JP2012180323A - Method for producing antimicrobial agent for fiber, antimicrobial agent for fiber obtained by the production method, and antimicrobial fiber product - Google Patents

Method for producing antimicrobial agent for fiber, antimicrobial agent for fiber obtained by the production method, and antimicrobial fiber product Download PDF

Info

Publication number
JP2012180323A
JP2012180323A JP2011045250A JP2011045250A JP2012180323A JP 2012180323 A JP2012180323 A JP 2012180323A JP 2011045250 A JP2011045250 A JP 2011045250A JP 2011045250 A JP2011045250 A JP 2011045250A JP 2012180323 A JP2012180323 A JP 2012180323A
Authority
JP
Japan
Prior art keywords
antibacterial agent
fibers
antibacterial
fiber
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011045250A
Other languages
Japanese (ja)
Inventor
Kenichi Miyamoto
賢一 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nicca Chemical Co Ltd
Original Assignee
Nicca Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicca Chemical Co Ltd filed Critical Nicca Chemical Co Ltd
Priority to JP2011045250A priority Critical patent/JP2012180323A/en
Publication of JP2012180323A publication Critical patent/JP2012180323A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method with which an antimicrobial agent for fiber with a specific sharp particle size distribution, excellent product stability, and excellent stability of a treatment bath, is obtainable within a short period of time and without admixture of any abraded matter by using a metal-based antimicrobial agent.SOLUTION: The metal-based antimicrobial agent is subjected to a finely pulverizing and dispersing treatment in an aqueous medium under high pressure of 50 MPa or more by using, as a dispersant, at least one kind selected from a group consisting of an anionic surfactant induced from a compound with a specific structure and a nonionic surfactant with a specific structure.

Description

本発明は、金属系抗菌剤を、高圧下で、分散剤を使用して水性媒体中で処理してなる繊維用抗菌剤の製造方法、該方法により得られる抗菌剤及び該抗菌剤で処理することにより得られる抗菌性繊維製品に関する。   In the present invention, a metal antibacterial agent is treated with an antibacterial agent obtained by treating the metal antibacterial agent under high pressure using a dispersant in an aqueous medium, the antibacterial agent obtained by the method, and the antibacterial agent. It is related with the antibacterial fiber product obtained by this.

金属系抗菌剤は、広い抗菌スペクトルを持った抗菌剤として知られており、ビーズミルやボールミルなどのメディア型湿式分散機を使用して微粒子化水分散し、繊維類に処理する方法が提案されている。   Metal antibacterial agents are known as antibacterial agents with a broad antibacterial spectrum, and a method has been proposed in which finely divided water is dispersed using a media-type wet disperser such as a bead mill or ball mill and processed into fibers. Yes.

例えば、鉄及び銅の含有量をピリチオン亜鉛に対して0.1重量%以下とした分散液を用いる方法(特許文献1)、pHが4〜10の間に調整されたピリチオン亜鉛分散液を用いる方法(特許文献2)、平均粒径が0.1〜1μmで、2μm以上の粒径のピリチオン亜鉛が全ピリチオン亜鉛に対し5重量%以下となるように粉砕された分散液を用いる方法(特許文献3)が提案されている。また、微粒子化分散したピリジン系抗菌剤を染色処理時に併用する方法も提案されている(特許文献4)。   For example, a method using a dispersion in which the content of iron and copper is 0.1% by weight or less based on pyrithione zinc (Patent Document 1), and a pyrithione zinc dispersion adjusted between pH 4 and 10 are used. Method (Patent Document 2), Method using a dispersion liquid pulverized such that pyrithione zinc having an average particle diameter of 0.1 to 1 μm and a particle diameter of 2 μm or more is 5% by weight or less based on total pyrithione zinc (patent) Document 3) has been proposed. In addition, a method has been proposed in which a pyridine antibacterial agent dispersed in fine particles is used in combination during dyeing (Patent Document 4).

しかしながら、特許文献1の方法では、鉄及び銅の含有量をピリチオン亜鉛に対して0.1重量%以下とするためには非金属製のメディアを使用する必要がある。さらに、非金属製のメディアを使用した場合でも、分散機内壁との摩耗により金属分の混入を完全に防止することはできず、ピリチオン亜鉛の分解やピリチオン亜鉛水分散液の着色という問題が生じる。   However, in the method of Patent Document 1, it is necessary to use a non-metallic medium in order to make the content of iron and copper 0.1 wt% or less with respect to pyrithione zinc. Furthermore, even when non-metallic media are used, metal contamination cannot be completely prevented due to wear on the inner wall of the disperser, causing problems such as decomposition of pyrithione zinc and coloring of the pyrithione zinc aqueous dispersion. .

特許文献2の方法では、pH調整により金属分混合に起因するpHのずれによるピリチオン亜鉛の分解と抗菌性の低下を防止しているが、微粒子化処理中あるいは微粒子化処理後にpHを調整する手間が必要である。さらに、ピリチオン亜鉛水分散液の繊維類への処理も中性近辺での処理に限定されるという問題がある。   In the method of Patent Document 2, the decomposition of pyrithione zinc and the decrease in the antibacterial property due to the shift in pH caused by the metal mixing are prevented by adjusting the pH, but the trouble of adjusting the pH during or after the atomization treatment is required. Furthermore, there is a problem that the treatment of the pyrithione zinc aqueous dispersion on the fibers is limited to treatment in the vicinity of neutrality.

特許文献3の方法では、ピリチオン亜鉛の平均粒径を0.1〜1μmとするためには長時間の処理が必要であり、かつ長時間処理を行っても粒度分布が狭くなりにくく、残存する2μm以上の微粒子が製品安定性や処理浴安定性に悪影響を与えるという問題がある。   In the method of Patent Document 3, a long time treatment is required to make the average particle size of pyrithione zinc 0.1 to 1 μm, and the particle size distribution hardly remains narrow even after a long time treatment and remains. There is a problem that fine particles of 2 μm or more adversely affect product stability and processing bath stability.

特許文献4の方法のように、ピリジン系抗菌剤水分散液を染色処理時に併用した場合には、染料の分散性が悪化し、染色斑の原因となっている。これは、メディア型湿式分散機使用に起因する問題であるとともに、分散剤として使用する界面活性剤に起因する問題でもある。   When a pyridine-based antibacterial aqueous dispersion is used in combination during the dyeing treatment as in the method of Patent Document 4, the dispersibility of the dye is deteriorated, which causes dyeing spots. This is a problem caused by the use of a media-type wet disperser and a problem caused by a surfactant used as a dispersant.

また、銀系抗菌剤では、長時間処理により銀が酸化され、水分散液が着色する問題がある。さらに、金属酸化物系抗菌剤においては、比重が大きいために微粒子化しにくく、分散液の安定性が悪いという問題があり、安定性向上のためには界面活性剤を多く使用しなければならないという問題がある。   Further, silver antibacterial agents have a problem that silver is oxidized by long-time treatment and the aqueous dispersion is colored. Furthermore, the metal oxide antibacterial agent has a problem that it is difficult to make fine particles due to its large specific gravity and the dispersion stability is poor, and a surfactant must be used in order to improve the stability. There's a problem.

以上のように、金属系の抗菌剤においては、繊維用処理剤として使用可能な水分散液を得るためには多くの問題がある。   As described above, metal antibacterial agents have many problems in order to obtain an aqueous dispersion that can be used as a fiber treating agent.

特開2001−288014号公報JP 2001-288014 A 特開2001−288015号公報JP 2001-288015 A 特開2001−288017号公報JP 2001-288017 A 特開2000−8275号公報JP 2000-8275 A

本発明は、上記事情に鑑みてなされたものであり、金属系抗菌剤をメディア型湿式分散機を用いて微粒子化分散処理を行った場合の問題(摩耗物混入の問題、長時間処理の問題、粒度分布が広い問題)を一挙に解決し、さらに製品安定性と処理浴安定性の向上といった界面活性剤にも起因する問題をも含めて解決することを目的とするものであり、短時間で、摩耗物混入なく、特定のシャープな粒度分布を持った、製品安定性、処理浴安定性が良好な、繊維用抗菌剤を得ることができる製造方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and problems when a metal antibacterial agent is dispersed into fine particles using a media type wet disperser (problem contamination problem, long-time treatment problem) The purpose is to solve the problems caused by surfactants such as the improvement of product stability and treatment bath stability in a short time. The object of the present invention is to provide a production method capable of obtaining an antibacterial agent for fibers having a specific sharp particle size distribution without wear and contamination, good product stability and treatment bath stability. is there.

さらに該製造方法により製造された繊維用抗菌剤及びそれを付与した耐洗濯耐久性のある抗菌性繊維製品を提供することを目的とするものである。   Furthermore, it aims at providing the antibacterial agent for textiles manufactured by this manufacturing method, and the antibacterial fiber product with the washing-proof durability which provided it.

本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、金属系抗菌剤を、特定の高圧下に、特定の界面活性剤を用いて微粒子化分散処理することにより、メディア型湿式分散機を用いた場合に比べ、短時間で、低摩耗分(低金属分)で、特定のシャープな粒度分布を持った、繊維用抗菌剤が得られることを見出した。さらに、得られる繊維用抗菌剤は、製品安定性と処理浴安定性にも優れることを見出し、これらの知見に基づき本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have carried out a media type wet process by subjecting a metal antibacterial agent to a fine particle dispersion treatment using a specific surfactant under a specific high pressure. It has been found that an antibacterial agent for fibers having a specific sharp particle size distribution can be obtained in a short time, with a low wear (low metal content), compared to the case of using a disperser. Furthermore, the obtained antibacterial agent for fibers was found to be excellent in product stability and treatment bath stability, and the present invention was completed based on these findings.

よって、本発明は、下記の1)〜5)の事項からなる。
1)金属系抗菌剤を、50MPa以上の高圧下、下記一般式[1]で示される化合物より誘導されるアニオン界面活性剤及び下記一般式[2]で示される非イオン界面活性剤の群から選ばれる少なくとも1種を分散剤として、水性媒体中で微粒子化分散処理することを特徴とする、繊維用抗菌剤の製造方法。
Therefore, the present invention comprises the following items 1) to 5).
1) A metal-based antibacterial agent is selected from the group of an anionic surfactant derived from a compound represented by the following general formula [1] and a nonionic surfactant represented by the following general formula [2] under a high pressure of 50 MPa or more. A method for producing an antibacterial agent for fibers, which comprises subjecting at least one selected to a dispersing agent to a fine particle dispersion treatment in an aqueous medium.

R−〔O−(R−O)−H〕 ・・・[1] R- [O- (R 1 -O) a -H] m ··· [1]

(式中、mは1以上の整数を表し、Rはm個のヒドロキシ基を有する芳香族ヒドロキシ化合物からm個のヒドロキシ基を除いた残基を表し、Rは炭素数2〜4のアルキレン基を表し、aは0又は1以上の整数を表す) (In the formula, m represents an integer of 1 or more, R represents a residue obtained by removing m hydroxy groups from an aromatic hydroxy compound having m hydroxy groups, and R 1 represents an alkylene having 2 to 4 carbon atoms. A represents an integer of 0 or 1 or more)

R−〔O−(R−O)−H〕 ・・・[2] R- [O- (R 1 -O) b -H] m · · · [2]

(式中、mは1以上の整数を表し、Rはm個のヒドロキシ基を有する芳香族ヒドロキシ化合物からm個のヒドロキシ基を除いた残基を表し、Rは炭素数2〜4のアルキレン基を表し、bは3以上の整数を表す) (In the formula, m represents an integer of 1 or more, R represents a residue obtained by removing m hydroxy groups from an aromatic hydroxy compound having m hydroxy groups, and R 1 represents an alkylene having 2 to 4 carbon atoms. Represents a group, and b represents an integer of 3 or more)

2)高圧が100MPa以上であり、分散剤が一般式[1]で示される化合物より誘導されるアニオン界面活性剤である、1)に記載の繊維用抗菌剤の製造方法。   2) The method for producing an antibacterial agent for fibers according to 1), wherein the high pressure is 100 MPa or more and the dispersant is an anionic surfactant derived from the compound represented by the general formula [1].

3)Rで表されるm個のヒドロキシ基を有する芳香族ヒドロキシ化合物がフェノール、4−クミルフェノール、4−フェニルフェノール又は2−ナフトールの、(3〜8モル)スチレン付加物、(3〜8モル)α−メチルスチレン付加物又は(3〜8モル)ベンジルクロライド反応物である、1)又は2)に記載の繊維用抗菌剤の製造方法。   3) An aromatic hydroxy compound having m hydroxy groups represented by R is a (3 to 8 mol) styrene adduct of phenol, 4-cumylphenol, 4-phenylphenol or 2-naphthol, (3- The method for producing an antibacterial agent for fibers according to 1) or 2), which is 8 mol) an α-methylstyrene adduct or (3 to 8 mol) a benzyl chloride reactant.

4)1)〜3)のいずれかに記載の製造方法により得られる繊維用抗菌剤。
5)4)に記載の繊維用抗菌剤で処理することにより得られる抗菌性繊維製品。
4) An antibacterial agent for fibers obtained by the production method according to any one of 1) to 3).
5) An antibacterial fiber product obtained by treating with the fiber antibacterial agent described in 4).

本発明の繊維用抗菌剤の製造方法によれば、金属系の抗菌剤を、従来のメディア型湿式分散機を用いて微粒子化分散処理を行った場合の問題(摩耗物混入の問題、長時間処理の問題、粒度分布が広い問題)を一挙に解決し、さらに製品安定性と処理浴安定性の向上といった界面活性剤にも起因する問題をも含めて解決することが可能となる。   According to the method for producing an antibacterial agent for fibers according to the present invention, a problem arises when a metal antibacterial agent is subjected to fine particle dispersion using a conventional media-type wet disperser (problem mixing problem, long time The problem of processing and the problem of wide particle size distribution) can be solved all at once, and also the problems caused by surfactants such as improvement of product stability and processing bath stability can be solved.

本発明によれば、また、短時間で、摩耗物混入なく、特定のシャープな粒度分布を持った、製品安定性、処理浴安定性が良好な繊維用抗菌剤を得ることができる製造方法を提供することが可能になる。さらに、該製造方法により得られる繊維用抗菌剤及びそれを付与した耐洗濯耐久性のある抗菌性を有する機能性繊維製品を提供することが可能となる。   According to the present invention, there is also provided a production method capable of obtaining an antibacterial agent for fibers having a specific sharp particle size distribution and having good product stability and treatment bath stability in a short period of time without contamination of wear. It becomes possible to provide. Furthermore, it becomes possible to provide an antibacterial agent for fibers obtained by the production method and a functional fiber product having antibacterial properties having anti-washing durability imparted with the antibacterial agent.

以下に、本発明を実施するための好ましい形態を説明する。
本発明は、金属系の抗菌剤を、特定の高圧下に、特定の界面活性剤を用いて微粒子化分散処理することにより、従来の方法に比べて短時間で、低摩耗分(低金属分)で、特定のシャープな粒度分布に調整された繊維用抗菌剤を製造する方法を提供する。さらに、該製造方法によって得られる、製品安定性と処理浴安定性に優れる繊維用抗菌剤及びそれで処理することによって得られる機能性繊維製品を提供する。
Below, the preferable form for implementing this invention is demonstrated.
In the present invention, a metal antibacterial agent is microparticulated and dispersed using a specific surfactant under a specific high pressure, thereby reducing the amount of low wear (low metal content) in a short time compared to the conventional method. ) Provides a method for producing a fiber antibacterial agent adjusted to a specific sharp particle size distribution. Furthermore, the antibacterial agent for fibers excellent in product stability and treatment bath stability obtained by the production method and a functional fiber product obtained by treating with the antibacterial agent are provided.

本発明に有用な金属系抗菌剤としては、例えば、亜鉛系抗菌剤、銀系抗菌剤、金属酸化物系抗菌剤が挙げられる。亜鉛系抗菌剤としては、2−ピリジンチオール亜鉛−1−オキシドが挙げられる。銀系抗菌剤としては、銀担持ゼオライト、銀硝子、銀担持リン酸ジルコニウム、銀担持リン酸カルシウムや銀担持トリポリリン酸アルミニウムなどが挙げられる。金属酸化物系抗菌剤としては、酸化銀、酸化亜鉛や酸化チタンなどが挙げられる。これらの金属系抗菌剤は、1種を単独で又は2種以上を組み合わせて用いることができる。   Examples of the metal antibacterial agent useful in the present invention include a zinc antibacterial agent, a silver antibacterial agent, and a metal oxide antibacterial agent. Examples of zinc-based antibacterial agents include 2-pyridinethiol zinc-1-oxide. Examples of the silver antibacterial agent include silver-supported zeolite, silver glass, silver-supported zirconium phosphate, silver-supported calcium phosphate, and silver-supported aluminum tripolyphosphate. Examples of the metal oxide antibacterial agent include silver oxide, zinc oxide and titanium oxide. These metal antibacterial agents can be used alone or in combination of two or more.

これらの金属系抗菌剤は、市販品として入手可能であり、例えば、ジンクオマジン(ジンクピリチオン)(アーチケミカルズ(株)製)、ゼオミックHD−10N(銀ゼオライト)((株)シナネンゼオミック製)、酸化亜鉛(ハクスイテック(株)製)、シルバーエース(銀担持リン酸カルシウム)(太平化学産業(株)製)、ラサップAN−600(銀担持難溶性リン酸塩)(ラサ工業(株)製)、ノバロンAG−300(銀担持リン酸ジルコニウム)(東亞合成(株)製)、JA−1(酸化チタン)(石原産業(株)製)、イオンピュア(銀ガラス)(石塚ガラス(株)製)などが挙げられる。   These metal antibacterial agents are available as commercial products, such as zinc omazine (zinc pyrithione) (manufactured by Arch Chemicals), Zeomic HD-10N (silver zeolite) (manufactured by Sinanen Zeomic), zinc oxide. (Manufactured by Hakusui Tech Co., Ltd.), Silver Ace (silver-supported calcium phosphate) (manufactured by Taihei Chemical Sangyo Co., Ltd.), Rasap AN-600 (Silver-supported poorly soluble phosphate) (manufactured by Rasa Industrial Co., Ltd.), Novalon AG- 300 (silver-supported zirconium phosphate) (manufactured by Toagosei Co., Ltd.), JA-1 (titanium oxide) (manufactured by Ishihara Sangyo Co., Ltd.), Ion Pure (silver glass) (manufactured by Ishizuka Glass Co., Ltd.), etc. It is done.

本発明においては、これらの金属系抗菌剤は、繊維用抗菌剤中に1〜80質量%含有されることが好ましく、微粒子化分散性と抗菌性の観点からは1〜70質量%であることがより好ましい。1質量%未満であると、抗菌性繊維製品の抗菌性が発揮され難い傾向となる。80質量%を超えると、繊維用抗菌剤の粘度が高くなり、微粒子化分散処理が困難になる傾向にある。   In the present invention, these metal antibacterial agents are preferably contained in the fiber antibacterial agent in an amount of 1 to 80% by mass, and from the viewpoint of fine particle dispersibility and antibacterial properties, it is 1 to 70% by mass. Is more preferable. If it is less than 1% by mass, the antibacterial property of the antibacterial fiber product tends to be hardly exhibited. If it exceeds 80% by mass, the viscosity of the antibacterial agent for fibers tends to be high, and the fine particle dispersion treatment tends to be difficult.

50MPa以上の高圧にて微粒子化分散処理する方法としては、例えば、(i):分散液を2方向以上から衝突させて微粒子化分散する方法、(ii):分散液を隙間(スリット)に通過させる際のせん断力を利用して微粒子化分散する方法が挙げられる。具体的には、(i)の方法としては、ナノマイザー(吉田機械興業(株)製)、アルチマイザー(株式会社スギノマシン製)、スターバースト(株式会社スギノマシン製)などの乳化分散機を使用した処理が挙げられる。(ii)の方法としては、ホモジナイザー(NIRO SOAVI社製)または(APV GAULIN社製)などの乳化分散機を使用した処理が挙げられる。これらの微粒子化分散処理方法は、ノンメディアの方法である。ノンメディアの方法とは、メディアを使用しない方法のことである。本発明における高圧での分散処理により、ノンメディアでの分散処理が可能となる。   Examples of the method for carrying out the fine particle dispersion treatment at a high pressure of 50 MPa or more include, for example, (i): a method in which the dispersion liquid is collided from two or more directions and fine particle dispersion, and (ii): the dispersion liquid is passed through the gap (slit). There is a method in which fine particles are dispersed using a shearing force at the time of forming. Specifically, as the method (i), an emulsifying dispersion machine such as Nanomizer (manufactured by Yoshida Kikai Kogyo Co., Ltd.), Ultimizer (manufactured by Sugino Machine Co., Ltd.), Starburst (manufactured by Sugino Machine Co., Ltd.) or the like is used. Process. Examples of the method (ii) include treatment using an emulsifier / disperser such as a homogenizer (manufactured by NIRO SOAVI) or (manufactured by APV GAULIN). These fine particle dispersion processing methods are non-media methods. The non-media method is a method that does not use media. With the high-pressure distributed processing in the present invention, non-media distributed processing is possible.

本発明においては、50MPa以上の高圧にて微粒子化分散処理する方法により、金属系抗菌剤を、従来のビーズミルやボールミルなどのメディア型湿式分散機を用いる方法に比べて短時間で、鉄や銅などの金属分あるいはその他の分散機由来の摩耗物の混入という問題を起こすことなく、シャープな粒度分布に微粒子化分散処理することができる。   In the present invention, the metal-based antibacterial agent is processed in a shorter time than the conventional method using a media-type wet disperser such as a bead mill or a ball mill by the method of finely dispersing and dispersing at a high pressure of 50 MPa or more. Thus, the fine particles can be dispersed in a sharp particle size distribution without causing the problem of contamination of the metal components such as the above or other wear from the disperser.

本発明において、高圧とは50MPa以上であり、より好ましくは100MPa以上であり、さらにより好ましくは150MPa以上である。50Mpa未満の場合、目的とする特定のシャープな粒度分布を持った繊維用抗菌剤を短時間で得ることが困難となる。   In the present invention, the high pressure is 50 MPa or more, more preferably 100 MPa or more, and even more preferably 150 MPa or more. When it is less than 50 Mpa, it becomes difficult to obtain a target antibacterial agent for fibers having a specific sharp particle size distribution in a short time.

本発明に有用なアニオン界面活性剤は、前記一般式[1]で示される化合物より誘導されるアニオン界面活性剤である。また、本発明に有用な非イオン界面活性剤は、前記一般式[2]で示される非イオン界面活性剤である。   An anionic surfactant useful in the present invention is an anionic surfactant derived from the compound represented by the general formula [1]. The nonionic surfactant useful in the present invention is a nonionic surfactant represented by the general formula [2].

一般式[1]で示される化合物において、Rで表されるm個のヒドロキシ基を有する芳香族ヒドロキシ化合物としては、例えば、フェノール、2−クミルフェノール、3−クミルフェノール、4−クミルフェノール、2−フェニルフェノール、3−フェニルフェノール、4−フェニルフェノール、1−ナフトール、2−ナフトール、クレゾール、ブチルフェノール、オクチルフェノール、ノニルフェノール、ドデシルフェノールなどの1価の芳香族ヒドロキシ化合物;カテコール、レゾルシノール、ヒドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールSなどの2価の芳香族ヒドロキシ化合物;ピロガロール(1,2,3−トリヒドロキシベンゼン)、1,2,4−トリヒドロキシベンゼン、フロログルシノール(1,3,5−トリヒドロキシベンゼン)などの3価の芳香族ヒドロキシ化合物;テトラヒドロキシベンゼンなどの4価の芳香族ヒドロキシ化合物;若しくはそれらのスチレン類(スチレン、α−メチルスチレン、ビニルトルエン)付加物、または(3〜8モル)ベンジルクロライド反応物などの芳香族ヒドロキシ化合物を挙げることができる。   In the compound represented by the general formula [1], examples of the aromatic hydroxy compound having m hydroxy groups represented by R include phenol, 2-cumylphenol, 3-cumylphenol, and 4-cumyl. Monovalent aromatic hydroxy compounds such as phenol, 2-phenylphenol, 3-phenylphenol, 4-phenylphenol, 1-naphthol, 2-naphthol, cresol, butylphenol, octylphenol, nonylphenol, dodecylphenol; catechol, resorcinol, hydroquinone Divalent aromatic hydroxy compounds such as bisphenol A, bisphenol F and bisphenol S; pyrogallol (1,2,3-trihydroxybenzene), 1,2,4-trihydroxybenzene, phloroglucinol (1,3,3) Trivalent aromatic hydroxy compounds such as -trihydroxybenzene); tetravalent aromatic hydroxy compounds such as tetrahydroxybenzene; or their styrenes (styrene, α-methylstyrene, vinyltoluene) adducts, or (3 -8 mol) aromatic hydroxy compounds such as benzyl chloride reactants.

なかでも、得られる繊維用抗菌剤の粒度分布、製品安定性、処理浴安定性の観点から、フェノール、4−クミルフェノール、4−フェニルフェノール又は2−ナフトールの、(3〜8モル)スチレン付加物、(3〜8モル)α−メチルスチレン付加物又は(3〜8モル)ベンジルクロライド反応物が好ましい。   Among them, from the viewpoint of particle size distribution, product stability, and treatment bath stability of the obtained antibacterial agent for fibers, (3 to 8 mol) styrene of phenol, 4-cumylphenol, 4-phenylphenol or 2-naphthol. Adducts, (3-8 mol) α-methylstyrene adducts or (3-8 mol) benzyl chloride reactants are preferred.

芳香族ヒドロキシ化合物へのスチレン類の付加は、例えば、芳香族ヒドロキシ化合物にスチレン類を120〜150℃で1〜10時間反応させることで得ることができる。芳香族ヒドロキシ化合物とスチレン類のモル比は1:1〜10、好ましくは1:3〜8であってよい。   Addition of styrenes to an aromatic hydroxy compound can be obtained, for example, by reacting styrenes with an aromatic hydroxy compound at 120 to 150 ° C. for 1 to 10 hours. The molar ratio of aromatic hydroxy compound to styrenes may be 1: 1 to 10, preferably 1: 3 to 8.

一般式[1]において、Rは炭素数2〜4のアルキレン基である。炭素数2〜4のアルキレン基としては、エチレン基、プロピレン基、ブチレン基が挙げられる。繊維用抗菌剤の粒度分布、製品安定性、処理浴安定性の観点からは、アルキレン基としてはエチレン基、プロピレン基が好ましく、エチレン基がより好ましい。 In the general formula [1], R 1 is an alkylene group having 2 to 4 carbon atoms. Examples of the alkylene group having 2 to 4 carbon atoms include an ethylene group, a propylene group, and a butylene group. From the viewpoint of particle size distribution, product stability, and treatment bath stability of the antibacterial agent for fibers, the alkylene group is preferably an ethylene group or a propylene group, and more preferably an ethylene group.

aは(R−O)で示されるアルキレンオキシ基の付加モル数であり、0又は1以上の整数である。aは0〜200であるのが好ましく、より好ましくは3〜100である。さらにより好ましくは10〜50である。aが200モルを超えると、それ以上に繊維用抗菌剤の粒度分布を狭くする効果、製品安定性と処理浴安定性を向上させる効果が少なくなる傾向にある。 a is the number of added moles of the alkyleneoxy group represented by (R 1 —O), and is 0 or an integer of 1 or more. a is preferably from 0 to 200, more preferably from 3 to 100. Even more preferably, it is 10-50. When a exceeds 200 mol, the effect of narrowing the particle size distribution of the antibacterial agent for fibers and the effect of improving the product stability and the treatment bath stability tend to decrease.

一般式[1]で示される化合物より誘導されるアニオン界面活性剤とは、一般式[1]で示される化合物の硫酸エステル塩、リン酸エステル塩、カルボン酸塩型アニオン界面活性剤及びスルホコハク酸塩型アニオン界面活性剤である。   The anionic surfactant derived from the compound represented by the general formula [1] is a sulfate ester salt, a phosphate ester salt, a carboxylate type anionic surfactant and a sulfosuccinic acid of the compound represented by the general formula [1]. It is a salt type anionic surfactant.

一般式[1]で示される化合物の硫酸エステル塩は、常法に従い、一般式[1]で示される化合物を硫酸化剤と反応させて硫酸エステル化した後、アルカリ性化合物で適宜中和することにより得ることができ、あるいは一般式[1]で示される化合物をスルファミン酸と反応させることによって得ることができる。   The sulfate ester salt of the compound represented by the general formula [1] can be sulfated by reacting the compound represented by the general formula [1] with a sulfating agent according to a conventional method, and then neutralized appropriately with an alkaline compound. Or can be obtained by reacting the compound represented by the general formula [1] with sulfamic acid.

リン酸エステル塩は、常法に従い、一般式[1]で示される化合物と無水リン酸とを反応させてリン酸エステル化した後、アルカリ性化合物で適宜中和することにより得ることができる。   The phosphate ester salt can be obtained by reacting the compound represented by the general formula [1] with phosphoric anhydride to form a phosphate ester according to a conventional method, and then neutralizing with an alkaline compound as appropriate.

カルボン酸塩型アニオン界面活性剤は、常法に従い、一般式[1]で示される化合物とクロロカルボン酸類とを適宜アルカリ性化合物の存在下で反応させることにより得ることができる。   The carboxylate-type anionic surfactant can be obtained by reacting the compound represented by the general formula [1] with chlorocarboxylic acids in the presence of an alkaline compound as appropriate according to a conventional method.

スルホコハク酸塩型アニオン界面活性剤は、常法に従い、一般式[1]で示される化合物と無水コハク酸とを反応させ、その後無水重亜硫酸ソーダあるいは無水亜硫酸ソーダと反応させることにより得ることができる。   The sulfosuccinate type anionic surfactant can be obtained by reacting the compound represented by the general formula [1] with succinic anhydride and then reacting with anhydrous sodium bisulfite or anhydrous sodium sulfite according to a conventional method. .

これらの一般式[1]で示される化合物より誘導されるアニオン界面活性剤においては、一般式[1]で示される化合物が2個以上のヒドロキシ基を有する場合は、それらのヒドロキシ基の50%以上をアニオン化することが好ましく、80%以上をアニオン化することがより好ましく、100%をアニオン化することが最も好ましい。   In the anionic surfactant derived from the compound represented by the general formula [1], when the compound represented by the general formula [1] has two or more hydroxy groups, 50% of the hydroxy groups It is preferable to anionize the above, more preferably 80% or more, and most preferably 100%.

これらの一般式[1]で示される化合物より誘導されるアニオン界面活性剤は、1種を単独で又は2種以上を組み合わせて用いることができる。   These anionic surfactants derived from the compound represented by the general formula [1] can be used alone or in combination of two or more.

これらのアニオン界面活性剤のなかでも、繊維用抗菌剤の粒度分布、製品安定性、処理浴安定性の観点から硫酸エステル塩、リン酸エステル塩、スルホコハク酸塩型アニオン界面活性剤であることが好ましく、下記一般式[3]で表される硫酸エステル塩であることがより好ましい。   Among these anionic surfactants, from the viewpoint of particle size distribution, product stability, and treatment bath stability of the antibacterial agent for fibers, it is a sulfate ester salt, phosphate ester salt, sulfosuccinate salt type anionic surfactant. Preferably, it is a sulfate ester salt represented by the following general formula [3].

R−〔O−(R−O)−A〕 ・・・[3] R- [O- (R 1 -O) a -A] m · · · [3]

(式中、mは1以上の整数を表し、Rはm個のヒドロキシ基を有する芳香族ヒドロキシ化合物からm個のヒドロキシ基を除いた残基を表し、Rは炭素数2〜4のアルキレン基を表し、aは0又は1以上の整数を表し、Aは−SO3XまたはHを表し、XはH、Na、K又は置換基を有していてもよいアンモニウムイオンを表す) (In the formula, m represents an integer of 1 or more, R represents a residue obtained by removing m hydroxy groups from an aromatic hydroxy compound having m hydroxy groups, and R 1 represents an alkylene having 2 to 4 carbon atoms. A represents 0 or an integer of 1 or more, A represents —SO 3 X or H, and X represents H, Na, K, or an ammonium ion which may have a substituent.

一般式[2]で示される非イオン界面活性剤において、R、Rは一般式[1]におけるものと同じであってよい。bは(R−O)で示されるアルキレンオキシ基の付加モル数であり、3以上の整数である。bは3〜200が好ましく、より好ましくは5〜100である。さらにより好ましくは10〜50である。bが3より小さいと繊維用抗菌剤の分散性が悪くなる傾向にあり、200を超えるとそれ以上に繊維用抗菌剤の粒度分布を狭くする効果、製品安定性と処理浴安定性を向上させる効果が少なくなる傾向にある。 In the nonionic surfactant represented by the general formula [2], R and R 1 may be the same as those in the general formula [1]. b is the number of added moles of the alkyleneoxy group represented by (R 1 —O), and is an integer of 3 or more. b is preferably 3 to 200, more preferably 5 to 100. Even more preferably, it is 10-50. If b is less than 3, the dispersibility of the antibacterial agent for fibers tends to deteriorate, and if it exceeds 200, the effect of narrowing the particle size distribution of the antibacterial agent for fibers and the stability of the product and the treatment bath are improved. It tends to be less effective.

一般式[2]で示される非イオン界面活性剤は、得られる繊維用抗菌剤の粒度分布、製品安定性、処理浴安定性の観点から、HLB11以上の非イオン界面活性剤であることが好ましく、HLBが12以上であることがより好ましい。この場合、HLBが11以上の1種類の非イオン界面活性剤を使用してもよく、2種類以上の活性剤を組み合わせてHLBを11以上としもよい。一般式[2]で示される非イオン界面活性剤のHLBが11未満の場合、高圧処理時に発生する熱により金属系抗菌剤を微粒子化分散する効果が低下する傾向にある。ここで、HLBとは、グリフィンのHLBによるものであり、親水基とはエチレンオキシ基を指す。   The nonionic surfactant represented by the general formula [2] is preferably a nonionic surfactant of HLB11 or more from the viewpoint of the particle size distribution, product stability, and treatment bath stability of the obtained fiber antibacterial agent. , HLB is more preferably 12 or more. In this case, one kind of nonionic surfactant having an HLB of 11 or more may be used, or two or more kinds of activators may be combined to make the HLB 11 or more. When the HLB of the nonionic surfactant represented by the general formula [2] is less than 11, the effect of finely dispersing the metal antibacterial agent by the heat generated during high-pressure treatment tends to be reduced. Here, HLB is based on HLB of Griffin, and a hydrophilic group refers to an ethyleneoxy group.

本発明においては、金属系抗菌剤の微粒子化には、一般式[1]で示される化合物より誘導されるアニオン界面活性剤のみ又は一般式[2]で示される非イオン界面活性剤のみを使用することができ、あるいは前記アニオン界面活性剤と非イオン界面活性剤を組み合わせて使用することもできる。繊維用抗菌剤の製品安定性と繊維製品への抗菌剤の吸着性の観点からはアニオン界面活性剤を用いることが好ましい。   In the present invention, only the anionic surfactant derived from the compound represented by the general formula [1] or the nonionic surfactant represented by the general formula [2] is used for the fine particle formation of the metal antibacterial agent. Or a combination of the anionic surfactant and the nonionic surfactant can be used. From the viewpoint of the product stability of the antibacterial agent for fibers and the adsorptivity of the antibacterial agent to the fiber product, it is preferable to use an anionic surfactant.

これらの界面活性剤は、繊維用抗菌剤中に0.05〜10質量%の量で配合されていることが好ましく、微粒子化分散性と堅牢度の観点からは0.05〜5質量%であることがより好ましい。0.05質量%未満の場合は、目的とする粒径を得ることが困難で、得られた繊維用抗菌剤が短時間で分離、沈降、固化などを起こすことがある。10質量%を超えると、得られた繊維用抗菌剤で処理することにより得られる抗菌性繊維製品の各種堅牢度を低下させることがある。   These surfactants are preferably blended in the fiber antibacterial agent in an amount of 0.05 to 10% by mass, and from the viewpoint of fine particle dispersibility and fastness, 0.05 to 5% by mass. More preferably. When the amount is less than 0.05% by mass, it is difficult to obtain a target particle size, and the obtained antibacterial agent for fibers may cause separation, sedimentation, solidification, etc. in a short time. When it exceeds 10 mass%, various fastnesses of the antibacterial fiber product obtained by processing with the obtained antibacterial agent for fibers may be reduced.

本発明の繊維用抗菌剤は、例えば、金属系抗菌剤を特定の界面活性剤を用いて水性媒体に予備分散した後、前述のノンメディア型湿式分散機を用いて高圧にて微粒子化分散処理を行うことにより得ることができ、あるいは金属系抗菌剤と特定の界面活性剤と水性媒体とを、ノンメディア型湿式分散機を用い連続的に高圧にて微粒子化分散処理を行うことにより得ることができる。   The antibacterial agent for fibers of the present invention is, for example, pre-dispersed a metal antibacterial agent in an aqueous medium using a specific surfactant, and then micronized and dispersed at high pressure using the above-mentioned non-media type wet disperser. Or obtained by subjecting a metal antibacterial agent, a specific surfactant and an aqueous medium to micronized dispersion treatment at high pressure continuously using a non-media type wet disperser. Can do.

本発明の製造方法により得られる繊維用抗菌剤においては、鉄及び銅の含有量が2ppm以下であることが好ましく、より好ましくは1ppm以下である。2ppmを超える場合、繊維用抗菌剤の製品安定性と処理浴安定性が低下する傾向にあり、ピリチオン亜鉛系抗菌剤や銀系抗菌剤の水分散液では着色する傾向がある。   In the antibacterial agent for fibers obtained by the production method of the present invention, the content of iron and copper is preferably 2 ppm or less, more preferably 1 ppm or less. When it exceeds 2 ppm, the product stability of the fiber antibacterial agent and the treatment bath stability tend to decrease, and the aqueous dispersion of pyrithione zinc antibacterial agent and silver antibacterial agent tends to be colored.

本発明の製造方法に用いる水性媒体においては、水に由来する鉄と銅の影響を少なくするために、イオン交換樹脂や活性炭等で処理して、鉄や銅の2価の金属を取り除くことが好ましい。鉄及び銅の含有量は、繊維用抗菌剤を硝酸にて分解後、ICP発光分光分析装置であるOptima5300DV(Perkin Elmer社製)にて測定することができる。   In the aqueous medium used in the production method of the present invention, in order to reduce the influence of iron and copper derived from water, the divalent metal such as iron or copper can be removed by treatment with ion exchange resin or activated carbon. preferable. The content of iron and copper can be measured with an Optima 5300 DV (Perkin Elmer) which is an ICP emission spectroscopic analyzer after decomposing an antibacterial agent for fibers with nitric acid.

本発明の製造方法により得られる繊維用抗菌剤においては、50%積算粒径が0.1〜0.5μmであり、90%積算粒径が1.0μm以下である特定の粒度分布を有することが好ましい。50%積算粒径と90%積算粒径は、粒度分布測定装置LA−920((株)堀場製作所製)にて測定することができる。50%積算粒径が0.1〜0.5μmの範囲外の場合、金属系抗菌剤の繊維製品への吸着率が低下し、耐洗濯性のある抗菌性が発揮できない傾向となる。90%積算粒径が1μmを超える場合、繊維用抗菌剤の製品安定性と処理浴安定性が不良となる傾向にある。   The fiber antibacterial agent obtained by the production method of the present invention has a specific particle size distribution in which the 50% cumulative particle size is 0.1 to 0.5 μm and the 90% cumulative particle size is 1.0 μm or less. Is preferred. The 50% cumulative particle size and the 90% cumulative particle size can be measured with a particle size distribution measuring apparatus LA-920 (manufactured by Horiba, Ltd.). When the 50% cumulative particle size is out of the range of 0.1 to 0.5 μm, the adsorption rate of the metal antibacterial agent to the fiber product is lowered, and the antibacterial property having washing resistance tends not to be exhibited. When the 90% cumulative particle diameter exceeds 1 μm, the product stability and the treatment bath stability of the antibacterial agent for fibers tend to be poor.

本発明の製造方法に用いる水性媒体としては、水、又はメタノール、エタノール、イソプロピルアルコール、エチレングリコール、へキシレングリコール、グリセリン、ソルビトール、ブチルグリコール、ソルフィットなどの親水性溶剤と水とからなる溶液を挙げることができる。   As an aqueous medium used in the production method of the present invention, water or a solution comprising a hydrophilic solvent such as methanol, ethanol, isopropyl alcohol, ethylene glycol, hexylene glycol, glycerin, sorbitol, butyl glycol, and solfit and water is used. Can be mentioned.

また、場合によっては、本発明の製造方法により得られる繊維用抗菌剤には、炭素数10〜22の高級アルコールのアルキレンオキサイド(炭素数1〜2)付加物、ポリオキシエチレンソルビタン脂肪酸エステルなどの各種非イオン活性剤、各種アニオン活性剤、各種カチオン活性剤、抗菌剤、柔軟剤、平滑剤、浸透剤、均染剤、制電剤、キレート剤、酸化防止剤、消泡剤、溶剤、合成樹脂、架橋剤、増粘剤(ザンタンガム、ポリアクリル酸ソーダ、CMC、PVAなど)などを、その抗菌性能を阻害しない範囲において、配合してもよい。   In some cases, the antibacterial agent for fibers obtained by the production method of the present invention includes an alkylene oxide (carbon number 1 to 2) adduct of a higher alcohol having 10 to 22 carbon atoms, a polyoxyethylene sorbitan fatty acid ester, and the like. Various nonionic active agents, various anionic active agents, various cationic active agents, antibacterial agents, softeners, smoothing agents, penetrating agents, leveling agents, antistatic agents, chelating agents, antioxidants, antifoaming agents, solvents, synthesis A resin, a crosslinking agent, a thickener (such as xanthan gum, sodium polyacrylate, CMC, PVA) and the like may be added as long as the antibacterial performance is not impaired.

得られる繊維用抗菌剤の繊維への付与は、繊維染色加工事典(昭和38年、日刊工業新聞社発行)396〜397頁や色染化学III(1975年、実教出版(株)発行)256〜260頁に記載のパディング処理、染色仕上機器総覧(昭和56年、繊維社発行)196〜247頁に記載のバッチ式染色機を用いた浸漬処理、同染色仕上機器総覧473〜477頁に記載の特殊仕上げ装置を用いたコーティングなどの既知の方法により行うことができる。   Application of the obtained antibacterial agent for fibers to fibers includes fiber dyeing processing encyclopedia (published in 1965, published by Nikkan Kogyo Shimbun), pages 396 to 397 and color dye chemistry III (1975, published by Jikkyo Publishing Co., Ltd.) 256. ~ Pading process described on page 260, dyeing and finishing equipment overview (published in 1986, published by Textile Co., Ltd.) 196-247, immersion treatment using a batch type dyeing machine described in pages 196 to 247, and dyeing and finishing equipment overview described on pages 473 to 477 It can be performed by a known method such as coating using a special finishing apparatus.

パディング処理の場合は、処理浴中の金属系抗菌剤の濃度が、例えば、0.01〜10質量%の範囲であることが好ましい。浸漬処理で付与する場合は、処理浴中の金属系抗菌剤の濃度が、例えば、0.01〜10%o.w.f.の範囲であることが好ましい。コーティングの場合、例えば、本発明の抗菌剤水分散液をバインダーに混合したものを使用することができ、この場合バインダー中に金属系抗菌剤の濃度は、例えば、0.1〜10質量%の範囲であることが好ましい。   In the case of padding treatment, the concentration of the metal antibacterial agent in the treatment bath is preferably in the range of 0.01 to 10% by mass, for example. When applying by immersion treatment, the concentration of the metal antibacterial agent in the treatment bath is, for example, 0.01 to 10% o.d. w. f. It is preferable that it is the range of these. In the case of coating, for example, the antibacterial agent aqueous dispersion of the present invention mixed with a binder can be used. In this case, the concentration of the metal antibacterial agent in the binder is, for example, 0.1 to 10% by mass. A range is preferable.

本発明の繊維用抗菌剤の繊維への付与量は、これに含まれる金属系抗菌剤が繊維製品に対して0.001〜5質量%になる量であることが好ましい。この量が0.001質量%未満では十分な耐洗濯性のある抗菌効果が発揮され難く、5質量%を超えて使用しても耐洗濯性のある抗菌性のさらなる向上効果は小さく、経済的ではない。   The amount of the antibacterial agent for fibers of the present invention applied to the fiber is preferably such that the metal antibacterial agent contained therein is 0.001 to 5% by mass relative to the fiber product. If this amount is less than 0.001% by mass, the antibacterial effect with sufficient washing resistance is hardly exhibited, and even if it exceeds 5% by mass, the effect of further improving the antibacterial property with washing resistance is small and economical. is not.

また、繊維用抗菌剤成分単独では洗濯に対する耐久性が不足する場合には、ウレタン樹脂、メラミン樹脂、グリオキ樹脂、シリコーン化合物、アクリル化合物などを適時併用することができる。   In addition, when the fiber antibacterial component alone has insufficient durability for washing, urethane resin, melamine resin, glyoxy resin, silicone compound, acrylic compound, and the like can be used in a timely manner.

本発明の繊維用抗菌剤が適用できる繊維製品の素材としては、特に制限はなく、例えば、綿、麻、羊毛、絹などの天然繊維、レーヨン、キュプラ、テンセル(商標)などの再生セルロース繊維、アセテート、プロミックスなどの半合成繊維、ポリアミド繊維、ポリエステル繊維、アクリル繊維、ポリオレフィン繊維、ポリ塩化ビニル繊維、ポリイミド繊維、ポリウレタン繊維などの合成繊維及びこれらの繊維の複合繊維などの各種素材に使用することができる。そして、繊維製品の形態にも特に制限はなく、例えば、短繊維、長繊維、糸、織物、編物、不織布、わた、スライバー、トップ、紙などを挙げることができる。   The material of the fiber product to which the antibacterial agent for fibers of the present invention can be applied is not particularly limited. For example, natural fibers such as cotton, hemp, wool, and silk, regenerated cellulose fibers such as rayon, cupra, and Tencel (trademark), Used for various materials such as semi-synthetic fibers such as acetate and promix, polyamide fibers, polyester fibers, acrylic fibers, polyolefin fibers, polyvinyl chloride fibers, polyimide fibers, polyurethane fibers, and composite fibers of these fibers be able to. The form of the fiber product is not particularly limited, and examples thereof include short fiber, long fiber, yarn, woven fabric, knitted fabric, non-woven fabric, cotton, sliver, top, and paper.

本発明において、金属系抗菌剤は、特定の界面活性剤を使用し、特定の高圧にて微粒子化分散処理を行うことで初めて、金属分の少ない特定のシャープな粒度分布を持つ繊維用抗菌剤を、従来の方法より短時間で得ることができる。   In the present invention, the metal antibacterial agent is a fiber antibacterial agent having a specific sharp particle size distribution with a small amount of metal, for the first time by using a specific surfactant and carrying out fine particle dispersion treatment at a specific high pressure. Can be obtained in a shorter time than the conventional method.

特定の界面活性剤を使用し、従来のメディア型湿式分散機を用いて分散処理を行った場合、微粒子化効果が小さく、金属系抗菌剤を目的の粒径に微粒子化することができなくなるか、あるいは目的の粒径に微粒子化できたとしても、長時間を要し、工業的に不利となる。さらに、長時間の微粒子化処理中に分散機由来の摩耗物(金属分など)が混入し、外観変化、安定性の低下、吸着率の低下などの問題が生じる。   When a specific surfactant is used and dispersion treatment is performed using a conventional media-type wet disperser, the effect of atomization is small, and the metal antibacterial agent cannot be atomized to the target particle size. Or, even if it can be atomized to the target particle size, it takes a long time and is industrially disadvantageous. Further, during the long-term micronization process, wear from the disperser (such as metal) is mixed, causing problems such as changes in appearance, a decrease in stability, and a decrease in adsorption rate.

特定の界面活性剤を使用せず、特定の高圧にて分散処理を行った場合には、金属系抗菌剤を微粒子化分散させることはできるものの、この分散液を安定化する効果が劣っており、製品安定性の低下、処理浴安定性の低下、吸着率の低下などの問題が生じる。   When a dispersion treatment is performed at a specific high pressure without using a specific surfactant, the metal antibacterial agent can be dispersed into fine particles, but the effect of stabilizing this dispersion is inferior. Problems such as a decrease in product stability, a decrease in treatment bath stability, and a decrease in adsorption rate occur.

本発明で規定する如き特定の界面活性剤と特定の高圧を組み合わせた場合にのみ、短時間で、特定のシャープな粒度分布を持った、低金属分の繊維用抗菌剤を得ることが可能となり、製品安定性、処理浴安定性、及び吸着率の良好な水分散液が得られる。この水分散液により繊維製品を処理することにより、品位の高い、耐洗濯性のある抗菌性繊維製品を得ることが可能となる。   Only when a specific surfactant as specified in the present invention is combined with a specific high pressure, it is possible to obtain a low metal fiber antibacterial agent having a specific sharp particle size distribution in a short time. An aqueous dispersion having good product stability, treatment bath stability, and adsorption rate can be obtained. By treating the fiber product with this aqueous dispersion, it is possible to obtain a high-quality, antibacterial fiber product having wash resistance.

さらに、本発明の繊維用抗菌剤の繊維製品への付与時の処理浴のpHは2〜12の範囲であってよく、例えば、ポリエステル繊維の酸性染色時の染色浴pH2〜5やポリエステル繊維のアルカリ染色時の染色浴pH10〜12であっても、染色と同時に抗菌加工が可能となり、工程を短縮することが可能となる。   Further, the pH of the treatment bath at the time of application of the antibacterial agent for fibers of the present invention to the fiber product may be in the range of 2 to 12, for example, the dyeing bath pH 2 to 5 at the acid dyeing of the polyester fiber or the polyester fiber Even if the dyeing bath pH is 10 to 12 at the time of alkali dyeing, antibacterial processing can be performed simultaneously with dyeing, and the process can be shortened.

以下、実施例を挙げて本発明をさらに説明するが、本発明はこれらの実施例により何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is further demonstrated, this invention is not restrict | limited at all by these Examples.

抗菌成分
抗菌剤1:ジンクオマジン(ジンクピリチオン)、アーチケミカルズ(株)製
抗菌剤2:ゼオミックHD−10N(銀ゼオライト)、(株)シナネンゼオミック製
抗菌剤3:酸化亜鉛、ハクスイテック(株)製
Antibacterial component Antibacterial agent 1: Zinc omazine (zinc pyrithione), manufactured by Arch Chemicals Co., Ltd. Antibacterial agent 2: Zeomic HD-10N (silver zeolite), manufactured by Sinanen Zeomic Co., Ltd. Antibacterial agent 3: Zinc oxide, manufactured by Hux Itec Corp.

分散剤の合成
合成例1:トリスチレン化フェノールのエチレンオキサイド20モル付加物、HLB=13.7(以下「TP20E」と記す)
フェノール94質量部(1.0モル)と硫酸0.1質量部を反応容器に仕込み、撹拌しながら窒素ガス気流下にて加熱昇温し、110〜130℃でスチレンモノマー312質量部(3モル)を滴下し、125〜135℃で約3時間付加反応させ、その後冷却して褐色透明粘液状のトリスチレン化フェノールを得た。
Synthesis of Dispersant Synthesis Example 1: Ethylene oxide 20 mol adduct of tristyrenated phenol, HLB = 13.7 (hereinafter referred to as “TP20E”)
A reaction vessel was charged with 94 parts by mass (1.0 mol) of phenol and 0.1 part by mass of sulfuric acid, heated with heating in a nitrogen gas stream while stirring, and 312 parts by mass (3 mols) of styrene monomer at 110 to 130 ° C. ) Was added dropwise and allowed to undergo an addition reaction at 125 to 135 ° C. for about 3 hours, followed by cooling to obtain a brown transparent viscous liquid tristyrenated phenol.

得られたトリスチレン化フェノール403質量部(1モル)と苛性ソーダ4.5質量部をオートクレーブに仕込み、加熱昇温して約130℃にした後、エチレンオキサイド880質量部(20モル)を温度150〜160℃、圧力0.39MPa以下にて反応させた。エチレンオキサイド付加反応終了後冷却し、氷酢酸にてpH7に中和して微黄色軟固体の非イオン界面活性剤を得た。   403 parts by mass (1 mol) of the obtained tristyrenated phenol and 4.5 parts by mass of caustic soda were charged in an autoclave and heated to about 130 ° C., and then 880 parts by mass (20 mol) of ethylene oxide was added at a temperature of 150 ° C. The reaction was carried out at ˜160 ° C. and a pressure of 0.39 MPa or less. After completion of the ethylene oxide addition reaction, the mixture was cooled and neutralized to pH 7 with glacial acetic acid to obtain a nonionic surfactant as a slightly yellow soft solid.

合成例2:トリスチレン化フェノールのエチレンオキサイド10モル付加物、HLB=10.4(以下「TP10E」と記す)
エチレンオキサイド付加モル数を10モルに変えた以外は、合成例1の場合と同様の操作を行い、微黄色濁液状の非イオン界面活性剤を得た。
Synthesis example 2: Ethylene oxide 10 mol adduct of tristyrenated phenol, HLB = 10.4 (hereinafter referred to as “TP10E”)
Except for changing the number of moles of ethylene oxide added to 10 moles, the same operation as in Synthesis Example 1 was performed to obtain a slightly yellow turbid liquid nonionic surfactant.

合成例3:TP20Eの硫酸化物(以下「TP20E−S」と記す)
TP20E(1286質量部)(1モル)を反応容器に仕込み、30〜40℃、減圧度200mmHgにてクロルスルホン酸116.5質量部(1モル)を滴下し、30〜40℃で約2時間脱塩酸(硫酸化反応)を行った。予めイソプロピルアルコールとアンモニア水を混合した中和釜に、50℃以下で硫酸化物を加え、pH8に中和することにより、アニオン界面活性剤を30質量%含む淡黄色透明液状組成物を得た。
Synthesis Example 3: TP20E sulfate (hereinafter referred to as “TP20E-S”)
TP20E (1286 parts by mass) (1 mol) was charged into a reaction vessel, and 116.5 parts by mass (1 mol) of chlorosulfonic acid was added dropwise at 30 to 40 ° C. and a reduced pressure of 200 mmHg, and the reaction was performed at 30 to 40 ° C. for about 2 hours. Dehydrochlorination (sulfation reaction) was performed. A neutralized kettle in which isopropyl alcohol and aqueous ammonia were previously mixed was added with a sulfate at 50 ° C. or lower, and neutralized to pH 8 to obtain a pale yellow transparent liquid composition containing 30% by mass of an anionic surfactant.

合成例4:ソプロフォール3D33(ポリオキシエチレンアリールフェニルエーテルリン酸、ローディア日華(株)製)のアンモニア中和物(以下「TP20E−P」と記す)
予め50%イソプロピルアルコール水溶液と25%アンモニア水溶液を混合した中和釜に、ソプロフォール3D33(500質量部)を加え、約1時間撹拌して均一とし、pH8に中和することにより、アニオン界面活性剤を50質量%含む黄色透明液状組成物を得た。
Synthesis Example 4: Ammonia neutralized product (hereinafter referred to as “TP20E-P”) of soprophor 3D33 (polyoxyethylene arylphenyl ether phosphate, Rhodia Nikka Co., Ltd.)
Soprophor 3D33 (500 parts by mass) was added to a neutralization kettle in which 50% isopropyl alcohol aqueous solution and 25% ammonia aqueous solution had been mixed in advance, and the mixture was stirred for about 1 hour to make it uniform and neutralized to pH 8 to obtain an anionic interface. A yellow transparent liquid composition containing 50% by mass of the activator was obtained.

合成例5:TP20Eのスルホコハク酸塩(以下「TP20E−SS」と記す)
無水マレイン酸24.5質量部(0.25モル)、TP20E(643質量部)(0.5モル)及びパラトルエンスルホン酸2質量部を反応容器に仕込み、窒素ガス気流下にて加熱昇温して170〜180℃にて約4時間脱水反応させ、ジエステル化物を得た。
Synthesis Example 5: Sulfosuccinate of TP20E (hereinafter referred to as “TP20E-SS”)
24.5 parts by mass (0.25 mol) of maleic anhydride, TP20E (643 parts by mass) (0.5 mol), and 2 parts by mass of paratoluenesulfonic acid were charged into a reaction vessel, and the temperature was raised under a nitrogen gas stream. Then, dehydration reaction was performed at 170 to 180 ° C. for about 4 hours to obtain a diesterified product.

得られたジエステル化物663質量部とヘキシレングリコール127.5質量部を反応容器に仕込み、80℃まで加熱昇温し、無水重亜硫酸ソーダ23.8質量部、苛性ソーダ3.5質量部及び水244.2質量部の中和溶液を加え、90〜100℃にてスルホン化反応させ、pH8のアニオン界面活性剤を65質量%含む微黄色液状組成物を得た。   663 parts by mass of the resulting diesterified product and 127.5 parts by mass of hexylene glycol were charged into a reaction vessel, heated to 80 ° C., heated to 23.8 parts by weight of anhydrous sodium bisulfite, 3.5 parts by mass of caustic soda, and water 244. .2 parts by mass of a neutralized solution was added and sulfonated at 90 to 100 ° C. to obtain a slightly yellow liquid composition containing 65% by mass of an anionic surfactant having a pH of 8.

合成例6:TP20Eのカルボキシメチル化物(以下「TP20E−MC」と記す)
TP20E(1286質量部)(1モル)と苛性ソーダ(40質量部)(1モル)を反応容器に仕込み、窒素気流下、50〜60℃でモノクロル酢酸ソーダ(116.5質量部)(1モル)を10分間隔で10分割して添加する。その後50〜60℃で約2時間反応させた後、水を加えて、アニオン界面活性剤を60質量%含む微黄色液状組成物を得た。pHは10であった。
Synthesis Example 6: Carboxymethylated product of TP20E (hereinafter referred to as “TP20E-MC”)
TP20E (1286 parts by mass) (1 mol) and caustic soda (40 parts by mass) (1 mol) were charged into a reaction vessel, and sodium monochloroacetate (116.5 parts by mass) (1 mol) at 50 to 60 ° C. in a nitrogen stream. Is added in 10 minute intervals at 10 minute intervals. Then, after reacting at 50 to 60 ° C. for about 2 hours, water was added to obtain a slightly yellow liquid composition containing 60% by mass of an anionic surfactant. The pH was 10.

合成例7:トリスチレン化クミルフェノールのエチレンオキサイド20モル付加物、HLB=12.5(以下「TC20E」と記す)
4−クミルフェノール212質量部(1.0モル)と硫酸0.1質量部を反応容器に仕込み、撹拌しながら窒素ガス気流下にて加熱昇温し、110〜130℃でスチレンモノマー312質量部(3モル)を滴下し、125〜135℃で約3時間付加反応させ、その後冷却して褐色透明粘液状のトリスチレン化クミルフェノールを得た。
Synthesis Example 7: Tristyrenated cumylphenol ethylene oxide 20 mol adduct, HLB = 12.5 (hereinafter referred to as “TC20E”)
A reaction vessel was charged with 212 parts by mass (1.0 mol) of 4-cumylphenol and 0.1 part by mass of sulfuric acid, heated with heating in a nitrogen gas stream while stirring, and 312 masses of styrene monomer at 110 to 130 ° C. Part (3 mol) was added dropwise, and an addition reaction was carried out at 125 to 135 ° C. for about 3 hours, followed by cooling to obtain a brown transparent viscous liquid tristyrenated cumylphenol.

得られたトリスチレン化クミルフェノール524質量部(1モル)と苛性ソーダ4.5質量部をオートクレーブに仕込み、加熱昇温して約130℃にした後、エチレンオキサイド880質量部(20モル)を温度150〜160℃、圧力0.39MPa以下にて反応させた。エチレンオキサイド付加反応終了後冷却し、氷酢酸にてpH7に中和して微黄色固体の非イオン界面活性剤を得た。   524 parts by mass (1 mol) of the tristyrenated cumylphenol and 4.5 parts by mass of caustic soda were charged into an autoclave, heated to about 130 ° C., and then 880 parts by mass (20 mol) of ethylene oxide was added. The reaction was performed at a temperature of 150 to 160 ° C. and a pressure of 0.39 MPa or less. After completion of the ethylene oxide addition reaction, the mixture was cooled and neutralized with glacial acetic acid to pH 7 to obtain a nonionic surfactant as a slightly yellow solid.

合成例8:TC20Eの硫酸化物(以下「TC20E−S」と記す)
TC20E(1404質量部)(1モル)を反応釜に仕込み、ホモミキサーで撹拌しながら、窒素気流下に105〜115℃でスルファミン酸(78質量部)(1.3モル)を20分間隔で4分割して加えた。その後105〜115℃で約2時間反応させ、水、イソプルピルアルコール、アンモニア水を加え、pH8のアニオン界面活性剤を50質量%含む黄色液状組成物を得た。
Synthesis Example 8: TC20E sulfate (hereinafter referred to as “TC20E-S”)
TC20E (1404 parts by mass) (1 mol) was charged into a reaction kettle and stirred with a homomixer, while sulfamic acid (78 parts by mass) (1.3 mol) was added at intervals of 20 minutes at 105 to 115 ° C. under a nitrogen stream. Added in 4 portions. Thereafter, reaction was carried out at 105 to 115 ° C. for about 2 hours, water, isopropyl alcohol and aqueous ammonia were added to obtain a yellow liquid composition containing 50% by mass of an anionic surfactant having a pH of 8.

水分散機器
分散機1:スターバーストHJP−25001、株式会社スギノマシン製
2方向から高圧の分散液同士を衝突させ、得られる高剪断力にて微粒子化分散する形式の分散機
Water Dispersion Equipment Disperser 1: Starburst HJP-25001, manufactured by Sugino Machine Co., Ltd. A type of disperser that collides high-pressure dispersion liquids from two directions and pulverizes and disperses them with high shear force.

分散機2:ナノマイザーYSNM−1500、吉田機械興業(株)製
ダイアモンド処理された衝突型ジェネレーター内で、2方向から高圧の分散液同士を衝突させ、得られる高剪断力にて微粒子化分散する形式の分散機
Disperser 2: Nanomizer YSNM-1500, manufactured by Yoshida Kikai Kogyo Co., Ltd. In a diamond-type collision-type generator, high-pressure dispersions are collided with each other from two directions, and the resulting particles are dispersed with high shearing force. Disperser

分散機3:PANDA 2K型、NIRO SOAVI社製
高圧にした分散液がスリット(隙間)を抜ける際の高剪断力にて微粒子化分散する形式の分散機
Disperser 3: PANDA 2K type, manufactured by NIRO SOAVI
Disperser of the type that disperses fine particles with high shearing force when the high pressure dispersion liquid passes through the slit (gap)

分散機4:APV GAULIN LABORATORY HOMOGENIZER 15MR−8TA、APV GAULIN社製
高圧にした分散液がスリット(隙間)を抜ける際の剪断力にて微粒子化分散する形式の分散機
Disperser 4: APV GAULIN LABORATORY HOMOGENIZER 15MR-8TA, manufactured by APV GAULIN Co., Ltd. A type of disperser that disperses fine particles by shearing force when a high-pressure dispersion liquid passes through a slit (gap).

分散機5:DYNO−MILL KDL型、ウィリー・エ・バッコーフェン社製
メディアを使用し粉体を摺りつぶすことで微粒子化分散する形式のビーズミル機
Dispersing machine 5: DYNO-MILL KDL type, manufactured by Willy et Bakkofen Co., Ltd. A type of bead mill that disperses particles by grinding powder using a media.

繊維用抗菌剤の調製
実施例1
抗菌剤1(500質量部)、TP20E(2質量部)、イオン交換水(498質量部)の均一混合溶液を、分散機1を用い、処理圧150MPa、処理速度100mL/分にて50分間微粒子化分散を行い、繊維用抗菌剤(抗菌剤量50質量%、分散剤量0.2質量%)を得た。50%積算粒径は0.3μm、90%積算粒径は0.7μm、鉄及び銅含有量は0.5ppm未満であった。
Preparation of antibacterial agent for fibers Example 1
Antibacterial agent 1 (500 parts by mass), TP20E (2 parts by mass), ion-exchanged water (498 parts by mass) using a disperser 1, fine particles for 50 minutes at a processing pressure of 150 MPa and a processing speed of 100 mL / min The antibacterial agent for fibers (amount of antibacterial agent 50% by mass, amount of dispersant 0.2% by mass) was obtained. The 50% cumulative particle size was 0.3 μm, the 90% cumulative particle size was 0.7 μm, and the iron and copper contents were less than 0.5 ppm.

この繊維用抗菌剤を用い、下記の抗菌性繊維製品の製造の条件でポリエステルポンジ布をそれぞれパディング処理、浴中処理又は染色同浴処理し、抗菌性繊維製品を得た。   Using this antibacterial agent for fibers, the polyester ponge fabric was padded, treated in a bath, or dyed together under the conditions for production of the following antibacterial fiber product to obtain an antibacterial fiber product.

実施例2〜19、比較例1〜6
抗菌剤、分散機、処理圧、使用メディア、分散剤、処理時間、処理速度を表1〜3に示すように換えた以外は、実施例1と同様にして、実施例2〜19、比較例2〜6の繊維用抗菌剤(抗菌剤量50質量%、分散剤量0.2質量%)を得た。次いで、これらの繊維用抗菌剤を用い、実施例1と同様にポリエステルポンジ布をそれぞれパディング処理、浴中処理又は染色同浴処理し、抗菌性繊維製品を得た。
Examples 2-19, Comparative Examples 1-6
Examples 2 to 19 and Comparative Examples are the same as in Example 1 except that the antibacterial agent, disperser, processing pressure, media used, dispersant, processing time, and processing speed are changed as shown in Tables 1 to 3. 2 to 6 antibacterial agents for fibers (antibacterial agent amount 50% by mass, dispersant amount 0.2% by mass) were obtained. Subsequently, using these antibacterial agents for fibers, the polyester ponge cloth was subjected to padding treatment, treatment in bath or dyeing same bath treatment as in Example 1 to obtain antibacterial fiber products.

ここで、実施例10、11,17では、実施例1における分散剤2質量部を表2に示すアニオン界面活性剤1質量部と非イオン界面活性剤1質量部に変更して繊維用抗菌剤を得た。なお、合成例3、合成例4、合成例5,合成例6、合成例8で得られた組成物については、組成物中に水分を含むため、アニオン界面活性剤が100質量%となるように換算して採取した。   Here, in Examples 10, 11, and 17, the antibacterial agent for fibers was obtained by changing 2 parts by mass of the dispersant in Example 1 to 1 part by mass of the anionic surfactant and 1 part by mass of the nonionic surfactant shown in Table 2. Got. In addition, about the composition obtained by the synthesis example 3, the synthesis example 4, the synthesis example 5, the synthesis example 6, and the synthesis example 8, since an anionic surfactant will be 100 mass% because a composition contains a water | moisture content. It was collected in terms of.

実施例20
実施例1で得られた繊維用抗菌剤を用い、浴中処理にてポリエステル/綿(65/35)を処理し、抗菌性繊維製品を得た。この処理では、温度時間条件を130℃×30分とし、浴組成を抗菌剤0.2%o.w.f.とした。
Example 20
Using the antibacterial agent for fibers obtained in Example 1, polyester / cotton (65/35) was treated by treatment in a bath to obtain an antibacterial fiber product. In this treatment, the temperature time condition was 130 ° C. × 30 minutes, and the bath composition was 0.2% o. w. f. It was.

実施例21〜23
繊維製品の種類を表4のように換えた以外は、実施例20と同様にして、実施例21〜23の抗菌性繊維製品を得た。トリアセテート、6−ナイロン、アクリルでは処理の温度時間条件を90℃×30分とした。
Examples 21-23
Except having changed the kind of fiber product as shown in Table 4, it carried out similarly to Example 20, and obtained the antimicrobial fiber product of Examples 21-23. In the case of triacetate, 6-nylon and acrylic, the temperature time condition of the treatment was 90 ° C. × 30 minutes.

抗菌性繊維製品の製造
パディング処理
使用機器
パッド:ニューマティック・マングルNM−450、(株)大栄科学精器製作所製
ドライ、キュア:ヒートセット試験器HZ−85S型、上野山機工(株)製
処理条件:パッド→ドライ→キュア
パッド:浴組成:繊維用抗菌剤0.1%soln.、1ディップ−1ニップ、ピックアップ80%
ドライ:120℃×2分
キュア:180℃×30秒
浴中処理
使用機器:MINI−COLOUR MC12EN、(株)テキサム技研製
処理条件:浴中処理→水洗(5分)→乾燥(100℃×5分)
温度時間:130℃×30分(昇温2℃/分)
浴比:1:10
浴組成:繊維用抗菌剤0.1%o.w.f.
Manufacture of antibacterial fiber products Padding processing Equipment used Pad: Pneumatic mangle NM-450, manufactured by Daiei Kagaku Seisakusho Co., Ltd. Dry, cure: Heat set tester HZ-85S, Uenoyama Kiko Co., Ltd. Processing conditions : Pad → Dry → Cure Pad: Bath composition: Antibacterial agent for fiber 0.1% soln. 1 dip-1 nip, 80% pickup
Drying: 120 ° C. × 2 minutes Cure: 180 ° C. × 30 seconds Treatment in bath Equipment used: MINI-COLOR® MC12EN, manufactured by TEXAM GIKEN Co., Ltd. Treatment conditions: treatment in bath → water washing (5 minutes) → drying (100 ° C. × 5 Min)
Temperature time: 130 ° C. × 30 minutes (temperature increase 2 ° C./min)
Bath ratio: 1:10
Bath composition: antibacterial agent for fibers 0.1% o. w. f.

染色同浴処理
使用機器:MINI−COLOUR MC12EN、(株)テキサム技研製
処理条件:染色→RC→水洗(5分)→乾燥(100℃×5分)
(染色)
染色:130℃×30分(昇温2℃/分)
浴比:1:10
浴組成:繊維用抗菌剤0.1%o.w.f.
分散染料(Dianix Blue AC−E、ダイスタージャパン(株)製)0.5%o.w.f.
80%酢酸水溶液0.5g/L(浴pH=4.2)
染料分散剤(ニッカサンソルトRM−340E(日華化学(株)製)0.5g/L
Dyeing bath treatment Equipment used: MINI-COOLUR MC12EN, manufactured by Texam Giken Co., Ltd. Treatment conditions: Dyeing → RC → Washing (5 minutes) → Drying (100 ° C. × 5 minutes)
(staining)
Dyeing: 130 ° C x 30 minutes (temperature rise 2 ° C / min)
Bath ratio: 1:10
Bath composition: antibacterial agent for fibers 0.1% o. w. f.
Disperse dye (Dianix Blue AC-E, manufactured by Dystar Japan Co., Ltd.) 0.5% o. w. f.
80% aqueous acetic acid solution 0.5 g / L (bath pH = 4.2)
Dye dispersant (Nikka Sun Salt RM-340E (manufactured by Nikka Chemical Co., Ltd.)) 0.5g / L

(RC)
RC:80℃×20分
浴比:1:20
浴組成:ソーピング剤(サンモールRC−700E、日華化学(株)製)1g/L、
ハイドロサルファイト1g/L、ソーダ灰1g/L
(RC)
RC: 80 ° C. × 20 minutes Bath ratio: 1:20
Bath composition: soaping agent (Sunmall RC-700E, manufactured by Nikka Chemical Co., Ltd.) 1 g / L,
Hydrosulfite 1g / L, Soda ash 1g / L

評価項目
実施例及び比較例で得られた抗菌剤及び抗菌性繊維製品について以下のような評価を行った。
(抗菌剤)
(1)粒径
粒度分布測定装置LA−920((株)堀場製作所製)にて50%積算粒径、90%積算粒径を測定した。
Evaluation item The following evaluation was performed about the antibacterial agent and antibacterial fiber product which were obtained by the Example and the comparative example.
(Antimicrobial agent)
(1) Particle size A 50% cumulative particle size and a 90% cumulative particle size were measured with a particle size distribution measuring apparatus LA-920 (manufactured by Horiba, Ltd.).

(2)鉄及び銅含有量
抗菌剤を硝酸にて分解後、ICP発光分光分析装置Optima5300DV(Perkin Elmer社製)にて鉄分及び銅分を測定した。
(2) Iron and copper content After the antibacterial agent was decomposed with nitric acid, the iron content and the copper content were measured with an ICP emission spectrophotometer Optima 5300 DV (manufactured by Perkin Elmer).

(3)水分散液pH
pHメーターF−22((株)堀場製作所製)にて、繊維用抗菌剤の調製前後の原液pHを測定した。
(3) pH of aqueous dispersion
The pH of the stock solution before and after the preparation of the antibacterial agent for fibers was measured with a pH meter F-22 (manufactured by Horiba, Ltd.).

(4)製品安定性
繊維用抗菌剤500mlを500mlビーカーに入れ、室温にて12時間静置した場合の状態について、以下の評価基準に従って評価した。
A:ビーカー底部に沈降物の発生がなく、均一な水分散液である。あるいは沈降物が発生してもガラス棒にて容易に分散できる。
B:ビーカー底部に沈降物の発生があり、一部固化を起こしているが、ガラス棒にて分散できる。
C:ビーカー底部で沈降固化を起こし、ガラス棒にて分散できない。
(4) Product stability The state when 500 ml of fiber antibacterial agents were placed in a 500 ml beaker and allowed to stand at room temperature for 12 hours was evaluated according to the following evaluation criteria.
A: A precipitate is not generated at the bottom of the beaker and is a uniform aqueous dispersion. Alternatively, even if sediment is generated, it can be easily dispersed with a glass rod.
B: Sediment is generated at the bottom of the beaker and is partially solidified, but can be dispersed with a glass rod.
C: Settling and solidification occurs at the bottom of the beaker and cannot be dispersed with a glass rod.

(5)外観変化
抗菌剤の微粒子化分散処理前後の外観を、以下の評価基準に従って評価した。
A:微粒子化処理前後で外観に変化がない。
B:微粒子化処理前後で外観に多少の変化がある。
C:微粒子化処理前後で外観に大きな変化がある。
(5) Appearance change The appearance before and after the microparticle dispersion treatment of the antibacterial agent was evaluated according to the following evaluation criteria.
A: There is no change in appearance before and after the micronization treatment.
B: Some change in appearance before and after the micronization treatment.
C: There is a great change in appearance before and after the micronization treatment.

(6)染料分散性(巻き付け試験)
下記の条件にてポリエステルニットを処理し、抗菌剤を併用した場合に分散染料に及ぼす影響を調べた。
使用機器:カラーペット染色機、(株)テキサム技研製
供試布:ポリエステルニット
試験浴をカラーペット染色機用ポットに300mL調整。
(6) Dye dispersibility (winding test)
The polyester knit was treated under the following conditions, and the effect on the disperse dye was investigated when an antibacterial agent was used in combination.
Equipment used: Color pet dyeing machine, manufactured by Texam Giken Co., Ltd. Test cloth: Polyester knit 300 mL of test bath is prepared in a pot for color pet dyeing machine.

(浴組成)
分散染料(Dianix Blue AC−E、ダイスタージャパン(株)製)0.5%o.w.f.
80%酢酸水溶液0.5g/L(浴pH=4.2)
染料分散剤(ニッカサンソルトRM−340E、日華化学(株)製))0.5g/L
繊維用抗菌剤0.5%o.w.f.
上記試験浴を用い、浴比=1:30で、60℃より3℃/分で昇温し、115℃×1分保持する。60℃まで冷却後、取り出し、下記の基準で生地の染色斑を評価した。
A:染色斑なし
B:染色斑少し有り
C:染色斑多い
(Bath composition)
Disperse dye (Dianix Blue AC-E, manufactured by Dystar Japan Co., Ltd.) 0.5% o. w. f.
80% aqueous acetic acid solution 0.5 g / L (bath pH = 4.2)
Dye dispersant (Nikka Sun Salt RM-340E, manufactured by Nikka Chemical Co., Ltd.)) 0.5g / L
Antibacterial agent for fibers 0.5% o. w. f.
Using the above test bath, the bath ratio is 1:30, the temperature is raised from 60 ° C. at 3 ° C./min, and held at 115 ° C. for 1 min. After cooling to 60 ° C., the product was taken out, and the stained spots of the fabric were evaluated according to the following criteria.
A: No staining spots B: Some staining spots C: Many staining spots

(7)染料分散性(濾過試験)
下記の条件にて処理を行い、抗菌剤を併用した場合に分散染料に及ぼす影響を調べた。
使用機器:カラーペット染色機((株)テキサム技研製)
試験浴をカラーペット染色機用ポットに300mL調整。
(7) Dye dispersibility (filtration test)
The treatment was carried out under the following conditions, and the effect on the disperse dye was investigated when an antibacterial agent was used in combination.
Equipment used: Color pet dyeing machine (made by Texam Engineering Co., Ltd.)
Adjust 300mL of test bath to pot for color pet dyeing machine.

(浴組成)
分散染料(Dianix Blue AC−E、ダイスタージャパン(株)製)0.5%o.w.f.
80%酢酸水溶液0.5g/L(浴pH=4.2)
染料分散剤(ニッカサンソルトRM−340E、日華化学(株)製)0.5g/L
繊維用抗菌剤0.5%o.w.f.
(Bath composition)
Disperse dye (Dianix Blue AC-E, manufactured by Dystar Japan Co., Ltd.) 0.5% o. w. f.
80% aqueous acetic acid solution 0.5 g / L (bath pH = 4.2)
Dye dispersant (Nikka Sun Salt RM-340E, manufactured by Nikka Chemical Co., Ltd.) 0.5 g / L
Antibacterial agent for fibers 0.5% o. w. f.

生地を使用せず、60℃より3℃/分で昇温し、130℃×30分保持する。80℃まで冷却後、5A濾紙(ADVANTEC社製)にて試験浴を濾過し、下記の基準で濾過状態を評価した。
A:染料スペックなし(濾紙に目詰まりなし)
B:染料スペック少し有り(濾紙に目詰まり少しあり)
C:染料スペック多い(濾紙に目詰まり多い)
Without using the dough, the temperature is increased from 60 ° C. at 3 ° C./min and maintained at 130 ° C. for 30 minutes. After cooling to 80 ° C., the test bath was filtered with 5A filter paper (manufactured by ADVANTEC), and the filtration state was evaluated according to the following criteria.
A: No dye spec (no clogging on filter paper)
B: There is a little dye spec (the filter paper is clogged a little)
C: Many dye specifications (clogged filter paper)

抗菌性繊維製品
(1)抗菌性
社団法人繊維評価技術協議会(以下、繊技協という)の抗菌性の評価方法及び基準に準拠して、以下のように試験を行った。
洗濯前及び洗濯10回後の抗菌性について、JIS L 1902(2008)の定量方法である菌液吸収法に準拠して、黄色ブドウ球菌を供試菌とし、繊技協が認証している抗菌防臭加工を想定した静菌活性値にて評価した。
Antibacterial fiber products (1) Antibacterial properties The following tests were conducted in accordance with the antibacterial evaluation methods and standards of the Japan Fiber Evaluation Technology Council (hereinafter referred to as the Textile Technology Association).
About antibacterial activity before washing and after 10 washings, antibacterial staphylococci are used as test bacteria in accordance with the bacteria absorption method which is a quantitative method of JIS L 1902 (2008) The bacteriostatic activity value assuming deodorant processing was evaluated.

なお、洗濯については、繊技協が定める洗濯方法マニュアル(JIS L 0217(1995)付表1の103法)に準拠した。繊技協基準として静菌活性値が洗濯前と洗濯後の両方の試料について2.2より大きい場合には効果があると判定する。   In addition, about washing, it conformed to the washing method manual (JIS L 0217 (1995) Appendix 103 method 103) defined by the Japan Textile Technology Association. If the bacteriostatic activity value is greater than 2.2 for both the pre-washing and post-washing samples, it is determined that the effect is effective.

(2)生地の色相と汚れ
パディング処理または浴中処理にて得られた機能性繊維製品の色相と汚れを、抗菌剤を使用しなかった場合(比較例1)の色相と汚れに比較し、以下の評価基準に従って評価した。
A:色相にほとんど変化がなく、汚れもない。
B:色相にわずかな変化がある、または汚れが少しある。
C:色相に大きな変化がある、または汚れが多い。
(2) Hue and dirt of the fabric The hue and dirt of the functional fiber product obtained by the padding treatment or the treatment in the bath are compared with the hue and dirt when no antibacterial agent is used (Comparative Example 1). Evaluation was performed according to the following evaluation criteria.
A: There is almost no change in hue, and there is no stain.
B: Slight change in hue or slight stain
C: There is a large change in hue, or there are many stains.

(3)マングル汚れ
パディング処理時のゴムロール表面の汚れを、以下の評価基準に従って評価した。
A:ゴムロール表面に汚れがない。
B:ゴムロール表面にわずかに汚れがある。
C:ゴムロール表面に大きな汚れがある。
(3) Mangle dirt The dirt on the rubber roll surface during padding treatment was evaluated according to the following evaluation criteria.
A: There is no dirt on the surface of the rubber roll.
B: The rubber roll surface is slightly soiled.
C: There is a large stain on the surface of the rubber roll.

(4)吸着率
繊維用抗菌剤で処理して得られた機能性繊維製品を5分間流水濯ぎし、未吸着の抗菌剤と分散剤を洗い流した。得られた試料を硝酸にて溶解し、ICP発光分光分析装置Optima5300DV(Perkin Elmer社製)にて亜鉛分、銀分を測定し、ジンクピリチオン分、銀ゼオライト分、酸化亜鉛分に換算し、繊維基材に対する抗菌剤成分の吸着量(質量%)を求めた。抗菌剤成分の吸着量と、処理浴の抗菌剤成分の濃度から求められる繊維基材への抗菌剤成分の理論付与量(質量%)から、下記の計算式により吸着率(%)を求めた。
吸着率(%)=抗菌剤成分の吸着量×100/抗菌剤成分の付与量
(4) Adsorption rate The functional fiber product obtained by treating with the antibacterial agent for fibers was rinsed with running water for 5 minutes to wash away the unadsorbed antibacterial agent and dispersant. The obtained sample was dissolved in nitric acid, the zinc content and silver content were measured with an ICP emission spectrophotometer Optima5300DV (manufactured by Perkin Elmer), converted into zinc pyrithione content, silver zeolite content and zinc oxide content, and the fiber base The adsorption amount (% by mass) of the antibacterial component to the material was determined. The adsorption rate (%) was calculated from the following formula based on the amount of the antibacterial agent adsorbed and the theoretical amount (% by mass) of the antibacterial component applied to the fiber base, which is determined from the concentration of the antibacterial component in the treatment bath .
Adsorption rate (%) = Adsorption amount of antibacterial agent component × 100 / Amount of application of antibacterial agent component

得られた結果を下記の表に示す。

Figure 2012180323
The results obtained are shown in the table below.
Figure 2012180323

Figure 2012180323
Figure 2012180323

Figure 2012180323
Figure 2012180323

Figure 2012180323
Figure 2012180323

表1〜3の結果から分かるように、特定の界面活性剤を用い特定の高圧処理を行った場合、短時間でシャープな特定の粒度分布を持った繊維用抗菌剤が得られ、製品安定性が良好で外観変化もなかった。また、実施例では、耐洗濯性のある抗菌性が得られている。吸着率も比較例に比べて向上している。生地の色相変化や汚れ、マングル汚れがなく、染料分散性も良好であった。   As can be seen from the results of Tables 1 to 3, when a specific high-pressure treatment is performed using a specific surfactant, a fiber antibacterial agent having a sharp specific particle size distribution is obtained in a short time, and product stability However, the appearance was not changed. Moreover, in the Examples, antibacterial properties with wash resistance are obtained. The adsorption rate is also improved compared to the comparative example. There was no change in hue of the fabric, no stains, no mangle stains, and good dye dispersibility.

一方、比較例2のように、特定の界面活性剤を使用しない場合、例えば、実施例1や実施例5と比較して、同じ処理時間では粒度が小さくならず、製品安定性が不良であり、染料分散性も不良であった。また、抗菌剤吸着率が低く、耐洗濯性のある抗菌性が得られなかった。さらに、生地の色相の変化や汚れ、マングルの汚れが認められた。   On the other hand, when a specific surfactant is not used as in Comparative Example 2, for example, compared with Example 1 and Example 5, the particle size does not become small in the same processing time, and the product stability is poor. The dye dispersibility was also poor. Moreover, the antibacterial agent adsorption rate was low, and antibacterial properties with washing resistance were not obtained. Furthermore, changes in the hue of the fabric, dirt, and mangles were observed.

比較例3のように、50MPa以上の高圧を用いない場合、長時間処理を行っても金属系抗菌剤の微粒子化が進まず、製品安定性が不良であり、染料分散性も不良であった。また、抗菌剤吸着率が低く、耐洗濯性のある抗菌性が得られなかった。さらに、生地の色相の変化や汚れ、マングルの汚れが認められた。   When a high pressure of 50 MPa or more was not used as in Comparative Example 3, the metal antibacterial agent did not progress into fine particles even after long-term treatment, resulting in poor product stability and poor dye dispersibility. . Moreover, the antibacterial agent adsorption rate was low, and antibacterial properties with washing resistance were not obtained. Furthermore, changes in the hue of the fabric, dirt, and mangles were observed.

従来のメディア型湿式分散機であるビーズミルを使用した比較例4〜6においては、微粒子化に長時間必要であった。また、鉄分の混入があり、製品安定性が不良であり、染料分散性も不良であった。抗菌剤1、抗菌剤2を使用した比較例4、比較例5では繊維用抗菌剤が着色し、大きな外観変化が認められた。また、抗菌剤吸着率も低く、耐洗濯性のある抗菌性が得られなかった。さらに、生地の色相の変化や汚れ、マングルの汚れが認められた。   In Comparative Examples 4 to 6 using a bead mill which is a conventional media type wet disperser, it took a long time to make fine particles. In addition, iron was mixed, product stability was poor, and dye dispersibility was also poor. In Comparative Example 4 and Comparative Example 5 using antibacterial agent 1 and antibacterial agent 2, the antibacterial agent for fibers was colored and a large change in appearance was observed. Also, the antibacterial agent adsorption rate was low, and antibacterial properties with washing resistance could not be obtained. Furthermore, changes in the hue of the fabric, dirt, and mangles were observed.

表4の結果から、本発明の繊維用抗菌剤は、各種繊維に適用可能であることがわかる。   From the results in Table 4, it can be seen that the antibacterial agent for fibers of the present invention is applicable to various fibers.

本発明の繊維用抗菌剤の製造方法によれば、従来の製造方法に比べて短時間で製造が可能であり、従来の製造方法が抱えていた問題を一挙に解決可能である。さらに、本発明の繊維用抗菌剤の製造方法により得られる繊維用抗菌剤は、従来のメディア型湿式分散機を使用する方法により得られる繊維用抗菌剤に比べ製品安定性と処理浴安定性が良好であり、品位が高く耐洗濯性のある抗菌性を有する機能性繊維製品を容易に得ることができる。よって、本発明は産業上有用である。   According to the method for producing an antibacterial agent for fibers of the present invention, it can be produced in a shorter time than the conventional production method, and the problems of the conventional production method can be solved all at once. Furthermore, the antibacterial agent for fibers obtained by the method for producing an antibacterial agent for fibers of the present invention has product stability and treatment bath stability compared to the antibacterial agent for fibers obtained by a method using a conventional media-type wet disperser. It is possible to easily obtain a functional fiber product that is good, has high quality, and has antibacterial properties with washing resistance. Therefore, the present invention is industrially useful.

Claims (5)

金属系抗菌剤を、50MPa以上の高圧下、下記一般式[1]で示される化合物より誘導されるアニオン界面活性剤及び下記一般式[2]で示される非イオン界面活性剤の群から選ばれる少なくとも1種を分散剤として、水性媒体中で微粒子化分散処理することを特徴とする、繊維用抗菌剤の製造方法。
R−〔O−(R−O)−H〕 ・・・[1]
(式中、mは1以上の整数を表し、Rはm個のヒドロキシ基を有する芳香族ヒドロキシ化合物からm個のヒドロキシ基を除いた残基を表し、Rは炭素数2〜4のアルキレン基を表し、aは0又は1以上の整数を表す)
R−〔O−(R−O)−H〕 ・・・[2]
(式中、mは1以上の整数を表し、Rはm個のヒドロキシ基を有する芳香族ヒドロキシ化合物からm個のヒドロキシ基を除いた残基を表し、Rは炭素数2〜4のアルキレン基を表し、bは3以上の整数を表す)
The metal antibacterial agent is selected from the group of an anionic surfactant derived from a compound represented by the following general formula [1] and a nonionic surfactant represented by the following general formula [2] under a high pressure of 50 MPa or more. A method for producing an antibacterial agent for fibers, which comprises subjecting at least one type of dispersant to fine particle dispersion in an aqueous medium.
R- [O- (R 1 -O) a -H] m ··· [1]
(In the formula, m represents an integer of 1 or more, R represents a residue obtained by removing m hydroxy groups from an aromatic hydroxy compound having m hydroxy groups, and R 1 represents an alkylene having 2 to 4 carbon atoms. A represents an integer of 0 or 1 or more)
R- [O- (R 1 -O) b -H] m · · · [2]
(In the formula, m represents an integer of 1 or more, R represents a residue obtained by removing m hydroxy groups from an aromatic hydroxy compound having m hydroxy groups, and R 1 represents an alkylene having 2 to 4 carbon atoms. Represents a group, and b represents an integer of 3 or more)
高圧が100MPa以上であり、分散剤が一般式[1]で示される化合物より誘導されるアニオン界面活性剤である、請求項1に記載の繊維用抗菌剤の製造方法。   The manufacturing method of the antibacterial agent for fibers of Claim 1 whose high pressure is 100 Mpa or more and whose dispersing agent is an anionic surfactant induced | guided | derived from the compound shown by General formula [1]. Rで表されるm個のヒドロキシ基を有する芳香族ヒドロキシ化合物がフェノール、4−クミルフェノール、4−フェニルフェノール又は2−ナフトールの、(3〜8モル)スチレン付加物、(3〜8モル)α−メチルスチレン付加物又は(3〜8モル)ベンジルクロライド反応物である、請求項1又は2に記載の繊維用抗菌剤の製造方法。   The aromatic hydroxy compound having m hydroxy groups represented by R is phenol, 4-cumylphenol, 4-phenylphenol or 2-naphthol, (3-8 mol) styrene adduct, (3-8 mol) The method for producing an antibacterial agent for fibers according to claim 1 or 2, which is an α-methylstyrene adduct or a (3 to 8 mol) benzyl chloride reaction product. 請求項1〜3のいずれか1項に記載の製造方法により得られる繊維用抗菌剤。   The antibacterial agent for fibers obtained by the manufacturing method of any one of Claims 1-3. 請求項4に記載の繊維用抗菌剤で処理することにより得られる抗菌性繊維製品。   An antibacterial fiber product obtained by treating with the antibacterial agent for fibers according to claim 4.
JP2011045250A 2011-03-02 2011-03-02 Method for producing antimicrobial agent for fiber, antimicrobial agent for fiber obtained by the production method, and antimicrobial fiber product Withdrawn JP2012180323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011045250A JP2012180323A (en) 2011-03-02 2011-03-02 Method for producing antimicrobial agent for fiber, antimicrobial agent for fiber obtained by the production method, and antimicrobial fiber product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011045250A JP2012180323A (en) 2011-03-02 2011-03-02 Method for producing antimicrobial agent for fiber, antimicrobial agent for fiber obtained by the production method, and antimicrobial fiber product

Publications (1)

Publication Number Publication Date
JP2012180323A true JP2012180323A (en) 2012-09-20

Family

ID=47011830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011045250A Withdrawn JP2012180323A (en) 2011-03-02 2011-03-02 Method for producing antimicrobial agent for fiber, antimicrobial agent for fiber obtained by the production method, and antimicrobial fiber product

Country Status (1)

Country Link
JP (1) JP2012180323A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185292A (en) * 2012-03-12 2013-09-19 Matsumoto Yushi Seiyaku Co Ltd Antibacterial processing agent for fiber, method for producing the same and method for producing antibacterial fiber
CN110981700A (en) * 2019-12-19 2020-04-10 湖南第一师范学院 Preparation method of alkylphenol compounds
CN111868323A (en) * 2018-03-30 2020-10-30 大阪化成株式会社 Antibacterial and mildewproof fiber structure
CN114957048A (en) * 2022-06-30 2022-08-30 浙江皇马科技股份有限公司 General preparation method of polystyrylphenol polyoxyethylene ether ammonium sulfate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185292A (en) * 2012-03-12 2013-09-19 Matsumoto Yushi Seiyaku Co Ltd Antibacterial processing agent for fiber, method for producing the same and method for producing antibacterial fiber
CN111868323A (en) * 2018-03-30 2020-10-30 大阪化成株式会社 Antibacterial and mildewproof fiber structure
CN111868323B (en) * 2018-03-30 2023-03-21 大阪化成株式会社 Antibacterial and mildewproof fiber structure
CN110981700A (en) * 2019-12-19 2020-04-10 湖南第一师范学院 Preparation method of alkylphenol compounds
CN110981700B (en) * 2019-12-19 2022-07-29 湖南第一师范学院 Preparation method of alkylphenol compounds
CN114957048A (en) * 2022-06-30 2022-08-30 浙江皇马科技股份有限公司 General preparation method of polystyrylphenol polyoxyethylene ether ammonium sulfate

Similar Documents

Publication Publication Date Title
EP2094903B1 (en) Method for providing textiles with desensitised silver components
US4447343A (en) Concentrated fabric softeners
JP2012180323A (en) Method for producing antimicrobial agent for fiber, antimicrobial agent for fiber obtained by the production method, and antimicrobial fiber product
CH637304A5 (en) FOAM ABSORBENT FOR AQUEOUS SYSTEMS.
EP0013028B1 (en) Detergent with a polydimethyl-siloxane content possessing an anti-foaming activity, and process for its production
EP0058139B1 (en) Process for dyeing or finishing fibrous textile materials
DE2656407A1 (en) PROCESS FOR THE MANUFACTURING OF DUST LOW COLORANT AND OPTICAL BRIGHTENING PREPARATIONS
JPH03123634A (en) Storage-stable aqueous wetting agent producing fewer bubbles in use
DE1469279A1 (en) Laundry treatment products
Sarwar et al. A bio based immobilizing matrix for transition metal oxides (TMO) crosslinked cotton: A facile and green processing for photocatalytic self-cleaning and multifunctional textile
CN102093755A (en) Preparation method of superfine indigotin dye suspension
JPWO2008047897A1 (en) Non-halogen flameproofing agent and method for flameproofing fiber using the same
WO2012081499A1 (en) Processing aid for flameproofing fiber, and flameproofing method
JP2012158853A (en) Frame retardant for polyester fiber material
EP0274350A1 (en) Aqueous storage-stable auxiliary textile agent resistant to hard water
CN111868323B (en) Antibacterial and mildewproof fiber structure
CN107164982A (en) A kind of textile printing and dyeing pollution-free food level detergent
CH679155A5 (en)
JP5943599B2 (en) Deodorant for textiles and deodorant fiber products
JP2001288017A (en) Zinc pyrithione-containing dispersion for antibacterial and antifungal processing and method for antibacterial and antifungal processing of fibers using the dispersion
CN115449437A (en) Concentrated nano photolysis underwear laundry detergent and preparation method thereof
CN106400477A (en) Scouring agent for short-process pretreatment and preparation method and application thereof
JP2014118387A (en) Antimicrobial agent for fiber and antimicrobial fiber product
JP3803658B2 (en) Method for producing flame retardant processing chemical for polyester fiber
JP7485338B2 (en) Coagulation inhibitor for tris(2,3-dibromopropyl)isocyanurate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513