば、特許文献1に記載された技術は、表面積が大きい活性亜鉛華を使用するため、活性亜鉛華の粒子同士が凝集しやすく、ラテックス中に微細かつ均一に配合することが難しい。このため、ポリクロロプレンラテックス組成物の貯蔵中の粘度安定性が問題となる場合がある。
Although the performance of the polychloroprene latex composition has been improved by these means, each technique has the following drawbacks.
For example, since the technique described in Patent Document 1 uses active zinc white having a large surface area, particles of active zinc white are likely to aggregate, and it is difficult to mix finely and uniformly in latex. For this reason, viscosity stability during storage of the polychloroprene latex composition may be a problem.
特許文献2や特許文献3の技術は、粒子径200nm未満の微粒子状の酸化亜鉛の価格が高いために、ラテックス組成物や接着剤のコストアップにつながってしまう。
特許文献4と特許文献5の技術は、シリカ粒子やマグネシウム化合物粒子が沈降しやすく、増粘剤の種類の選定や配合量が不適切な場合には、貯蔵安定性が問題となる場合がある。
The techniques of Patent Document 2 and Patent Document 3 lead to an increase in the cost of the latex composition and the adhesive because the price of the particulate zinc oxide having a particle diameter of less than 200 nm is high.
In the techniques of Patent Document 4 and Patent Document 5, silica particles and magnesium compound particles are likely to settle, and storage stability may be a problem when the type and amount of the thickener are inappropriate. .
本発明は、接着力だけでなく、貯蔵安定性にも優れたポリクロロプレンラテックスを提供することを目的とする。 An object of the present invention is to provide a polychloroprene latex excellent not only in adhesive strength but also in storage stability.
ポリクロロプレンラテックスを固形分換算で100質量部に対して、繊維長3〜200μmの針状酸化亜鉛を固形分換算で0.05〜10質量部含有することによって、接着力と貯蔵安定性に優れたポリクロロプレンラテックス組成物が得られることを見いだし、上記課題を解決した。なお、該ポリクロロプレンラテックスは、クロロプレン重合体が、クロロプレン及びカルボキシル基含有ビニル単量体の共重合体であることが好ましく、ポリビニルアルコールの存在下で、乳化重合して得られたものであることが好ましい。得られたポリクロロプレンラテックスは、接着剤、不織布バインダー、ラテックス含浸紙、ゴム引布、歯付ベルトのゴムと繊維布の接着や心線の繊維処理用のレゾルシン−ホルマリン−ラテックス液(RFL液)、手袋や長靴などの浸漬成形製品に利用可能であり、特に、接着剤として好適に利用することができる。 By including 0.05 to 10 parts by mass of acicular zinc oxide having a fiber length of 3 to 200 μm in terms of solid content with respect to 100 parts by mass in terms of solid content of polychloroprene latex, the adhesive strength and storage stability are excellent. The inventors have found that a polychloroprene latex composition can be obtained, and have solved the above problems. The polychloroprene latex is preferably obtained by emulsion polymerization in the presence of polyvinyl alcohol, in which the chloroprene polymer is preferably a copolymer of chloroprene and a carboxyl group-containing vinyl monomer. Is preferred. The resulting polychloroprene latex is a resorcin-formalin-latex solution (RFL solution) for bonding adhesives, nonwoven fabric binders, latex-impregnated paper, rubberized cloth, toothed belt rubber and fiber cloth, and fiber processing of core wires. It can be used for immersion molded products such as gloves and boots, and can be particularly suitably used as an adhesive.
本発明のポリクロロプレンラテックス組成物は、長期間貯蔵しても、pHの低下や、配合剤の沈降が起こりにくく、かつ、接着力に優れた接着剤を製造することができる。 Even if the polychloroprene latex composition of the present invention is stored for a long period of time, it is possible to produce an adhesive that is less likely to cause a decrease in pH and that the compounding agent is precipitated and that has excellent adhesive strength.
以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. Note that the present invention is not limited to the embodiments described below.
ポリクロロプレンラテックスとは、クロロプレン重合体を、乳化剤を介して水中に乳化させたラテックス(エマルジョン)のことである。クロロプレン重合体とは、2−クロロ−1,3−ブタジエン(以下、クロロプレンと記す)の単独重合体、または、クロロプレンと、クロロプレンと共重合可能な単量体の共重合体である。 The polychloroprene latex is a latex (emulsion) obtained by emulsifying a chloroprene polymer in water via an emulsifier. The chloroprene polymer is a homopolymer of 2-chloro-1,3-butadiene (hereinafter referred to as chloroprene) or a copolymer of chloroprene and a monomer copolymerizable with chloroprene.
クロロプレンと共重合可能な単量体としては、例えば、2,3−ジクロロ−1,3−ブタジエン、1−クロロ−1,3−ブタジエン、硫黄、アクリル酸やメタクリル酸などのカルボキシル基含有ビニル単量体及びそのエステル類が挙げられ、必要に応じて2種類以上用いても良い。これらの中でも、カルボキシル基含有単量体が好ましく、特にメタクリル酸を用いると、接着剤に酸化亜鉛や酸化マグネシウムといった金属酸化物を配合した時に2価金属イオンとカルボキシル基の架橋が起こり、得られるポリクロロプレンラテックスおよびこれを用いて得られる接着剤の耐熱性や耐溶剤性といった接着性能を向上させることができるため好ましい。
これらクロロプレンと共重合可能な単量体の仕込み量は、単量体の合計100質量部のうち、カルボキシル基含有ビニル単量体が0.01〜5質量部の範囲が好ましい。
Examples of monomers copolymerizable with chloroprene include carboxyl group-containing vinyl monomers such as 2,3-dichloro-1,3-butadiene, 1-chloro-1,3-butadiene, sulfur, acrylic acid and methacrylic acid. Examples thereof include esters and esters thereof, and two or more of them may be used as necessary. Among these, a carboxyl group-containing monomer is preferable. Particularly, when methacrylic acid is used, when a metal oxide such as zinc oxide or magnesium oxide is blended in an adhesive, a cross-linking between a divalent metal ion and a carboxyl group occurs. It is preferable because the adhesive performance such as heat resistance and solvent resistance of polychloroprene latex and an adhesive obtained using the same can be improved.
The charge amount of the monomer copolymerizable with chloroprene is preferably in the range of 0.01 to 5 parts by mass of the carboxyl group-containing vinyl monomer out of 100 parts by mass of the monomers.
単量体を乳化重合させる際に用いられる乳化剤及び/または分散剤は、特に限定するものではなく、従来からクロロプレンの乳化重合に用いられているアニオン性乳化剤、ノニオン性乳化剤、カチオン性乳化剤を用いればよい。アニオン性乳化剤の具体例としては、カルボン酸型、硫酸エステル型などがあり、例えば、ロジン酸のアルカリ金属塩、炭素数が8〜20個のアルキルスルホネート、アルキルアリールサルフェート、ナフタリンスルホン酸ナトリウムとホルムアルデヒドの縮合物等が挙げられる。ノニオン性乳化剤の具体例としては、ポリビニルアルコールまたはその共重合体(例えばアクリルアミドとの共重合体)、ポリビニルーテルまたはその共重合体(例えば、マレイン酸との共重合体)、ポリオキシエチレアルキルエーテル、ポリオキシエチレンアルキルフェノール、ソルビタン脂肪酸エステル、ポリオキシエチレンアシルエステルなどが挙げられる。カチオン性乳化剤の具体例としては、脂肪族アミン塩、脂肪族4級アンモニウム塩等があり、例えば、オクタデシルトリメチルアンモニウムクロリド、ドデシルトリメチルアンモニウムクロリド、ジラウリルジメチルアンモニウムクロリド等が挙げられる。 The emulsifier and / or dispersant used for emulsion polymerization of the monomer is not particularly limited, and anionic emulsifier, nonionic emulsifier and cationic emulsifier conventionally used for emulsion polymerization of chloroprene are used. That's fine. Specific examples of the anionic emulsifier include carboxylic acid type and sulfate ester type. For example, alkali metal salt of rosin acid, alkyl sulfonate having 8 to 20 carbon atoms, alkyl aryl sulfate, sodium naphthalene sulfonate and formaldehyde And the like. Specific examples of the nonionic emulsifier include polyvinyl alcohol or a copolymer thereof (for example, a copolymer with acrylamide), polyvinyl ether or a copolymer thereof (for example, a copolymer with maleic acid), a polyoxyethylalkyl. Examples include ether, polyoxyethylene alkylphenol, sorbitan fatty acid ester, polyoxyethylene acyl ester and the like. Specific examples of the cationic emulsifier include aliphatic amine salts, aliphatic quaternary ammonium salts, and the like, for example, octadecyltrimethylammonium chloride, dodecyltrimethylammonium chloride, dilauryldimethylammonium chloride and the like.
これらの化合物の中でも、ポリビニルアルコールを用いることが好ましい。ポリビニルアルコールを乳化剤として選択した場合には、後述する針状酸化亜鉛をラテックス中に均一分散させ易くなる。乳化重合時のポリビニルアルコールの仕込み量は、初期仕込み単量体の合計100質量部に対して0.5〜10質量部が好ましい。0.5質量部未満では、乳化力が十分ではない場合があり、10質量部を超えると得られる接着剤の耐水性が低下する場合がある。用いるポリビニルアルコールの鹸化度は、70〜95mol%が好ましい。鹸化度が70mol%未満の場合、ポリビニルアルコールの水に対する溶解速度が遅くなり、生産性が低下する場合がある。また鹸化度が95mol%を超えると、ポリビニルアルコールの乳化性能が低下して、安定した乳化重合がおこなえない場合がある。なお、ここで規定する鹸化度は、JIS K 6726に規定される方法で測定した値である。 Among these compounds, it is preferable to use polyvinyl alcohol. When polyvinyl alcohol is selected as an emulsifier, it becomes easy to uniformly disperse acicular zinc oxide described later in the latex. The amount of polyvinyl alcohol charged during emulsion polymerization is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of initial charged monomers. If it is less than 0.5 part by mass, the emulsifying power may not be sufficient, and if it exceeds 10 parts by mass, the water resistance of the resulting adhesive may be reduced. The saponification degree of the polyvinyl alcohol used is preferably 70 to 95 mol%. When the degree of saponification is less than 70 mol%, the dissolution rate of polyvinyl alcohol in water may be slow, and productivity may be reduced. On the other hand, if the degree of saponification exceeds 95 mol%, the emulsifying performance of polyvinyl alcohol is lowered, and stable emulsion polymerization may not be performed. In addition, the saponification degree prescribed | regulated here is the value measured by the method prescribed | regulated to JISK6726.
ポリビニルアルコールは、JIS K 6726に規定される方法で測定した水溶液粘度(濃度4質量%の水溶液の20℃における粘度)が、3〜60mPa・sであることが好ましい。この水溶液粘度が3mPa・s未満の場合、水溶液が飛散しやすくなる場合がある。また、水溶液粘度が60mPa・sを超えると、ポリビニルアルコールの水に対する溶解速度が遅くなったり、溶解タンクの内壁への付着量が増加したりする場合がある。 Polyvinyl alcohol preferably has an aqueous solution viscosity (viscosity at 20 ° C. of an aqueous solution having a concentration of 4% by mass) measured by a method defined in JIS K 6726 of 3 to 60 mPa · s. When this aqueous solution viscosity is less than 3 mPa · s, the aqueous solution may be easily scattered. Moreover, when aqueous solution viscosity exceeds 60 mPa * s, the melt | dissolution rate with respect to the water of polyvinyl alcohol may become slow, or the adhesion amount to the inner wall of a melt | dissolution tank may increase.
なお、変性したポリビニルアルコールを用いる場合には、JIS K 6726で定められている方法で重合度を測定しようとすると、未鹸化の酢酸ビニル単位を完全に鹸化する前処理の段階で架橋・不溶化して、正確な重合度を求めることができないことがある。そこで、本発明においては、重合度に代えて、JIS K 6726に規定されている水溶液粘度の好適な範囲を記載した。前処理で不溶化しない場合の好適な重合度範囲は、200〜2500が好ましい。 When modified polyvinyl alcohol is used, if the degree of polymerization is measured by the method defined in JIS K 6726, crosslinking and insolubilization occur at the pretreatment stage in which unsaponified vinyl acetate units are completely saponified. In some cases, it is not possible to obtain an accurate degree of polymerization. Therefore, in the present invention, instead of the degree of polymerization, a preferred range of aqueous solution viscosity defined in JIS K 6726 is described. The preferred degree of polymerization when not insolubilized by pretreatment is preferably 200-2500.
ポリクロロプレンラテックス中のクロロプレン重合体のポリマー構造は、特に限定するものではないが、重合温度、重合開始剤、連鎖移動剤、重合停止剤、重合率などを任意に選択することで、分子量、分子量分布、ゲル含有量、分子末端構造、結晶化速度を制御することができる。 The polymer structure of the chloroprene polymer in the polychloroprene latex is not particularly limited, but the molecular weight, molecular weight can be selected by arbitrarily selecting the polymerization temperature, polymerization initiator, chain transfer agent, polymerization terminator, polymerization rate, etc. Distribution, gel content, molecular end structure, crystallization rate can be controlled.
乳化重合時の重合温度は、特に限定するものではないが、重合反応を円滑におこなうために、5〜50℃とすることが好ましい。 Although the polymerization temperature at the time of emulsion polymerization is not particularly limited, it is preferably 5 to 50 ° C. in order to carry out the polymerization reaction smoothly.
また、乳化重合を開始させるために添加する開始剤は、特に限定するものではなく、従来からクロロプレンの乳化重合に用いられているものを用いることができ、例えば、過硫酸カリウム等の過硫酸塩、第3−ブチルヒドロパーオキサイド等の有機過酸化物等がある。 In addition, the initiator added to start the emulsion polymerization is not particularly limited, and those conventionally used for emulsion polymerization of chloroprene can be used, for example, persulfates such as potassium persulfate. And organic peroxides such as 3-butyl hydroperoxide.
乳化重合反応を進めるために添加する連鎖移動剤は、特に限定するものではなく、従来からクロロプレンの乳化重合に用いられているものを用いることができ、例えば、n−ドデシルメルカプタンやtert−ドデシルメルカプタン等の長鎖アルキルメルカプタン類、ジイソプロピルキサントゲンジスルフィドやジエチルキサントゲンジスルフィド等のジアルキルキサントゲンジスルフィド類、ヨードホルム等がある。 The chain transfer agent added to advance the emulsion polymerization reaction is not particularly limited, and those conventionally used for emulsion polymerization of chloroprene can be used. For example, n-dodecyl mercaptan and tert-dodecyl mercaptan can be used. Long chain alkyl mercaptans such as diisopropyl xanthogen disulfide and diethyl xanthogen disulfide such as diethyl xanthogen disulfide, and iodoform.
乳化重合を停止させるために添加する重合停止剤(重合禁止剤)は、特に限定するものではなく、従来からクロロプレンの乳化重合に用いられているものを用いることができ、例えば、2,6−ターシャリーブチル−4−メチルフェノール、フェノチアジン、ヒドロキシアミン等がある。 The polymerization terminator (polymerization inhibitor) added to stop the emulsion polymerization is not particularly limited, and those conventionally used for emulsion polymerization of chloroprene can be used. For example, 2,6- Examples include tertiary butyl-4-methylphenol, phenothiazine, and hydroxyamine.
クロロプレン重合体の最終重合率は、特に限定するものではないが、70〜100%で任意に調節することができる。未反応単量体の除去(脱モノマー)は、減圧加熱等の公知の方法によっておこなう。 Although the final polymerization rate of a chloroprene polymer is not specifically limited, it can be arbitrarily adjusted at 70 to 100%. Removal of the unreacted monomer (demonomer) is performed by a known method such as heating under reduced pressure.
本発明のポリクロロプレンラテックスに含まれるクロロプレン重合体は、そのトルエン不溶分が10〜99%であることが好ましい。この範囲に調整することで、ポリクロロプレンラテックス組成物を接着剤として利用した時に、初期接着力と常態接着力のバランス優れた接着剤を作ることができる。
なお、クロロプレン重合体のトルエン不溶分は、単量体を乳化重合させる際の重合温度、重合開始剤、連鎖移動剤、重合停止剤、重合率などを任意に選択することで調整できる。
The chloroprene polymer contained in the polychloroprene latex of the present invention preferably has a toluene insoluble content of 10 to 99%. By adjusting to this range, when the polychloroprene latex composition is used as an adhesive, an adhesive having an excellent balance between the initial adhesive force and the normal adhesive force can be produced.
The toluene-insoluble content of the chloroprene polymer can be adjusted by arbitrarily selecting a polymerization temperature, a polymerization initiator, a chain transfer agent, a polymerization terminator, a polymerization rate, and the like when the monomer is emulsion polymerized.
本発明で用いる針状酸化亜鉛は、針状先端を有する繊維長0.5〜100μmの酸化亜鉛結晶粒子である。繊維長が0.5μmよりも短いと、粒子同士が凝集しやすくなりラテックス中に均一分散させることが難しく、100μmよりも長いと、ポリクロロプレラテックス組成物を接着剤として利用する時に、ポリマー同士の粘着を阻害してしまい接着不良を起こす可能性がある。酸化亜鉛は、3〜4本の針状結晶が1端で結合されて、それぞれが3〜4軸の異なる方向に伸びたテトラポット形状となっていても良い。 The acicular zinc oxide used in the present invention is zinc oxide crystal particles having a fiber length of 0.5 to 100 μm having an acicular tip. When the fiber length is shorter than 0.5 μm, the particles tend to aggregate and difficult to uniformly disperse in the latex. When the fiber length is longer than 100 μm, when the polychloroprelatex composition is used as an adhesive, the polymers This may hinder adhesion and cause poor adhesion. Zinc oxide may have a tetrapot shape in which 3 to 4 acicular crystals are bonded at one end, and each extends in 3 to 4 different directions.
針状酸化亜鉛の含有量は、ポリクロロプレンラテックスを固形分換算で100質量部に対して、固形分換算で0.05〜10質量部である。0.05質量部未満では、ポリクロロプレンラテックス組成物の貯蔵中のpHを安定化させる効果が得られず、10質量部を超えると、ラテックス中で沈降が起こりやすくなり、好ましくない。
なお、針状酸化亜鉛は、ポリクロロプレンラテックスに粉末のまま直接添加しても良いが、ボールミルやビーズミルなどの湿式粉砕機中で、乳化剤及び水と混合して、30〜80質量%の水分散液を調製してから、ポリクロロプレンラテックスに添加すると、脱泡することができるため望ましい。また、湿式粉砕機中で粉砕すると、テトラポット形状が破壊されて、針状酸化亜鉛が1本1本に分離するが、接着力及び貯蔵安定性には影響しない。また、針状酸化亜鉛は、ポリクロロプレンラテックスに添加する前に、シランカプリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤などを用いて表面処理しておき、ポリクロロプレンラテックス組成物の接着力向上を図ることも可能である。
The content of acicular zinc oxide is 0.05 to 10 parts by mass in terms of solid content with respect to 100 parts by mass in terms of solid content of polychloroprene latex. If it is less than 0.05 parts by mass, the effect of stabilizing the pH during storage of the polychloroprene latex composition cannot be obtained, and if it exceeds 10 parts by mass, precipitation tends to occur in the latex, which is not preferable.
The acicular zinc oxide may be added directly to the polychloroprene latex as a powder, but it is mixed with an emulsifier and water in a wet pulverizer such as a ball mill or a bead mill, and dispersed in water by 30 to 80% by mass. When the liquid is prepared and then added to the polychloroprene latex, it can be defoamed, which is desirable. Further, when pulverized in a wet pulverizer, the shape of the tetrapot is destroyed and the needle-like zinc oxide is separated into one by one, but this does not affect the adhesive strength and storage stability. Needle-shaped zinc oxide is surface-treated with a silane coupling agent, titanate coupling agent, aluminum coupling agent, etc. before being added to the polychloroprene latex, so that the adhesive strength of the polychloroprene latex composition is increased. It is also possible to improve.
本発明のポリクロロプレンラテックス組成物の用途は、接着剤が最も好ましい。接着剤として利用するためには、用途及び要求性能に応じて、ポリクロロプレンラテックスに、粘着付与樹脂、増粘剤、加硫促進剤、充填剤(補強剤)、顔料、着色剤、酸化防止剤、紫外線吸収剤、防黴剤、防腐剤、抗菌剤、可塑剤、pH調節剤、消泡剤、防錆剤、ポリクロロプレン以外のポリマーラテックスなどを任意に配合する。また、硬化剤を組み合わせて、2液型接着剤とすることも可能である。 The use of the polychloroprene latex composition of the present invention is most preferably an adhesive. In order to use as an adhesive, depending on the application and required performance, polychloroprene latex, tackifier resin, thickener, vulcanization accelerator, filler (reinforcing agent), pigment, colorant, antioxidant , UV absorbers, antifungal agents, antiseptics, antibacterial agents, plasticizers, pH adjusters, antifoaming agents, rust preventives, polymer latexes other than polychloroprene, and the like are arbitrarily blended. Moreover, it is also possible to combine with a hardening | curing agent to make a two-component adhesive.
粘着付与樹脂の具体例としては、ロジン樹脂、ロジンエステル樹脂、水添ロジン樹脂、重合ロジン樹脂、α−ピネン樹脂、β−ピネン樹脂、テルペンフェノール樹脂、C5留分系石油樹脂、C9留分系石油樹脂、C5/C9留分系石油樹脂、DCPD系石油樹脂、アルキルフェノール樹脂、キシレン樹脂、クマロン樹脂、クマロンインデン樹脂などが挙げられる。粘着付与樹脂の添加方法としては、接着剤中に均一に配合させるために、エマルジョンとしてから添加することが好ましい。さらに、粘着付与樹脂エマルジョンの製造方法には、トルエン等の有機溶剤に溶解した樹脂を、乳化剤を用いて水中に乳化/分散させた後、有機溶剤を加熱減圧しながら除去する方法と、微粒子に粉砕して乳化/分散させる方法などがあるが、より微粒子のエマルジョンが作製できる前者の方法が好ましい。 Examples of tackifying resins, rosin resins, rosin ester resins, hydrogenated rosin resins, polymerized rosin resins, alpha-pinene resins, beta-pinene resins, terpene phenol resins, C 5 fraction petroleum resin, C 9 fraction Examples thereof include branched petroleum resins, C 5 / C 9 fraction petroleum resins, DCPD petroleum resins, alkylphenol resins, xylene resins, coumarone resins, coumarone indene resins, and the like. As a method for adding the tackifying resin, it is preferable to add it as an emulsion in order to uniformly mix it in the adhesive. Further, the method for producing a tackifying resin emulsion includes a method in which a resin dissolved in an organic solvent such as toluene is emulsified / dispersed in water using an emulsifier, and then the organic solvent is removed while heating under reduced pressure. Although there is a method of pulverizing and emulsifying / dispersing, the former method capable of producing a finer particle emulsion is preferred.
増粘剤の具体例としては、ポリアクリル酸系、ポリアクリルアミド系、HEUR系(ポリエチレンオキシドの両末端を疎水基でエンドキャップしたポリマー)などの有機系増粘剤、ヘクトライトやモンモリロナイトなどシリケート化合物のような無機系増粘剤が挙げられる。これらのうち、HEUR系が、少ない添加量で大きな増粘効果が得られ、配合後の粘度安定性が優れているため、好適である。 Specific examples of thickeners include organic thickeners such as polyacrylic acid-based, polyacrylamide-based, HUR-based (polymers in which both ends of polyethylene oxide are end-capped with hydrophobic groups), silicate compounds such as hectorite and montmorillonite. Inorganic thickeners such as Among these, the HEUR system is suitable because a large thickening effect can be obtained with a small addition amount and the viscosity stability after blending is excellent.
加硫促進剤としては、チオウレア系、ジチオカルバミン酸塩、キサントゲン酸塩などが挙げられる。チオウレア系化合物の具体例としては、エチレンチオ尿素、ジブチルチオ尿素、ジラウリルチオ尿素、N,N‘−ジフェニルチオ尿素、トリメチルチオ尿素(TMU)、N,N’−ジエチルチオ尿素(EUR)等が挙げられる。ジチオカルバミン酸塩の例としては、ジメチルカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルチオカルバミン酸亜鉛、N−ペンタメチレンジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸銅(II)、ジメチルジチオカルバミン酸鉄(III)、ジメチルジチオカルバミン酸テルル(IV)などが挙げられる。キサントゲン酸塩の例としては、ブチルキサントゲン酸亜鉛、イソプロピルキサントゲン酸亜鉛、エチルキサントゲン酸ガリウム(III)などが挙げられる。 Examples of the vulcanization accelerator include thiourea, dithiocarbamate and xanthate. Specific examples of the thiourea compound include ethylenethiourea, dibutylthiourea, dilaurylthiourea, N, N′-diphenylthiourea, trimethylthiourea (TMU), N, N′-diethylthiourea (EUR), and the like. Examples of dithiocarbamates include zinc dimethylcarbamate, zinc diethyldithiocarbamate, zinc dibutylthiocarbamate, zinc N-pentamethylenedithiocarbamate, zinc dibenzyldithiocarbamate, copper (II) dimethyldithiocarbamate, iron dimethyldithiocarbamate (III), tellurium dimethyldithiocarbamate (IV) and the like. Examples of xanthates include zinc butyl xanthate, zinc isopropyl xanthate, gallium (III) ethyl xanthate, and the like.
硬化剤を使用する場合には、水分散型イソシアネート化合物を使用して2液型接着剤とすることができる。硬化剤を使用すれば、耐水性や耐溶剤性を向上させることができる。水分散型イソシアネート化合物とは、脂肪族及び/または脂環族ジイソシアネートから得られる、分子内にビュウレット、イソシアヌレート、ウレタン、ウレトジオン、アロファネート等の構造を有するポリイソシアネートポリマーに親水基を導入したものである。つまり、水中に添加・撹拌すると、水中で微粒子として分散することが可能な自己乳化型イソシアネート化合物である。脂肪族及び/または脂環族イソシアネートとしては、例えば、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート(LDI)、イソホロンジイソシアネート(IPDI)、水添キシリレンジイソシアネート(水添XDI)、トリレンジイソシアネート(TDI)、4,4‘−ジフェニルメタンジイソシアネート(MDI)、重合MDI、キシリレンジイソシアネート(XDI)、ナフチレンジイソシアネート(NDI)、パラフェニレンジイソシアネート(PPDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、ジシクロヘキシルメタンジイソシアネート(HMDI)、イソプロピリデンビス(4−シクロヘキシルイソシアネート)(IPC)、シクロヘキシルジイソシアネート(CHPI)、トリジンジイソシアネート(TODI)等が挙げられる。中でも、HDI、MDI、IPDI、水添XDIは工業的に入手しやすく良好である。親水基は、エチレンオキサドの繰り返し単位を有する乳化剤を上記の脂肪族及び/または脂環族ジイソシアネートから得られる重合物の分子鎖の一部と、反応させることにより導入される。エチレンオキサイドの繰り返し単位を有する乳化剤としては、水に対する分散性を考慮すれば、ポリエチレングリコールモノメチルエーテルが特に好ましい。硬化剤としての効果は、原料化合物よりもむしろ、JIS K−7301で規定される方法によって算出したイソシアネート基含有率によって左右される。良好な接着力を得るためには、使用するイソシアネート化合物のイソシアネート基含有率が、17〜25質量%であることが好ましい。 When using a hardening | curing agent, it can be set as a two-component adhesive using a water dispersion type isocyanate compound. If a curing agent is used, water resistance and solvent resistance can be improved. The water-dispersed isocyanate compound is obtained by introducing a hydrophilic group into a polyisocyanate polymer obtained from an aliphatic and / or alicyclic diisocyanate and having a structure such as burette, isocyanurate, urethane, uretdione, or allophanate in the molecule. is there. That is, it is a self-emulsifying isocyanate compound that can be dispersed as fine particles in water when added and stirred in water. Examples of the aliphatic and / or alicyclic isocyanate include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate, lysine diisocyanate (LDI), isophorone diisocyanate (IPDI), and hydrogenated xylylene diene. Isocyanate (hydrogenated XDI), tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), polymerized MDI, xylylene diisocyanate (XDI), naphthylene diisocyanate (NDI), paraphenylene diisocyanate (PPDI), tetra Methylxylylene diisocyanate (TMXDI), dicyclohexylmethane diisocyanate (HMDI), isopropylide Bis (4-cyclohexyl isocyanate) (IPC), cyclohexyl diisocyanate (CHPI), tolidine diisocyanate (TODI), and the like. Among these, HDI, MDI, IPDI, and hydrogenated XDI are industrially easily available and good. The hydrophilic group is introduced by reacting an emulsifier having an ethylene oxide repeating unit with a part of the molecular chain of a polymer obtained from the above aliphatic and / or alicyclic diisocyanate. As the emulsifier having an ethylene oxide repeating unit, polyethylene glycol monomethyl ether is particularly preferable in view of dispersibility in water. The effect as a curing agent depends on the isocyanate group content calculated by the method defined in JIS K-7301 rather than the raw material compound. In order to obtain good adhesive strength, the isocyanate group content of the isocyanate compound used is preferably 17 to 25% by mass.
水分散型イソシアネート化合物を硬化剤として使用して2液型接着剤とする場合、主剤中のポリクロロプレンラテックスを固形分で100質量部に対して、硬化剤中の水分散型イソシアネート化合物が固形分で0.5〜15質量部となるように混合することが好ましい。0.5質量部未満では、接着力が不足し、また15質量部よりも多く添加すれば、主剤と硬化剤を混合した後のポットライフ(使用可能時間)が短くなる恐れがある。 When using a water-dispersed isocyanate compound as a curing agent to form a two-component adhesive, the polychloroprene latex in the main agent is 100 parts by mass in solid content, and the water-dispersed isocyanate compound in the curing agent is solid content. It is preferable to mix so that it may become 0.5-15 mass parts. If it is less than 0.5 parts by mass, the adhesive strength is insufficient, and if it is added more than 15 parts by mass, the pot life (usable time) after mixing the main agent and the curing agent may be shortened.
本発明のポリクロロプレンラテックス組成物の固形分は、45〜60質量%が好ましい。この範囲であれば、チクソトロピック性を低く制御することができ、塗工性が良好な水系接着剤が得られる。 The solid content of the polychloroprene latex composition of the present invention is preferably 45 to 60% by mass. If it is this range, thixotropic property can be controlled low and the aqueous adhesive agent with favorable coating property will be obtained.
以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。 Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples of the present invention.
[実施例1〜8][比較例1〜8]
<ポリビニルアルコールの製造>
重合反応缶に、酢酸ビニル120g、メタノール560g、アゾビスイソブチロニトリルの1%メタノール溶液1.6gを仕込み、窒素置換後加熱して沸点まで昇温した。次に、酢酸メチル1720g、メタノール607g、アゾビスイソブチロニトリルの1%メタノール溶液406gを、14時間かけて連続添加し、連続添加終了から1時間後に、酢酸ビニルの重合率99%に達したことを確認して、重合反応を停止した。次いで常法により未反応の酢酸ビニルを除去し、得られた重合体を水酸化ナトリウムで常法により鹸化した。その後、90℃で90分熱風乾燥してポリビニルアルコールを得た。JIS K 6726に準拠して分析した結果、ポリビニルアルコールの平均重合度は280、鹸化度は79.4mol%であった。
[Examples 1 to 8] [Comparative Examples 1 to 8]
<Manufacture of polyvinyl alcohol>
A polymerization reactor was charged with 120 g of vinyl acetate, 560 g of methanol, and 1.6 g of a 1% methanol solution of azobisisobutyronitrile, and after heating with nitrogen, heated to the boiling point. Next, 1720 g of methyl acetate, 607 g of methanol, and 406 g of 1% methanol solution of azobisisobutyronitrile were continuously added over 14 hours, and after 1 hour from the end of continuous addition, the polymerization rate of vinyl acetate reached 99%. After confirming this, the polymerization reaction was stopped. Subsequently, unreacted vinyl acetate was removed by a conventional method, and the resulting polymer was saponified with sodium hydroxide by a conventional method. Thereafter, it was dried with hot air at 90 ° C. for 90 minutes to obtain polyvinyl alcohol. As a result of analysis according to JIS K 6726, the average polymerization degree of polyvinyl alcohol was 280, and the saponification degree was 79.4 mol%.
<ポリクロロプレンラテックスAの製造>
内容積3リットルの反応器を用い、窒素気流下で、水86質量部、ポリビニルアルコール3.2質量部を60℃で溶解させた。このポリビニルアルコール水溶液を室温まで冷却した後、この中にクロロプレン単量体97.5質量部、メタクリル酸2.5質量部、オクチルメルカプタン0.25質量部を加えた。これを40℃に保ちながら過硫酸カリウムを開始剤として用いて重合した。この反応終了液に20質量%ジエタノールアミン水溶液を添加してpHを7に調整し、減圧下で未反応の単量体を除去した後、更に減圧下で水分を蒸発させて濃縮をおこない、固形分濃度55%のポリクロロプレンラテックスAを得た。このラテックスのゲル含有量は55%であった。固形分濃度と、ゲル含有量は、以下の方法で測定した。
<Production of polychloroprene latex A>
Using a reactor having an internal volume of 3 liters, 86 parts by mass of water and 3.2 parts by mass of polyvinyl alcohol were dissolved at 60 ° C. under a nitrogen stream. After cooling this polyvinyl alcohol aqueous solution to room temperature, 97.5 mass parts of chloroprene monomers, 2.5 mass parts of methacrylic acid, and 0.25 mass parts of octyl mercaptan were added in this. While maintaining this at 40 ° C., polymerization was carried out using potassium persulfate as an initiator. After adding 20% by mass diethanolamine aqueous solution to the reaction-terminated liquid to adjust the pH to 7 and removing unreacted monomers under reduced pressure, the water is further evaporated under reduced pressure to perform concentration. A polychloroprene latex A having a concentration of 55% was obtained. The latex had a gel content of 55%. The solid content concentration and the gel content were measured by the following methods.
<固形分濃度>
アルミ皿だけの質量をAとする。ラテックス試料を2ml入れたアルミ皿の質量をBとする。ラテックス試料を入れたアルミ皿を125℃で1時間乾燥させた後の質量をCとする。固形分濃度(%)は下式で算出した。
固形分濃度={(C−A)/(B−A)}×100
<Concentration of solid content>
Let A be the mass of the aluminum dish alone. Let B be the mass of an aluminum dish containing 2 ml of a latex sample. Let C be the mass after the aluminum dish containing the latex sample is dried at 125 ° C. for 1 hour. The solid content concentration (%) was calculated by the following formula.
Solid content concentration = {(C−A) / (B−A)} × 100
<ゲル含有量(トルエン不溶分)>
ラテックス試料を凍結乾燥し秤量してAとした。23℃で20時間、トルエンで溶解(0.6%に調整)し、遠心分離機を使用し、更に200メッシュの金網を用いてゲルを分離した。ゲル分を風乾後110℃雰囲気下で、1時間乾燥し、秤量してBとした。ゲル含有量(%)は下式に従って算出した。
ゲル含有量=(B/A)×100
<Gel content (toluene insoluble matter)>
The latex sample was lyophilized and weighed to A. It was dissolved in toluene (adjusted to 0.6%) at 23 ° C. for 20 hours, and the gel was separated using a centrifuge and a 200-mesh wire mesh. The gel was air-dried, dried in an atmosphere at 110 ° C. for 1 hour, and weighed to give B. The gel content (%) was calculated according to the following formula.
Gel content = (B / A) × 100
<ポリクロロプレンラテックスBの製造>
内容積3リットルの反応器を用い、窒素気流下で、水100質量部、不均化ロジン酸4質量部、水酸化カリウム1.0質量部、ホルムアルデヒドナフタレンスルホン酸縮合物のナトリウム塩0.8部を仕込み、溶解後、撹拌しながらクロロプレン100質量部とn−ドデシルメルカプタン0.3質量部を加えた。過硫酸カリウムを開始剤として用い、窒素雰囲気下、40℃で重合し、重合率が90%に達したところでフェノチアジンの乳濁液を加えて重合を停止した。減圧下で未反応の単量体を除去した後、更に減圧下で水分を蒸発させて濃縮をおこない、固形分濃度55%のポリクロロプレンラテックスBを得た。このラテックスのゲル含有量は18%であった。
<Production of polychloroprene latex B>
Using a reactor having an internal volume of 3 liters, 100 parts by mass of water, 4 parts by mass of disproportionated rosin acid, 1.0 part by mass of potassium hydroxide, sodium salt of formaldehyde naphthalenesulfonic acid condensate 0.8% under a nitrogen stream Then, 100 parts by mass of chloroprene and 0.3 parts by mass of n-dodecyl mercaptan were added with stirring. Polymerization was carried out at 40 ° C. in a nitrogen atmosphere using potassium persulfate as an initiator. When the polymerization rate reached 90%, an emulsion of phenothiazine was added to terminate the polymerization. After removing the unreacted monomer under reduced pressure, the water was further evaporated under reduced pressure to perform concentration, and a polychloroprene latex B having a solid content concentration of 55% was obtained. The latex had a gel content of 18%.
<酸化亜鉛B(酸化亜鉛Aの水分散液)の製造>
まず、カゼイン100質量部、濃度28質量%のアンモニア水70質量部、ポリオキシエチレンアルキルフェニルエーテル(HS−210/日油株式会社製)3質量部、水827質量部を混合して、濃度10質量%のアンモニウムカゼイン水溶液を作製した。次に、針状酸化亜鉛(パナテトラWZ−0501/株式会社アムテック製)100質量部、ホルムアルデヒドナフタレンスルホン酸縮合物のナトリウム塩3質量部、濃度10質量%のアンモニウムカゼイン水溶液30質量部、水167を、陶器製ボールミルに入れて、25℃雰囲気で24時間粉砕分散して、濃度33質量%の酸化亜鉛の水分散液を作製した。
<Manufacture of zinc oxide B (aqueous dispersion of zinc oxide A)>
First, 100 parts by mass of casein, 70 parts by mass of ammonia water having a concentration of 28% by mass, 3 parts by mass of polyoxyethylene alkylphenyl ether (HS-210 / manufactured by NOF Corporation), and 827 parts by mass of water were mixed to obtain a concentration of 10 A mass% ammonium casein aqueous solution was prepared. Next, 100 parts by mass of acicular zinc oxide (Panatetra WZ-0501 / manufactured by Amtec Co., Ltd.), 3 parts by mass of sodium salt of formaldehyde naphthalenesulfonic acid condensate, 30 parts by mass of an aqueous ammonium casein solution having a concentration of 10% by mass, and water 167 Then, it was placed in a ceramic ball mill and pulverized and dispersed for 24 hours in an atmosphere of 25 ° C. to prepare an aqueous dispersion of zinc oxide having a concentration of 33% by mass.
<ポリクロロプレンラテックス組成物の製造>
ポリクロロプレンラテックスA〜Bに対して、表1の配合処方で、酸化亜鉛、粘着付与樹脂、増粘剤を配合して、実施例1〜8及び比較例1〜8の接着剤を得た。配合量の単位は、固形分換算である。以下に、各配合剤の商品名と性状を示す。
酸化亜鉛A:商品名はパナテトラWZ−0501/株式会社アムテック製、繊維長2〜40μmの針状酸化亜鉛粉体。
酸化亜鉛B:酸化亜鉛Aの水分散液、繊維長1〜10μm、固形分33%。
酸化亜鉛C:商品名はAZ−SW、大崎工業株式会社製、平均粒径0.20μm、固形分50%。
酸化亜鉛D:商品名は酸化亜鉛2種/ハクスイテック株式会社製、平均粒径1.0μmの粉体。
粘着付与樹脂:商品名はタマノルE−100/荒川化学工業株式会社製、テルペンフェノール樹脂エマルジョン。
増粘剤:商品名はRM−8W/ロームアンドハースジャパン株式会社製、HEUR系増粘剤。
<Production of polychloroprene latex composition>
With respect to polychloroprene latex A to B, zinc oxide, a tackifier resin, and a thickener were blended in the formulation of Table 1 to obtain adhesives of Examples 1 to 8 and Comparative Examples 1 to 8. The unit of the blending amount is a solid content conversion. The trade names and properties of each compounding agent are shown below.
Zinc oxide A: trade name is Panatetra WZ-0501 / Amtech Co., Ltd., acicular zinc oxide powder having a fiber length of 2 to 40 μm.
Zinc oxide B: aqueous dispersion of zinc oxide A, fiber length 1 to 10 μm, solid content 33%.
Zinc oxide C: trade name is AZ-SW, manufactured by Osaki Kogyo Co., Ltd., average particle size 0.20 μm, solid content 50%.
Zinc oxide D: trade name is zinc oxide 2 types / made by Hakusuitec Co., Ltd., powder having an average particle size of 1.0 μm.
Tackifying resin: Trade name is Tamanol E-100 / Arakawa Chemical Industries, Ltd., terpene phenol resin emulsion.
Thickener: Trade name is RM-8W / Rohm and Haas Japan Co., Ltd., HEUR thickener.
<貯蔵安定性試験>
ポリクロロプレンラテックス組成物を、ガラス瓶に入れて密閉し、24℃または40℃で2ヶ月間静置した後、層分離や沈降の有無を目視で確認した。外観の変化がない場合には○、層分離や沈降が起きた場合には×と判定した。
<Storage stability test>
The polychloroprene latex composition was sealed in a glass bottle and allowed to stand at 24 ° C. or 40 ° C. for 2 months, and the presence or absence of layer separation or sedimentation was visually confirmed. When there was no change in appearance, it was judged as ◯, and when layer separation or sedimentation occurred, it was judged as ×.
以下に、ポリクロロプレンラテックス組成物を接着剤として利用した場合の、接着力試験方法を説明する。
帆布(糊代部のサイズは幅25mm×長さ70mm)2枚各々に、150g(wet)/m2の接着剤を刷毛で塗布し、23℃雰囲気中で3時間乾燥させた後、その上から200g(wet)/m2の接着剤を刷毛で塗布し、70℃雰囲気で5分間乾燥させた後、張り合わせ、ハンドローラーで圧着した。
<初期接着力>
圧着してから1日後に引張試験機で引張速度200mm/minで180°剥離強度を測定した。
<常態接着力>
圧着してから5日後に引張試験機で引張速度200mm/minで180°剥離強度を測定した。
<軟化点>
オーブンの天井に、圧着から5日間経過した試験片(糊代部のサイズは幅25mm×長さ25mm)の片方の掴み代を固定して、オーブン内を38℃に維持した。180°剥離試験の要領で、もう片方の掴み代に、500gの分銅を取り付け、38℃のまま、15分間加熱した後、5分毎に2℃昇温させて、分銅が落下した時のオーブン内温度を記録した。軟化点が高いほど、耐熱接着力が高いことを意味する。
Below, the adhesive force test method at the time of utilizing a polychloroprene latex composition as an adhesive agent is demonstrated.
150 g (wet) / m 2 of adhesive is applied to each of two canvases (size of glue margin is 25 mm wide x 70 mm long) with a brush and dried in an atmosphere at 23 ° C. for 3 hours. To 200 g (wet) / m2 of adhesive was applied with a brush, dried in an atmosphere at 70 ° C. for 5 minutes, and then bonded and pressure-bonded with a hand roller.
<Initial adhesive strength>
One day after the pressure bonding, 180 ° peel strength was measured with a tensile tester at a tensile speed of 200 mm / min.
<Normal adhesive strength>
Five days after the pressure bonding, the 180 ° peel strength was measured with a tensile tester at a tensile speed of 200 mm / min.
<Softening point>
On the ceiling of the oven, the gripping portion of one of the test pieces (the size of the adhesive margin portion is 25 mm in width × 25 mm in length) after 5 days has been fixed, and the inside of the oven was maintained at 38 ° C. In the procedure of 180 ° peeling test, attach a 500g weight to the other grip, heat at 38 ° C for 15 minutes, then raise the temperature by 2 ° C every 5 minutes, and the oven when the weight falls The internal temperature was recorded. A higher softening point means higher heat-resistant adhesion.
評価結果を表1にまとめた。
表1からわかるように、実施例1〜8のポリクロロプレンラテックス組成物は、比較例1〜8のポリクロロプレンラテックス組成物よりも、接着剤の接着力に優れていることが示された。特に、実施例1〜4のポリビニルアルコールを用いてクロロプレンとカルボキシル基含有ビニル単量体の乳化共重合で得られたポリクロロプレンラテックスを使用した場合に、高い耐熱接着力を発揮することがわかる。 As can be seen from Table 1, it was shown that the polychloroprene latex compositions of Examples 1 to 8 were superior to the polychloroprene latex compositions of Comparative Examples 1 to 8 in adhesive strength. In particular, when polychloroprene latex obtained by emulsion copolymerization of chloroprene and a carboxyl group-containing vinyl monomer using the polyvinyl alcohol of Examples 1 to 4 is used, it can be seen that high heat-resistant adhesive strength is exhibited.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011043711A JP2012180437A (en) | 2011-03-01 | 2011-03-01 | Polychloroprene latex composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011043711A JP2012180437A (en) | 2011-03-01 | 2011-03-01 | Polychloroprene latex composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012180437A true JP2012180437A (en) | 2012-09-20 |
Family
ID=47011903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011043711A Pending JP2012180437A (en) | 2011-03-01 | 2011-03-01 | Polychloroprene latex composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012180437A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014114342A (en) * | 2012-12-07 | 2014-06-26 | Denki Kagaku Kogyo Kk | Polychloroprene latex, polychloroprene latex composition, and dip molded product |
JP2015501366A (en) * | 2012-01-18 | 2015-01-15 | エルジー・ケム・リミテッド | Latex composition for dip molding |
JP2015048449A (en) * | 2013-09-03 | 2015-03-16 | 電気化学工業株式会社 | Polychloroprene latex composition, rubber-asphalt composition as well as coating film, sheet, and multilayer sheet |
WO2015159587A1 (en) * | 2014-04-18 | 2015-10-22 | 電気化学工業株式会社 | Rubber latex, rubber latex composition, and molded article |
US10344158B2 (en) | 2013-07-16 | 2019-07-09 | Skinprotect Corporation Sdn Bhd | Elastomeric film-forming compositions and articles made from the elastomeric film |
CN115010858A (en) * | 2022-07-08 | 2022-09-06 | 星宇新材料股份有限公司 | Composite conductive emulsion, preparation method thereof and dipping gloves |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02263882A (en) * | 1989-04-03 | 1990-10-26 | Matsushita Electric Ind Co Ltd | Adhesive |
JPH09241435A (en) * | 1996-03-12 | 1997-09-16 | Kanebo Nsc Ltd | Elastic paving material composition, elastic paving material structure and its execution |
JP2002053703A (en) * | 2000-08-08 | 2002-02-19 | Denki Kagaku Kogyo Kk | Polychloroprene latex composition, manufacturing method therefor and adhesive composition using this latex composition |
JP2002155168A (en) * | 2000-11-20 | 2002-05-28 | Denki Kagaku Kogyo Kk | Polychloroprene latex composition and aqueous adhesive |
JP2004346183A (en) * | 2003-05-22 | 2004-12-09 | Kuraray Co Ltd | Polychloroprene latex and its manufacturing method |
JP2009126968A (en) * | 2007-11-26 | 2009-06-11 | Sumitomo Rubber Ind Ltd | Rubber composition for tire |
-
2011
- 2011-03-01 JP JP2011043711A patent/JP2012180437A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02263882A (en) * | 1989-04-03 | 1990-10-26 | Matsushita Electric Ind Co Ltd | Adhesive |
JPH09241435A (en) * | 1996-03-12 | 1997-09-16 | Kanebo Nsc Ltd | Elastic paving material composition, elastic paving material structure and its execution |
JP2002053703A (en) * | 2000-08-08 | 2002-02-19 | Denki Kagaku Kogyo Kk | Polychloroprene latex composition, manufacturing method therefor and adhesive composition using this latex composition |
JP2002155168A (en) * | 2000-11-20 | 2002-05-28 | Denki Kagaku Kogyo Kk | Polychloroprene latex composition and aqueous adhesive |
JP2004346183A (en) * | 2003-05-22 | 2004-12-09 | Kuraray Co Ltd | Polychloroprene latex and its manufacturing method |
JP2009126968A (en) * | 2007-11-26 | 2009-06-11 | Sumitomo Rubber Ind Ltd | Rubber composition for tire |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015501366A (en) * | 2012-01-18 | 2015-01-15 | エルジー・ケム・リミテッド | Latex composition for dip molding |
US9353243B2 (en) | 2012-01-18 | 2016-05-31 | Lg Chem, Ltd. | Latex composition for dip-forming |
JP2014114342A (en) * | 2012-12-07 | 2014-06-26 | Denki Kagaku Kogyo Kk | Polychloroprene latex, polychloroprene latex composition, and dip molded product |
US10344158B2 (en) | 2013-07-16 | 2019-07-09 | Skinprotect Corporation Sdn Bhd | Elastomeric film-forming compositions and articles made from the elastomeric film |
US10377893B2 (en) | 2013-07-16 | 2019-08-13 | Skinprotect Corporation Sdn Bhd | Elastomeric film-forming compositions and articles made from the elastomeric film |
JP2015048449A (en) * | 2013-09-03 | 2015-03-16 | 電気化学工業株式会社 | Polychloroprene latex composition, rubber-asphalt composition as well as coating film, sheet, and multilayer sheet |
WO2015159587A1 (en) * | 2014-04-18 | 2015-10-22 | 電気化学工業株式会社 | Rubber latex, rubber latex composition, and molded article |
JPWO2015159587A1 (en) * | 2014-04-18 | 2017-04-13 | デンカ株式会社 | Rubber latex, rubber latex composition and molded article |
CN115010858A (en) * | 2022-07-08 | 2022-09-06 | 星宇新材料股份有限公司 | Composite conductive emulsion, preparation method thereof and dipping gloves |
CN115010858B (en) * | 2022-07-08 | 2023-06-20 | 星宇新材料股份有限公司 | Composite conductive emulsion, preparation method thereof and impregnated glove |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012180437A (en) | Polychloroprene latex composition | |
JP6323041B2 (en) | Adhesive composition and use thereof | |
US9458360B2 (en) | Water-based adhesive composition, method for manufacturing same, and adhesive film | |
JP5485923B2 (en) | Water-based adhesive composition and method for producing wetsuit material | |
WO2011004753A1 (en) | Coating composition for thick coating | |
JP2019011382A (en) | Adhesive composition and application thereof | |
WO2022025118A1 (en) | Chloroprene rubber latex adhesive composition and method for producing same, adhesive layer, and laminate | |
US20210363394A1 (en) | Pressure sensitive compositions based on a modified rubber polymer aqueous dispersion | |
TW200817485A (en) | Vulcanizable aqueous adhesive and the use thereof | |
JP5307175B2 (en) | Polychloroprene latex, method for producing the same, and aqueous adhesive | |
JP2013028773A (en) | Polychloroprene latex, method for producing the same, and water-based adhesive | |
JP2009102465A (en) | Polychloroprene latex composition and aqueous adhesive using it | |
JP6929218B2 (en) | Method for Producing Aqueous Adhesive Composition, Aqueous Adhesive Composition and Adhesive Sheet | |
JPWO2004101670A1 (en) | Polychloroprene latex composition and method for producing the same | |
JP5499059B2 (en) | Adhesive composition | |
JP6537171B2 (en) | Polymer emulsion, aqueous pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet | |
JP5468629B2 (en) | Polychloroprene latex, method for producing the same, and aqueous adhesive | |
WO2023068302A1 (en) | Adhesive composition | |
JP5370135B2 (en) | Method for producing nitrile rubber latex for adhesive | |
JP2012188501A (en) | Polychloroprene latex and production method therefor, and water-based adhesive | |
TWI744980B (en) | Acrylic resin emulsion having high heat resistance, polymeric composition thereof and manufacturing method thereof | |
JP5177921B2 (en) | Water-based adhesive and bonding method and bonding structure using the same | |
JP2011026502A (en) | Water-based adhesive composition | |
JP2001026756A (en) | Water-based adhesive | |
JP2012176999A (en) | Aqueous adhesive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130514 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130917 |